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Abstract. The FHE (fully homomorphic encryption) schemes [7, 13] based on the modified AGCD problem (noise-
free AGCD problem) are vulnerable to quantum attacks, because its security relies partly on the hardness of factoring,
and some FHE schemes based on the decisional AGCD without the noise-free assumption, for example [1], has a
drawback that its ciphertexts are very large.

In this paper, we construct a new batch FHE scheme based on the decisional AGCD problem to overcome these
weaknesses and prove its security.
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1 Introduction

In 1978, Rivest, Adleman, and Dertouzos [18] firstly introduced the concept of the FHE scheme. The main
goal of their idea is to allow computations on encrypted data without loss of the data security. Three decades later,
in 2009, C. Gentry [10, 11] proposed the first FHE scheme based on the ideal lattice. The security of this FHE
scheme is based on the Bounded Distance Decoding (BDD) problem and the Sparse Subset Sum (SSS) problem.
Later, Gentry’s FHE scheme was improved by C. Gentry & S. Halevi [12], N. P. Smart & F. Vercauteren [19], D.
Stehlé & R. Steinfeld [20], etc.

In 2010, van Dijk, Gentry, Halevi and Vaikuntanathan [21] proposed the alternative FHE scheme. The secu-
rity of their FHE scheme relies on the SSSP and the Approximate Greatest Common Divisor (AGCD) problem.
The efficiency of the DGHV scheme has been improved by D. Benarroch, et al. [1], J. H. Cheon, et al. [7], J. S.
Coron, et al. [9], J. H. Cheon & D. Stehl¢ [8], etc.

Nowadays, Many FHE schemes towards the resistance to quantum attacks put their security on two main
computational problems: (1) the Learning With Errors (LWE) problem defined by Regev[17] and (2) Howgrave-
Graham’s AGCD problem[16]. Up to present, there are no polynomial-time quantum algorithms to solve these
problems.

Z. Brakerski & V. Vaikuntanathan [4, 5] developed the first LWE-based FHE schemes. These schemes were
improved to ones with better efficiency and security by subsequent works such as Z. Brakerski [2], Z. Brakerski
and C. Gentry, et al [3], Z. Brakerski and V. Vaikuntanathan [6], C. Gentry and S. Halevi, et al [13, 14], C. Gentry
and A. Sahai, et al [15], etc.

At Crypt 2015, Cheon and Stehlé [8] brought out a reduction from the LWE problem to the AGCD problem.
Therefore, we consider that the AGCD problem, which finds out the hidden common divisor from many approxi-
mate multiples of a prime number or a product of primes, are harder than the LWE problem, whose polynomial
time quantum algorithm is unknown yet [1].

The AGCD-based FHE schemes firstly proposed by van Dijk, et al. [21], are getting interests of numbers of
researchers for its advantage of dependency on relatively easy integer operations [1, 7, 9, 8], and the AGCD-based
FHE schemes are often called the FHE over the integers (FHE-OI). The FHE scheme suggested in [21] has a
drawback that it has to encrypt/decrypt only one bit at a time. Cheon, et al. [7] and Coron, et al.[9] presented the
batch FHE schemes that can encrypt/decrypt several bits at once, but the security of their batch version is based on
the noise-free variant of the AGCD problem that has a right common multiple among given approximate common
multiples. This modified AGCD problem is easier than the general one, and attackers can guess some of the hid-
den common divisor by factorizing the right common multiple with the help of a quantum computer.



In [8], the authors suggested new AGCD-based FHE scheme invulnerable to quantum attack in order to
overcome the defects of [7, 9]. However, they could not overcome the defect of encryption/decryption per one bit.
Therefore, they suggested the construction of a batch one of their FHE scheme as an open problem.

On the other hand, Benarroch, et al. [1] proposed a new FHE-OI scheme and its batch version that are re-
sistant to quantum attacks, but they have longer ciphertexts than the one in [8].

Our Contribution: In [8], the authors only constructed the non-batched FHE scheme, and pointed out that
their scheme may be extended to a batch version, similarly to [7, 9]. However, there is a serious difference of the
schemes in [7, 9] and the one in [8]. The difference is that the security of the scheme in [8] is based on the original
AGCD problem and the ones in [7, 9] is based on the noise-free variant of the AGCD problem. To be more exact,
the first element of the public-key x, has different property in [8] and [7, 9]. In [8], X, is an approximate common
multiple of primes, but in [7, 9], X, is an exact common multiple of the hidden prime. Therefore, there are some

issues to construct batch version of [8].
In this paper, we suggest a new batch FHE scheme with much shorter ciphertexts than the one in [1], which
can be a partial solution of one open problem in [8], and prove its security.

2 Preliminaries

2.1 Notation

We denote by a < A selecting an element a uniformly at random from a finite set A . When ¢ is a distri-

bution, we denote by a < ¢ selecting a sample a according to the distribution ¢. If x is real, then [x] is the
nearest integer to x, rounding upwards if there are two. Given xe R and peZ™, we use [x]p to denote unique
number in (- p/2, p/2] that satisfies the condition (x~[x], Jmod p=0.

We use the CRT representations. For given pairwise coprime integers py,...,pP , we define

Exactly
k N
CRTpl ..... pk (al,’ak)=|:2|:1al pl(pl L mOd pl )j| y

.
where T :zl_f;lpj and p; =T/p; =H|;:1pj/pi .
CRT, . pk(al,...,ak):=(CRTplwpk(all,...,akl),.-',CRTplwpk(al|,...,ak,))
where a; = (aj, -, &), i=1...,.k.
For neZ*, we define the function BD,: Z~[0,2") —{0,1}" and P,:R — R" as follows:

For xeZn[0,2") and yeR,
BD, (X):= (Xg s Xy 1) € 01" with x:z:xiZi ,
P.(y)= (y,2y,...,2”‘ly)e R".

Then we can prove the following expression:

(BD,(x), P, (y)) = Zin:_;xi (2i y): Xy .
We also recall the tensor product of two given vectors:
(UgseeisUp ) ® (Ve ooV )= (UgVg oo UgVpy e U Vg e UV ).
Moreover, it satisfies the following relation with the scalar product:
(ueu,vev)=(u,v)-(u,v).



2.2 Some Distributions and AGCD problems

For 7 -bit primes py, ..., py , we define some distributions as follows:

CI),D(pl,...,pk)::{r:CRTpl _____ pk(rl,...,rk)‘ri<—Zm(—2p,2p)},
27
D, ,(Pyr Py )= x=qui+r‘q<—Zm O,W @ Py Py

p. +1 27
D, ,;(Pye pk)::{y:CRTpl]._’pk [OJTOJ+qH T qum{O,m],remp(pl,..., pk)}.
I

Definition 1 [7] (The (p,7,7)-k —AGCD decisional problem). Let p,7,7 be the security parameters and

P1,.--» P be 7 -bit primes. The decisional problem is to distinguish between the distribution Dy’p(pl,..., pk) and

the uniform distribution U(Z e [0,27)).
Definition 2 (The (p,i],}/,j)—k— AGCD decisional problem). Let p,n,7 be the security parameters,

ps,.--» Py be 7 -bit primes, and j be the chosen index. The decisional problem is to distinguish between the dis-
tribution D, ,(p; ..., Py ) and the uniform distribution U(Z m[0,27)).

The (p,7,7)—k — AGCD decisional problem and the (p,7,7, j)—k —AGCD decisional problem have the
same degree of computational complexity, i.e. if there is a polynomial-time quantum algorithm to solve the
(p,n,7)—k — AGCD decisional problem then we can construct a polynomial-time quantum algorithm to solve the
(p, 7, j) —k — AGCD decisional problem. Moreover, the inverse argument is correct.

On the other hand, from the known reduction of LWE problem to AGCD problem [8], we can assume that
the (p,7,7)—k — AGCD decisional problem is hard:

Main assumption The (p,n, 7/)— k — AGCD decisional problem is hard to solve by any quantum computers.

3 Our Batch Somewhat Homomorphic Encryption scheme

In this section, we generalize the FHE scheme [8] to a new batch Somewhat HE scheme and then prove its
security. To construct a new batch SHE(Somewhat Homomorphic Encryption) scheme, we use the CRT represen-
tation.

3.1 The Construction

We define some parameters. In this paper, A is the security parameter, p is the maximum bit length of the
error, 7 is the bit length of the secret prime integers, y is the bit length of the ciphertexts, z is the number of
encryptions of zero in public key, and k is the number of distinct secret primes.

We assume that these parameters satisfy the following constraints by discussions in [1, 8]:

*  p22,
- y20liog Aly-pF) and y =5,
. T2y+24+2.
KeyGen (1, p,n,7,7,k) The secret key is a set of 7 -bit distinct odd primes py, ..., py : Sk == {p;, ..., py } . Choose

% <D, ,(Py.... px) (1=0,...,7) and relabel the indexes so that Xo >max{x,,....x, } and x, > °k2". Let



X:={Xg,...x. } . For j=1...k, choose a random subset S; of {L,...,}.

ieS

yj = CRTpl,...,pk(O ( +1) O}Zx} _

Xo

Then let Y :={y;,...,y }. Choose z, e(~1/2,1/2] so that the vector
z, _p/Z([P (2/p;) ®[P (2/p;) ]) (i)ﬁvgz
is to be an integer vector for i =1,...,k . Then choose g, < D%p(pl,..., pk) (1<u<y?).

Let y:=(0y heye,2 + CRT, o, (21,24 ), where g, is smaller than X, . The public key is pk = {X, Y, y}.

Encrypt (pk, me {0,1}") Choose a random subset S of {L,...,z} and output ¢ := {Zjesxj +Zik:lmiyi}

Decrypt (sk,c) Output m =(my,...,m ):=([2¢/p,]mod 2,...,[2¢/ p, | mod 2).
Evaluate (pk,C,c;,...,c;) Given the binary circuit C with t inputs, and ciphertexts ¢;,...,c,, we apply (addition
and multiplication gates of) C to c,...,c; as follows:

Add(c;, ¢, pk):=[c; +c,], .

Mult(c;,c,, pk) = |:<BD;/ (c;)®BD,(c,), y>]

Xo

Then it returns the resulting integer.

3.2 Correctness

Lemma 1 (Encryption noise). Let sk, pk < KeyGen (Z,p,ry,y,r,k) and ¢ be a ciphertext of plaintext
m=(m,...mc), m, €{0,1} for i=1....k. Then c= p,Q; +R; +m; (p; +1)/2 for some Q; € Z and R; € Z with
IRi| < 2e(k +1)2 -1).

k k
p, +1
Proof C:[zjesxj +Zm| y|] = zm|!CRTpl YYYYY pk (01,— _|2 ,xoj‘i'zxt:l +ZJ€SXJ
1=1 Xo Xo

K p+1
- Zm{CRTpl ,,,,, pk(o,..., 5 ,...,o]+2xt]+zjesxj]

R e o)

teS,

The above expression is equal to the following one for some F e Zand G € Z with G <kz +7 =7(k +1).

+1 +1 +1
CRT, . pk[ml 912 - p|2 voormy P j+FHp|+Zm|[thJ+Z ~GX,.

1=1 teS

On the other hand,
Xj = pigj +r; forsome qji € Z, ry; eZm(—Z”,Z”),

because of X; «~ D, ,(Py.... Py ). SO



N . i +1
=m; p'TJer{Zrﬁ}ijesr“ -Gy =R; +m; p|2 (mod p;).
=

teS,

i +1
p,2 for some Q; e Z.

[
for R, ::Zm{Zrt}rzjesrj —Gry. Therefore c = p;Q; + R; +m

1=1 teS,

To find upper bound of R;,

teS

Ri|= < +[Gry| <20k +1)27 -1) g

teS

Lemma 2 (Decryption noise). Let sk ={p;, ..., py} be a secret key. For given vector (mj,...,m, ) (m; {01}) and

an integer c=p;Q; + R +m; (p; +1)/2, if |Ri| < p; /4-1/2 then Dec(sk,c)=(my,...m, ). i=1...k.

Proof. We have
|:£} — 2QI + mi + |:M:| .
Pi Pi

Therefore, if

Rl<5-3.
4 2
then
‘ZRi wm 1
Pi 2
Therefore
{ZRi +m; } 0
Pi
That is,
{E} mod 2=m; . O
Pi

Theorem 1 (Correctness). Let sk, pk « KeyGen (1, p,7,7,7,k) and let ¢ = Enc(pk,m) denote the ciphertext of
m = (my,...,m, ), (m; € {01}). Then we have m = Dec(pk,c) when 7 — p > log(z(k + 1))+ 4.
Proof. Assume 7 — p > log(z(k +1))+ 4 . Then

n
n—p>log(zk +1))+4 < 2777 > 200 D14 _167(k +1) % >2°2r(k +1)

n-1 n-1
=N 2—>2p27(k +l) e 2——1>27(k+1)2p 1
4 4 2 2

On the other hand, since
2c(k +1)2” —% > 2e(k +1)2” -1,
we have

%_l—%> 2¢(k +1)(2P —1).

Since p; is a 7 -bit integer, p; > 27" and then we also have

2e(k +1)22 1)< % —% .

From Lemma 1, for some Q; € Z and some R; € Z with |R;|< 2z(k +1)(2” —1),



i +1
C=piQi+Ri+mip'T

where i=1,...,k . Accordingly
Ri| < 2¢(k +1)2° —1)<%—% .

Therefore, from Lemma 2, Dec(sk,c)=m. O
3.3 Security

Lemma 3 (Leftover Hash Lemma) [8]. The statistical distance of the uniform distribution U(Zigl) and the dis-

tribution

)

{(xl,..., X, ,[z;lsixi}

X{ seeer X <—ZXO, Siv-sS; <—{O,1}}

X0

is less than %,/xo/zf .

Theorem 2 (Security). Our Batch FHE scheme is CPA-secure under the assumption of hardness of
(p,n,7)—k — AGCD problem.
Proof. From the main assumption, the public key pk and the “pseudo” public key pk’ = {{x§,....x. },{y1.,... Vi }},

which was made from uniformly random selection, are computationally indistinguishable.
From the fact that = > y + 24 + 2 and Lemma 3, the probability distance between distribution

{(xi,..., XL, |:zi:15i Xi'}

and uniform distribution U(Z)’(:l) are less than 2. Thus we can conclude that the probability for the attacker to

)

Xo

Xj X, Zy S 2{1’---’}}

precisely distinguish the actual ciphertext from uniformly and randomly selected integer is less than 2. i
4 Batch Leveled Homomorphic Encryption scheme

Definition 3 (L —homomorphic scheme). Let (pk, sk, evk ) «<— KeyGen (1). A scheme is called L —homomorphic
scheme if for any binary integer circuit C that has the circuit depth L and | -inputs, it holds that
Dec(sk, Eval(pk, C, (c;.....¢; ))) = C(my,....m, ) with a probability greater than 1— 2“") for the plaintexts m; and
the corresponding ciphertexts ¢; = Enc(pk,m;) @<i<I).
Lemma 4 (Addition noise). For b=1,2, let ¢, = Enc(pk,my) denote the ciphertexts of my = (My;,....my ).
For i=1....k, if ¢, = PiQyi + Ty + My (p; +1)/2 then

Add(cy,C,, pk)= piQ; +R; +[my; +my ]2 (p; +1)/2
forsome Q; €Z and R; € Z with [Ri|<|r; + ry|+27.

Proof. According to the definition of “Addition” operation, Add(c;,c,, pk)=[c; +¢,], -

- X—O <C,CHr < X—O = Xg <Cy +C, <X
2 1:~2 2 0 1 2 0-
Therefore, there exist some integer & < {~1,0,1} such that[c, +¢,], =c¢; +c, — .

On the other hand, xo=p;jQu +Ry for some QueZ and ROieZm(—Zp,Z”), because of

Xo Dy,p(pl,..., ).



p; +1

Then ¢, +C, — g = Piy; + Pyl + fy + I + (My +my;) —3(piQqi + Roi ) -

We know the difference between (m; +m,;) and [m1i + My; ]2 is only 2 when my; =m,; =1, otherwise 0. If

pi+1_

[mli + My; ]2 0,

(m1i+m2i) =p; +1.

p; +1 _o P +1
2 2
Therefore, there is some integer &’ < {0,1} such that

i +1
P —5(piQ0i + ROi)=

Pidy + Pidyj + Iy + 1y +(m1i + mZi)

]
Pit _5(piQ0i + ROi)+5’(pi +1)-

= Piy + Pidoi + I + 1y +[m1i +My; ]2

And then,

+1

Add(cl,cz, pk)E(pi% + Py + 1 + 1y +[m1i + My ]zpiT—5(piQ0i + ROi)+5,(pi +1)j =

z(rli + i +[my +my |, p,T+1 — R + 5'} (mod p;).
Therefore,
Add(cy,c,, pk)s(Ri +[my +my ], p'TJrlJ (mod p;) for R; =1y + Iy — Rgj + 5.
From this, we conclude that
Add(cy, ¢y, pk) = piQ; + Ry +[my +my ], p'TJrl for some Q; € Z.
To find upper bound of R;,
Ri| =1 + Fo — Rgi + 5| <[y + g |+~ R + 5| <[y + 15+ 27 n
Lemma 5. Let p be 7 -bit odd prime integer, and ¢ = pg+r+m(p+1)/2eZn [0,27). Then
(8D, () [P, (2/p)},) =22 +m+e
for some a e Z with [a| < (-7 +4)/2 and some & e R with |&| < (2|r| +1)/p .

Proof. For given ¢,

2¢C 2r+m
—=20+m+ .
p
If
o 2r+m
& =
p
then
2r|+1
|e|s%,and 2—:—(m+5)50 (mod 2).

On the other hand,
(0, )P, @/p),)- (8D, ()P, (@/p) =0 (mod2)

since (BD, (c).P, (2/p)) = 2—: :



<BDy (c), [P7 (2/ p)]2> —(m+£)=0 (mod?2).

Therefore, there is some integera e Z such that

<BDy (c), [P7 (2/ p)]2 > =2a+(m+¢).
Since p is 7 -bit odd prime integer,

2 n-2 n-2 _
E+2—+...+2 :2(2 1)<1,
p P p p
and then
y-1 2|+l 3 2i+l y—1 2i.;.1
ool S22 [-E[2] |- £ 2] [er-oes.
i=0 2 i=0 p 2 i=n—-2 p 2
Therefore, 2a+m+& <y —n+3, and the upper bound of a is [a| < (y —» + 4)/2. o

Lemma 6 (Multiplication noise). For b=1,2, let c, = Enc(pk,m, ) denote ciphertexts of m, = (my,
For i=1,...k,if ¢, = POy + i + My (p; +1)/2 then
Mult (cy, ¢z, k) = p;Q; + R; +mymy; (p; +1)/2
for some Q; € Z, and R; € Z with |R;| < y?27* +(y—77+6)(|r1i|+|r2i|+1).
Proof. We have

Let
A:=(BD, (c;)®BD, (c2)(0u heysy ) B=(BD, (c)® BD, (c,),CRT,,
Then
B=(BD,(¢;)®BD, (c,).CRT, 5, (21,2, )) < 77T < g,

for any component of the y? -dimensional integer vector CRT, , (2y....,2) is less than T .

------

Moreover, since g, < Xq, we have
A= <BD7 (Cl)® BDy(CZ )' (gu ):Isus;/2 > < }/ZXO !

which implies that there exists an integer G [0,72] such that

Mult(c,,c,, pk)= {<BD7(01)® BD, (c,), y>} = A+B—Gx,,
X0
and
Mult (c;,c,, pk)=(A+ B —Gx,)=((A—Gxy)mod p; + Bmod p;) (mod p;).

For i=1...,k, the vector
Pi 2 2 i
Zj =?[{P7(Fj:l ®|:P7(?H J+(Zv)15v<yz
/12 /12

Thus, we have



B= <BDy(cl)® BD, (c,), [.Zkl: {% [{P{%ﬂz ®{F}[§JU+ (Zi)ng}ﬁ.(p mod p; )} mod T> :

Then, there exists a 2 -dimensional integer vector such that

(esni {3 )] o] pomun )
-] &, 2)] oo 2] {50100 s o ot

~(BD, (¢;)®BD, (c,) TF) .
From Lemma 5, for i=1,...,k , there exist a;;,a, € Z and &y, &, € R, we can continue as follows.
k .
- Z(%(mm + &y + 28y My + &5 + 285 ) + <BD}/ (c,)®BD,(c,) (Z\', )lgvsyz >j ¢f (f)i’l mod p; )_
i=1
~(BD,(c,)®BD, (). TF) ,
where
(2|r1;|+1)’ and [ez < (2|r2i|+1).

|agi |, azi| < (r-n+4)2, leni| <
Let J denote a set of all nonzero component of the »? — dimensional integer vector BD, (c,)® BD, (c, ). Then

k . .
B E{Z[%(mlj +8; +2a1ij2j +&; +2a2j)+<BD7(cl)® BDy(cz),(z\} ngyz >jf>,~(f’jl mod p; )_

J=L

~(BD, (¢,)®BD, (¢, TF) |= (% (my + 255 + 23y Yy + 25 + 285 )+ (BD, (¢;)® BD, (c, ) (2} e, >j

E[%(mli + &y + 28 My + &5 +2a2i)+22\i,J (mod p;)

vel
On the other hand,
%((mn + 23 )(mZi + 28y )— My; My; )

is multiple of p;. Thus,

%(mli + &1 + 2ay; My + &5 + 28y, )+Zz\i/ =
vel

= %(gzi (my; + 285 )+ &35 (My; + 28y )+ &35 + Mymy; )+Zz\i/ =
vel

i +1 i 1 i
(plz My; My; J{%(Szi (my; + 285 )+ &7 (my; + 22 )+ gligZi)_EmlimZij+Zz\|/J (mod p;),

vel

which implies that

pi+1 Pi
B E( '2 My; My; + 5 (i (my + 285 )+ &35y +28g;)+ ey ) - m1|m2| +ZZ ] (mod p; ).
vel

For y, « Dy’p(pl,..., P, ), there exist integers g, and r, € (— 2”,2”) such that y, = p;q,; +r, and similarly,

there exists integers Qg and Ry; € (— 2p,2p) such that Xy = p;Qqi + Roj -
In addition, we have,



A—GxoE<BDy(c1)®BDy(cz),(yu)Kugyz>—Gx0E{Zqu Gxo_[z J GRy (mod p;)-

ueld uel
Combining the above two results, we have,
Mult (c,,c,, pk )=

== mymy + F; (621 My + 285 )+ &5 (M + 28y )+ 365 ) - ml,m2, +ZZ +Zruu GRo.} (mod p; ).
vel uel

Let
. B
Ri 2 (gZI (mll + 2a2|)+‘91| (m2| + Zall)+gll‘92| m1|m2| +ZZ + Zrm GROI J
vel uel
then, we have

pi 1

Mult(c;,c,, pk)= m;my; + R, (mod p;),

which implies that there exists an integer Q; such that Mult(c;,c,, pk)= p;Q; + R; + P 5 1m1,m2, .

Now, let’s find the upper bound of R;.

2+ > <2< %27, GRy <227 -1) = <y?2rt.

vel uel

p; p; &y &
?I(‘C"Zi (mli +2a2i)+51i (mZi +2a1i)+gli82i):7l[‘92i(mli +%+2a2i]+‘91i(m2i +%+2ali D <

I;((7 n+6)e +6y))= Z‘ [(7 77+6{<2|r1i|+1)+(2|r2i|+1)j]=(7_77+6)(Ir1i|+|r1i|+1)'

P; P;

ZZ +er| m1|mZ| GROI

vel uel

Therefore,
IRi| < 72272 + (3 — 7+ 6 )| | + ||+ ). o
Theorem 3. Our SHE scheme is L —homomaorphic if the following inequality holds:

2

n-p=LQ+log(y—n+6))+4+ Iog(m+r(k +1)J

after the evalua-

Proof. For each i €[1, k]Jand b €[4, L], let c, be a ciphertext with ¢, = p;Qp; + Iyi + Mp; pi +1

tion of the b —th level gates. Let R, be a bound of r; .
From Lemma 1, R, = 2z(k +1)(2p —1).

From Lemma 4 and Lemma 6, the following relationship holds between R;,; and R;.

R;1 <max}y227 +(y -5+ 6)2R; +1)2R; +2° |= 227 4+ (3 =y + 6)2R, +1).

J+1 =

The recurrence of the type Rj,; = AR; + B has the solution

" i ™ Al _1
Rja=ARy+ Y A'B=A"R, +B AT

i=0

Therefore, we have

2 (y-n+6)- -1
R, <2L(y_ 6)-R 29p+ _ 6 y—n _
L <257 +6) Ry + (227 1 (1 + ){ A+ 6) T

Replacing with Ry = 27(k +1)(2” —1),



RL <2 (y—n+ 6)L(2r(k +1)(2P —1)+ (725(;1_;(1’ 6_)711 6))J _

From Lemma 2, this scheme is L —homomorphic if R < %—l .

2
From our hypothesis, we have

2

n-p> L(1+Iog(y—n+6))+4+log(m+r(k +1)J:

2 27]—1

oLy —p+6) 27 (k +1 4
=2 (y-n+6) (r( +)+2(7/—77+6)—lj< =

L R e o e

p; > 27" since p; isan 7 — bit integer. Thus, we have

2L(7—f7+6)L[2r(k +l)(2” —1)+ (722p+l +(7_77+6))J<&—£,

20y -n+6)-1 4 2

which implies that

R

Therefore, we can conclude that it is L —homomorphic. i
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