
Finding Collisions in a Quantum World:
Quantum Black-Box Separation of

Collision-Resistance and One-Wayness

Akinori Hosoyamada1,2 and Takashi Yamakawa1

1 NTT Secure Platform Laboratories, Tokyo, Japan.
{akinori.hosoyamada.bh, takashi.yamakawa.ga}@hco.ntt.co.jp

2 Nagoya University, Nagoya, Japan. hosoyamada.akinori@nagoya-u.jp

Abstract. Since the celebrated work of Impagliazzo and Rudich (STOC
1989), a number of black-box impossibility results have been established.
However, these works only ruled out classical black-box reductions among
cryptographic primitives. Therefore it may be possible to overcome these
impossibility results by using quantum reductions. To exclude such a
possibility, we have to extend these impossibility results to the quantum
setting.
In this paper, we study black-box impossibility in the quantum setting.
We first formalize a quantum counterpart of fully-black-box reduction
following the formalization by Reingold, Trevisan and Vadhan (TCC
2004). Then we prove that there is no quantum fully-black-box reduc-
tion from collision-resistant hash functions to one-way permutations (or
even trapdoor permutations). We take both of classical and quantum
implementations of primitives into account. This is an extension to the
quantum setting of the work of Simon (Eurocrypt 1998) who showed a
similar result in the classical setting.

keywords post-quantum cryptography, one-way permutation, one-way
trapdoor permutation, collision resistant hash function, fully black-box
reduction, quantum reduction, impossibility

1 Introduction

1.1 Background

Black-box impossibility. Reductions among cryptographic primitives are fun-
damental in cryptography. For example, we know reductions from pseudoran-
dom generators, pseudorandom functions, symmetric key encryptions, and digi-
tal signatures to one-way functions (OWF). On the other hand, there are some
important cryptographic primitives including collision-resistant hash functions
(CRH), key-exchanges, public key encryption (PKE), oblivious transfer, and
non-interactive zero-knowledge proofs, for which there are no known reductions
to OWF. Given this situation, we want to ask if it is impossible to reduce these
primitives to OWF. We remark that under the widely believed assumption that

these primitives exist, OWF “imply” these primitives (i.e., these primitives are
“reduced” to OWF) in a trivial sense. Therefore to make the question meaning-
ful, we have to somehow restrict types of reductions.

For this purpose, Impagliazzo and Rudich [IR89] introduced the notion of
black-box reductions. Roughly speaking, a black-box reduction is a reduction
that uses an underlying primitive and an adversary in a black-box manner (i.e.,
use them just as oracles).3 They proved that there does not exist a black-box
reduction from key-exchange protocols (and especially PKE) to one-way per-
mutations (OWP). They also observed that most existing reductions between
cryptographic primitives are black-box. Thus their result can be interpreted as
an evidence that we cannot construct key-exchange protocols based on OWP
with commonly used techniques. After their seminal work, there have been nu-
merous impossibility results of black-box reductions (See Section 1.4 for details).

Post-quantum and quantum cryptography. In 1994. Shor [Sho94] showed
that we can efficiently compute integer factorization and discrete logarithm,
whose hardness are the basis of widely used cryptographic systems, by using a
quantum computer. After that, post-quantum cryptography, which treats classi-
cally computable cryptographic schemes that resist quantum attacks, has been
intensively studied (e.g., [McE78,Ajt96,Reg05,JF11]). Indeed, NIST has recently
started a standardization of post-quantum cryptography [NIS16]. We refer more
detailed survey of post-quantum cryptography to [BL17].

As another direction to use quantum computer in cryptography, there have
been study of quantum cryptography, in which even honest algorithms also
use quantum computers. They include quantum key distribution [BB84], quan-
tum encryption [ABF+16,AGM18], quantum (fully) homomorphic encryption
[BJ15,Mah18,Bra18], quantum copy-protection [Aar09], quantum digital signa-
tures [GC01], quantum money [Wie83,AC12,Zha19], etc. We refer more detailed
survey of quantum cryptography to [BS16].

Our motivation: black-box impossibility in a quantum world. In this
paper, we consider black-box impossibility in a quantum setting where primitives
and adversaries are quantum, and a reduction has quantum access to them.

Quantum reductions are sometimes more powerful than classical reductions.
For example, Regev [Reg05] gave a quantum reduction from the learning with
errors (LWE) problem to the decision version of the shortest vector problem
(GapSVP) or the shortest independent vectors problem (SIVP). We note that
there are some follow-up works that give classical reduction between these prob-
lems in some parameter settings [Pei09,BLP+13], but we still do not know any
classical reduction that works in the same parameter setting as the quantum

3 This is an explanation for fully-black-box reduction using the terminology of Reingold,
Trevisan, and Vadhan [RTV04]. Since we only consider fully-black-box reductions
in this paper, in this introduction, we just say black-box reduction to mean fully-
black-box reduction.

2

one by Regev. This example illustrates that quantum reductions are sometimes
more powerful than classical reductions even if all problem instances (e.g., im-
plementations of primitives, adversaries, and reduction algorithms) are classical.
Therefore it may be possible to overcome black-box impossibility results shown
in the classical setting by using quantum reductions.

Since quantum computers may also be used to implement cryptographic
primitives in the near future, it is of much interest to study how the classical im-
possibility results change in the quantum setting. In particular, it is theoretically
very important to study whether the impossibility of black-box reductions from
CRH to OWP shown by Simon [Sim98], which is one of the most fundamental re-
sults on impossibility and revisited in many follow-up works [HR04,HHRS07,AS15],
can be overcome in the quantum setting. Despite the importance of the problem,
the (im)possibility of the quantum reductions has not been studied.

1.2 Our Results

This paper shows that the impossibility of black-box reductions from CRH to
OWP cannot be overcome in the quantum setting. First, we formally define the
notion of quantum black-box reduction based on the work by Reingold, Trevisan
and Vadhan [RTV04], which gave a formal framework for the notion of black-box
reductions in the classical setting. Then we prove the following theorem.

Theorem 1 (informal). There does not exist a quantum black-box reduction
from CRH to OWP.

We note that though we do not know any candidate of OWP that resists quantum
attacks, the above theorem is still meaningful since it also rules out quantum
black-box reductions from CRH to OWF (since OWP is also OWF) and there
exist many candidates of post-quantum OWF. This theorem is stated with OWP
instead of OWF just because this makes the theorem stronger.

We also extend the result to obtain the following theorem.

Theorem 2 (informal). There does not exist a quantum black-box reduction
from CRH to trapdoor permutations (TDP).

Note that our results do not require any unproven assumptions nor the ex-
istence of any oracles. Some oracles are introduced in our proofs, but they are
just technical tools.

Remark 1. In this paper, by quantum black-box reduction we denote reductions
that have quantum black-box oracle accesses to primitives. We always consider
security of primitives against quantum adversaries, and do not discuss primitives
that are only secure against classical adversaries. In addition, since our main
goal is to show the impossibility of reductions from CRH to OWP and CRH to
TDP, and when we consider primitives with interactions in the quantum setting
we have some subtle issues that do not matter in the classical setting (e.g.,
rewinding is sometimes hard in the quantum setting [ARU14]), we treat only
primitives such that both of the primitives themselves and security games are
non-interactive.

3

1.3 Technical Overview

Here, we give a brief technical overview of our results. We focus on the proof
of Theorem 1 since Theorem 2 can be proven by a natural (yet non-trivial)
extension of that of Theorem 1. We remark that we omit many details and often
rely on non-rigorous arguments for intuitive explanations in this subsection.

First, we recall the two-oracle technique, which is a technique to rule out
black-box reductions among cryptographic primitives in the classical setting in-
troduced by Hsiao and Reyzin [HR04]. Roughly speaking, they showed that a
black-box reduction from a primitive P to another primitive Q does not exist if
there exist oracles Φ and ΨΦ such that Q exists and P does not exist relative to
these oracles. As our first contribution, we show that a similar argument carries
over to the quantum setting if we appropriately define primitives and black-box
reductions in the quantum setting.

For proving the separation between CRH and OWP, we consider oracles
Φ = f , which is a random permutation over {0, 1}n, and ΨΦ = ColFinderf ,
which is an oracle that finds a collision of any function described by an oracle-
aided quantum circuit C that accesses f as an oracle by brute-force similarly to
the previous works in the classical setting [Sim98,HHRS07,AS15]. CRH does not
exist relative to f and ColFinderf since we can compute a collision for any (effi-
ciently computable length-decreasing) function Cf by querying C to ColFinderf .
Thus, what is left is to prove that a random permutation f is hard to invert
even if an adversary is given an additional oracle access to ColFinderf .

We first recall how this was done in the classical setting based on the proof
in [AS15]. 4 The underlying idea behind the proof is a very simple information
theoretic fact often referred to as the “compression argument,” which dates
back to the work of Gennaro and Trevisan [GT00]: if we can encode a truth
table of a random permutation into an encoding that can be decoded to the
original truth table with high probability, then the size of the encoding should
be almost as large as that of the truth table. Based on this, the strategy of the
proof is to encode a truth table of f into an encoding that consists of a “partial
truth table” of f that specifies values of f(x) for all x ∈ {0, 1}n \ G for an
appropriately chosen subsetG so that one can decode the encoding to the original
truth table by recovering “forgotten values” of f(x) on x ∈ G by using the power
of an adversary A that inverts the permutation f with oracle accesses to f and
ColFinderf . What is non-trivial in the proof is that the decoding procedure has
to simulate oracles f and ColFinderf for A whereas the encoding only contains
a partial truth table of f . To overcome this issue, they demonstrated a very
clever way of choosing the subset G such that the simulation of oracles f and
ColFinderf does not require values of f on G. Especially, they showed that the
larger A’s success probability is, the larger the subset G is, i.e., the smaller the
encoding size is. By using the lower bound of the encoding size obtained by the

4 Though the basic idea is similar to the proof of Simon [Sim98], we explain the
description in [AS15] since this is more suitable for explaining how we extend the
proof to the quantum setting.

4

compression argument, they upper bound A’s success probability by a negligible
function in n.

Unfortunately, their proof cannot be directly extended to the quantum setting
since the choice of the subset G crucially relies on the fact that queries by A are
classical. Indeed, A may query a uniform superposition of all inputs to the oracle
f , in which case it is impossible to perfectly simulate the oracle f with a partial
truth table. Thus, instead of directly generalizing their proof to the quantum
setting, we start from another work by Nayebi et al. [NABT15], which showed
that it is hard to invert a random permutation f with a quantum oracle access
to f .5 The proof strategy of their work is similar to the above, and they also
rely on the compression argument, but a crucial difference is that they choose
the subset G in a randomized way.6 Specifically, they first choose a random
subset R ⊂ {0, 1}n of a certain size, and define G as the set of x such that
(1): x ∈ R, (2): A succeeds in inverting f(x) with high probability, and (3):
query magnitudes of A on any element in R \ {x} is sufficiently small. The
condition (3) implies that A is still likely to succeed in inverting f(x) even if
the function (oracle) f is replaced with any function f ′ that agrees with f on
{0, 1}n \ (R \ {x}).7 Especially, a decoder can use the function hy that agrees
with f on {0, 1}n \G and returns y on G instead of the original oracle f when it
runs A on an input y ∈ f(G). Since the function hy can be implemented by the
partial truth table of f on {0, 1}n \G, the decoder can simulate the oracle for A
to correctly invert y in f for each y ∈ f(G), which implies that the decoder can
recover the original truth table of f from the partial truth table. Finally, they
showed that an appropriate choice of parameters gives a lower bound of the size
of G, which in turn gives an upper bound of A’s success probability based on
the compression argument.

For our purpose, we have to prove that a random permutation is hard to
invert for a quantum adversary A even if it is given a quantum access to the
additional oracle ColFinderf . Here, we make a simplifying assumption that the
oracle ColFinderf is only classically accessible since this case conveys our essen-
tial idea and can be readily generalized to the quantumly accessible case. For
generalizing the proof of [NABT15] to our case, we have to find a way to simulate
ColFinderf by using the partial truth table of f on {0, 1}n \G.

Before describing our strategy about how to simulate ColFinderf , here we
give its more detailed definition: At the beginning of each game before A runs

relative to ColFinderf , two permutations π
(1)
C , π

(2)
C ∈ Perm({0, 1}m) are chosen

uniformly at random for each circuit C ({0, 1}m is the domain of the function
Cf). On each input C, ColFinderf runs the following procedures:

1. Set w(1) ← π
(1)
C (0m).

5 Actually, they showed that a random permutation is hard to invert even given a
classical advice string.

6 Such a randomized encoder was also used in some works in the classical setting, e.g.,
[DTT10].

7 Formally, this is proven by using the swapping lemma shown by Vazirani [Vaz98,
Lem. 3.1]

5

2. Compute u = Cf (w(1)) by running the circuit C relative to f on w(1).

3. Find the minimum t such that Cf (π
(2)
C (t)) = u by running the circuit C

relative to f on the input π
(2)
C (i) and checking whether Cf (π

(2)
C (i)) = u

holds for i = 0, 1, 2 . . . , sequentially. Set w(2) ← π
(2)
C (t).

4. Return (w(1), w(2), u).

Next, we explain our strategy to simulate ColFinderf . Given a query (circuit)
C and an (appropriately produced) partial truth table of f , the simulator works
similarly to ColFinder except that it uses the partial truth table instead of f to
simulate outputs of C. For making sure that this results in a correct simulation
of ColFinderf , we require the following two properties:

P1. Given w(1) and w(2) = π
(2)
C (t), the simulator computes the value Cf (w(1)) =

Cf (w(2)) = u correctly.

P2. For i < t, the simulator does not misjudges that “the value Cf (π
(2)
C (i)) is

equal to u”.

The first property P1 is obviously necessary to simulate ColFinderf . The second
property P2 is also indispensable since, if it is not satisfied, there is a possibility
that the simulator responds with a wrong answer (w(1), πC(i), u). We have to
make sure that the properties P1 and P2 will hold as well when we design our
encoder (or, equivalently, how to choose G ⊂ {0, 1}n).

Let us explain how to encode the truth table of each permutation f into its
partial table. We choose another random subset R′ ⊂ {0, 1}n of a certain size
and require two additional conditions for x to be in G: (4): x ∈ R′ and (5): All
oracle-aided quantum circuits C queried by A when it runs on input f(x) are
“good” w.r.t. (R′, x) in the following sense.8 We say that C is good w.r.t. (R′, x)
if query magnitudes of C on any element of R′ \ {x} is “small” when C runs
on input w(1) or w(2) relative to f , where (w(1), w(2)) is the collision found by
ColFinderf . Finally, we encode f into the partial truth table that specifies the
value of f(x) if and only if x ∈ {0, 1}n \G.

Intuitively, the condition (5) implies that a collision (w(1), w(2)) found by
ColFinderf for any A’s query C is not likely to change even if its oracle f is
replaced with any function f ′ that just agrees with f on {0, 1}n\(R′\{x}), which

implies that the property P1 is satisfied. In our proof, suitable permutations π
(1)
C

and π
(2)
C are fixed and the decoder have the truth table of them. In particular,

the decoder knows the correct w(1) = π
(1)
C (0m) for each C, and can compute

the correct u = Cf (w(1)) since the outputs of Cf
′
(w(1)) is likely to be the same

value as Cf (w(1)) if f ′ agrees with f on {0, 1}n \ (R′ \ {x}) due to the definition
of goodness of C.

Thus, in this case, the oracle ColFinderf seems to be simulatable with the
partial truth table of f on {0, 1}n \G. However, there is an issue: It is not trivial
how to ensure that the property P2 holds. Note that the property P2 holds and

8 The definition of “good” given here corresponds to the negation of “bad” defined in
the main body.

6

the issue is resolved if we can ensure that the simulator judges “I cannot compute

the correct value Cf (π
(2)
C (i))” (instead of misjudging “the value Cf (π

(2)
C (i)) is

u” for some i < t) when the given partial table of f does not contain enough

information to compute the value Cf (π
(2)
C (i)). We can easily ensure it in the

classical setting by measuring the queries made by C and judging that “the
information is not enough” if the value f(x) is not defined in the partial table
for a query x made by C. However, it is highly non-trivial how to ensure it
in the quantum setting since measuring queries may disturb C’s computations

significantly, and ColFinderf runs C on π
(2)
C (i) for (possibly exponentially) many

i until it finds the minimum t such that Cf (π
(2)
C (t)) = u, in which case its total

query magnitude on R′ \ {x} is not always small. 9

We overcome the issue by introducing a new technique. Specifically, when-
ever the simulation algorithm picks i, it checks whether the partial truth table

contains enough information to compute the correct value of Cf (π
(2)
C (i)) by run-

ning C on the input π
(2)
C (i) relative to f ′ for all possible permutations f ′ that

are consistent with the given partial truth table of f on {0, 1}n \ (R′ \ {x}),
and judges that “the partial truth table contains enough information to com-

pute the correct value of Cf (π
(2)
C (i))” only if the outputs of Cf

′
(π

(2)
C (i)) are the

same value for all possible oracles f ′. (Otherwise, it judges that “The partial
truth table does not contain enough information to compute the correct value

of Cf (π
(2)
C (i))” and do the same again for the next index (i + 1).) This pro-

cedure prevents the simulation algorithm from outputting a “wrong” collision

(w(1), π
(2)
C (i)) that is different from (w(1), w(2)) and the property P2 is satisfied

since the actual function f is one of the candidates of f ′ with which the validity
of the collision is checked. On the other hand, the correct collision (w(1), w(2))
cannot be judged to be a wrong one since the outputs of Cf

′
(w(2)) are likely to

be the same value for all f ′ due to the definition of goodness of C.
In this way, we can simulate both oracles f and ColFinderf by using the

partial truth table of f on {0, 1}n \ G. Similarly to the proof in [NABT15],
an appropriate choice of parameters enables us to upper bound A’s success
probability by a negligible function in n. This implies that OWP exists relative
to oracles f and ColFinderf , and thus there does not exist a black-box reduction
from CRH to OWP.

We believe that our new technique can be used in more and more applications
when we want to apply compression arguments with some complex oracles (such
as ColFinder) in the quantum setting.

1.4 Related Work

Black-box impossibility. Here, we review existing works on black-box impos-
sibility in the classical setting. We refer more details of these works to [Fis12].
Reingold, Trevisan and Vadhan [RTV04] introduced several notions of black-box

9 Note that we consider information theoretic encoder and decoder, and we do not
care whether they run efficiently.

7

reductions (later revisited by Baecher, Brzuska and Fischlin [BBF13]). We only
consider fully-black-box reductions using their terminology.

Impagliazzo and Rudich [IR89] ruled out black-box reductions from key-
exchanges to OWP by using the relativizing technique. In this technique, we
construct an oracle O such that there exists a primitive P relative to O but
does not exist Q relative to O. If such an oracle exists, then there does not exist
black-box reduction from P to Q.10 The relativizing technique can also be found
in [Sim98,Rud92,Hof11] etc.

Hsiao and Reyzin [HR04] proposed an extension of the relativizing technique
called the two-oracle technique. In this technique, we construct an oracle O1

that gives an “ideal” implementation of a primitive P and another oracle O2

that trivially breaks any implementation of a primitive Q, and prove that the
security of P implemented by O1 still holds even if an adversary is given access
to the oracle O2 in addition to O1. If we prove this, then there does not exist
black-box reduction from P to Q.11 The two-oracle technique can also be found
in [DOP05,FLR+10,FS12,AS15] etc.

Boneh and Venkatesan [BV98] introduced another technique to rule out
black-box reductions called meta-reduction. In this technique, we construct a
trivial inefficient adversary A against a primitive P and a simulator S which is
computationally indistinguishable from A via oracle accesses by a polynomial-
time algorithm. Then a reduction algorithm from P to Q works well even if
it accesses to the simulator S instead of the adversary A. This means that we
can break the security of Q in polynomial-time. Therefore such a reduction
does not exist as long as Q is secure. Meta-reductions can also be found in
[Cor02,Pas11,GW11] etc.

Rotem and Segev [RS18] showed a limitation of black-box impossibility by
giving an example that overcomes the black-box impossibility result by Rudich
[Rud88] by using a non-black-box reduction. Nonetheless, black-box impossibility
results are still meaningful since we know very limited number of non-black-box
techniques. Indeed, they left it as an open problem to overcome the black-box
separation of CRH and OWP shown by Simon [Sim98].

Bitansky and Degwekar [BD19] gave a new proof for the black-box separation
of CRH from OWP in the classical setting, which is conceptually different from
previous ones [Sim98,HHRS07,AS15]. However, it is unclear if their proof extends
to the quantum setting.

CRH from strong OWF. Holmgren and Lombardi [HL18] gave a construction
of CRH based on a stronger variant of OWF which they call one-way product
functions (OWPF). However, since they do not give a construction of OWPF
from OWF (or OWP) even with exponential security, their result does not over-
come the impossibility result by Simon [Sim98].

10 In fact, they ruled out relativizing reduction which is a more general type of reduc-
tions than fully-black-box reduction.

11 We note that this technique only rules out fully-black-box reduction unlike the rel-
ativizing technique.

8

Impossibility of quantum reduction from OWP to NP hardness. Chia,
Hallgren, and Song [CHS18] considered the problem of separating OWP from
NP hardness in the quantum setting. They ruled out a special type of quantum
reductions called locally random reductions under a certain complexity theoretic
assumption. We note that in our work, we do not put any restriction on a type
of a reduction as long as it is quantum fully-black-box, and we do not assume
any unproven assumption. Also, they focus on the separation of OWP from NP
hardness, and do not give a general definition of black-box reduction in the
quantum setting. Thus their work is incomparable to ours.

Quantum Generic Attacks. Grover [Gro96] developed the famous database-
search algorithm that, given black-box access to a function f : {0, 1}n → {0, 1},
finds an element x such that f(x) = 1 with O(2n/2) quantum queries (if such
x exists). Brassard, Boyer, Høyer, and Tapp developed a generalized version of
the Grover search, which can be used to find a preimage of an n-bit random
permutation with O(2n/2) queries [BBHT98]. In particular, any n-bit (trap-
door) permutations can be inverted with O(2n/2) queries. They also showed that
O(2n/2) is the tight bound for the database-search problem. Brassrad, Høyer,
and Tapp [BHT98] developed a quantum collision-finding algorithm that finds a
collision of a 2-to-1 function with O(2n/3) queries. Actually their algorithm can
be used to find collisions of random functions, and Zhandry [Zha15] showed that
O(2n/3) is the tight bound to find collisions of random functions in the quantum
setting.

Collapsing. Ambainis, Rosmanis, and Unruh have shown that the classical-
style definition of computationally binding for commitment schemes is inade-
quate in the quantum setting [ARU14]. Instead, Unruh introduced the notion of
collapse-binding commitment, which is an extension of classical computationally-
binding commitment to the quantum setting [Unr16]. He also defined the notion
of collapsing hash functions, and showed that collapse-binding commitments
can be constructed from collapsing hash functions. The notion of collapsing is
stronger than the classical notion of collision-resistance [Unr16], i.e., collapsing
hash functions are collision resistant.

Reducibility among cryptographic primitives in the quantum setting.
Bennett et al. showed that bit commitments imply oblivious transfers in the
quantum setting [BBCS92]. Fehr et al. showed that classical feasibility results
carry over unchanged in the quantum setting [FKS+13]. Dupuis et al. proved a
general relation between adaptive and non-adaptive strategies in the quantum
setting, and developed a secure quantum bit commitment scheme that uses an
ideal 1-bit cut-and-choose primitive as a black box [DFLS16]. Song character-
ized sufficient conditions that classical reductions are converted into quantum
reductions [Son14]. Dagdelen et al. showed that giving black-box reductions for
Fiat-Shamir transformation in the QROM is presumably hard [DFG13], but

9

later Don et al. and Liu and Zhandry constructed generic reductions for the
transformation in the QROM [DFMS19,LZ19].

Quantum random oracle model with auxiliary information. Subsequent
to the posting of our work online, Hhan et al. [HXY19] also used the compression
technique in the quantum setting to analyze the quantum random oracle model
in the presence of auxiliary information. A crucial difference between their work
and this work is that they consider a setting where an adversary is given an
auxiliary information which is fixed at the beginning of a security game whereas
we consider a setting where an adversary can adaptively make a query to the
quantum oracle ColFinder during the game. Thus, our results are incomparable
to theirs.

1.5 Paper Organization

Section 2 describes notations, definitions, and fundamental technical lemmas
that are used throughout the paper. Section 3 gives formalizations of quantum
primitives and quantum fully-black-box reductions. Section 4 shows the impossi-
bility of quantum fully-black-box reductions from CRH to OWP. Section 5 shows
the impossibility of quantum fully-black-box reductions from CRH to TDP.

2 Preliminaries

A classical algorithm is a classical Turing machine, and an efficient classical
algorithm is a probabilistic efficient Turing machine. We denote the set of positive
integers by N. We write A instead of A ⊗ I for short, for any linear operator
A. For sets X and Y , let Func(X,Y) denote the set of functions from X to Y ,
and Perm(X) denote the set of permutations on X. Let ∆(f, g) denote the set
{x ∈ X|f(x) 6= g(x)} for any functions f, g ∈ Func(X,Y). Let {0, 1}∗ denote
the set ∪n≥1{0, 1}n, and by abuse of notation we let Perm({0, 1}∗) denote the
set of permutations {P : {0, 1}∗ → {0, 1}∗|P ({0, 1}n) = {0, 1}n for each n ≥ 1}.
When we say that f : {0, 1}∗ → {0, 1}∗ is a permutation, we assume that
f({0, 1}n) = {0, 1}n holds for each n, and thus f is in Perm({0, 1}∗) (i.e., in this
paper we do not treat permutations such that there exist n 6= n′ and x ∈ {0, 1}n
such that f(x) ∈ {0, 1}n′). We say that a function f : N→ R is negligible if, for
any positive integer c, f(n) ≤ n−c holds for all sufficiently large n, and we write
f(n) ≤ negl(n).

2.1 Quantum Algorithms

We refer basics of quantum computation to [NC10,KSVV02]. In this paper, we
use the computational model of quantum circuits. Let Q be the standard basis of
quantum circuits [KSVV02]. We assume that quantum circuits (without oracle)
are constructed over the standard basis Q, and define the size of a quantum

10

circuit as the total number of elements in Q used to construct it. Let |C| denote
the size of each quantum circuit C. An oracle-aided quantum circuit is a quantum
circuit with oracle gates. When an oracle-aided quantum circuit is implemented
relative to an oracle O represented by a unitary operator, the oracle gates are
replaced by the unitary operator. When there are multiple oracles, each oracle
gate should specify an index of an oracle. In this paper, we assume that all
oracles are stateless, that is, the behavior of the oracle is independent from a
previous history and the same for all queries. For a stateless quantum oracle O,
we often identify the oracle and a unitary operator that represents the oracle,
and use the same notation O for both of them. Note that each classical algorithm
can be regarded as a quantum algorithm. We fix an encoding E of (oracle-aided)
quantum circuits to bit strings, and we identify E(C) with C. For a quantum
circuit C, we will denote the event that we measure an output z when we run C
on an input x and measure the final state by C(x) = z.

First, we define quantum algorithms. We note that we only consider classical-
input-output quantum algorithms.

Definition 1 (Quantum algorithms). A quantum algorithm A is a family
of quantum circuits {An}n∈N that acts on a quantum system Hn = Hn,in ⊗
Hn,out⊗Hn,work for each n. When we feed A with an input x ∈ {0, 1}n, A runs
the circuit An on the initial state |x〉 |0〉 |0〉, measures the final state with the
computational basis, and outputs the measurement result of the register which
corresponds to Hn,out. We say that A is an efficient quantum algorithm if it is a
family of polynomial-size quantum circuits, i.e., there is a polynomial λ(n) such
that |An| ≤ λ(n) for all sufficiently large n.

Remark 2. Though we use a Turing machine for a computational model of clas-
sical computation, we use a quantum circuit for a computational model of quan-
tum computation. This is just because quantum circuits are better studied than
quantum Turing machines [Yao93], and are easier to treat. We remark that we
do not intend to rule out reductions with full non-uniform techniques as was
done in [CLMP13].

Next, we define oracle-aided quantum algorithms, which are quantum algorithms
that can access to oracles.

Definition 2 (Oracle-aided quantum algorithms). An oracle-aided quan-
tum algorithm A is a family of oracle aided quantum circuits {An}n∈N that
acts on a quantum system Hn = Hn,in ⊗ Hn,out ⊗ Hn,work for each n. Let
O1 = {O1,i}i∈N, ..., Ot = {Ot,i}i∈N be families of quantum oracle gates. When
we feed A with an input x ∈ {0, 1}n relative to oracles (O1, ..., Ot), A runs

the circuit AO1,n,...,Ot,n
n on the initial state |x〉 |0〉 |0〉, measures the final state

with the computational basis, and outputs the measurement result of the register
which corresponds to Hn,out. 12 We note that an oracle-aided quantum circuit

12 We assume that the queries are always performed in a sequential order (e.g., before
each query to O2, the adversary always makes a query to O1), but there is no reason

11

AO1,n,...,Ot,n
n that makes q queries can be described by a unitary operator

AO1,n,...,Ot,n
n =

q(n)∏
j=1

(Uj,t,nOt,n . . . Uj,1,nO1,n)

U0,n, (1)

where (U0,n, {Uj,1,n,. . . , Uj,t,n}j∈[q]) are some unitary operators.

Remark 3. We also often consider an oracle access to a quantum algorithm. This
is interpreted as an oracle access to a unitary operator that represents A.

Next, we define randomized quantum oracles, which are quantum oracles that
flip classical random coins before algorithms start.

Definition 3 (Randomized quantum oracles). Let Rn be a finite set for
each n, and R :=

∏∞
n=1Rn (note that each element r ∈ R is an infinite sequence

(r1, r2, · · ·)). A randomized quantum oracle O := {Or}r∈R is a family of quan-
tum oracles such that Or,n = Or′,n if rn = r′n. When we feed A with an input
x ∈ {0, 1}n relative to O, first rn is randomly chosen from the finite set Rn (ac-

cording to some distribution), and then A runs the circuit AOr,nn on the initial
state |x〉 |0〉 |0〉. We denote Or,n by Orn and {Orn}rn∈Rn by On, respectively, and
identify O with {On}n∈N. 13

Similarly, when A is given oracle access to multiple randomized oracles (O1,
. . . , Ot), we consider that an oracle gate is randomly chosen and fixed for each
of the t oracles before A starts. The distributions of O1, . . . , Ot can be highly
dependent.

Remark 4. Later we consider the situation that a quantum algorithm A has
access to a randomized quantum oracle O, and another quantum algorithm B
has access to AO. This is interpreted as follows: Before B starts, rn ∈ Rn is
chosen uniformly at random, and B is given an oracle access to the unitary

operator that represents AOrnn . In particular we do not change rn while B is
running.

Next, we define what “a quantum algorithm computes a function” means.

Definition 4 (Functions computed by quantum algorithms). A quantum
algorithm A computes a function f : {0, 1}∗ → {0, 1}∗ if we have Pr[A(x) =

for an adversary to fix the order. We assume this only for an ease of notation.
There are multiple ways to fix it, but changes of the order does not essentially affect
(im)possibility of reductions.

13 Note that the meaning of the symbol OX changes depending on the set that the
index X belongs to. Rn is the set of random coins for the security parameter n, and
each coin rn ∈ Rn corresponds to one fixed unitary operator Orn . Or is an infinite
family {Or1 , Or2 , . . . } for each fixed r = (r1, r2, . . .) ∈ R, and On is the finite family
{Orn}rn∈Rn for each fixed n. Each of Or and On can be regarded as a subset of O.
In addition, Or,n denotes “the n-th element of Or” for each fixed r, which is the
same as Orn .

12

f(x)] > 2/3 14 for all n ∈ N and x ∈ {0, 1}n. An oracle-aided quantum algorithm
A computes a function f : {0, 1}∗ → {0, 1}∗ relative to an oracle Γ if we have
Pr[AΓ (x) = f(x)] > 2/3 for all n ∈ N and x ∈ {0, 1}n.

2.2 Technical Lemmas

This section introduces some technical lemmas for later use. First, we use the
following basic lemma as a fact. See textbooks on quantum computation and
quantum information (e.g., [NC10]) for a proof.

Lemma 1. trD(|ψ1〉 〈ψ1| , |ψ2〉 〈ψ2|) ≤ ‖ |ψ1〉 − |ψ2〉 ‖ holds for any pure states
|ψ1〉 and |ψ2〉, where trD denotes the trace distance function.

By applying the above claim, we can show the following lemma.

Lemma 2. Let Γ = (f1, . . . , ft), Γ
′ = (f ′1, . . . , f

′
t) be sequences of oracles, and

assume that A is given oracle access to either Γ or Γ ′. Then,∣∣∣Pr
[
AΓ (x) = z

]
− Pr

[
AΓ

′
(x) = z

]∣∣∣ ≤ ∥∥∥AΓn |x, 0, 0〉 − AΓ ′n |x, 0, 0〉∥∥∥ (2)

holds for any input x ∈ {0, 1}n and output z.

Proof (of Lemma 2). Let |φ〉 = AΓn |x, 0, 0〉 and |φ′〉 = AΓ ′n |x, 0, 0〉. In addi-
tion, let D,D′ be (classical) distributions of outputs of AΓ and AΓ ′ on input
x ∈ {0, 1}n, respectively. Then the left hand side of eq. (2) is upper bounded
by TD(D,D′), where TD denotes the total variational distance function, and
TD(D,D′) ≤ trD(|φ〉 〈φ| , |φ′〉 〈φ′|) holds by the basic property of trace distance
(see Theorem 9.1 in [NC10], for example). From Lemma 1, trD(|φ〉 〈φ| , |φ′〉 〈φ′|) ≤
‖ |φ〉 − |φ′〉 ‖ follows, and the claim holds. ut

Swapping Lemma for Multiple Oracles. Next we introduce a generalized
version of the swapping lemma [Vaz98, Lem. 3.1] for multiple oracles. The orig-
inal swapping lemma formalizes our intuition that the measurement outcome of
oracle-aided algorithm will not be changed so much even if the output values of
the oracles are changed on a small fraction of inputs. Since this paper considers
the situation that multiple oracles are available to adversaries, we extend the
original lemma to a generalized one so that we can treat multiple oracles. To
simplify notation, below we often omit the parameter n when it is clear from
context (e.g., we write just q instead of q(n)). Here we introduce an important
notion called query magnitude.

14 Here we are using the value 2/3 for the threshold, but it does not make any essential
difference even if we use another constant c such that instead of 2/3, as long as
1/2 < c < 1.

13

Query Magnitude. Let Γ = (f1, . . . , ft) be a sequence of quantum oracles, where
each fi is a fixed oracle and not randomized. Let A be a q-query oracle-aided
quantum algorithm relative to the oracle Γ . 15

Fix an input x, and let |φfij 〉 be the quantum state of AΓ on input x ∈ {0, 1}n
just before the j-th query to fi. Without loss of generality, we consider that the
unitary operator Ofi acts on the first (mi(n) + `i(n))-qubits of the quantum
system. (Here we assume that fi is a function from {0, 1}mi(n) to {0, 1}`i(n).)

Then |φfij 〉 =
∑
z∈{0,1}mi(n) αz |z〉 ⊗ |ψz〉 holds for some complex numbers αz

and quantum states |ψz〉. If we measure the first mi(n) qubits of the state |φfij 〉
with the computational basis, we obtain z with probability |αz|2. Intuitively,
this probability corresponds to the “probability” that z is sent to fi as the j-th
quantum query by A.

Definition 5 (Query magnitude to fi).

1. The query magnitude of the j-th quantum query of A to fi at z on input
x ∈ {0, 1}n is defined by

µA,fiz,j (x) := |αz|2. (3)

2. The (total) query magnitude of A to fi at z on input x ∈ {0, 1}n is defined
by

µA,fiz (x) :=
∑
j

µA,fiz,j (x). (4)

The following lemma can be proven in the same way as the original swapping
lemma [Vaz98, Lem. 3.1], using the hybrid argument introduced by Bennet et
al. [BBBV97]. 16

Lemma 3 (Swapping lemma with multiple oracles). Let Γ = (f1, . . . , ft),
Γ ′ = (f ′1, . . . , f

′
t) be sequences of oracles, where each fi and f ′i are fixed oracles

and not randomized. Assume that A is given oracle access to either Γ or Γ ′.
Then ∥∥∥AΓn |x, 0, 0〉 − AΓ ′n |x, 0, 0〉∥∥∥ ≤ 2

∑
1≤i≤t

√
q(n)

∑
z∈∆(fi,f ′i)

µA,fiz (x) (5)

holds for all x ∈ {0, 1}n.

Proof. In this proof we write q instead of q(n), for simplicity. For 1 ≤ k ≤ q
and 1 ≤ ` ≤ t, let Γ(k,`) be an intermediate oracle between Γ and Γ ′: When we
run an oracle-aided quantum algorithm A relative to Γ(k,`), first A queries to Γ
until the k-th query to f`−1 (or the (k − 1)-th query to ft if ` = 1), and then

15 We sometimes call a sequence of oracles just “oracle”.
16 The original swapping lemma is the special case of Lemma 3 such that t = 1.

14

A queries to Γ ′ from the k-th query to f` until the last query to ft. Then, the

corresponding unitary operator AΓ(k,`)
n is described as

AΓ(k,`)
n =

 q∏
j=k+1

(
Uj,t,nOf ′t,n . . . Uj,1,nOf ′1,n

)
· Uk,t,nOf ′t,n · · ·Of ′`,nUk,`−1,nOf`−1,n · · ·Uk,1,nOf1,n

·

k−1∏
j=1

(Uj,t,nOft,n . . . Uj,1,nOf1,n)

U0,n. (6)

Let |φ(k,`)
(i,j) 〉 be the quantum state of A just before the i-th query to fj or f ′j , when

we run A relative to Γ(k,`) on input x ∈ {0, 1}n. By |φ(k,`)
(q+1,1)〉 we denote the final

quantum state of A when we run A relative to Γ(k,`) on input x ∈ {0, 1}n. Let
Γ(q+1,1) denote Γ . Below we regard that ft+1 = f1, f ′t+1 = f ′1, and (k, t + 1) =
(k+1, 1), for simplicity. Then, since unitary operators preserve norms of vectors,
we have that∥∥∥AΓn |x, 0, 0〉 − AΓ ′n |x, 0, 0〉∥∥∥ =

∥∥∥|φ(q+1,1)
(q+1,1)〉 − |φ

(1,1)
(q+1,1)〉

∥∥∥
≤
∑

1≤`≤t

∑
1≤k≤q

∥∥∥|φ(k,`+1)
(q+1,1)〉 − |φ

(k,`)
(q+1,1)〉

∥∥∥ (7)

and ∥∥∥|φ(k,`+1)
(q+1,1)〉 − |φ

(k,`)
(q+1,1)〉

∥∥∥ =
∥∥∥Of` |φ(k,`)

(k,`)〉 −Of ′` |φ
(k,`)
(k,`)〉

∥∥∥ (8)

hold. Let Π∆(f`,f ′`)
be the projector onto the space spanned by the vectors that

correspond to elements of ∆(f`, f
′
`). Then we have∥∥∥Of` |φ(k,`)

(k,`)〉 −Of ′` |φ
(k,`)
(k,`)〉

∥∥∥ =
∥∥∥(Of` −Of ′`)Π∆(f`,f ′`)

|φ(k,`)
(k,`)〉

∥∥∥
≤ 2 ·

∥∥∥Π∆(f`,f ′`)
|φ(k,`)

(k,`)〉
∥∥∥ = 2

√ ∑
z∈∆(f`,f ′`)

µA,f`z,k (x).

(9)

From inequalities (7), (8), and (9), it follows that∥∥∥AΓn |x, 0, 0〉 − AΓ ′n |x, 0, 0〉∥∥∥ ≤ 2
∑

1≤`≤t

∑
1≤k≤q

√ ∑
z∈∆(f`,f ′`)

µA,f`z,k (x)

≤ 2
∑

1≤`≤t

√
q
∑

1≤k≤q

∑
z∈∆(f`,f ′`)

µA,f`z,k (x)

= 2
∑

1≤`≤t

√
q

∑
z∈∆(f`,f ′`)

µA,f`z (x), (10)

where we used the concavity of the square root function for the second inequality.
ut

15

3 Quantum Primitives and Black-Box Quantum
Reductions

Here, we define quantum primitives, which is a quantum counterpart of a prim-
itive, in addition to the notion of fully-black-box reduction in quantum regime
(see Def. 2.1 and Def. 2.3 in [RTV04] for classical definitions). Note that we
consider reductions that have quantum black-box oracle accesses to primitives.
We always consider security of primitives against quantum adversaries, and do
not discuss primitives that are only secure against classical adversaries. When
we consider primitives with interactions in the quantum setting we have some
subtle issues that do not matter in the classical setting (e.g., rewinding is some-
times hard in the quantum setting [ARU14]). Thus we treat only primitives such
that both of the primitives themselves and security games are non-interactive.

Definition 6 (Quantum primitives). A quantum primitive P is a pair 〈FP ,
RP〉, where FP is a set of quantum algorithms I, and RP is a relation over
pairs 〈I,A〉 of quantum algorithms I ∈ FP and A. A quantum algorithm I
implements P or is an implementation of P if I ∈ FP . If I ∈ FP is efficient,
then I is an efficient implementation of P. A quantum algorithm A P-breaks
I ∈ FP if 〈I,A〉 ∈ RP . A secure implementation of P is an implementation
I of P such that no efficient quantum algorithm P-breaks I. The primitive P
quantumly exists if there exists an efficient and secure implementation of P.

Definition 7 (Quantum primitives relative to oracle). Let P = 〈FP , RP〉
be a quantum primitive, and Γ = (O1, . . . , Ot) be a family of (possibly ran-
domized) quantum oracles. An oracle-aided quantum algorithm I implements P
relative to Γ or is an implementation of P relative to Γ if IΓ ∈ FP . If IΓ ∈ FP
is efficient, then I is an efficient implementation of P relative to Γ . A quantum
algorithm A P-breaks I ∈ FP relative to Γ if 〈IΓ ,AΓ 〉 ∈ RP . A secure imple-
mentation of P is an implementation I of P relative to Γ such that no efficient
quantum algorithm P-breaks I relative to Γ . The primitive P quantumly exists
relative to Γ if there exists an efficient and secure implementation of P relative
to Γ .

Remark 5. In the above definition, IΓ and AΓ are considered to be quantum
algorithms (rather than oracle-aided quantum algorithms) once an oracle Γ is
fixed so that IΓ ∈ FP and 〈IΓ ,AΓ 〉 ∈ RP are well-defined. This is possible
since we assume that an oracle Γ is stateless. (If Γ is randomized, we regard the
randomness of Γ as a part of the randomness of the quantum algorithms IΓ and
AΓ . See also Remark 4.)

Next we define quantum fully-black-box reductions, which is a quantum coun-
terpart of fully-black-box reductions [RTV04, Def. 2.3].

Definition 8 (Quantum fully-black-box reductions). A pair (G,S) of ef-
ficient oracle-aided quantum algorithms is a quantum fully-black-box reduction
from a quantum primitive P = 〈FP , RP〉 to a quantum primitive Q = 〈FQ, RQ〉
if the following two conditions are satisfied:

16

1. (Correctness.) For every implementation I ∈ FQ, we have GI ∈ FP .
2. (Security.) For every implementation I ∈ FQ and every quantum algorithm
A, if A P-breaks GI , then SA,I Q-breaks I.

Hsiao and Reyzin showed that if there exists an oracle (family) that sepa-
rates primitives P and Q, then there is no fully-black-box reduction from P to
Q [HR04, Prop. 1]. The following lemma guarantees that a similar claim holds
in the quantum setting. Although we need no arguments which is specific to the
quantum setting, we give a proof for completeness.

Lemma 4 (Two oracle technique). There exists no quantum fully-black-box
reduction from P to Q if there exist families of quantum oracles Γ1 and Γ2 =
{ΨΦλ }Φ∈Γ 1,λ∈Λ, where Λ is a non-empty set, and the following two conditions
hold.

1. Existence of Q. There exists an efficient oracle-aided quantum algorithm
J0 that satisfies the following conditions:
1. J Φ0 ∈ FQ holds for any Φ ∈ Γ1.
2. For any efficient oracle-aided algorithm B and any λ ∈ Λ, there exists

Φ ∈ Γ1 such that BΦ,ΨΦλ does not Q-break J Φ0 .
2. Non-Existence of P. For any efficient oracle-aided quantum algorithm I

such that IΦ ∈ FP holds for any Φ ∈ Γ1, there exists an efficient oracle-

aided quantum algorithm AI and λ ∈ Λ such that AΨ
Φ
λ

I P-breaks IΦ for any
Φ ∈ Γ1.

Proof. We prove the claim by contradiction. Suppose that there exists a quan-
tum fully-black-box reduction (G,S) from P = 〈FP , RP〉 to Q = 〈FQ, RQ〉. Let
J0 be an algorithm that satisfies the conditions on existence of Q in Lemma 4.
Then J Φ0 ∈ FQ holds for arbitrary Φ ∈ Γ1. Hence, from the correctness of the

quantum fully-black-box reductions (in Definition 8), it follows that GJ
Φ
0 ∈ FP

holds for arbitrary Φ ∈ Γ1. Thus, if we set I0 := GJ0 , from the second condi-
tion of Lemma 4, it follows that there exists an efficient oracle-aided quantum

algorithm AI0 and λ ∈ Λ such that AΨ
Φ
λ

I0 P-breaks I0
Φ for any Φ ∈ Γ1. There-

fore, from the second property of quantum fully-black-box reduction (“security”

in Definition 8), it follows that SA
ΨΦλ
I0

,JΦ0 Q-breaks J Φ0 for any Φ ∈ Γ1. Since
G, AI0 , and J0 are all efficient, there exists an efficient oracle-aided quantum

algorithm B such that BΦ,ΨΦλ = SA
ΨΦλ
I0

,JΦ0 . Now we have that there exists an

efficient oracle-aided algorithm B and λ ∈ Λ such that BΦ,ΨΦλ Q-breaks J Φ0 for
any Φ ∈ Γ1. However, it contradicts the second part of the first condition of
Lemma 4, which completes the proof. ut

Note that, due to Lemma 4, if we want to show that there does not exist
any quantum fully-black-box reductions from a quantum primitive P to another
quantum primitive Q, it suffices to show that there exists at least one pair of
quantum oracles (Γ1, Γ2) that satisfies the two conditions.

17

Remark 6. Remember that each fixed (resp., randomized) quantum oracle O is
an infinite family of unitary gates {On}n∈N (resp., O = {On}n∈N and On =
{Orn}rn∈Rn , where Rn is the set of random coins), where On is used when an
oracle-aided algorithm runs relative to O on an input in {0, 1}n. For example,
(the quantum oracle of) a permutation f ∈ Perm({0, 1}∗) is represented as a
family {fn}n∈N, where fn = f |{0,1}n . We implicitly assume that ΨΦλ,n depends
only on Φn and is independent of Φm for m 6= n.

Later, to prove impossibility of quantum fully-black-box reductions from col-
lision resistant hash functions to one-way permutations, we will apply this lemma
with the condition that Λ is the set of all polynomials in n, Γ1 = Perm({0, 1}∗),
and Γ2 = {ColFinderfλ}f∈Γ1,λ∈Λ. Here, ColFinderfλ is a randomized oracle that
takes, as inputs, oracle-aided quantum circuits that computes functions, and re-
turns collision of the functions. The number λ(n) denotes the maximum size of

circuits that ColFinderfλ,n takes as inputs for each n ∈ N.

3.1 Concrete Primitives

In this section, we define one-way permutations, trapdoor permutations, and
collision-resistant hash functions.

We define two quantum counterparts for each classical primitive. One is the
classical-computable primitive that can be implemented on classical computers,
and the other is the quantum-computable primitive that can be implemented on
quantum computers but may not be implemented on classical computers. Here
we note that, in this paper, all adversaries are quantum algorithms for both of
classical-computable and quantum-computable primitives.

Definition 9 (One-way permutation). Quantum-computable (resp., classical-
computable) quantum-secure one-way permutation QC-qOWP(resp., CC-qOWP)
is a quantum primitive defined as follows: Implementation of QC-qOWP (resp.,
CC-qOWP) is an efficient quantum (resp., classical) algorithm Eval that com-
putes a function f : {0, 1}∗ → {0, 1}∗ such that fn := f |{0,1}n is a permutation
over {0, 1}n. For an implementation I of QC-qOWP (resp., CC-qOWP) that
computes f and a quantum algorithm A, we say that A QC-qOWP-breaks I
(resp., CC-qOWP-breaks I) if and only if

Pr
[
x

$←− {0, 1}n; y ← fn(x);x′ ← A(y) : x′ = x
]

(11)

is non-negligible.

Remark 7. Since there is no function generation algorithm Gen in the above
definition, this captures “public-coin” one-way permutations. This makes the
definition of one-way permutations stronger, and thus makes our negative result
stronger.

Definition 10 (Trapdoor permutation). Quantum-computable (resp., clas-
sical-computable) quantum-secure trapdoor permutation QC-qTDP(resp., CC-

18

QTDP) is a quantum primitive defined as follows: Implementation of QC-qTDP
(resp., CC-qTDP) is a triplet of efficient quantum (resp., classical) algorithms
(Gen,Eval, Inv). In addition, we require (Gen,Eval, Inv) to satisfy the following:

1. For any (pk, td) generated by Gen(1n), Eval(pk, ·) computes a permutation
fpk,n{0, 1}n → {0, 1}n.

2. For any (pk, td) generated by Gen(1n) and any x ∈ {0, 1}n, we have that
the inequality Pr[Inv(td, fpk,n(x)) = x] > 2/3 holds (i.e., Inv(td, ·) computes
f−1
pk,n(·)).

For an implementation I = (Gen,Eval, Inv) of QC-qTDP (resp., CC-qTDP) and a
quantum algorithm A, we say that A QC-qTDP-breaks I (resp., CC-qTDP-breaks
I) if and only if

Pr
[
(pk, td)← Gen(1n);x

$←− {0, 1}n; y ← fpk,n(x);x′ ← A(pk, y) : x′ = x
]
(12)

is non-negligible.

Definition 11 (Collision-resistant hash function). Quantum-computable
(resp., classical-computable) quantum-collision-resistant hash function QC-qCRH
(resp., CC-qCRH) is a quantum primitive defined as follows: Implementation of
QC-qCRH (resp., CC-qCRH) is a pair of efficient quantum (resp., classical) al-
gorithms (Gen,Eval).

Gen(1n): This algorithm is given 1n as input, and outputs a function index.
Eval(σ, x): This algorithm is given a function index σ ∈ {0, 1}s(n) and x ∈
{0, 1}m(n) as input, and outputs y ∈ {0, 1}`(n).

In addition, we require (Gen,Eval) to satisfy the following:

1. We have m(n) > `(n) for all sufficiently large n ∈ N.
2. Eval(·, ·) computes a function H(·, ·) : {0, 1}s(n) × {0, 1}m(n) → {0, 1}`(n).

For an implementation I = (Gen,Eval) of QC-qCRH (resp., CC-qCRH) and a
quantum algorithm A, we say that A QC-qCRH-breaks I (resp., CC-qCRH-breaks
I) if and only if

Pr [σ ← Gen(1n); (x, x′)← A(σ) : H(σ, x) = H(σ, x′)] (13)

is non-negligible.

Remark 8. If we replace “quantum algorithm” with “probabilistic Turing ma-
chine” verbatim, Definition 11 completely matches the classical definition [HR04].

Remark 9. Though trapdoor permutations and collision-resistant hash functions
are defined to be a tuple of algorithms, we can capture them as quantum primi-
tives as defined in Definition 6 by considering a unified quantum algorithm that
runs either of these algorithms depending on prefix of its input. We also remark
that any classical algorithm can be seen as a special case of quantum compu-
tation, and thus classical-computable variants are also captured as quantum
primitives.

19

4 Impossibility of Reduction from QC-qCRH to CC-qOWP

The goal of this section is to show the following theorem.

Theorem 3. There exists no quantum fully-black-box reduction from QC-qCRH
to CC-qOWP.

To show this theorem, we define two (families of) oracles that separate QC-qCRH
from CC-qOWP. That is, we define an oracle that implements CC-qOWP, in
addition to an oracle that finds collisions of functions, and then apply the two
oracle technique (Lemma 4). Our oracles are quantum analogues of those in
previous works on impossibility results [Sim98,HHRS07,AS15] in the classical
setting. Roughly speaking, we simply use random permutations f to implement
one-way permutations. As for an oracle that finds collisions of functions, we use
a randomized oracle ColFinder.

Remark 10. The statement of Theorem 3 is the strongest result among possible
quantum (fully-black-box) separations of CRH from OWP, since it also excludes
reductions from CC-qCRH to CC-qOWP, reductions from QC-qCRH to QC-qOWP,
and reductions from CC-qCRH to QC-qOWP. 17

Oracle ColFinder.

Intuitive Idea. Intuitively, our oracle ColFinderf works as follows for each fixed
permutation f . As an input, ColFinderf takes an oracle-aided quantum circuit C.

We say that C is a valid input if it computes a function F f
′

C : {0, 1}m → {0, 1}`
relative to the oracle f ′, for arbitrary permutation f ′ (here we assume that m
and ` are independent of the permutation f ′). We say that C is invalid if it is
not valid. Given the input C, first ColFinderf checks whether C is invalid, and

return ⊥ if it is. Second, ColFinderf chooses w
(1)

Cf
∈ {0, 1}m uniformly at random,

and computes u = F fC(w
(1)

Cf
) by running the circuit C on input w

(1)

Cf
relative to

f . Third, ColFinderf chooses w
(2)

Cf
from (F fC)−1(u) uniformly at random. Finally

ColFinderf returns (w
(1)

Cf
, w

(2)

Cf
, u). If F fC has many collisions (for example, if m >

`), ColFinderf returns a collision of F fC with a high probability. The idea of the
above oracle ColFinder originally comes from the seminal work by Simon [Sim98].
Below we give a formal description of ColFinder, following the formalization of
Asharov and Segev [AS15]. 18

17 Note that it also excludes possible quantum (fully-black-box) reductions from col-
lapsing hash functions to one-way permutations, since the notion of collapsing is
stronger than collision-resistance.

18 Simon’s proof [Sim98] allows not only adversaries but also implementations of hash
functions to access to ColFinderf , and thus shows the impossibility of relativizing
reductions of CRH to OWP, which is stronger than the impossibility of fully black-
box reductions. In particular, Simon’s technique is different from the two-oracle
technique. On the other hand, Asharov and Segev’s work [AS15] shows impossibility

20

Formal Description. Here we give a formal description of ColFinder. Let valid and
invalid denote the set of valid and invalid circuits, respectively. Let λ : N→ R≥0

be a function, and Circ(λ(n)) denote the set of oracle-aided quantum circuits
C of which size is less than or equal to λ(n). Note that Circ(λ(n)) is a finite

set for each n. Let Πn = {π(1)
C , π

(2)
C }C∈Circ(λ(n))∩valid be a set of permutations,

where π
(1)
C , π

(2)
C are permutations over {0, 1}m, which is the domain of FC that

the circuit C computes. Let Rλ,n be the set of all possible such assignments Πn,
and Rλ be the product set

∏∞
n=1Rλ,n.

For each fixed permutation f and a function λ, we define a randomized
quantum oracle ColFinderfλ = {ColFinderfλ,Π}Π←Rλ . Here, by Π ← Rλ we am-
biguously denote the procedure that Π is chosen uniformly at random before
adversaries make queries to ColFinderfλ, and ColFinderfλ,Π = {ColFinderfλ,Π,n}n∈N
is a fixed quantum oracle for each Π. When we feed an algorithm A with an
input x ∈ {0, 1}n relative to ColFinderfλ, first Πn ∈ Rλ,n is chosen uniformly

at random (i.e., two permutations π
(1)
C , π

(2)
C are chosen uniformly at random for

each oracle-aided quantum circuit C ∈ Circ(λ(n)) ∩ valid), and then A runs the

circuit A
ColFinderfλ,Π,n
n on the initial state |x〉 |0〉 |0〉. For each fixed n and Πn, the

deterministic function ColFinderfλ,Π,n is defined by the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit of which size
is less than or equal to λ(n).

2. Check if C is a valid input by checking whether the following condition is
satisfied: For arbitrary f ′n ∈ Perm({0, 1}n) and x ∈ {0, 1}m, there exists
y ∈ {0, 1}` such that Pr[Cf

′
n(x) = y] > 2/3. If C is an invalid input, return

⊥.

3. Compute w
(1)

Cf
:= π

(1)
C (0m).

4. Compute F fC(w
(1)
C). That is, compute the output distribution of Cf on input

w
(1)

Cf
, find the element y such that Pr[Cf (w

(1)

Cf
) = y] > 2/3, and set u← y.

5. Search for the minimum t ∈ {0, 1}m such that F fC(π
(2)
C (t)) = u by checking

whether

Pr
[
Cf
(
π

(2)
C (i)

)
= u

]
> 2/3

holds for i = 0, 1, 2, . . . in a sequential order, and set w2
Cf := π

(2)
C (t) (note

that such t always exists since F fC(w
(1)

Cf
) = u).

6. Return (w
(1)

Cf
, w

(2)

Cf
, u).

Later we will apply Lemma 4 (the two oracle technique) with Γ1 := Perm({0, 1}∗)
and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ, where Λ is the set of polynomials in n.

of fully black-box reductions by using the two-oracle technique. Since our goal is to
show the impossibility of (quantum) fully black-box reductions of CRH to OWP (or
TDP), here we explain Asharov and Segev’s proof idea but not Simon’s. See also 1.4.

21

4.1 The Technically Hardest Part

The technically hardest part of proving Theorem 3 is to show the following
proposition, which states that the random permutation f is hard to invert even
if the additional oracle ColFinderf is available for adversaries. Note that the

oracle gate ColFinderfλ,Π,n is (and thus the circuit A
fn,ColFinder

f
λ,Π,n

n is) fixed once

fn and Πn are fixed, since the output values of ColFinderfλ,Π,n are independent
of fm and Πm for m 6= n.

Proposition 1. Let λ, q, ε be functions such that 1 ≤ λ(n), q(n) and 0 < ε(n) ≤
1. Let A be a q-query oracle-aided quantum algorithm. Suppose that there is a
function η(n) ≤ λ(n) such that, for each circuit C that An queries to ColFinder,
C makes at most η(n) queries. If

Pr
fn,Πn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (14)

holds for infinitely many n, then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n) · 2n/7 (15)

holds for infinitely many n.

Below we prove Proposition 1. See Section 1.3 for an intuitive overview of
our proof idea. We begin with describing some technical preparations.

Preparations. We construct another algorithm Â that iteratively runs A to
increase the success probability, and then apply the encoding technique to Â.

Let c be a positive integer. Let Bc be an oracle-aided quantum algorithm
that runs as follows, relative to the oracles f and ColFinderfλ. 19

1. Take an input y. Set guess←⊥.
2. For i = 1, . . . , cd1/ε(n)e do:

3. Run Af,ColFinder
f
λ on the input y. Let x denote the output.

4. Query x to f . If f(x) = y, then set guess← x.
5. End For
6. Return guess.

Let Q(n) := cd1/ε(n)e(max{q(n), η(n)} + 1). Then Bc can be regarded as a Q-

query algorithm, and for each quantum circuit C that Bc queries to ColFinderfλ,n,

C makes at most Q(n) queries20.

19 Later, we will set Â := Bc for a constant c.
20 We introduced Q here just for convenience. Q is an upper bound of both of i) The

number of queries made by Bc to f and ColFinder, and ii) The number of queries
to f made by quantum circuits that are queried by Bc to ColFinder. Because the
notations in later proofs become simpler when i) and ii) are the same (i.e., q = η),
we introduced Q here.

22

Remark 11. The randomness Πn of ColFinderfλ is chosen before Bc starts, and
unchanged while Bc is running (see Remark 4).

Lemma 5. Let p1, p2 be any positive constant values such that 0 < p1, p2 < 1.
For a sufficiently large integer c, the following condition is satisfied for infinitely
many n:
Condition. There exist X ⊂ Perm({0, 1}n) and Πn such that |X| ≥ p1 ·
|Perm({0, 1}n)| and

Pr
y←{0,1}n

[
Pr

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2/3

]
≥ p2 (16)

for all fn ∈ X.

Proof. Let p0 := p1 + (2
3 + 1

3p2)(1 − p1), and c be an integer that satisfies
e−c ≤ 1− p0. In what follows, we show that this c satisfies the condition.

First, for each n such that

Pr
fn,Πn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (17)

holds, there exists Πn such that

Pr
fn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (18)

holds. Below we fix Πn that satisfies inequality (18) for each n such that in-
equality (17) holds.

Now we have that

Pr
fn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 1− (1− ε(n))

c
ε(n)

= 1− ((1− ε(n))−
1

ε(n))−c (19)

holds. If ε(n) = 1, the right hand side of inequality (19) becomes 1, which is larger
than p0. If ε(n) < 1, the right hand side of inequality (19) is lower bounded by

1 − e−c ≥ p0, here we used the fact that (1 − x)−
1
x ≥ e holds for 0 < x < 1.

Therefore we have that

Pr
fn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ p0 (20)

holds.
Here it follows that

Pr
fn

[
Pr

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2

3
+

1

3
p2

]
≥ p1 (21)

23

from inequality (20). In other words, there exists X ⊂ Perm({0, 1}n) such that

|X| ≥ p1|Perm({0, 1}n)|

and

Pr
y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2

3
+

1

3
p2 (22)

holds for all fn ∈ X. Now, from inequality (22), it follows that

Pr
y←{0,1}n

[
Pr

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2/3

]
≥ p2 (23)

for all fn ∈ X. ut

In what follows, we fix constants p1, p2 such that 0 < p1, p2 < 1 arbitrarily.
Then, from the above lemma, it follows that there exists a constant c that
satisfies the condition in Lemma 5 for infinitely many n. Let us denote Bc by
Â. We use the encoding technique to this Q-query algorithm Â, here Q(n) =
cd1/ε(n)e(max{q(n), η(n)} + 1). Below we fix a sufficiently large n in addition
to Πn and X such that the condition in Lemma 5 is satisfied. For simplicity,
we write Q, q, ε, η, f , and ColFinderf instead of Q(n), q(n), ε(n), η(n), fn, and

ColFinderfλ,Π,n respectively, for simplicity.

Information Theoretic Property of Randomized Compression Scheme.
Here we introduce an information theoretic property of a randomized compres-
sion scheme (Er : X → Y ∪{⊥}, Dr : Y → X∪{⊥}), where r is chosen according
to a distributionR. Generally, if encoding and subsequent decoding succeed with
a constant probability p, then |Y | cannot be much smaller than |X|:

Lemma 6 ([DTT10], Fact 10.1). If there exists a constant 0 ≤ p ≤ 1 such
that Prr∼R[Dr(Er(x)) = x] ≥ p holds for all x ∈ X, then |Y | ≥ p · |X| holds.

Below we formally define an encoder E and a decoder D that compress elements
(truth tables of permutations) in X. In the encoder E, random coin r is chosen
according to a distribution R. On the other hand, we consider that D is deter-
ministic rather than randomized, and regard r as a part of inputs to D. Note
that we do not care whether encoding and decoding can be efficiently done, since
Lemma 6 describes a purely information theoretic property.

Encoder E. Let δ be a sufficiently small constant (δ = (1/8)4 suffices). When
we feed E with f ∈ X as an input, E first chooses subsets R,R′ ⊂ {0, 1}n by
the following sampling: For each x ∈ {0, 1}n, x is added to R with probability
δ3/2/Q2, and independently added to R′ with probability δ5/2/Q4. (The pair
(R,R′) is the random coin of E.)

According to the choice ofR′, “bad” inputs (oracle-aided quantum circuits) to

ColFinderf are defined for each x ∈ {0, 1}n as follows. Note that now π
(1)
C and π

(2)
C

24

have been fixed for each oracle-aided quantum circuit C ∈ Circ(λ(n))∩valid, and

thus the output ColFinderf (C) = (w
(1)

Cf
, w

(2)

Cf
, F fC(w

(1)

Cf
)) is uniquely determined.

Since C is an oracle-aided quantum circuit, we can define the query magnitude

of C to f on input w
(1)

Cf
and w

(2)

Cf
at z ∈ {0, 1}n (see Definition 5). We say that

a quantum circuit C ∈ Circ(λ(n)) ∩ valid is bad relative to x if∑
z∈R′\{x}

µC,fz (w
(1)

Cf
) >

δ

Q
(24)

or ∑
z∈R′\{x}

µC,fz (w
(2)

Cf
) >

δ

Q
(25)

hold, and otherwise we say that C is good relative to x. Let badC(R′, x) denote
the set of bad circuits relative to x, for each R′ ⊂ {0, 1}n.

Next, E constructs a set G ⊂ {0, 1}n depending on the input f . Let I ⊂
{0, 1}n be the set of elements x such that Â successfully inverts f(x), i.e., I :=

{x | Pr[x′ ← Âf,ColFinderf (f(x)) : x′ = x] ≥ 2/3}. Then |I| ≥ p2 · 2n holds by
definition of X (Remember that X is chosen in such a way as to satisfy the
condition in Lemma 5). Now, a set G is defined to be the set of elements x ∈ I
that satisfies the following conditions:

Conditions for G.

(Cond. 1) x ∈ R ∩R′.
(Cond. 2)

∑
z∈R\{x} µ

Â,f
z (f(x)) ≤ δ/Q.

(Cond. 3)
∑
C∈badC(R′,x) µ

Â,ColFinderf
C (f(x)) ≤ δ/Q.

Finally, E encodes f into (f |{0,1}n\G, f(G)) if |G| ≥ θ, where θ = (1 −
60
√
δ)δ4p22n/2Q6. Otherwise E encodes f into ⊥.

In addition, here we formally define the set Y (the range of E) as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (26)

In fact E((R,R′), f) ∈ Y ∪ {⊥} holds for any choice of (R,R′) and any permu-
tation f ∈ X.

Decoder D. D takes (f̃ , G̃) as an input in addition to (R,R′), where G̃ ⊂
{0, 1}n and f̃ is a bijection from a subset of {0, 1}n onto {0, 1}n \ G̃, and R,R′

are subsets of {0, 1}n. If {0, 1}n \ (the domain of f̃) 6⊂ R ∩ R′ holds, then D
outputs ⊥. Otherwise, D decodes (f̃ , G̃) and reconstructs the truth table of a
permutation f ∈ Perm({0, 1}n) as follows.

For each x in the domain of f̃ , D infers the value f(x) as f(x) := f̃(x). For
other elements x ∈ {0, 1}n which is not contained in the domain of f̃ , what D
now knows is only that f(x) is contained in G̃. To determine the remaining part

25

of the truth table of f , D tries to recover the value f−1(y) for each y ∈ G̃ by
using Â.

For each fixed y ∈ G̃, D could succeed to recover the value f−1(y) if D were
able to determine the output distribution of Â on input y relative to oracles f
and ColFinderf . However, D cannot determine the distribution even though D
has no limitation on its running time, since f itself is the permutation of which D
wants to reconstruct the truth table, and the behavior of ColFinderf depends on
f . Thus D instead prepares oracles hy and SimCFhy which approximates f and

ColFinderf , respectively, and computes the output distribution of Âhy,SimCFhy on
input y. SimCFhy uses a subroutine CalCy that takes (C,w) as an input (C is a
valid oracle-aided circuit that may make queries to f and computes a function
F fC , and w is an element of the domain of F fC) and simulates the evaluation of

F fC(w). D finally infers that f−1(y) is the element which Âhy,SimCFhy outputs
with probability greater than 1/2. (If there does not exist such an element, then
D outputs ⊥.) Below we describe hy, CalCy, and SimCFhy .

Oracle hy. The oracle (function) hy : {0, 1}n → {0, 1}n is defined by

hy(z) =

{
f̃(z) if z 6∈ R ∩R′,
y otherwise.

(27)

Subroutine CalCy. Let Pcandidate := {h′ ∈ Perm({0, 1}n)) | ∆(h′, hy) ⊂ R ∩ R′}.
CalCy is defined as the following procedures.

1. Take an input (C,w), where C is an oracle-aided circuit and w is an element
of the domain of the function FC .

2. Compute the output distribution of the quantum circuit Ch
′

on input w for
each h′ ∈ Pcandidate, and find u(C,w, h′) ∈ {0, 1}` such that Pr[Ch

′
(w) =

u(C,w, h′)] > 1/2. If there is no such value u(C,w, h′) for a fixed h′, set
u(C,w, h′) :=⊥.

3. If u(C,w, h′) = u(C,w, h′′) 6=⊥ for all h′, h′′ ∈ Pcandidate, return the value
u(C,w, h′). Otherwise return ⊥.

Oracle SimCFhy . SimCFhy is defined as the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit of which size
is less than or equal to λ(n).

2. Check if C is a valid input by checking whether the following condition is
satisfied: For arbitrary f ′n ∈ Perm({0, 1}n) and x ∈ {0, 1}m, there exists
y ∈ {0, 1}` such that Pr[Cf

′
n(x) = y] > 2/3. If C is an invalid input, return

⊥.
3. Compute w̃

(1)

Cf
:= π

(1)
C (0m).

4. If CalCy(C, w̃
(1)

Cf
) =⊥, return ⊥.

5. Otherwise, search the minimum t ∈ {0, 1}m such that CalCy(C, w̃
(1)

Cf
) =

CalCy(C, π
(2)
C (t)) by checking whether CalCy(C, w̃

(1)

Cf
) = CalCy(C, π

(2)
C (i))

holds for i = 0, 1, 2, . . . in a sequential order, and set w̃
(2)

Cf
:= π

(2)
C (t).

26

6. Return (w̃
(1)

Cf
, w̃

(2)

Cf
,CalCy(C, w̃

(1)

Cf
)).

Note that D is an information theoretic decoder, and we do not care whether
CalCy and SimCFhy run efficiently.

Analysis. Here we provide a formal analysis of encoding scheme’s success prob-
ability. See Section 1.3 for an intuitive overview. The following lemma shows that
hy, CalCy, and SimCFhy satisfy some suitable properties. Here we consider the

situation that D takes an input (f̃ , G̃) such that (f̃ , G̃) = E((R,R′), f) for some
subsets R,R′ ⊂ {0, 1}n and a permutation f ∈ Perm({0, 1}n), and tries to re-
cover the value f−1(y) for some y ∈ G̃.

Lemma 7. hy, CalCy, and SimCFhy satisfy the following properties.

1. ∆(hy, f) = R ∩R′ \ {f−1(y)} holds.

2. CalCy(C,w) = F fC(w) or ⊥ holds for any C ∈ Circ(λ(n)) ∩ valid and w.

3. CalCy(C,w
(1)

Cf
) = F fC(w

(1)

Cf
) and CalCy(C,w

(2)

Cf
) = F fC(w

(2)

Cf
) hold for each

circuit C ∈ Circ(λ(n)) ∩ valid which is good relative to f−1(y).
4. SimCFhy (C) = ColFinderf (C) holds for each circuit C ∈ Circ(λ(n)) ∩ valid

which is good relative to f−1(y). In particular, ∆(ColFinderf ,SimCFhy) ⊂
badC(R′, f−1(y)) holds.

Proof. The first property is obviously satisfied by definition of hy.
For the second property, since f ∈ Pcandidate, if CalCy(C,w) 6=⊥ then we have

CalCy(C,w) = u(C,w, f) 6=⊥ by definition of CalCy, and u(C,w, f) = F fC(w)
always holds. Hence the second property holds.

For the third property, for each h′ ∈ Pcandidate, from Lemma 2 we have

Pr
[
Ch
′
(w

(1)

Cf
) = F fC(w

(1)

Cf
)
]
≥ Pr

[
Cf (w

(1)

Cf
) = F fC(w

(1)

Cf
)
]

−
∥∥∥Cf |w(1)

Cf
, 0, 0〉 − Ch

′
|w(1)

Cf
, 0, 0〉

∥∥∥ . (28)

From the swapping lemma (Lemma 3) it follows that∥∥∥Cf |w(1)

Cf
, 0, 0〉 − Ch

′
|w(1)

Cf
, 0, 0〉

∥∥∥ ≤ 2

√
Q

∑
z∈∆(f,h′)

µC,fz (w
(1)

Cf
). (29)

Since ∆(f, h′) ⊂ R ∩R′ \ {f−1(y)} ⊂ R′ \ {f−1(y)} holds for all h′ ∈ Pcandidate,
and C is a good circuit relative to f−1(y), the right hand side of the above
inequality is upper bounded by 2

√
δ. Thus, for a sufficiently small δ we have

Pr
[
Ch
′
(w

(1)

Cf
) = F fC(w

(1)

Cf
)
]
≥ 2

3
− 2
√
δ >

1

2
, (30)

which implies that u(C,w
(1)

Cf
, h′) = F fC(w

(1)

Cf
) holds for every h′ ∈ Pcandidate. Thus

CalCy(C,w
(1)

Cf
) = F fC(w

(1)

Cf
) holds if C is good relative to f−1(y). The equality

CalCy(C,w
(2)

Cf
) = F fC(w

(2)

Cf
) can be shown in the same way.

The fourth property follows from the definition of SimCFhy , the second prop-
erty, and the third property. ut

27

The following lemma shows that the decoding always succeeds if the encoding
succeeds.

Lemma 8. If E((R,R′), f) 6=⊥, then D((R,R′), E((R,R′), f)) = f holds.

Proof (of Lemma 8). Let f̃ := f |{0,1}n\G and G̃ := f(G). We show that D can

correctly recover x = f−1(y) for each y ∈ G̃.
We apply the swapping lemma (Lemma 3) to the oracle pairs (f,ColFinderf)

and (hy,SimCFhy). Then we have∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Âhy,SimCFhy
n |f(x), 0, 0〉

∥∥∥
≤ 2

√
Q

∑
z∈∆(f,hy)

µÂ,fz (f(x)) + 2

√
Q

∑
C∈∆(ColFinderf ,SimCFhy)

µÂ,ColFinder
f

C (f(x)).

(31)

Since ∆(f, hy) = R∩R′ \{f−1(y)} ⊂ R \{f−1(y)} = R \{x} and ∆(ColFinderf ,

SimCFhy) ⊂ badC(R′, f−1(y)) = badC(R′, x) from Lemma 7, the right hand side
of inequality (31) is upper bounded by

2

√
Q

∑
z∈R\{x}

µÂ,fz (f(x)) + 2

√
Q

∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x)). (32)

Due to the conditions (Cond. 2) and (Cond. 3) (see p. 25), each term of the above
expression is upper bounded by 2

√
δ. Thus, eventually we have∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Âhy,SimCFhy

n |f(x), 0, 0〉
∥∥∥ ≤ 4

√
δ (33)

Finally, from Lemma 2, for sufficiently small δ it follows that

Pr
[
Âhy,SimCFhy (f(x)) = x

]
≥ Pr

[
Âf,ColFinder

f

(f(x)) = x
]

−
∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Ahy,ColFinder

h

n |f(x), 0, 0〉
∥∥∥

≥ 2/3− 4
√
δ > 1/2, (34)

which implies that D correctly recovers x = f−1(y). ut

The following lemma is a generalization of a claim showed by Nayebi et
al [NABT15, Claim 8], which shows that our E and D work well with a constant
probability.

Lemma 9. If Q6 ≤ δ4p22n/32,

Pr
(R,R′)

[D((R,R′), E((R,R′), f) = f] ≥ 0.7 (35)

holds for each f ∈ X.

28

Proof (of Lemma 9). If |G| ≥ θ holds, then it follows that E((R,R′), f) 6=⊥
by definition of E, which leads to D((R,R′), E((R,R′), f) = f by Lemma 8.
Therefore, in what follows, we show that |G| ≥ θ holds with a high probability.
Let H be the set defined as H := {x ∈ I | x satisfies (Cond. 1) }, J1 be the set
defined as J1 := {x ∈ I | x satisfies (Cond. 1) but does not satisfy (Cond. 2) },
and J2 be the set defined as J2 := {x ∈ I | x satisfies (Cond. 1) but does not
satisfy (Cond. 3)}. Then |G| ≥ |H| − |J1| − |J2| holds.

First, we show that |H| becomes large with a high probability: Since we have
ER,R′ [|H|] = δ4|I|/Q6,

Pr
R,R′

[
|H| ≥ 1

2
· δ

4|I|
Q6

]
≥ 1− exp

[
−1

8
· δ

4|I|
Q6

]
(36)

follows from the multiplicative Chernoff bound. Since |I| ≥ p22n holds by defi-
nition of I, and Q6 ≤ δ4p22n/32 is assumed, we have

exp

[
−1

8
· δ

4|I|
Q6

]
≤ exp[−4] ≤ 0.1. (37)

Therefore

Pr
R,R′

[
|H| ≥ 1

2
· δ

4|I|
Q6

]
≥ 0.9 (38)

holds.
Second, we show that |J1| becomes large only with a small probability: For

each x ∈ I, we have that

ER

 ∑
z∈R\{x}

µÂ,fz (f(x))

 =
∑

z∈{0,1}n\{x}

δ3/2

Q2
µÂ,fz (f(x)) ≤ δ3/2

Q
(39)

holds, where we used the property that
∑
z µ
Â,f
z (f(x)) ≤ Q holds since Â is a

Q-query algorithm. Hence

Pr
R

 ∑
z∈R\{x}

µÂ,fz (f(x)) ≥ δ

Q

 ≤ √δ (40)

follows from Markov’s inequality. Since the conditions (Cond. 1) and (Cond. 2)
are independent (note that the condition (Cond. 2) does not depend on whether
x ∈ R ∩R′),

Pr
R,R′

[x ∈ J1] = Pr
R,R′

[x satisfies (Cond. 1)] · Pr
R,R′

[x does not satisfy (Cond. 2)]

≤ (δ4/Q6) ·
√
δ =

δ9/2

Q6
(41)

holds for each x ∈ I. Now we can show the following claim.

29

Claim. It holds that

ER,R′ [|J1|] ≤ δ9/2|I|/Q6. (42)

Proof (of Claim). Note that the set J1 is determined once R and R′ are fixed.

Let J
(R,R′)
1 denote the set J1 that corresponds to (R,R′). Let 2I be the set of

subsets of I. For each x ∈ I, define a function ξx : 2I → {0, 1} by ξx(J) = 1 if
and only if x ∈ J . Then we have

ER,R′ [|J1|] = ER,R′

[∑
x∈I

ξx

(
J

(R,R′)
1

)]

=
∑
R0,R′0

(∑
x∈I

ξx

(
J

(R0,R
′
0)

1

))
· Pr
R0,R′0

[(R,R′) = (R0, R
′
0)]

=
∑
x∈I

 ∑
R0,R′0

ξx

(
J

(R0,R
′
0)

1

)
· Pr
R0,R′0

[(R,R′) = (R0, R
′
0)]


=
∑
x∈I

Pr
R,R′

[x ∈ J1] ≤ |I| · δ
9/2

Q6
, (43)

where the last inequality follows from inequality (41). ut

From the above claim and Markov’s inequality, it follows that

Pr
R,R′

[
|J1| ≥

10δ9/2|I|
Q6

]
≤ 0.1 (44)

holds.

Third, we show that |J2| becomes large only with a small probability: Re-
member that, for each x ∈ I, a quantum circuit C ∈ Circ(λ(n)) ∩ valid becomes
bad relative to x if and only if inequalities (24) or (25) hold. Here, for any fixed
C ∈ Circ(λ(n)) ∩ valid and w we have

ER′

 ∑
z∈R′\{x}

µC,fz (w)

 =
∑

z∈{0,1}n\{x}

δ5/2

Q4
µC,fz (w) ≤ δ5/2

Q3
, (45)

where we used the property that
∑
z µ

C,f
z (w) ≤ Q holds since C makes at most

Q queries. Thus, the probability that a fixed C ∈ Circ(λ(n))∩ valid becomes bad
relative to x is upper bounded as

Pr
R′

[C ∈ badC(R′, x)] ≤
∑
i=1,2

Pr
R′

 ∑
z∈R′\{x}

µC,fz (wiCf) > δ/Q

 ≤ 2δ3/2

Q2
(46)

30

by Markov’s inequality. Since R′ is chosen independently of Â, we have

ER′

 ∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x))


=
∑
R0

∑
C∈badC(R0,x)

µÂ,ColFinder
f

C (f(x)) · Pr
R′

[R′ = R0]

=
∑
R0

∑
C

µÂ,ColFinder
f

C (f(x)) · ξbadC(R0,x)(C) · Pr
R′

[R′ = R0]

=
∑
C

µÂ,ColFinder
f

C (f(x)) ·

(∑
R0

ξbadC(R0,x)(C) · Pr
R′

[R′ = R0]

)
=
∑
C

µÂ,ColFinder
f

C (f(x)) · Pr
R′

[C ∈ badC(R′, x)]

≤
∑
C

µÂ,ColFinder
f

C (f(x)) · (2δ3/2/Q2) ≤ 2δ3/2/Q, (47)

where ξbadC(R0,x) is the boolean function such that ξbadC(R0,x)(C) = 1 if and only

if C ∈ badC(R0, x), and we used the property that
∑
C µ
Â,ColFinderf
C (f(x)) ≤ Q

holds since Â is a Q-query algorithm. Therefore

Pr
R′

 ∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x)) > δ/Q

 ≤ 2
√
δ (48)

follows from Markov’s inequality. Since the conditions (Cond. 1) and (Cond. 3)
are independent (note that the condition (Cond. 3) does not depend on whether
x ∈ R ∩R′),

Pr
R,R′

[x ∈ J2] = Pr
R,R′

[x satisfies (Cond. 1)] · Pr
R,R′

[x does not satisfy (Cond. 3)]

≤ (δ4/Q6) · 2
√
δ =

2δ9/2

Q6
(49)

holds for each x ∈ I. Now we can show the following claim in the same way as
we showed (42).

Claim. It holds that
ER,R′ [|J2|] ≤ 2δ9/2|I|/Q6 (50)

From the above claim and Markov’s inequality, it follows that

Pr
R,R′

[
|J2| ≥

20δ9/2|I|
Q6

]
≤ 0.1 (51)

holds.

31

Finally, we show that |G| becomes large with a high probability: From in-
equalities (38), (44), and (51) it follows that

Pr
R,R′

[
|H| < 1

2
· δ

4|I|
Q6
∨ |J1| ≥

10δ9/2|I|
Q6

∨ |J2| ≥
20δ9/2|I|
Q6

]
≤ 0.3. (52)

holds. Therefore, with a probability at least 1− 0.3 = 0.7 it holds that

|G| ≥ |H| − |J1| − |J2| ≥
δ4|I|
2Q6

− 10δ9/2|I|
Q6

− 20δ9/2|I|
Q6

=
δ4|I|
2Q6

(
1− 60

√
δ
)
≥ δ4(1− 60

√
δ)
p22n

2Q6
= θ. (53)

Thus we have that
Pr
R,R′

[|G| ≥ θ] ≥ 0.7, (54)

which completes the proof. ut

Finally, we show that Proposition 1 follows from the above lemmas.

Proof (of Proposition 1). First, remember that the set Y is defined as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (55)

For each fixed positive integer θ ≤M ≤ 2n, the cardinality of the set

YM := {(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| = M} (56)

is equal to (2n −M)! ·
(

2n

M

)
= (2n)!/M !. Thus |Y | is upper bounded as

|Y | =
2n∑

M=dθe

(2n)!

M !
≤ 2n · (2n)!

(dθe)!
(57)

for sufficiently large n. Here we show the following claim.

Claim. If Q6 ≤ δ4p22n/32, there exists a constant const1 such that Q6 ≥ const1 ·
2n/n holds. We can choose const1 independently of n.

Proof (of Claim). By definition of X, |X| ≥ p1(2n)! holds. In addition, from

inequality (57), we have |Y | ≤ 2n · (2n)!
(dθe)! . Moreover, since now we are assuming

that Q6 ≤ δ4p22n/32 holds, it follows that |Y | ≥ 0.7|X| from Lemma 6 and

Lemma 9. Hence we have 2n · (2n)!
(dθe)! ≥ 0.7 ·p1(2n)!, which is equivalent to 2n

0.7p1
≥

dθe!.
Since p1 is a constant and n! ≥ 2n holds for n ≥ 4, there exists a con-

stant const2, which can be taken independently of n, such that dconst2 · ne! ≥
2n/(0.7p1) holds. Now we have dconst2 ·ne ≥ dθe, which implies that const2 ·n+

1 ≥ θ = δ4
(

1− 60
√
δ
)
p22n

2Q6 holds. Moreover, since δ and p2 are also constants,

there exists a constant const1 that is independent of n and Q6 ≥ const1 · 2n/n
holds, which completes the proof of the claim. ut

32

Let const3 := min{δ4p2/32, const1}. Then, from the the above claim, it follows
that Q6 ≥ const3 ·2n/n holds. Since Q = c

⌈
1
ε

⌉
(max{q, η}+1) by definition of Q,

we have c6
⌈

1
ε

⌉6
(max{q, η}+ 1)6 ≥ const3 · 2n/n. Hence there exists a constant

const such that max{q, η} ≥ const · ε · 2n/6/n1/6 ≥ const · ε · 2n/7 holds for all
sufficiently large n, which completes the proof. ut

4.2 Proof of Theorem 3

This section shows that Theorem 3 follows from Proposition 1. First, we can
show that the following lemma follows from Proposition 1.

Lemma 10. For any efficient oracle-aided quantum algorithm B and for any
polynomial λ, there exists a permutation f : {0, 1}∗ → {0, 1}∗ such that

Pr
y←{0,1}n

[
x← Bf,ColFinder

f
λ(y) : f(x) = y

]
< 2−n/8 (58)

holds for all sufficiently large n.

Proof. Without loss of generality we assume that there is a polynomial η′(n)
such that η′(n) = |Bn| holds, since Bn is an efficient algorithm. Then, for each
circuit C that Bn queries to ColFinder, C makes at most η′(n) queries since
|C| ≤ |Bn| holds. It suffices to show the claim in the case that λ(n) = |Bn|
holds since, in general, the ability of adversaries to invert permutations does not
decrease as λ(n) becomes large, and the size of quantum circuits that Bn can
query to ColFinder does not exceed |Bn|. Hence, below we consider the case that
λ(n) = η′(n) = |Bn| holds. Note that B can be regarded as a λ-query algorithm
in this case, since Bn cannot make more than λ(n) queries.

Since B is an efficient algorithm and λ(n) is a polynomial in n, it follows that

Pr
fn,Πn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
< 2−n/8 (59)

for all sufficiently large n, from Proposition 1. 21 Thus, for all sufficiently large
n, there exists a permutation f ′n on {0, 1}n such that

Pr
Πn

y←{0,1}n

[
x← B

f ′n,ColFinder
f′
λ,Π,n

n (y) : f ′n(x) = y

]
< 2−n/8 (60)

holds. Now, let f ′ : {0, 1}∗ → {0, 1}∗ be a permutation such that f ′|{0,1}n = f ′n
for all sufficiently large n. Then

Pr
y←{0,1}n

[
x← Bf

′,ColFinderf
′
λ (y) : f(x) = y

]
< 2−n/8 (61)

holds for all sufficiently large n. ut
21 If the left hand side of (59) is greater than or equal to 2−n/8 for infinitely many
n, then it follows that λ(n) becomes exponentially large for infinitely many n from
Proposition 1 (note that now λ(n) corresponds to max{q(n), η(n)} in Proposition 1).
However, this contradicts that λ(n) is a polynomial in n.

33

Proof (of Theorem 3). Let Γ1 := Perm({0, 1}∗) and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ,
where Λ is the set of all polynomials in n. (If λ(n) ≤ 0 for some n, we assume that

ColFinderfλ,n does not take any inputs.) Below we show that the two conditions
of Lemma 4 are satisfied.

For the first condition of Lemma 4, we define an oracle-aided quantum algo-
rithm J0 as follows: When we feed J0 with an input x relative to a permutation
f , J0 queries x to f and obtains the output f(x). Then J0 returns f(x) as its
output. We show that this algorithm J0 satisfies the first condition of Lemma 4
(existence of CC-qOWP). It is obvious that J f0 ∈ FCC-qOWP for any permutation
f , by definition of J0. Let B be an efficient oracle-aided quantum algorithm, and
λ be a polynomial in n.

From Lemma 10, it follows that, for any efficient oracle-aided quantum algo-
rithm B and any λ ∈ Λ, there exists a permutation f such that

Pr
y←{0,1}n

[
x← Bf,ColFinder

f
λ(y) : f(x) = y

]
< negl(n) (62)

holds, which implies that Bf,ColFinder
f
λ does not CC-qOWP-break J f0 relative to

(f,ColFinderfλ). Hence the first condition (existence of CC-qOWP) of Lemma 4
is satisfied.

Next, we show that the second condition (non-existence of QC-qCRH) of
Lemma 4 is satisfied. For any efficient oracle-aided quantum algorithm I =
(Gen,Eval) such that If ∈ FCC-qCRH holds for any permutation f , let λ be a
polynomial such that λ(n) > |In| for all n. We define a family of oracle-aided
quantum algorithms AI as follows: Given an input σ, AI queries the oracle-aided
quantum circuit Evaln(σ, ·) to ColFinderfλ, obtains an answer (w(1), w(2), Hf (σ,

w(1))) 22, and finally outputs (w(1), w(2)). When AColFinderfλ
I is given an input

σ, the output will be (w(1), w(2)), where w(1) is uniformly distributed over the
domain of Hf (σ, ·) : {0, 1}m(n) → {0, 1}`(n) and w(2) is uniformly distributed
over the set (Hf (σ, ·))−1(Hf (σ,w(1))). Since m(n) > `(n) holds by definition of
implementations of QC-qCRH, the probability that w(1) 6= w(2), which implies
that (w(1), w(2)) is a collision of Hf (σ, ·), is at least 1/4. Thus it follows that

there exists AI and λ ∈ Λ such that AColFinderfλ
I CC-qCRH-breaks If for any

permutation f . Hence the second condition of Lemma 4 is satisfied. ut

Remark 12. In this paper we formally treat only efficient reductions such that
the circuit sizes of reduction algorithms are polynomial in n. However, the state-
ment of Proposition 1 also excludes sub-exponential reductions from CRH to
OWP in the quantum setting.

22 Since If
′
∈ FCC-qCRH for any permutation f ′, Evalf

′
n (·, ·) computes a function Hf ′(·, ·)

for any permutation f ′ by definition of QC-qCRH. In particular, even when σ is
generated by Genf (1n) and f ′ 6= f , Evalf

′
n (σ, ·) computes the function Hf ′(σ, ·).

Hence ColFinderfλ does not return ⊥ on the input Evaln(σ, ·).

34

5 Impossibility of Reduction from QC-qCRH to CC-qTDP

The goal of this section is to show the following theorem.

Theorem 4. There exists no quantum fully-black-box reduction from QC-qCRH
to CC-qTDP.

To show this theorem, we define two (families of) oracles that separate QC-qCRH
from CC-qTDP. That is, we define an oracle that implements trapdoor permuta-
tions, in addition to an oracle that finds collisions of functions, and then apply
the two oracle technique (Lemma 4).

Remark 13. The statement of Theorem 4 is the strongest result among possible
quantum (fully-black-box) separations of CRH from TDP, since it also excludes
reductions from CC-qCRH to CC-qTDP, reductions from QC-qCRH to QC-qTDP,
and reductions from CC-qCRH to QC-qTDP. 23

Oracles that separates QC-qCRH from CC-qTDP. Suppose, for each n, we
have a permutation gn : {0, 1}n → {0, 1}n and a function fn : {0, 1}n×{0, 1}n →
{0, 1}n for each n, where fn(z, ·) : {0, 1}n → {0, 1}n is a permutation for each z ∈
{0, 1}n. Define f inv

n : {0, 1}n × {0, 1}n → {0, 1}n by f inv
n (z, ·) := (fn(gn(z), ·))−1

for each z. Let g := {gn}n∈N, f := {fn}n∈N, and f inv := {f inv
n }n∈N. Define

efficient oracle-aided quantum algorithms (Gen,Eval, Inv) relative to (g, f, f inv)
as follows.

1. When we feed Geng with 1n as an input, first td ∈ {0, 1}n is chosen uniformly
at random, and then pk is set as pk := gn(td). Finally Geng outputs (pk, td).

2. Given an input (pk, x) ∈ {0, 1}n × {0, 1}n, Evalf queries (pk, x) to fn, and
output fn(pk, x).

3. Given an input (td, x) ∈ {0, 1}n×{0, 1}n, Invf
inv

queries (td, x) to f inv
n , and

output f inv
n (td, x).

(Gen,Eval, Inv) implements CC-qTDP relative to (g, f, f inv).

For each fixed g, f and a function λ, define the randomized oracle ColFinderg,f,f
inv

λ

in the same way as we defined ColFinder in Section 4. Note that now an input

to ColFinderg,f,f
inv

λ is an oracle-aided quantum circuit C of which circuit size is
at most λ(n), and C may make queries to g, f , and f inv. We say that C is a

valid input if it computes a function F g
′,f ′,f ′inv

C : {0, 1}m → {0, 1}` relative to

the oracles g′, f ′, and f ′
inv

, for each permutation g′ and function f ′ such that
f ′n(z, ·) is a permutation over {0, 1}n for each z ∈ {0, 1}n (here we assume that
m and ` are independent of g′ and f ′). We say that C is invalid if it is not valid.
Let valid and invalid denote the set of valid and invalid circuits, respectively.

23 Note that it also excludes possible quantum (fully-black-box) reductions from col-
lapsing hash functions to trapdoor permutations, since the notion of collapsing is
stronger than collision-resistance.

35

We can show that Theorem 4 follows from Proposition 2 below by apply-
ing the two oracle technique (Lemma 4) with Γ1 := {(g, f, f inv)} and Γ2 :=

{ColFinderg,f,f
inv

λ }(g,f,f inv)∈Γ1,λ∈Λ, where Λ is the set of polynomials in n, in the
same way as Theorem 3 follows from Proposition 1.

Proposition 2. Let λ, q, ε be functions such that 1 ≤ λ(n), q(n) and 0 < ε(n) ≤
1. Let A be a q-query oracle-aided quantum algorithm. Suppose that there is a
function η(n) ≤ λ(n) such that, for each circuit C that An queries to ColFinder,
C makes at most η(n) queries. If

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f
inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y

]
≥ ε(n) (63)

holds for infinitely many n, then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/42 (64)

holds for infinitely many n. 24

Remark 14. In this paper we formally treat only efficient reductions such that
the circuit sizes of reduction algorithms are polynomial in n. However, the state-
ment of Proposition 2 also excludes sub-exponential reductions from CRH to
TDP in the quantum setting.

Intuitive Overview of Proof Idea. Here we explain an intuition of our proof
idea. We consider three separate cases. In the first and second cases, we can show
that the claim of Proposition 2 is reduced to Proposition 1. In the third case,
we again use the arguments about randomized compressing schemes to show
permutations are hard to invert.

The first case is the one that A queries td to f inv with a high probability (we
denote this event by TDHIT1). In this case, we can make an oracle-aided quan-
tum query algorithm B1 that inverts the permutation g, given oracle access to
(g,ColFinderg). Given pk = g(td) as an input and oracle access to (g,ColFinderg),

B1 runs A simulating oracles f and f inv itself, and simulating ColFinderg,f,f
inv

by making queries to ColFinderg. Then B1 measures a query of A to f inv. Since
A queries td to f inv with a high probability, B1 can obtain td with a high prob-
ability, which implies that B1 can invert pk in g. Thus the claim can be reduced
to Proposition 1 in this case. From Proposition 1, it follows that B1 has to make

24 Strictly speaking, when we feed an input (pk, y) ∈ {0, 1}n × {0, 1}n, A should run
a quantum circuit denoted by A2n in our definition of quantum circuits (see Def-
inition 1 and Definition 2). However, in this section we abuse the notation An to
denote A2n, for simplicity.

36

many queries if ε(n) is non-negligible, which implies that A also has to make
many queries.

The second case is the one that A queries a trapdoor-hitting circuit C to

ColFinderg,f,f
inv

with a high probability (we denote this event by TDHIT2). In-
tuitively, a circuit C ∈ Circ(λ(n))∩ valid is called trapdoor-hitting if it queries td

to f inv with a high probability on input w
(1)

Cg,f,finv
or w

(2)

Cg,f,finv
(here, w

(1)

Cg,f,finv

and w
(2)

Cg,f,finv
are defined in the same way as w

(1)

Cf
and w

(2)

Cf
in Section 4). In this

case, again we can make an oracle-aided quantum query algorithm B2 that in-
verts the permutation g, given oracle access to (g,ColFinderg). Given pk = g(td)
as an input and oracle access to (g,ColFinderg), B2 runs A simulating oracles f

and f inv, and simulating ColFinderg,f,f
inv

by making queries to ColFinderg. Then

B2 measures a query of A to ColFinderg,f,f
inv

. Since A queries a trapdoor-hitting

circuit C to ColFinderg,f,f
inv

with a high probability, B2 can obtain a trapdoor-
hitting circuit C with a high probability. Once B2 obtains a trapdoor-hitting

circuit C, B2 computes the value ColFinderg,f,f
inv

(C) = (w
(1)

Cg,f,finv
, w

(2)

Cg,f,finv
, u)

by simulating f , f inv itself and making queries to its own oracle ColFinderg.

Then B2 runs C relative to the oracles g, f , and f inv on inputs w
(1)

Cg,f,finv
and

w
(2)

Cg,f,finv
, and measures some queries of C to f inv. Since the trapdoor-hitting

circuit C queries td to f inv with a high probability, B2 can obtain td with a high
probability, which implies that B2 can invert pk in g. Thus the claim can be
reduced to Proposition 1 in this case as well.

The third case is the one that either of TDHIT1 and TDHIT2 does not occur
(that is, the case that ¬(TDHIT1 ∨TDHIT2) occurs). In this case, intuitively, we
can construct a randomized compressing scheme that compresses the truth table
of f(pk, ·) without the oracle f inv(td, ·) since the query magnitude to f inv(td, ·)
is almost always small if ¬(TDHIT1 ∨ TDHIT2) occurs. In this section, we only
describe the difference between the proof for the third case and the proof in
Section 4. The complete proof of the third case can be found in Section A.

Formal Proof. Below we give a formal proof. We begin with formally defining
trapdoor-hitting circuits, and the events TDHIT1 and TDHIT2. Let δ be a suf-
ficiently small constant (δ = (1/8)4 suffices), and c be a sufficiently large positive

constant integer (actually c = 2 suffices). LetQ(n) := c
⌈

12
ε(n)

⌉
(max{q(n), η(n)}+

1), and Q̃(n) := c
⌈

12
ε(n)

⌉
·Q(n). (We will use δ, c, and Q(n) for the compressing

technique in the third case, in almost the same way as we did in Section 4. η(n)
is the upper bound of the number of queries made by the circuits that A queries
to ColFinder.)

Definition of trapdoor-hitting Circuits. For each fixed n, Π, (g, f, f inv), and td,
we say that an oracle-aided quantum circuit C ∈ Circ(λ(n)) ∩ valid is trapdoor-

37

hitting if∑
z∈{0,1}n

µC,f
inv

(td,z) (w
(1)

Cg,f,finv
) >

δ

Q(n)
or

∑
z∈{0,1}n

µC,f
inv

(td,z) (w
(2)

Cg,f,finv
) >

δ

Q(n)
(65)

holds. If C ∈ Circ(λ(n)) ∩ valid is not trapdoor-hitting, we say that it is a non-
trapdoor-hitting circuit.

Definition of the events TDHIT1 and TDHIT2. For each n, we define TDHIT1 as
the event that ∑

z

µA,f
inv

(td,z) (pk, y) >
δ

Q̃(n)
(66)

occurs. In addition, for each n, we define TDHIT2 as the event that∑
C:trapdoor-hitting

µ
A,ColFinderg,f,f

inv

λ

C (pk, y) >
δ

Q̃(n)
(67)

occurs. Below we give a proof of Proposition 2.

Remark 15. Once g, f , td, y, andΠn are fixed, whether or not the events TDHIT1

and TDHIT2 occur is determined, since the left hand side of inequalities (66)
and (67) are completely determined.

Proof (Proof of Proposition 2). Let E denote the event that A inverts the trap-
door permutation, i.e., fn(pk, x) = y holds. If Pr[E] ≥ ε(n) holds, then one
of the three conditions holds: (1) TDHIT1 occurs with a high probability, i.e.,
Pr[E ∧ TDHIT1] ≥ ε(n)/3 holds, (2)TDHIT2 occurs with a high probability, i.e.,
Pr[E ∧TDHIT2] ≥ ε(n)/3 holds, or (3)¬(TDHIT1 ∨TDHIT2) occurs with a high
probability, i.e., Pr[E ∧ ¬(TDHIT1 ∨ TDHIT2)] ≥ ε(n)/3 holds. Below we show
that the claim of the proposition holds in each case. Without loss of generality

we can assume that A does not query invalid circuits to ColFinderg,f,f
inv

λ .

Case 1: The Event TDHIT1 Occurs. Here we consider the case that TDHIT1

occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f
inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ TDHIT1

]
≥ ε(n)

3
(68)

holds for infinitely many n. In this case, for each n such that (68) holds, there

exist y0 ∈ {0, 1}n and f̂n such that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), x← A

gn,f̂n,f̂
inv
n ,ColFinderg,f̂,f̂

inv

λ,Π,n
n (pk, y0) :

f̂n(pk, x) = y0 ∧ TDHIT1

]
≥ ε(n)

3
. (69)

38

Under the condition that TDHIT1 occurs, we have that∑
z

µA,f̂
inv

(td,z),i0
(pk, y0) >

δ

q(n) · Q̃(n)
≥ δ

Q̃(n)2
(70)

holds for some 1 ≤ i0 ≤ q(n). Below we construct an oracle-aided quantum
algorithm B1 relative to oracles g ∈ Perm({0, 1}n) and ColFindergλ′ (defined in
Section 4), where λ′ is a function that λ′(n) is sufficiently large for each n.

Before describing the algorithm B1, here we explain that we can simulate the

oracles f̂ inv and ColFinderg,f̂ ,f̂
inv

λ , given the truth table of f̂ and oracle access to
g and ColFindergλ′ , with knowing pk but without knowing td.

We begin with explaining how to simulate the oracle f̂ inv. Remember that
f̂ inv(z, x) = (f̂(g(z), ·))−1(x) holds. Thus we can evaluate f̂ inv once by using the

truth table of f̂ and making two queries to g.

Next we explain how to simulate the oracle ColFinderg,f̂ ,f̂
inv

λ . Given an oracle-

aided circuit C which may make queries to g, f̂ , and f̂ inv, first we replace each
f̂ oracle gate in C with the concrete quantum circuit that computes f̂ , by using
the truth table of f̂ . (Note that here we do not care whether calculations can
be done efficiently, and we focus only on the number of queries to g.) Second,

we replace each f̂ inv oracle gate in C with an oracle-aided quantum circuit that
computes f̂ inv by using the truth table of f̂ and making two queries to g, in the
same way as we simulate the f̂ inv oracle.

Let Cfill denote the resulting circuit. If C is an η-query circuit, then Cfill

makes at most 3η-queries. By definition of Cfill, obviously ColFindergλ′(Cfill) =

ColFinderg,f̂ ,f̂
inv

λ (C) holds. Thus we can simulate the oracles of f̂ inv and ColFinderg,f̂ ,f̂
inv

λ .
Next we give the description of B1.

Algorithm B1.

1. B1 takes pk ∈ {0, 1}n as an input and is given oracle access to a permutation

g ∈ Perm({0, 1}n). The truth table of f̂ is hardcoded in the description of
B1. Set guess←⊥.

2. Repeat the following procedures Q̃(n)2 times.

(a) Run the algorithm A on input y0 relative to the oracles g, f̂ , f̂ inv, and

ColFinderg,f̂ ,f̂
inv

λ before the i0-th query to f̂ inv, and measure the i0-th

query. B1 simulates the oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ as we de-

scribed above. Let (t̃d, z̃) ∈ {0, 1}n×{0, 1}n be the measurement result.
(b) Query t̃d to g. If pk = g(t̃d) holds, set guess← t̃d.

3. Return guess.

Analysis of B1. The number of queries to each of g and ColFinderg made by B1

is at most Q̃(n)2(3q(n) + 1) ≤ 4Q̃(n)3. In addition, for each oracle aided circuit

C that A queries to ColFinderg,f,f̂
inv

λ , the number of queries to each oracle made
by C is at most η(n), by assumption. Hence, for each oracle aided circuit Cfill

39

that B1 queries to ColFindergλ′ , the number of queries to g made by Cfill is at
most 3η(n).

From inequality (70), under the condition that TDHIT1 occurs, it follows
that the probability that B1 finds t̃d such that pk = g(t̃d) is at least 1 − (1 −
δ/Q̃(n)2)Q̃(n)2 ≥ 1− e−δ. (Here we used the fact that (1−x)−

1
x ≥ e for 0 < x <

1.) That is, we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
1,n (pk) : t̃d = td

∣∣∣∣TDHIT1

]
≥ 1− e−δ

(71)
holds for the 4Q̃(n)3-query algorithm B1. From inequality (69), it follows that

Pr
gn,Πn,

td←{0,1}n
[TDHIT1] ≥ ε(n)

3
(72)

holds for infinitely many n. Therefore we have

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
1,n (pk) : t̃d = td

]
≥ (1− e−δ) · ε(n)

3

(73)
for infinitely many n.

Now we can show that there exists a constant const1 such that

max
{

4Q̃(n)3, 3η(n)
}
≥ const1 · ε(n) · 2n/7 (74)

holds for infinitely many n in almost the same way as we showed Proposition 1.

Moreover, since Q̃(n) = c2
⌈

12
ε(n)

⌉2

(max{q(n), η(n)}+ 1), we have that

4c6
⌈

12

ε(n)

⌉6

(max{q(n), η(n)}+ 1)3 ≥ const1 · ε(n) · 2n/7, (75)

which implies that there exists a constant const2 such that

max{q(n), η(n)} ≥ const2 · ε(n)3 · 2n/21 (76)

for infinitely many n. Therefore the claim holds in this case.

Case 2: The Event TDHIT2 Occurs. Here we consider the case that TDHIT2

occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f
inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ TDHIT2

]
≥ ε(n)

3
(77)

40

holds for infinitely many n. In this case, for each n such that inequality (77)

holds, again there exist y0 ∈ {0, 1}n and f̂n such that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), x← A

gn,f̂n,f̂
inv
n ,ColFinderg,f̂,f̂

inv

λ,Π,n
n (pk, y0) :

f̂n(pk, x) = y0 ∧ TDHIT2

]
≥ ε(n)

3
, (78)

and we can construct an adversary B2 that inverts random permutation gn.
Under the condition that TDHIT2 occurs, we have that

∑
C:trapdoor-hitting

µ
A,ColFinderg,f,f

inv

λ

C,i0
(td, y) >

δ

Q̃(n) · q(n)
≥ δ

Q̃(n)2
(79)

holds for some 1 ≤ i0 ≤ q(n). In addition, for each trapdoor-hitting circuit C,
we have that∑
z∈{0,1}n

µC,f
inv

(td,z),j0
(w

(1)

Cg,f,finv
) >

δ

Q̃(n)2
or

∑
z∈{0,1}n

µC,f
inv

(td,z),j0
(w

(2)

Cg,f,finv
) >

δ

Q̃(n)2

(80)

for some 1 ≤ j0 ≤ η(n), by definition of trapdoor-hitting circuits and since
η(n) ≤ Q(n).

Below we construct an oracle-aided quantum algorithm B2 relative to oracles
g ∈ Perm({0, 1}n) and ColFindergλ′ (defined in Section 4), where λ′ is a function
that λ′(n) is sufficiently large for each n. In what follows, without loss of gen-
erality we assume that each circuit C that A queries to ColFinder makes η(n)
queries.

Algorithm B2.

1. B2 takes pk ∈ {0, 1}n as an input and is given oracle access to a permutation

g ∈ Perm({0, 1}n) and ColFindergλ′ . The truth table of f̂ is hardcoded in the
description of B2. Set guess←⊥.

2. Repeat the following procedures Q̃(n)2 times.

(a) Run the algorithm A on input y0 relative to the oracles g, f̂ , f̂ inv, and

ColFinderg,f̂ ,f̂
inv

λ before the i0-th query to ColFinderg,f̂ ,f̂
inv

λ , and measure

the i0-th query. B2 simulates the oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ

as we described in the proof of Case 1. Let C be the measurement result.

(b) Query Cfill to ColFindergλ′ to compute ColFinderg,f̂ ,f̂
inv

λ (C) = (w
(1)

C(g,f̂,f̂inv)
,

w
(2)

C(g,f̂,f̂inv)
, u) (see p. 39 for the definition of Cfill).

(c) For 1 ≤ i ≤ η(n), do:

i. Repeat the following procedures Q̃(n)2 times.

41

A. Run the circuit C on the input w
(1)

C(g,f̂,f̂inv)
relative to g, f̂ , f̂ inv

before the i-th query to f̂ inv, and measure the i-th query. B2

simulates the oracles (g, f̂ , f̂ inv) as we described in the proof of
Case 1. Let (t̃d, z) ∈ {0, 1}n×{0, 1}n be the measurement result.

B. Query t̃d to g. If pk = g(t̃d) holds, set guess← t̃d.

C. Do Steps A and B by using w
(2)

C(g,f̂,f̂inv)
instead of w

(1)

C(g,f̂,f̂inv)
.

3. Return guess.

Analysis of B2. First we analyze the number of queries made by B2. Steps (a)
and (b) require at most 3i0 ≤ 3q(n) and 1 queries to each oracle, respectively,
and the maximum number of queries made by each circuit Cfill that B2 queries
to ColFindergλ′ is at most 3η(n).

In Step A, C makes at most η(n) queries to each oracle. Since B2 makes at

most two queries to g in order to simulate one evaluation of f̂ inv, B2 makes at
most 3η(n) queries in Step A. In Step B, B2 makes 1 query. Thus, in Step (c),
B2 makes at most η(n) · (Q̃(n))2 · 2 · (3η(n) + 1) ≤ 8Q̃(n)4 queries.

Therefore B2 makes at most Q̃(n)2 ·(8Q̃(n)4+(3q(n)+1)) ≤ 12Q̃(n)6 queries,
and the maximum number of queries made by each circuit Cfill that B2 queries
to ColFindergλ′ is at most 3η(n).

Second we analyze success probability of B2. Since inequality (79) holds,
under the condition that TDHIT2 occurs, the probability that B2 obtains a
trapdoor-hitting circuit C in Step 2-(a) at least once while B2 is running (below

we call this event succ1) is lower bounded by 1− (1− δ/Q̃(n)2)Q̃(n)2 ≥ 1− e−δ.
Since (80) holds for each trapdoor-hitting circuit, under the condition that succ1

occurs, the probability that B2 obtains t̃d such that pk = g(t̃d) in Step 2-(c)-i
at least once while B2 is running under the condition that succ1 occurs is lower

bounded by 1− (1− δ/Q̃(n)2)Q̃(n)2 ≥ 1− e−δ. Hence it follows that B2 finds t̃d
such that pk = g(t̃d) with a probability at least (1− e−δ)2, under the condition
that TDHIT2 occurs.

Now we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
2,n (pk) : t̃d = td

∣∣∣∣TDHIT2

]
≥ (1− e−δ)2

(81)

holds for a 12Q̃6-query quantum algorithm B2. Moreover, from inequality (78),
it follows that

Pr
gn,Πn,

td←{0,1}n
[TDHIT2] >

ε(n)

3
(82)

holds for infinitely many n. Therefore we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
2,n (pk) : t̃d = td

]
≥ (1− e−δ)2 · ε(n)

3

(83)

42

holds for infinitely many n. Thus we can show that there exists a constant const1
such that

max
{

12Q̃(n)6, 3η(n)
}
≥ const1 · ε(n) · 2n/7 (84)

holds for infinitely many n, in almost the same way as we showed Proposition 1.

Moreover, since Q̃(n) = c2
⌈

12
ε(n)

⌉2

(max{q(n), η(n)}+ 1), we have that

12c12

⌈
12

ε(n)

⌉12

(max{q(n), η(n)}+ 1)6 ≥ const1 · ε(n) · 2n/7, (85)

which implies that there exists a constant const2 such that

max{q(n), η(n)} ≥ const2 · ε(n)3 · 2n/42 (86)

for infinitely many n. Therefore the claim also holds in this case.

Case 3: The Event ¬(TDHIT1 ∨ TDHIT2) Occurs. Here we consider the
case that ¬(TDHIT1 ∨ TDHIT2) occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f
inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(87)

holds for infinitely many n. In this case, for each n such that inequality (87) holds,
there exist an n-bit string td0 ∈ {0, 1}n, a permutation ĝn ∈ Perm({0, 1}n), and

a family of permutations {f̂(pk, ·)}pk 6=pk0 such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
pk0 ← ĝn(td0), x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (pk0, y) :

f̂n(pk0, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
, (88)

Here we can construct a randomized compressing scheme (E,D) that compresses

the truth table of f̂(pk0, ·), and can show that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/7 (89)

for infinitely many n, which implies that the claim also holds in this case.

The compressing scheme is an analogue of that in Section 4. Below we de-
scribe only the difference between the randomized compressing scheme here and
that in Section 4. See Appendix A for a complete proof.

43

Difference from the Proof in Section 4. The constructions of E and D are almost
the same as that of Section 4, except that in this sectionD uses the dummy oracle
that always returns ⊥ to simulate the oracle f̂ inv(td0, ·).

The main difference from the proof in Section 4 is that, roughly speaking, we
take X (the domain of encoder E) and G (subset of {0, 1}n on which E “forgets”

values of permutation f ∈ X) in such a way that, for any f = f̂(pk0, ·) ∈ X
and x ∈ G, (i) Â inverts f(x) in f with probability at least 2/3 and (ii) the
event ¬(TDHIT1 ∨ TDHIT2) always occurs with respect to Â, y = f(x), and

f = f̂(pk0, ·). We use ε(n)/6 and ε(n)/12, which may not be constants, instead
of constants p1 and p2 so that the condition (ii) will hold. Hence we have to
change Lemma 5.

Accordingly, the statement of Lemma 7 and Lemma 8 will be slightly changed:
In Lemma 7, it is claimed that CalCy satisfies some suitable properties for
good circuits, but in this section CalCy satisfies the corresponding properties
for good and non-trapdoor-hitting circuits. For Lemma 8, the statement will not
be changed in this section, but we will make full use of the condition (ii) above
in the proof.

Moreover, since we use ε(n)/6 and ε(n)/12 instead of constants p1 and p2,
the factor ε(n)3, instead of ε(n), appears in the final bound (89).

6 Concluding Remarks

In this paper we studied black-box impossibility in the quantum setting. We
first formalized a quantum counterpart of the classical fully-black-box reduc-
tion [RTV04], and then proved that there is no quantum fully-black box reduc-
tion from collision-resistant hash functions to one-way permutations, or even
trapdoor permutations. Our result is an extension to the quantum setting of the
work of Simon [Sim98] who showed a similar result in the classical setting. We
used compressing arguments to show the impossibility results, which is based
on the work by Nayebi et al. [NABT15] and extends the work by Asharov and
Segev [AS15].

Future direction. Here, we give two possible future directions. The first is to
strengthen the black-box separation for CRH from other cryptographic primi-
tives. In the classical setting, Asharov and Segev [AS15] proved that there does
not exist a black-box reduction from CRH to OWP (or TDP) and indistinguisha-
bility obfuscations (IO) [GGH+13].25 Since IO and OWP implies many strong
cryptographic primitives including functional encryption [GGH+13], witness en-
cryption [GGSW13], deniable encryption [SW14] etc., their result means that it
is difficult to construct CRH from these primitives. Though it would be nice if

25 Since a certain type of non-black-box construction is inherent in many IO-based
constructions, they actually also ruled out reductions using “commonly used” non-
black-box techniques.

44

we obtain a similar result in the quantum setting, it is not clear how we can de-
fine IO and “black-box access” to it in the quantum setting. Thus we considered
simpler cases to separate CRH from OWP (or TDP) as a first step. We leave it
as an interesting open problem to extend our result to separate CRH from OWP
(or TDP) and IO.

The second is to give quantum analogues of black-box impossibility results
shown in the classical setting. As seen in Section 1.4, there are many known black-
box impossibility results shown in the classical setting. However, we observe that
many of them crucially relies on the fact that all algorithms are classical, and
it seems not easy to extend them to ones in the quantum setting. Especially,
a theoretically important question is if we can rule out a quantum black-box
reduction from classical-communication key-exchanges to OWP (or OWF) in
the quantum setting. (If quantum communications are allowed, then the pro-
tocol in [BB84] is unconditionally secure. Therefore we only consider the case
of classical-communication for making the question meaningful.) We note that
this can be done if we prove that there does not exist a classical-communication
key-exchange protocol (with super-polynomial security) in the quantum random
oracle model (QROM). In the classical setting, a similar statement was proven by
Impagliazzo and Rudich [IR89], followed by Barak and Mahmoody [BM09] who
gave the optimal security bound. On the other hand, in the quantum setting, we
do not know any non-trivial security bound. We note that though Brassard et al.
[BHK+11] gave a classical-communication key-exchange protocol in the QROM
that is secure against adversary making q5/3 queries to the random oracle where
q is the number of queries by honest parties, they did not show their protocol is
optimal in regard to security.

Acknowledgements

We thank anonymous reviewers for their insightful comments. Especially, we
thank reviewers of STOC 2019 and CRYPTO 2020 who pointed out technical
errors in previous versions of this paper.

References

Aar09. Scott Aaronson. Quantum copy-protection and quantum money. In CCC
2009, Proceedings, pages 229–242, 2009.

ABF+16. Gorjan Alagic, Anne Broadbent, Bill Fefferman, Tommaso Gagliardoni,
Christian Schaffner, and Michael St. Jules. Computational security of quan-
tum encryption. In Anderson C. A. Nascimento and Paulo Barreto, editors,
ICITS 16, volume 10015 of LNCS, pages 47–71. Springer, Heidelberg, Au-
gust 2016.

AC12. Scott Aaronson and Paul Christiano. Quantum money from hidden sub-
spaces. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC,
pages 41–60. ACM Press, May 2012.

45

AGM18. Gorjan Alagic, Tommaso Gagliardoni, and Christian Majenz. Unforgeable
quantum encryption. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 489–519.
Springer, Heidelberg, April / May 2018.

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

ARU14. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum at-
tacks on classical proof systems: The hardness of quantum rewinding. In
55th FOCS, pages 474–483. IEEE Computer Society Press, October 2014.

AS15. Gilad Asharov and Gil Segev. Limits on the power of indistinguishability
obfuscation and functional encryption. In Venkatesan Guruswami, editor,
56th FOCS, pages 191–209. IEEE Computer Society Press, October 2015.

BB84. Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public
key distribution and coin tossing. In Proceedings of IEEE International
Conference on Computers, Systems, and Signal Processing, pages 175–179,
India, 1984.

BBBV97. Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM journal on
Computing, 26(5):1510–1523, 1997.

BBCS92. Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélène
Skubiszewska. Practical quantum oblivious transfer. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 351–366. Springer, Hei-
delberg, August 1992.

BBF13. Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-
box reductions, revisited. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 296–315. Springer,
Heidelberg, December 2013.

BBHT98. Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds
on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-
5):493–505, 1998.

BD19. Nir Bitansky and Akshay Degwekar. On the complexity of collision resistant
hash functions: New and old black-box separations. In TCC 2019, Part I,
LNCS, pages 422–450. Springer, Heidelberg, March 2019.

BHK+11. Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan, Sophie La-
plante, and Louis Salvail. Merkle puzzles in a quantum world. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 391–410.
Springer, Heidelberg, August 2011.

BHT98. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of
hash and claw-free functions. In Latin American Symposium on Theoretical
Informatics, pages 163–169. Springer, 1998.

BJ15. Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for
circuits of low T-gate complexity. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
609–629. Springer, Heidelberg, August 2015.

BL17. Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549:188–194, 2017.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 575–
584. ACM Press, June 2013.

46

BM09. Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are opti-
mal - an O(n2)-query attack on any key exchange from a random oracle. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 374–390.
Springer, Heidelberg, August 2009.

Bra18. Zvika Brakerski. Quantum FHE (almost) as secure as classical. In Ho-
vav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III,
volume 10993 of LNCS, pages 67–95. Springer, Heidelberg, August 2018.

BS16. Anne Broadbent and Christian Schaffner. Quantum cryptography beyond
quantum key distribution. Des. Codes Cryptography, 78(1):351–382, 2016.

BV98. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be
equivalent to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998.

CHS18. Nai-Hui Chia, Sean Hallgren, and Fang Song. On basing one-way per-
mutations on NP-hard problems under quantum reductions. CoRR,
abs/1804.10309, 2018.

CLMP13. Kai-Min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On
the power of nonuniformity in proofs of security. In Robert D. Kleinberg,
editor, ITCS 2013, pages 389–400. ACM, January 2013.

Cor02. Jean-Sébastien Coron. Security proof for partial-domain hash signature
schemes. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 613–626. Springer, Heidelberg, August 2002.

DFG13. Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. The Fiat-
Shamir transformation in a quantum world. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
62–81. Springer, Heidelberg, December 2013.

DFLS16. Frédéric Dupuis, Serge Fehr, Philippe Lamontagne, and Louis Salvail.
Adaptive versus non-adaptive strategies in the quantum setting with appli-
cations. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 33–59. Springer, Heidelberg, August
2016.

DFMS19. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the Fiat-Shamir transformation in the quantum random-oracle model. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2019, Part II,
LNCS, pages 356–383. Springer, Heidelberg, August 2019.

DOP05. Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic
insecurity of the full domain hash. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 449–466. Springer, Heidelberg, August 2005.

DTT10. Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs
for attacks against one-way functions and PRGs. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 649–665. Springer, Heidelberg,
August 2010.

Fis12. Marc Fischlin. Black-box reductions and separations in cryptography. In
Progress in Cryptology - AFRICACRYPT 2012 - 5th International Confer-
ence on Cryptology in Africa, Ifrance, Morocco, July 10-12, 2012. Proceed-
ings, pages 413–422, 2012.

FKS+13. Serge Fehr, Jonathan Katz, Fang Song, Hong-Sheng Zhou, and Vassilis
Zikas. Feasibility and completeness of cryptographic tasks in the quantum
world. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
281–296. Springer, Heidelberg, March 2013.

47

FLR+10. Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton,
Martijn Stam, and Stefano Tessaro. Random oracles with(out) programma-
bility. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 303–320. Springer, Heidelberg, December 2010.

FS12. Dario Fiore and Dominique Schröder. Uniqueness is a different story: Im-
possibility of verifiable random functions from trapdoor permutations. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 636–653.
Springer, Heidelberg, March 2012.

GC01. Daniel Gottesman and Isaac Chuang. Quantum digital signatures. CoRR,
abs/quant-ph/0105032, 2001.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Com-
puter Society Press, October 2013.

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness en-
cryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 467–476. ACM Press, June
2013.

Gro96. Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219. ACM, 1996.

GT00. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In 41st FOCS, pages 305–313. IEEE
Computer Society Press, November 2000.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

HHRS07. Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding
collisions in interactive protocols - a tight lower bound on the round com-
plexity of statistically-hiding commitments. In 48th FOCS, pages 669–679.
IEEE Computer Society Press, October 2007.

HL18. Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong
one-way functions (or: One-way product functions and their applications).
In Mikkel Thorup, editor, 59th FOCS, pages 850–858. IEEE Computer So-
ciety Press, October 2018.

Hof11. Dennis Hofheinz. Possibility and impossibility results for selective decom-
mitments. Journal of Cryptology, 24(3):470–516, July 2011.

HR04. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road,
or do secure hash functions need secret coins? In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 92–105. Springer, Heidelberg,
August 2004.

HXY19. Minki Hhan, Keita Xagawa, and Takashi Yamakawa. Quantum random
oracle model with auxiliary input. In ASIACRYPT 2019, Part I, LNCS,
pages 584–614. Springer, Heidelberg, December 2019.

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61. ACM
Press, May 1989.

JF11. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Post-Quantum Cryptography
- 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, pages 19–34, 2011.

48

KSVV02. Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi.
Classical and quantum computation. Number 47. American Mathematical
Soc., 2002.

LZ19. Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2019, Part II,
LNCS, pages 326–355. Springer, Heidelberg, August 2019.

Mah18. Urmila Mahadev. Classical homomorphic encryption for quantum circuits.
In Mikkel Thorup, editor, 59th FOCS, pages 332–338. IEEE Computer So-
ciety Press, October 2018.

McE78. Robert J. McEliece. A public-key cryptosystem based on algebraic coding
theory. DSN Progress Report, 44:114–116, 1978.

NABT15. Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan.
Quantum lower bound for inverting a permutation with advice. Quantum
Information & Computation, 15(11&12):901–913, 2015.

NC10. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge University Press,
2010.

NIS16. NIST. Post-quantum cryptography standardization. 2016. See https:

//csrc.nist.gov/Projects/Post-Quantum-Cryptography.
Pas11. Rafael Pass. Limits of provable security from standard assumptions. In

Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 109–
118. ACM Press, June 2011.

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In Michael Mitzenmacher, editor, 41st ACM
STOC, pages 333–342. ACM Press, May / June 2009.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

RS18. Lior Rotem and Gil Segev. Injective trapdoor functions via derandom-
ization: How strong is Rudich’s black-box barrier? In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS,
pages 421–447. Springer, Heidelberg, November 2018.

RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 1–20. Springer, Heidelberg, February 2004.

Rud88. Steven Rudich. Limits on the Provable Consequences of One-way Functions.
PhD thesis, University of California, Berkeley, 1988.

Rud92. Steven Rudich. The use of interaction in public cryptosystems (extended
abstract). In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 242–251. Springer, Heidelberg, August 1992.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

Sim98. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Kaisa Nyberg, editor, EU-
ROCRYPT’98, volume 1403 of LNCS, pages 334–345. Springer, Heidelberg,
May / June 1998.

Son14. Fang Song. A note on quantum security for post-quantum cryptography.
In Post-Quantum Cryptography - 6th International Workshop, PQCrypto
2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings, pages 246–
265, 2014.

49

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014.

Unr16. Dominique Unruh. Computationally binding quantum commitments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 497–527. Springer, Heidelberg, May
2016.

Vaz98. Umesh Vazirani. On the power of quantum computation. PHILOSOPH-
ICAL TRANSACTIONS-ROYAL SOCIETY OF LONDON SERIES A
MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, pages
1759–1767, 1998.

Wie83. Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January
1983.

Yao93. Andrew Chi-Chih Yao. Quantum circuit complexity. In 34th Annual Sym-
posium on Foundations of Computer Science, Palo Alto, California, USA,
3-5 November 1993, pages 352–361, 1993.

Zha15. Mark Zhandry. A note on the quantum collision and set equality problems.
Quantum Information & Computation, 15(7&8):557–567, 2015.

Zha19. Mark Zhandry. Quantum lightning never strikes the same state twice. In
Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2019, Part III,
LNCS, pages 408–438. Springer, Heidelberg, May 2019.

A A Complete Proof for the Case 3 of Proposition 2

The goal of this section is to show the following proposition.

Proposition 3. Suppose that, for infinitely many n, there exists an n-bit string
td0 ∈ {0, 1}n, a permutation ĝn ∈ Perm({0, 1}n), and a family of permutations

{f̂n(pk, ·)}pk 6=pk0 such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
pk0 ← ĝn(td0), x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (pk0, y) :

f̂n(pk0, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
, (90)

holds. Then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/7 (91)

holds for infinitely many n.

Preparations. Here we describe some technical preparations before using the
encoding technique. In a similar way as we did in Section 4, we construct another
algorithm Â that iteratively runs A to increase the success probability, and then
apply the encoding technique to Â.

Remember that c is a sufficiently large positive integer in Section 5. Let Bc be
an oracle-aided quantum algorithm that runs as follows, relative to the oracles

ĝ, f̂ , f̂ inv, ColFinderĝ,f̂ ,f̂
inv

λ .

50

1. Take an input y. Set guess←⊥.
2. For i = 1, . . . , cd12/ε(n)e do:

3. Run Aĝ,f̂ ,f̂ inv,ColFinderĝ,f̂,f̂
inv

λ on the input (pk0, y). Let x be the output.

4. Query (pk0, x) to f̂ . If f̂(pk0, x) = y, then set guess← x.
5. End For
6. Return guess.

Remember that Q(n) is defined as cd12/ε(n)e(max{q(n), η(n)}+1) in Section 5.
Bc can be regarded as a Q-query algorithm, and for each quantum circuit C that

Bc queries to ColFinderĝ,f̂ ,f̂
inv

λ,n , C makes at most Q(n) queries.
Lemma 11 that will be shown below corresponds to Lemma 5 in Section 4.

The main difference between Lemma 11 and Lemma 5 is that Lemma 11 uses
ε(n)/6 and ε(n)/12, which may not be constants, instead of constants p1 and
p2, respectively. We use ε(n)/6 and ε(n)/12 so that, for x ∈ G (G is the set

we will use in our encoder and decoder) and f = f̂(pk0, ·) ∈ X, Bc will invert

y = f(x) = f̂(pk0, x) in f = f̂(pk0, ·) and the event ¬(TDHIT′1∨TDHIT
′
2) occurs

with respect to Bc, y, and f . Here, TDHIT′1 and TDHIT′2 are the events defined
as follows.

Definition of the events TDHIT′1 and TDHIT′2. For each n, we define TDHIT′1 as
the event that ∑

z

µBc,f
inv

(td,z) (pk, y) >
δ

Q(n)
(92)

occurs. In addition, for each n, we define TDHIT′2 as the event that

∑
C:trapdoor-hitting

µ
Bc,ColFinderg,f,f

inv

λ

C (pk, y) >
δ

Q(n)
(93)

occurs. Note that, in the definitions of TDHIT1 and TDHIT2, we used Q̃(n)
instead of Q(n). We need not only TDHIT1 and TDHIT2 but also TDHIT′1 and
TDHIT′2 since Bc makes more queries than A, and thus the query magnitudes
of Bc is larger than those of A. (See (66) and (67) for the definitions of TDHIT1

and TDHIT2.)

Lemma 11. For a sufficiently large positive integer c, the following condition
is satisfied for infinitely many n:

Condition. There exist X ⊂ Perm({0, 1}n) and Πn such that |X| ≥ ε(n)
6 ·

|Perm({0, 1}n)| and

Pr
y←{0,1}n

[
Pr

[
x← B

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
c,n (y) : f̂n(pk0, x) = y

]
≥ 2/3

∧ ¬(TDHIT′1 ∨ TDHIT′2)

]
≥ ε(n)

12
(94)

51

for all f̂n(pk0, ·) ∈ X. (Note that whether or not the event ¬(TDHIT′1∨TDHIT
′
2)

occurs is determined once y, f̂n(pk0, ·) ĝ, {f̂n(z, ·)}z 6=pk0 , td0, pk0, and Πn are
all fixed.)

Proof. Let c be an integer that satisfies e−c ≤ 1/3. In what follows, we show
that this c satisfies the condition.

First, for each n such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(95)

holds, there exists Πn such that

Pr
f̂n(pk0,·),
y←{0,1}n

[
x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(96)

holds. Below we fix Πn that satisfies inequality (96) for each n such that in-
equality (95) holds.

Now we have that

Pr
f̂n(pk0,·)

[
Pr

y←{0,1}n

[
x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

6

]
≥ ε(n)

6
(97)

from inequality (96). In other words, there exists X ⊂ Perm({0, 1}n) such that

|X| is lower bounded by ε(n)
6 |Perm({0, 1}n)| and

Pr
y←{0,1}n

[
x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

6
(98)

holds for all f̂n(pk0, ·) ∈ X. Hence, for each f̂n(pk0, ·) ∈ X, from inequality (98)
it follows that

Pr
y←{0,1}n

[
Pr

[
x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y]

≥ ε(n)

12
∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

12
(99)

52

For each pair (f(pk0, ·), y) ∈ X × {0, 1}n such that

Pr

[
x← A

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

]
≥ ε(n)

12

∧ ¬(TDHIT1 ∨ TDHIT2), (100)

we have that

Pr

[
x← B

ĝn,f̂n,f̂
inv
n ,ColFinderĝ,f̂,f̂

inv

λ,Π,n
c,n (y) : f̂n(pk0, x) = y

]
≥ 1−

(
1− ε(n)

12

) 12c
ε(n)

= 1−

((
1− ε(n)

12

)− 1
ε(n)
12

)−c
. (101)

The right hand side of inequality (101) is equal to 1 if ε(n) = 1, and lower

bounded by 1 − e−c ≥ 2
3 if ε(n) < 1 (here we used the fact that (1 − x)−

1
x ≥ e

holds for 0 < x < 1). In addition, for each pair (f(pk0, ·), y) ∈ X × {0, 1}n
such that (100) holds, the event ¬(TDHIT′1 ∨ TDHIT′2) occurs with respect to
Bc by definition of the events TDHIT1, TDHIT2, TDHIT′1, and TDHIT′2 since
Bc iteratively runs A just cd12/ε(n)e times, and Q̃(n) = cd12/ε(n)eQ(n) holds.
Therefore the claim holds. ut

Then, from the above lemma, it follows that there exists a constant c that
satisfies the condition in Lemma 11 for infinitely many n. Let us denote Bc by
Â. We use the encoding technique to this Q-query algorithm Â, here Q(n) =
cd12/ε(n)e(max{q(n), η(n)}+ 1). Below we fix a sufficiently large n in addition
to Πn and X such that the condition in Lemma 11 is satisfied. For simplicity,

we write Q, ε, ĝ, f̂ , f̂ inv, and ColFinderĝ,f̂ ,f̂
inv

instead of Q(n), ε(n), ĝn, f̂n, f̂ inv
n ,

and ColFinderĝ,f̂ ,f̂
inv

λ,Π,n , respectively, for simplicity. Moreover, sometimes we write

f instead of f̂(pk0, ·).
Below we describe an encoder E and a decoder D that compress elements

(truth tables of permutations) in X. The encoder in this section has to deal
with more oracles than the encoder in Section 4 does, but there is no essential
difference between them. The decoder in this section has to simulate the oracle
f̂ inv(td0, ·) = (f̂(pk0, ·))−1 since Â may make queries to it. However, f̂(pk0, ·)
itself is the permutation that our decoder want to invert. Thus we use the dummy
oracle that returns ⊥ for any input instead of f inv(td0, ·). Since the sets X and
G will be constructed in such a way that the event ¬(TDHIT′1 ∨TDHIT

′
2) occurs

with respect to Â, f = f̂(pk0, ·) ∈ X, and y ∈ G, Â will not be able to distinguish

the dummy oracle and f̂ inv(td0, ·).

Encoder E. When we feed E with f = f̂(pk0, ·) ∈ X as an input, E first
chooses subsets R,R′ ⊂ {0, 1}n by the following sampling: For each x ∈ {0, 1}n,
x is added to R with probability δ3/2/Q2, and independently added to R′ with
probability δ5/2/Q4. (The pair (R,R′) is the random coin of E.)

53

According to the choice of R′, “bad” inputs (oracle-aided quantum circuits)

to ColFinderĝ,f̂ ,f̂
inv

are defined for each x ∈ {0, 1}n as follows. Note that now

π
(1)
C and π

(2)
C have been fixed for each C, and the output ColFinderĝ,f̂ ,f̂

inv

(C) =

(w
(1)

Cĝ,f̂,f̂inv
, w

(2)

Cĝ,f̂,f̂inv
, F ĝ,f̂ ,f̂

inv

C (w
(1)

Cĝ,f̂,f̂inv
)) is uniquely determined. For each oracle-

aided quantum circuit C ∈ Circ(λ(n))∩valid, we can define the query magnitude

of C to f = f̂(pk0, ·) on input w
(1)

Cĝ,f̂,f̂inv
and w

(2)

Cĝ,f̂,f̂inv
at z ∈ {0, 1}n (see Defi-

nition 5). We say a quantum circuit C ∈ Circ(λ(n)) ∩ valid is bad relative to x
if ∑

z∈R′\{x}

µC,f̂(pk0,·)
z (w

(1)

Cĝ,f̂,f̂inv
) >

δ

Q
(102)

or ∑
z∈R′\{x}

µC,f̂(pk0,·)
z (w

(2)

Cĝ,f̂,f̂inv
) >

δ

Q
(103)

hold, and otherwise we say C is good relative to x. Let badC(R′, x) denote the
set of bad circuits relative to x for each R′ ⊂ {0, 1}n.

Next, E constructs a set G ⊂ {0, 1}n depending on the input f = f̂(pk0, ·).
Let I ⊂ {0, 1}n be the set of elements x such that Â successfully inverts f(x) =

f̂(pk0, x), i.e.,

I :=

{
x ∈ {0, 1}n

∣∣∣∣Pr[x′ ← Âĝ,f̂ ,f̂
inv,ColFinderĝ,f̂,f̂

inv

(f̂(pk0, x)) : x′ = x] ≥ 2/3

and ¬
(
TDHIT′1 ∨ TDHIT′2

)
holds

}
.

Then |I| ≥ ε
12 · 2

n holds by definition of X (Remember that X is chosen in such
a way as to satisfy the condition in Lemma 11). Now, a set G is defined to be
the set of elements x ∈ I that satisfies the following conditions:

Conditions for G.

(Cond. 1) x ∈ R ∩R′.
(Cond. 2)

∑
z∈R\{x} µ

Â,f̂(pk0,·)
z (f̂(pk0, x)) ≤ δ/Q.

(Cond. 3)
∑
C∈badC(R′,x) µ

Â,ColFinderĝ,f̂,f̂
inv

C (f̂(pk0, x)) ≤ δ/Q.

Finally, E encodes f = f̂(pk0, ·) into (f |{0,1}n\G, f(G)) if |G| ≥ θ, where

θ = (1− 60
√
δ)δ4 · (ε

12) · 2n/2Q6. Otherwise E encodes f = f̂(pk0, ·) into ⊥.
In addition, here we formally define the set Y (the range of E) as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (104)

In fact E((R,R′), f) ∈ Y ∪ {⊥} holds for any choice of (R,R′) and any permu-
tation f ∈ X.

54

Decoder D. D takes (f̃ , G̃) as input in addition to (R,R′), where G̃ ⊂ {0, 1}n
and f̃ is a bijection from a subset of {0, 1}n onto {0, 1}n \ G̃, and R,R′ are
subsets of {0, 1}n. If {0, 1}n \ (the domain of f̃) 6⊂ R∩R′ holds, then D outputs
⊥. Otherwise, D decodes (f̃ , G̃) and reconstruct the truth table of a permutation

f = f̂(pk0, ·) ∈ Perm({0, 1}n) as follows.

For each x in the domain of f̃ , D infers the value f(x) = f̂(pk0, x) as f(x) :=
f̃(x). For other elements x ∈ {0, 1}n which is not contained in the domain of
f̃ , what D now knows is only that f(x) is contained in G̃. To determine the

remaining part of the truth table of f = f̂(pk0, ·), D tries to recover the value

f−1(y), which is equal to (f̂(pk0, ·))−1(y) = f̂ inv(td0, y), for each y ∈ G̃ by using

Â and without the oracle f̂ inv(td0, ·).
In a similar way as we did in Section 4, D prepares oracles hy and SimCFhy

which approximates f(pk0, ·) and ColFinderĝ,f̂ ,f̂
inv

, respectively, and computes

the output distribution of Âĝ,(hy,f̂pk6=pk0
),(⊥,f̂ inv

td6=td0
),SimCFhy on input y. Here, the

pair (hy, f̂pk 6=pk0) is the oracle that returns hy(x) on input (pk0, x), and returns

f̂(z, x) on input (z, x) such that z 6= pk0. (⊥, f̂ inv
td 6=td0

) is the oracle that returns

⊥ on input (td0, x) and returns f̂ inv(z, x) on input (z, x) such that z 6= td0.
SimCFhy uses a subroutine CalCy that takes (C,w) as an input (C is a valid

oracle-aided circuit that may make queries to ĝ, f̂ , f̂ inv and computes a func-

tion F ĝ,f̂ ,f̂
inv

C , and w is an element of the domain of F ĝ,f̂ ,f̂
inv

C) and simulates

the evaluation of F ĝ,f̂ ,f̂
inv

C (w). D finally infers that f−1(y), which is equal to

(f(pk0, ·))−1(y) = f inv(td0, y), is the element which Âĝ,(hy,f̂pk6=pk0
),(⊥,f̂ inv

td 6=td0
),SimCFhy

outputs with probability greater than 1/2. (If there does not exist such an ele-
ment, then D outputs ⊥.) Below we describe hy, CalCy, and SimCFhy .

Oracle hy. The oracle (function) hy : {0, 1}n → {0, 1}n is defined by

hy(z) =

{
f̃(z) if z 6∈ R ∩R′,
y otherwise.

(105)

Subroutine CalCy. Let Pcandidate := {h′ ∈ Perm({0, 1}n)) | ∆(h′, hy) ⊂ R ∩ R′}.
CalCy is defined as the following procedures. For h′ ∈ Pcandidate, let (h′

−1
, f̂ inv

td 6=td0
)

denote the oracle that returns h′
−1

(x) on input (td0, x) and returns f̂ inv(z, x)
on input (z, x) such that z 6= td0.

1. Take an input (C,w), where C is a valid oracle-aided circuit and w is an
element of the domain of the function FC .

2. Compute the output distribution of the quantum circuit C ĝ,(h
′,f̂pk6=pk0

),(h′−1,f̂ inv
td6=td0

)

on input w for each h′ ∈ Pcandidate, and find the corresponding output

u(C,w, h′) such that Pr
[
C ĝ,(h

′,f̂pk 6=pk0
),(h′−1,f̂ inv

td6=td0
)(w) = u(C,w, h′)

]
> 1/2.

If there are no such u(C,w, h′) for a fixed h′, set u(C,w, h′) :=⊥.
3. If u(C,w, h′) = u(C,w, h′′) 6=⊥ for all h′, h′′ ∈ Pcandidate, return the value
u(C,w, h′). Otherwise return ⊥.

55

Oracle SimCFhy . SimCFhy is defined as the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit of which size
is less than or equal to λ(n).

2. Check if C is a valid input by checking whether the following condition is
satisfied: For arbitrary g′n ∈ Perm({0, 1}n), f ′n : {0, 1}n × {0, 1}n → {0, 1}n
such that f ′(z, ·) is a permutation for all z ∈ {0, 1}n, and x ∈ {0, 1}m, there

exists y ∈ {0, 1}` such that Pr[Cg
′
n,f
′
n,f
′
n
inv

(x) = y] > 2/3 holds If C is an
invalid input, return ⊥.

3. Compute w̃
(1)

Cĝ,f̂,f̂inv
:= π

(1)
C (0m).

4. If CalCy(C, w̃
(1)

Cĝ,f̂,f̂inv
) =⊥, return ⊥.

5. Otherwise, search the minimum t ∈ {0, 1}m such that CalCy(C, w̃
(1)

Cĝ,f̂,f̂inv
) =

CalCy(C, π
(2)
C (t)) by checking whether CalCy(C, w̃

(1)

Cĝ,f̂,f̂inv
) = CalCy(C, π

(2)
C (i))

holds for i = 0, 1, 2, . . . in a sequential order, and set w̃
(2)

Cĝ,f̂,f̂inv
:= π

(2)
C (t).

6. Return (w̃
(1)

Cĝ,f̂,f̂inv
, w̃

(2)

Cĝ,f̂,f̂inv
,CalCy(C, w̃

(1)

Cĝ,f̂,f̂inv
)).

Note that D is an information theoretic decoder, and we do not care whether
CalCy and SimCFhy run efficiently.

Analysis. The following lemma, which corresponds to Lemma 7 in Section 4,
shows that hy, CalCy, and SimCFhy satisfy some suitable properties. Here we con-

sider the situation that D takes an input (f̃ , G̃) such that (f̃ , G̃) = E((R,R′), f)

for some subsetsR,R′ ⊂ {0, 1}n and a permutation f = f̂(pk0, ·) ∈ Perm({0, 1}n),
and tries to recover the value f−1(y) for some y ∈ G̃.

In Lemma 7, some suitable properties are satisfied for good circuits. On the
other hand, in Lemma 12, to satisfy the corresponding suitable properties, a
circuit have to be good and non-trapdoor-hitting (see (65) for the definition of
non-trapdoor-hitting circuits). This is the main difference between Lemma 7 and
Lemma 12.

Lemma 12. hy, CalCy, and SimCFhy satisfy the following properties.

1. ∆(hy, f) = R ∩R′ \ {f−1(y)} holds.

2. CalCy(C,w) = F ĝ,f̂ ,f̂
inv

C (w) or ⊥ holds for any C ∈ Circ(λ(n)) ∩ valid and
w.

3. For each non-trapdoor-hitting circuit C ∈ Circ(λ(n))∩valid which is good rela-

tive to f−1(y), CalCy(C,w
(1)

Cĝ,f̂,f̂inv
) = F ĝ,f̂ ,f̂

inv

C (w
(1)

Cĝ,f̂,f̂inv
) and CalCy(C,w

(2)

Cĝ,f̂,f̂inv
)

= F ĝ,f̂ ,f̂
inv

C (w
(2)

Cĝ,f̂,f̂inv
) hold.

4. SimCFhy (C) = ColFinderĝ,f̂ ,f̂
inv

(C) holds for each circuit C ∈ Circ(λ(n)) ∩
valid which is good relative to f−1(y) and non-trapdoor-hitting. In particular,

∆(ColFinderĝ,f̂ ,f̂
inv

,SimCFhy) ⊂ badC(R′, f−1(y))∪hitC

holds, where hitC is the set of trapdoor-hitting circuits.

56

Proof. The first property is obviously satisfied by definition of hy.

For the second property, since f = f̂(pk0, ·) ∈ Pcandidate, if CalCy(C,w) 6=⊥
then we have CalCy(C,w) = u(C,w, f) by definition of CalCy, and u(C,w, f) =

F ĝ,f̂ ,f̂
inv

C (w) always holds. Hence the second property holds.
For the third property, for each h′ ∈ Pcandidate, from Lemma 2 we have

Pr
[
C ĝ,(h

′,f̂pk 6=pk0
),(h′−1,f̂ inv

td6=td0
)(w

(1)

Cĝ,f̂,f̂inv
) = F ĝ,f̂ ,f̂

inv

C (w
(1)

Cĝ,f̂,f̂inv
)
]

≥ Pr
[
C ĝ,f̂ ,f̂

inv

(w
(1)

Cĝ,f̂,f̂inv
) = F ĝ,f̂ ,f̂

inv

C (w
(1)

Cĝ,f̂,f̂inv
)
]

−
∥∥∥C ĝ,f̂ ,f̂ inv

|w(1)

Cĝ,f̂,f̂inv
, 0, 0〉 − C ĝ,(h

′,f̂pk 6=pk0
),(h′−1,f̂ inv

td6=td0
) |w(1)

Cĝ,f̂,f̂inv
, 0, 0〉

∥∥∥ .
(106)

From the swapping lemma (Lemma 3) it follows that∥∥∥C ĝ,f̂ ,f̂ inv

|w(1)

Cĝ,f̂,f̂inv
, 0, 0〉 − C ĝ,(h

′,f̂pk 6=pk0
),(h′−1,f̂ inv

td6=td0
) |w(1)

Cĝ,f̂,f̂inv
, 0, 0〉

∥∥∥
≤ 2

√
Q

∑
z∈∆(f(pk0,·),h′)

µ
C,f̂(pk0,·)
z (w

(1)

Cĝ,f̂,f̂inv
)

+2

√
Q

∑
z∈{0,1}n

µ
C,f̂ inv(td0,·)
z (w

(1)

Cĝ,f̂,f̂inv
). (107)

Since ∆(f(pk0, ·), h′) = ∆(f, h′) ⊂ R∩R′\{f−1(y)} ⊂ R′\{f−1(y)} holds for all
h′ ∈ Pcandidate, and C is good relative to f−1(y) and non-trapdoor-hitting, the
right hand side of the above inequality is upper bounded by 2

√
δ + 2

√
δ = 4

√
δ.

Thus, for a sufficiently small δ we have

Pr
[
C ĝ,(h

′,f̂pk 6=pk0
),(h′−1,f̂ inv

td6=td0
)(w

(1)

Cĝ,f̂,f̂inv
) = F ĝ,f̂ ,f̂

inv

C (w
(1)

Cĝ,f̂,f̂inv
)
]
≥ 2

3
− 4
√
δ >

1

2
,

(108)

which implies that u(C,w
(1)

Cĝ,f̂,f̂inv
, h′) = F ĝ,f̂ ,f̂

inv

C (w
(1)

Cĝ,f̂,f̂inv
) holds for every

h′ ∈ Pcandidate. Thus CalCy(C,w
(1)

Cĝ,f̂,f̂inv
) = F ĝ,f̂ ,f̂

inv

C (w
(1)

Cĝ,f̂,f̂inv
) holds if C is

good relative to f−1(y) and non-trapdoor-hitting. It can be shown that the cor-

responding property also holds for w
(2)

Cĝ,f̂,f̂inv
in the same way. Therefore the third

property follows.
The fourth property follows from the definition of SimCFhy , the second prop-

erty, and the third property. ut

The following lemma shows that the decoding always succeeds if the encoding
succeeds. In the proof below, we make full use of the condition that the sets X
and G are constructed in such a way that the event ¬(TDHIT′1∨TDHIT

′
2) occurs

with respect to Â, f = f̂(pk0, ·) ∈ X, and y ∈ G.

Lemma 13. If E((R,R′), f) 6=⊥, then D((R,R′), E((R,R′), f)) = f holds for

each f = f̂(pk0, ·) ∈ X.

57

Proof (of Lemma 8). Let f̃ := f |{0,1}n\G and G̃ := f(G). We show that D can

correctly recover x = f−1(y) for each y ∈ G̃.

By applying Lemma 3 (the swapping lemma) to (ĝ, f̂ , f̂ inv,ColFinderĝ,f̂ ,f̂
inv

)

and (ĝ, (hy, f̂pk 6=pk0), (⊥, f̂ inv
td 6=td0

),SimCFhy), we obtain∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂,f̂
inv

n |f(x), 0, 0〉 − Â
ĝ,(hy,f̂pk6=pk0

),(⊥,f̂ inv
td6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥

≤ 2

√√√√Q
∑

z∈∆(f̂(pk0,·),hy)

µ
Â,f̂(pk0,·)
z (f(x)) + 2

√
Q

∑
z∈{0,1}n

µ
Â,f̂ inv(td0,·)
z (f(x))

+ 2

√√√√Q
∑

C∈∆(ColFinderĝ,f̂,f̂
inv
,SimCFhy)

µÂ,ColFinder
ĝ,f̂,f̂inv

C (f(x)). (109)

Since∆(f̂(pk0, ·), hy) = ∆(f, hy) = R∩R′\{f−1(y)} ⊂ R\{f−1(y)} = R\{x}
hold, the first term of the right hand side of inequality (109) is upper bounded
by

2

√
Q

∑
z∈R\{x}

µ
Â,f̂(pk0,·)
z (f(x)), (110)

which is upper bounded by 2
√
δ due to the condition (Cond. 2) (see p. 54).

In addition, since TDHIT′1 does not occur for f = f̂(pk0, ·) ∈ X and y ∈ G̃ by
definition of X and G̃, the second term of the right hand side of inequality (109)
is also upper bounded by 2

√
δ.

Moreover, since ∆(ColFinderĝ,f̂ ,f̂
inv

,SimCFhy) ⊂ badC(R′, f−1(y)) ∪ hitC =
badC(R′, x) ∪ hitC holds from Lemma 12, it follows that∑

C∈∆(ColFinderĝ,f̂,f̂
inv
,SimCFhy)

µÂ,ColFinder
ĝ,f̂,f̂inv

C (f(x))

≤
∑

C∈badC(R′,x)

µÂ,ColFinder
ĝ,f̂,f̂inv

C (f(x)) +
∑
C∈hitC

µÂ,ColFinder
ĝ,f̂,f̂inv

C (f(x))

≤ δ

Q
+
δ

Q
, (111)

here we used the condition (Cond. 3) (see p. 54) and that TDHIT′2 does not occur

for f = f̂(pk0, ·) ∈ X and x ∈ G by definition of X and G for the last inequality.
Hence the third term of the right hand side of eq. (109) is upper bounded by
8
√
δ.
Thus, eventually we have∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂,f̂

inv

n |f(x), 0, 0〉

−Â
ĝ,(hy,f̂pk 6=pk0

),(⊥,f̂ inv
td6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥ ≤ 8

√
δ. (112)

58

Finally, from Lemma 2, for sufficiently small δ it follows that

Pr
[
Âĝ,(hy,f̂pk 6=pk0

),(⊥,f̂ inv
td6=td0

),SimCFhy (f(x)) = x
]

≥ Pr

[
Âĝ,f̂ ,f̂

inv,ColFinderĝ,f̂,f̂
inv

(f(x)) = x

]
−
∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂,f̂

inv

n |f(x), 0, 0〉

−Â
ĝ,(hy,f̂pk 6=pk0

),(⊥,f̂ inv
td6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥

≥ 2/3− 8
√
δ > 1/2, (113)

which implies that D correctly recovers x = f−1(y). ut

The following lemma shows that our E and D works well with a constant
probability.

Lemma 14. If Q6 ≤ δ4 · ε12 · 2
n/32,

Pr
(R,R′)

[D((R,R′), E((R,R′), f) = f] ≥ 0.7 (114)

holds for each f = f̂(pk0, ·) ∈ X.

Since it can be proven in the almost same way as Lemma 9 is proven (by replacing
ε(n)

6 and ε(n)
12 with p1 and p2, respectively), here we omit to write the proof of

Lemma 14.
Finally, we show that Proposition 3 follows from the above lemmas.

Proof (of Proposition 3). First, remember that the set Y is defined as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (115)

For each fixed positive integer θ ≤M ≤ 2n, the cardinality of the set

YM := {(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| = M} (116)

is equal to (2n −M)! ·
(

2n

M

)
= (2n)!/M !. Thus |Y | is upper bounded as

|Y | =
2n∑

M=dθe

(2n)!

M !
≤ 2n · (2n)!

(dθe)!
(117)

for sufficiently large n. Here we show the following claim.

Claim. If Q6 ≤ δ4 · ε12 · 2
n/32, there exists a constant const1 such that Q6 ≥

const1 · ε2 · 2n/n holds. We can choose const1 independently of n.

59

Proof (of Claim). By definition of X, |X| ≥ ε
6 · (2

n)! holds. In addition, from

inequality (117), we have |Y | ≤ 2n · (2n)!
(dθe)! . Moreover, since now we are assuming

that Q6 ≤ δ4 · ε12 · 2
n/32 holds, it follows that |Y | ≥ 0.7|X| from Lemma 6 and

Lemma 14. Hence we have 2n · (2n)!
(dθe)! ≥ 0.7 · ε6 · (2

n)!, which is equivalent to

6 · 2n

0.7 · ε
≥ dθe!. (118)

Since n! ≥ 2n holds for n ≥ 4, we have that⌈
6 · n

0.7 · ε

⌉
! ≥ 6 · 2n

0.7 · ε
(119)

for sufficiently large n. Hence we have d 6·n
0.7·εe ≥ dθe, which implies that

6n

0.7 · ε
+ 1 ≥ θ = δ4

(
1− 60

√
δ
)
· ε

12
· 2n

2Q6
(120)

holds. Moreover, since δ is a constant, there exists a constant const1 that is
independent of n and

Q6 ≥ const1 · ε2 · 2n/n (121)

holds, which completes the proof of the claim. ut

From the above claim, it follows that there exists a constant const2 such that

Q6 ≥ min
{
δ4 · ε

12
· 2n/32, const1 · ε2 · 2n/n

}
≥ const2 · ε22n/n (122)

holds.
Since Q = c

⌈
12
ε

⌉
(max{q, η}+ 1) by definition of Q and 1

ε ≥ 1, we have

c6
⌈

12

ε

⌉6

(max{q, η}+ 1)6 ≥ const2 · ε2 · 2n/n. (123)

Hence there exists a constant const such that

max{q, η} ≥ const · ε3 · 2n/7 (124)

holds for all sufficiently large n, which completes the proof. ut

B Technical Difference from the Previous Version

Here we describe the technical difference from this paper’s two previous versions.
The previous versions contained technical errors and failed to show the main
results. Below we do not explain the differences in Section 5 (the separation
result for CRH and TDP) since those are almost the same as the differences in
Section 4 (the separation result for CRH and OWP).

60

B.1 The First Version

In the first version, the definition of CRH is different from the current version.
Specifically, the condition

Eval(·, ·) computes a function H(·, ·) : {0, 1}s(n) × {0, 1}m(n) → {0, 1}`(n).

in the current version was replaced with

Eval(σ, ·) computes a function H(σ, ·) : {0, 1}m(n) → {0, 1}`(n) for the func-
tion index σ generated by Gen(1n).

In particular, according to the previous definition of CRH, Eval(σ, ·) does not
necessarily compute a function when σ is not generated by Gen(1n). Let CRH’
denote the collision-resistant hash functions with the previous definition. Then
there exists a trivial reduction from CRH’ to CRH, but it is not clear whether
there exists a black-box reduction from CRH to CRH’. There is no other essential
difference between the first version and the current version.

Technical error in the first version. In the first version, we tried to show the
impossibility of reductions from CRH’ to OWP, in the same way as we showed
impossibility of reductions from CRH to OWP in the current version. However,
the oracle ColFinderf is actually too weak to break CRH’, contrary to our claim.

Here we show an example of implementation of CRH’ of which collisions
cannot be found with ColFinderf 26. Let (Genf ,Evalf) be an oracle-aided im-
plementation of hash function (a pair of oracle-aided quantum circuits) that
makes queries to a permutation f . Fix a positive integer n. Assume that out-
puts of Genf on the input 1n are always in {0, 1}n and f is an n-bit permu-
tation, for simplicity. In addition, suppose that Evalf (σ, ·) computes a function
Hf (σ, ·) : {0, 1}n+1 → {0, 1}n for each σ returned by Genf (1n). Now, consider

to construct another implementation of hash function I ′ = (Gen
′f ,Eval

′f) as
follows.

Algorithm Gen
′f .

1. Take 1n as an input.
2. Run Genf on the input 1n and obtain an output σ ∈ {0, 1}n.
3. Choose r from {0, 1}n uniformly at random and compute f(r) by querying
r to f .

4. Return σ′ := (σ, r, f(r)) ∈ {0, 1}3n.

Algorithm Eval
′f .

1. Take (σ′, x) as an input, where σ′ = (σ, r, v) and σ, r, v ∈ {0, 1}n.
2. Check if f(r) = v holds by querying r to f . If it does not hold, return a

random n-bit string.

26 The existence of this counter example was pointed out by a reviewer of STOC 2019.

61

3. If f(r) = v, compute y = Hf (σ, x) by running Evalf on the input (σ, x), and
return y.

The pair (Gen
′f ,Eval

′f) is in fact an (oracle-aided) implementation of CRH’.

Let σ′ = (σ, r, f(r)) be an output of Gen
′f (1n). The oracle ColFinderf should have

been defined in such a way that it would return a collision of Hf (σ, ·) when the

(oracle-aided) quantum circuit of Eval
′(·)(σ′, ·) is queried. However, since there

exists a permutation g such that g(r) 6= f(r) and Eval
′g(σ, ·) outputs a random

n-bit string for any input x, ColFinderf judges that the input Eval
′(·)(σ′, ·) is

invalid. In particular, ColFinderf outputs ⊥ on the input Eval
′(·)(σ′, ·), and thus

we failed to prove the main theorem in the previous version.

B.2 The Second Version

To correct the above technical flaw, in the second version, we just removed the
checking procedure from ColFinderf so that it would correctly return collisions
for all possible implementations of CRH’ (the remaining technical contents were
unchanged). This indeed strengthened the power of ColFinderf , but the power of
the oracle had become so strong that the statement of Lemma 7 became invalid,
and ColFinderf could be used to efficiently invert f . 27

B.3 The Current Version

Since ColFinderf in the second version was too strong, in the current version we
changed the construction of ColFinderf back to that of the first version. However,
ColFinderf is not strong enough to break CRH’. Thus, instead of strengthening
ColFinderf , we weakened the definition of collision-resistant hash functions from
CRH’ to CRH.

Indeed, the example I ′ described in Section B.1 is an implementation of
CRH’ but not an implementation of CRH, and ColFinderf finds collisions of any
implementations of CRH (for a precise proof that ColFinderf finds a collision for
any implementation of CRH, see footnote 22).

The result proven in the current version (impossibility of reductions from
CRH to OWP) is weaker than the corresponding claim in the previous ver-
sions (impossibility of reductions from CRH’ to OWP), though, the result in
the current version is still meaningful: Even in the classical setting, the defini-
tion of collision-resistant hash functions that allows Eval to be a probabilistic
algorithm [HR04] assumes that Eval(σ, ·) computes a function not only for σ
generated by Gen(1n) but also for all possible σ. In particular, when we replace
“quantum algorithm” with “probabilistic Turing machine” verbatim, the current
definition of CRH exactly matches the classical definition, but the previous def-
inition CRH’ becomes stronger than the classical definition. The new definition
CRH is not too weak. Rather, our previous definition CRH’ was too strong.

27 This was pointed out by a reviewer of CRYPTO 2020.

62

	Finding Collisions in a Quantum World: Quantum Black-Box Separation of Collision-Resistance and One-Wayness

