Analysis of Deterministic Longest-Chain Protocols

Elaine Shi, Cornell University

Abstract

Most classical consensus protocols rely on a leader to coordinate nodes’ voting efforts. One
novel idea that stems from blockchain-style consensus is to rely, instead, on a “longest-chain”
idea for such coordination. Such a longest-chain idea was initially considered in randomized
protocols, where in each round, a node has some probability of being elected a leader who can
propose the next block. Recently, well-known systems have started implementing the determin-
istic counterpart of such longest-chain protocols — the deterministic counterpart is especially
attractive since it is even simpler to implement than their randomized cousins. A notable
instantiation is the Aura protocol which is shipped with Parity’s open-source Ethereum imple-
mentation.

Interestingly, mathematical analyses of deterministic, longest-chain protocols are lacking
even though there exist several analyses of randomized versions. In this paper, we provide the
first formal analysis of deterministic, longest-chain-style consensus. We show that a variant of
the Aura protocol can defend against a Byzantine adversary that controls fewer than % fraction
of the nodes, and this resilience parameter is tight by some technical interpretation. Based
on insights gained through our mathematical treatment, we point out that Aura’s concrete
instantiation actually fails to achieve the resilience level they claim.

Finally, while our tight proof for the longest-chain protocol is rather involved and non-trivial;
we show that a variant of the “longest-chain” idea which we call “largest-set” enables a textbook
construction that admits a simple proof (albeit with slower confirmation).

1 Introduction

A central abstraction in distributed systems is called consensus or state machine replication [13,29,
42). In state machine replication, a distributed system of nodes reach agreement on an ever-growing,
linearly ordered log. State machine replication protocols have long been deployed in companies such
as Google and Facebook to replicate their computing infrastructure; more recently they are deployed
on an Internet scale enabling cryptocurrency systems such as Bitcoin and Ethereum. State machine
replication protocols have been studied for three decades [13,29,32] and two major approaches exist:

1. classical-style consensus (e.g., PBFT [13], Paxos [29], and others [9,11}|15H17}28,30,43]) and

2. longest-chain-style consensus (e.g., Bitcoin and Ethereum’s proof-of-work blockchains and
proof-of-stake blockchain constructions [18}19,27]40]).

In both of these approaches, nodes vote to reach a decision. From a technical perspective, a
primary distinction between classical-style and longest-chain-style consensus lies in how the voting
process is coordinated. In classical consensus, the voting process is typically coordinated by a leader
(possibly rotating over time); and whenever the leader is honest and proposes the same item (e.g.,
block or batch of transactions) to everyone, everyone will vote on the same item and a decision can
be made very soon by collecting majority or super-majority votes (possibly over multiple rounds
of voting). In longest-chain-style protocols, the leader election and voting processes are coalesced



into one: whenever one is elected leader it has the opportunity to cast a vote. To coordinate
nodes voting effort, a new “longest-chain” idea is adopted — in some sense, people vote on the
most-popular history observed so far. Such coordination is important for consistency: intuitively,
if nodes fail to concentrate their voting efforts, it can lead to many forks and no chain will emerge
as the dominant decision.

Obviously, the longest-chain idea first appeared in the celebrated Nakamoto consensus [36],
i.e., the consensus protocol underlying Bitcoin. Since the original Nakamoto consensus employs a
random leader election mechanism, all existing mathematical analyses of longest-chain-style con-
sensus focus on the randomized setting [19,22,27,37,139,/40]. Note that although Nakamoto must
assume proof-of-work, later schemes have shown how to design “permissioned” consensus protocols
that emulate Nakamoto’s stochastic process but dispense with proof-of-work entirely [18}/19,27,40].
A very natural simplification of longest-chain-style protocols is to replace the randomized leader
election with a deterministic, round-robin policy. Perhaps due to the simplicity, some practical
systems [4,/5] have started adopting this approach. Somewhat surprisingly, although analyses for
randomized, longest-chain-style protocols are well-known by now, existing randomized proofs do
not imply security of the deterministic variant (even though the latter seems simpler). Since deter-
ministic longest-chain-style protocols are now being implemented and widely distributed in practice,
it is imperative that we establish a correct mathematical understanding of its security properties.

A representative deterministic, longest-chain-style protocol is Aura [4] (short for Authority
Round). Aura is well-known in the cryptocurrency community since it is one of the few blockchain
consensus algorithms shipped with Parity’s open-source Ethereum implementation [1] — this is one
of the few major Ethereum implementations; and at the time of writing, the github project has
had 11,978 commits and 192 contributors.

Roughly speaking, the Aura blockchain protocol works as follows:

e There are n nodes numbered 0,1,...,n — 1, each with a known public key. In round r, node
(r mod n) is the leader.

e In every round r , the leader chooses the longest chain seen so far, and extends the chain by
signing the next block containing 1) the current round number r, henceforth also called the
block’s timestamp, 2) a batch of transactions, and 3) the hash of the parent block.

e In a valid blockchain, the blocks’ timestamps must strictly increase, and moreover honest
nodes reject blocks with timestamps in the future.

e At any time, a node takes its longest chain and chops off some number of blocks at the end,
and the prefix is considered finalized.

Specifically, Aura makes the following parameter choices and claims: for finalization, they choose
to chop off |5 | 4 1 trailing blocks signed by distinct signers. Their documentation claims that the
protocol defends against minority Byzantine corruptions (which we shall refute in this paper).

1.1 Our Results and Contributions

Formal analyses of deterministic blockchains. To the best of our knowledge we are the first
to provide mathematical proofs for deterministic, longest-chain-style protocols. More concretely,
we make the following contributions:

e We present a variant of Aura’s protocol that is provably secure. In this variant, in round r,
all blocks in the longest chain whose timestamps are at most r — n are considered finalized
(c.f. Aura chops off only |5 ]| + 1 blocks from distinct signers).



e We prove that this variant ensures consistency and liveness in the presence of any adversary
that can control fewer than % fraction of the nodes; further, transaction confirmation takes
©(n) rounds since we need to chop off ©(n) trailing blocks for finalization. Note that the
round complexity of this protocol is asymptotically optimal due to the well-known lower
bound [10}21,23,131,33,35] that any deterministic consensus protocol must incur at least
f + 1 rounds where f is the number of corrupt nodes (and this lower bound holds even for

crash fault).

e Unlike existing proofs for randomized blockchains that require stochastic analyses that rea-
son about the good properties respected by an overwhelming fraction of execution traces (as
opposed to the worst-case execution trace), our proof relies on elementary discrete math —
nonetheless as we show, proving an asymptotically tight bound on transaction confirmation
time is non-trivial. The most sophisticated part of the proof involves a combinatorics argu-
ment that a particular good event called a “pivot” appears every n rounds even against the
worst-case attack.

e We show that the % resilience parameter is tight for this protocol; specifically, we show that
if the adversary can control how honest nodes break ties among multiple chains of the same
length, then there is an explicit % attack against this protocol (note that our security proof

admits arbitrary tie-breaking).

We point out that it is an interesting observation that the most natural embodiment of the
“deterministic, longest-chain” idea defends only against less than % corruptions while in comparison,
the randomized counterparts can secure against upto minority corruption [22,27}37,40]. Thus for
future work, a technically intriguing question is whether there exist other natural embodiments of
the “deterministic, longest-chain” idea that achieves stronger resilience.

Analysis of Aura’s instantiation. Based on our mathematical analysis, we reflect on Aura’s
specific choices and claims for their deterministic blockchain instantiation.

As mentioned, our deterministic, longest-chain protocol described above defends against any
< % attack, and this is tight when tie-breaking can be arbitrary (for scoring two chains of the
same length). Aura’s instantiation employs a specific tie-breaking rule: when two chains are of
the same length, they prefer the “earlier” one, i.e., whose last block has an earlier timestamp. We
show that even under their tie-breaking rule, there is a % attack against consistency no matter how
many trailing blocks honest nodes chop off for finalization. Further, if we actually chop off only
| 5] + 1 trailing blocks with distinct signers for finalization (like what Aura does and assuming
their tie-breaking rule), there is still an explicit attack that breaks consistency when the adversary
controls slightly more than % fraction of nodes. We conclude that Aura’s claim of defending against
minority corruptions is incorrect under the classical notion of a Byzantine adversary. Our analysis
also implies that their concrete instantiation actually achieves a resilience parameter that is between
1 3
5 and g.

Disclosure and recommendations to Parity. We have emailed Parity regarding our findings,
and have suggested that they chop off more blocks from the end for higher resilience, and weaken
their public claim that they defend against upto minority Byzantine corruptions. Parity responded
and thanked us for our analysis, but at the time of the publication, they have not updated their
corrupt-minority claim [4] or their code [1] based on our suggestions.

A largest-set variant for pedagogical purposes. Last but not the least, inspired by the
longest-chain idea, we construct a new consensus protocol that relies on a similar “largest-set”



idea, i.e., nodes always vote on the item that has collected the most number of votes so far. This
protocol is of particular interest for pedagogy (e.g., to illustrate why and how a longest-chain-type
idea works), since it admits a simple and elementary proof; moreover the proof is in some sense
a deterministic counterpart of the recent analyses of randomized blockchains [22,27,|37,/40]. Our
largest-set variant and its proof have been adopted for teaching in a major blockchain winter school
in December 2017 [7].

Non-goals. We stress that how to achieve synchronous consensus tolerating even n — 1 faults has
been long known, assuming a public-key infrastructure and digital signatures [20]. It is not a goal of
this paper to construct schemes that improve existing results in a theoretical or asymptotical sense.
Instead, our work is primarily motivated by two nonetheless important factors: 1) understand from
a mathematical perspective exactly what is novel about the “longest-chain” idea, and identifying
a simplest-possible scheme and proof to facilitate pedagogy of the “longest-chain” idea; and 2)
mathematically analyze protocols already deployed and shipped in practice, both for reassurance
and for clarifying existing misconceptions. Having said this, we do point out one interesting fact
about longest-chain-style protocols: in a long-running setting and considering an amortized notion
of bandwidth: confirming each block requires only one block-multicast from a single node. In
comparison, classical-style consensus require all nodes to vote to confirm each block and some
works [14,(17,[24] have suggested random sub-sampling a smaller committee to vote on each block
to reduce bandwidth.

Throughout this paper, we focus on the permissioned consensus setting where nodes’ public
keys are known a-priori. Recent works [17,|18] have shown how to add “robust committee recon-
figuration” on top of a permissioned consensus protocol to build open-enrollment, proof-of-stake
consensus. While these techniques are generic and can be applied to the protocols described in our
paper, it is outside the scope of our paper to provide a detailed recount of these approaches.

1.2 Additional Related Work

Earlier this section, we have reviewed classical consensus [9,11},13,15-17,28-30,34,43] and longest-
chain-style consensus [18}19,22,27.|36|,37,39,40], and explained intuitively why the “longest-chain”
idea appears to be a new innovation in the latter approach. Note that among the aforementioned
classical-style consensus protocols, some achieve agreement in a partially synchronous network |11}
13|15} 29,30, 43] while others achieve security in a synchronous network [9}|16}17,34]. To the
best of our knowledge, known longest-chain-style protocols [18,(19}27.|36,,37.|39,40] are secure in a
synchronous model. We now review additional related works.

EOS is among the top five cryptocurrencies by market cap at the time of the writing [2]; their
consensus protocol, called DPoS [6] is also a deterministic, longest-chain-style protocol. EOS’s DPoS
design has undergone several iterations and is still evolving — see the excellent online discussions
regarding the history of DPoS consensus [6]. An earlier version, DPoS 2.0 appears to be a close
relative of the Aura protocol but DPoS 2.0 chops off [2n/3] 4+ 1 number of trailing blocks signed
by distinct nodes for finalization. In their latest version DPoS 3.0, they seem to be using subtly
modified version of the “longest-chain” rule: rather than picking the longest chain (measured by
total number of blocks) to extend, they pick a chain whose “last irreversible block” is the largest, and
break ties using the number of blocks — note that this important choice, which likely will matter
to the protocol’s consistency and liveness properties, seems undocumented and we only discovered
it from inspecting their open-source implementation [3]. DPoS 3.0 also tries to incorporate ideas
from classical Byzantine Fault Tolerance (BFT) [13,)29] and Casper-FFG [12] by adopting a new,
more conservative finalization rule. To date there is no known proof of security for DPoS.



In this paper, we focus on analyzing Aura’s instantiation due to its simpler and clearer spec-
ification [4] and more stabilized implementation [1]. It would be of value to do a similar analysis
for DPoS’s variant (once the protocol’s design has stabilized) as future work — or alternatively, it
might be worthwhile to simplify and improve their protocol.

Concurrent and independent work. A concurrent and independent work called Ouroboros-
BFT [26], Kiayias and Russell describe a variant of the deterministic, longest-chain-style protocol
similar to Aura [4], they also provide an independent proof that ©(n) time is necessary for confir-
mation. While both papers have essentially the same basic result (but with quite different proofs),
each work focused on different extensions to the basic result: Ouroboros-BFT suggested an elegant
extension that allows optimistically fast confirmation, and an extension to the proof showing that
although consistency can be lost during network partitions, consistency and liveness will restore
when the partition heals. Our work focuses on refuting the corrupt-minority claim made by Aura
and clarifying misconceptions; thus we demonstrate explicit attacks against the protocol (including
against Aura’s specific instantiation) when the adversary controls significantly fewer than minority
number of nodes. Furthermore, we propose a textbook variant suitable for pedagogy — this variant
is designed to mathematically illustrates why longest-chain-style protocols work a simplest-possible
protocol and proof, demonstrating why the “longest-chain” idea behind Nakamoto is novel.

1.3 Paper Organization

We first present a formal model for protocol execution and formally define Byzantine Agreement in
Section [2l Then, in Section [3, we present a deterministic, longest-chain protocol that is a natural
analog of known randomized longest-chain protocols [27,[27,[37,|39,140]. We then formally show
that this protocol realizes Byzantine Agreement as long as the adversary controls fewer than 1/3
fraction of nodes; furthermore, the 1/3 resilience parameter is tight for this protocol — for ease
of understanding we first present a simpler proof with looser liveness parameters in Section [3] and
defer it to the end of the paper to show a tighter (but more complicated) version of the proof.

At this moment, we are ready to investigate Parity’s Aura protocol (Section , which is a
variant of the protocol described in Section We refute Parity’s claim that Aura tolerates up
to minority Byzantine corruptions. For ease of understanding, our paper’s formalism begins with
Byzantine Agreement, i.e., a single-shot consensus abstraction. In Section [5], we show that longest-
chain style protocols naturally allow us to reach agreement not just once, but repeatedly over time
— thus realizing a “state machine replication” abstraction. Finally, in Section [0 we give a textbook
largest-set analog which admits a very simple proof.

2 Preliminaries

2.1 Model

We consider a standard, synchronous model of execution, where an adversary A is allowed to
adaptively corrupt nodes during the protocol execution. In this section, we describe the model in
more detail and introduce relevant notations.

Communication model. We assume a synchronous communication model, that is, if an honest
node sends a message m in round ¢, all honest recipients must have received the message m by
the beginning of round ¢ + A; further, subject to this constraint, the adversary may delay or



reorder messages arbitrarily. We refer to A as the maximum network delay, and A is known to a
synchronous consensus protocol (i.e., hard-wired in the protocol description).

Without loss of generality, throughout the paper we shall simply assume that A =1 —if A > 1,
we can always rename A rounds as one super-round, and only process the next batch of incoming
messages at the beginning of each super-round.

The protocols we describe adopt a multicast communication pattern — whenever an honest
node multicasts a message, it is destined for all nodes including itself. Corrupt nodes, on the other
hand, may send messages to only a subset of the nodes.

We assume a rushing adversary, i.e., the adversary A can observe messages sent by honest nodes
in a round before deciding what messages corrupt nodes will send in the same round.

Corruption model. We assume that A may adaptively corrupt nodes during protocol execution.
Specifically, during each round r, A can examine what each honest node wants to send, it can then
adaptively decide to corrupt a subset of the honest nodes in round r. If a node 7 becomes corrupt
in round r, the messages that ¢ originally wanted to send in this round can be erased; further, in
the same round r, the now-corrupt i can send arbitrary corrupt messages (that may depend on the
messages that honest nodes send in round 7).

Given a protocol that has a fixed termination time T¢,q (which may be a function dependent
on total number of nodes), if a node becomes corrupt in or before round T¢,q, we say that the node
is eventually-corrupt; else we say that the node is honest-forever. The protocols described in this
paper will have provable security when n > 3f 4+ 1 where f is the number of eventually-corrupt
nodes, and n denotes the total number of nodes.

Notations. We assume that A is responsible for spawning the nodes that participate in the protocol
and we typically use 0,1,...n — 1 to index the nodes. At the start of the protocol execution, A
is responsible for choosing the inputs of (honest) nodes. We say that A is (n, f)-respecting iff .4
spawns n nodes among whom at most f can be adaptively corrupt.

Modeling ideal signatures. Throughout the paper, the only cryptographic primitive we adopt
is digital signatures. Although for ease of presentation we assume the existence of ideal signatures,
in a practical implementation we can replace the ideal signatures with any secure digital signature
scheme and a public-key infrastructure (PKI). Below we elaborate on our use of ideal signatures
and how to interpret our theorems when ideal signatures are replaced with a cryptographically
secure digital signature.

We adopt the standard ideal signature model: assume that each node ¢ has a unique public key
pk; that is included in a public-key infrastructure (PKI). Nodes can call an ideal signing algorithm
to sign each message they sent; and the signing algorithm always outputs a globally unique string
for each signing attempt made by any node. Furthermore, nodes can call a verification algorithm,
which, upon receiving a tuple (pk;, m, o), outputs 1 iff 1) there is some i € {0,1,...,n — 1} whose
public key matches pk;, and 2) the signing algorithm was called earlier by ¢ with the input m, and
moreover o was produced as the result of this call. Otherwise, the verification algorithm returns 0.

All of our theorems hold deterministically for even computationally unbounded adversaries in
the ideal signature model. When the ideal signature is replaced with any cryptographically secure
signature scheme, all of our theorems hold for all but a negligible fraction of the execution traces,
in the presence of any probabilistic, polynomial-time adaptive adversary. More precisely, in all
execution traces in which there are no successful signature forgeries in the union of honest nodes’
views, the security properties we prove (including consistency, validity, and liveness) are respected.
We stress that our technique of modeling signatures as ideal signatures and then instantiating with



real-world signature schemes is standard, cryptographically sound, and customarily adopted in the
literature [25].

2.2 Byzantine Agreement: Definitions

For simplicity, we begin our exposition not with state machine replication which aims to confirm a
linearly ordered log through repeatedly reaching consensus, but with the 1-bit single-shot version,
i.e., Byzantine Agreement [32]. We formally define Byzantine Agreement below. Later in Section
we describe how to naturally extend our protocol to support state machine replication.

In a Byzantine Agreement protocol, there is a designated sender that is part of the common
knowledge. Henceforth, without loss of generality, we may assume that node 0 is the designated
sender.

Syntax. Prior to protocol start, the sender receives an input b € {0,1} from A. At the end of the
protocol, every node i (including the sender) outputs a bit b; and the output is also sent to .A.

Security definition. A Byzantine Agreement protocol must satisfy consistency, validity, and
Teng-termination. Specifically, let Tipq(n) be a function in n denoting the termination time. We
say that a protocol II satisfies consistency, validity, or Tynq-termination w.r.t. A iff the following
properties hold in an execution involving the adversary A:

e Consistency. If an honest node outputs b; and another honest node outputs b;, then it must
hold that b; = b;.

o Validity. If the sender remains honest till the end of the execution and the sender’s input is b,
then all honest nodes must output b.

o T.nq-termination. By the end of round T,,q, all honest nodes output a bit.

We say that a protocol IT satisfies consistency, validity, or Tepg-termination in (n, f)-environments
iff for every deterministic A that is (n, f)-respecting w.r.t. II, II satisfies consistency, validity, or
Teng-termination w.r.t. A. Note that since we prove security in the ideal signature model for
unbounded adversaries, without loss of generality it suffices to prove security against every deter-
ministic adversary (that respects some corruption budget).

3 A Determinisitic, Longest-Chain Protocol

As mentioned, for clarity, we begin our exposition with byzantine agreement (i.e., 1-bit single-
shot consensus). Later in Section [5| we show how our protocol naturally extends to state machine
replication (i.e., agreeing on a linearly ordered log through repeated consensus).

3.1 Useful Definitions and Notations

Leader. In every round i, node (¢ mod n) is the leader. Thus each round has a unique leader.

Valid blockchain. A blockchain of length L is an ordered list of blocks where each block is of the
form chain := {(t,,datay, 0¢) }se(z) Where t; € N denotes the purported round in which this block
was created (also referred to the block’s timestamp), datay denotes an arbitrary payload string, oy
denotes a signature of the chain upto length £.



Henceforth given a blockchain denoted chain := {(¢, datay, 04) }oc|1], We define extract(chain) to
be the operator removes the signature from every block outputting {(¢;,data;)};c(;;. We use chainli]
to denote the i-th block in chain and we use chain[: i] to denote the prefix of chain upto the i-th
block (inclusive).

A blockchain chain := {(t;, datay, 0¢) }e[z) is said to be valid iff

e For any 1 <14 < j < L, it holds that t; <;;

e For any ¢ € [L], oy is a valid signature of the prefix extract(chain[: ¢ — 1]) under pk; where
1 =t, mod n is the leader of round ¢,.

Remark 1. Note that a practical optimization is to build a hash chain: let ho = 0 and let h; :=
H(hi—1,t;,data;). In this case, the signature for the i-th block would be computed over h;; and
further we include h; in the block chainli].

3.2 Protocol Il i,

e Round 0: sender (i.e., node 0) signs its input and multicasts the input along with the signature.
e For every round r = 1,2, ..., every node (including the sender) performs the following:

1. Receive chains from the network. Discard any invalid chains and any chains containing
timestamps greater than or equal to r. Chains that are not discarded are considered part of
the nodes’ view so far.

2. Let chain be the longest valid blockchain that has been observed in the node’s view so farf |
If there are multiple such longest chains, break ties arbitrarily. If no such chain has been
observed, let chain be the empty chain.

3. If the current node is the leader of round r, then let data be the set

(b, o) : b e {0,1} and at least one valid
’ " gignature o3, has been observed for b

Sign extract(chain)||(r, data) thus obtaining the signature o; and multicast the new chain
chain||(r, data, o)

e At the beginning of round Tepq (the choice of Ty,q will be stated later), do the following. Let
chain be the longest valid blockchain observed so far. In all blocks in chain whose timestamp is
at most n, look for the first bit b with a valid signature from the sender, and output the bit b.
If such a bit is not found, output 0.

Parameters. We will prove that the above protocol satisfies the definition of Byzantine Agreement
for Teng > 2n + 1, as long as the adversary controls fewer than § nodes.

Note that our consistency proof actually shows that in round » > n, all blocks in an honest node’s
chain with round numbers » — n or smaller must have stabilized. However, here the termination
parameter Ti,q is set to 2n+ 1 to account for the fact that the earliest block containing the sender’s

signature may not be the first block in a blockchain.

"Henceforth this is referred to as the node’s longest chain in the current round r. Note that here we refer to the
longest chain at the beginning of the round.



Remark 2 (Clarification about late-arriving blocks). If a chain ending at a block with timestamp
t arrives late in round r > t+ 1, a node cannot simply discard it or deem the chain tnvalid — even
though discarding late-arriving messages is a standard technique in some classical-style synchronous
consensus protocols (9]. In our protocol, an adversary may extend a chain with a corrupt block with
timestamp t*, make some honest nodes (denoted S) receive it in round t* + 1 but make others
(denoted S’) receive it in later rounds. If S" simply discarded the late-arriving block, honest nodes
would make inconsistent decisions regarding whether each chain is valid and our longest-chain-style
consensus would then break.

3.3 Formal Protocol Analysis

For clarity, in the main body of the paper, we first present a simpler proof but for worse termination
parameters. Specifically, let n denote the total number of nodes; let f denote the number of corrupt
nodes; and let € := % — % In this looser but simpler proof, we will set Tenq := (1 + ED” In
particular, if n = 3f + 1, then the protocol will run for ©(n?) number of rounds.

Later in Section [A] we will present a tighter proof for the termination parameter Te,q = 2n + 1.

However, this tighter proof requires several additional non-trivial techniques.

3.3.1 Additional Terminology

We define the following helpful terminology.

e FEzecution. We use the notation exec to denote an execution that is determined by the adversary

A.

e Blocks. For convenience, when the context is clear, we also use the term “the i-th block in chain”
as an alias for the prefix of chain upto the i-th block, i.e., chain[: i]. Given two blockchains
chain and chain’; the two length-¢ blocks chain[: ¢] and chain[: /] are said to be distinct iff
extract(chain[: £]) and extract(chain’[: £]) are distinct (i.e., we ignore the signature when defining
distinctness for blocks).

e Honest-forever and eventually-corrupt blocks. A block whose timestamp corresponds to an
honest-forever leader round is said to be an honest-forever block; otherwise it is said to be
an eventually-corrupt block.

e Honest chain. If in some execution exec, some honest node’s longest chain in round r is chain,
then we say that chain is an honest chain in exec (or an honest chain in round r in exec).

e Honest-forever and eventually corrupt leader round. A round t is said to be an honest-forever
leader round if node (tf mod n) remains honest forever in exec; else ¢ is said to be an eventually-
corrupt leader round.

All of our proofs below hold in the ideal signature model.
3.3.2 Validity and Liveness
We first prove validity and liveness.

Special boundary blocks. In the remainder of this section, we shall assume that an honest node’s
longest chain in some round r consists of i) an imaginary “end-of-chain block” whose timestamp is



r, and whose length is the original chain length plus 1; and ) an imaginary genesis block whose
timestamp is 0 and whose chain length is 0.
The special genesis and end-of-chain blocks are assumed to be honest-forever blocks.

Lemma 1 (Chain growth). Let chain denote some node’s longest chain in some round. Suppose
that chain[f] := (t,_, ) and chain[l'] := (¥, _,_) are both honest-forever blocks (including genesis or
end-of-chain blocks) in chain and moreover t' —t —1 > kn for some positive integer k. It holds that
U —0—1>k(n—f).

Proof. Let exec be an execution trace defined by A. Suppose that in some round r in exec an
honest node ¢ is the leader and suppose that node ¢’s longest chain is of length ¢, at the beginning
of round r. By definition of the protocol, every honest-forever node’s longest chain will be of length
at least ¢, + 1 at the beginning of round r + 1.

Now, observe that in every n consecutive rounds, at least (n — f) rounds have leaders that
are honest-forever. Now, between (t,t'), there are t' — 1 — (t+ 1)+ 1=t —t —1 > kn rounds.
Therefore, between (¢,t'), there are at least k(n — f) rounds with honest-forever leaders. Since
there is an honest-forever leader for round ¢ and one for round ¢'. Thus between [¢,t'] there are at
least k(n — f) 4+ 2 rounds with honest-forever leaders.

Observe that for the honest node (¢ mod n), its longest chain must be of length ¢ — 1 at the
beginning of round ¢ (that is why it signed a block of length ¢ in round t); and similarly, for the
honest node (¢ mod n), its longest chain must be of length ¢/ — 1 at the beginning of round ¢'. We
have that

—U—-1)>k(n—f)+2

and thus ¢/ — ¢ — 1> k(n — f). O

Lemma 2 (Chain quality). Let chain denote an honest node’s longest chain in round r + 1. Then,
for any n consecutive rounds [t +1,t+n] C [r], there must be an honest-forever block in chain with
a timestamp in the range [t + 1,t + n).

Proof. Consider any execution exec defined by A. In some honest chain chain, there exist honest-
forever blocks chain[f] := (¢,_, ) and chain[¢'] := (¢, _,_) such that 1) there are no honest-forever
blocks in between; and 2) ' —t —1 > n. Let k > 1 be the largest integer such that ¢’ — ¢t —1 > kn;
obviously, ¥’ —t—1 < (k+1)n. By Lemmal[l] ¢ —¢—1 > k(n— f). Now, all blocks chain[(+1..¢' —1]
are eventually-corrupt blocks with distinct timestamps in the range (¢,¢') — here the notation
chain[¢ + 1..¢/ — 1] means the part of chain from length ¢ + 1 to ¢/ — 1 inclusive. Since there are at
most f eventually-corrupt nodes, we have that at most (k + 1)f of the timestamps in the range
(t,t") correspond to eventually-corrupt leaders.

To reach a contradiction, it suffices to observe that the following cannot be true given that
n>3f+land V' —0—1>k(n— f):

0 —0-1<(k+1)f
0

Theorem 1 (Validity and liveness). Suppose that n > 3f + 1. Then, every honest-forever node
will output a bit (i.e., liveness holds). Moreover, if the sender is honest-forever, then every honest-
forever node must output the sender’s input bit (i.e., validity holds).

10



Proof. Liveness trivially holds by protocol definition. For validity, if the sender is honest-forever, it
will sign its input bit and multicast it in round 0. Due to Lemmal[2] at the beginning of round Tenq,
any honest node’s longest chain must have an honest-forever block whose timestamp is between
[1,n]. By protocol definition, this honest-forever block must contain the sender’s signature on its
input bit. ]

3.3.3 Consistency

Fact 1. Suppose that node i is an honest-forever leader in some round t and signed a chain of
length € in round t; further, suppose that node j is an honest-forever leader in some round t' # t
and it signed a chain of length ¢' in round t': we have that £ # 1.

Proof. Straightforward by protocol definition. When node i signs a chain of length ¢ in round %,
in every round r > t, every honest node’s longest chain must be of length at least £ and thus no
honest node will ever sign a chain of length ¢ in any round r > t. O

Fact 2. Let chain and chain’ denote two honest chains in some execution exec. Suppose that chain[/]
and chain’[{] are both honest-forever blocks. Then, it holds that chain: £] = chain'[: {].

Proof. Straightforward from Fact O

Given two blockchains chain and chain’, if extract(chain[: £]) = extract(chain[: ¢]), we say that
chain and chain’ share the block chain[: /].

Lemma 3. Let chain and chain’ be the longest chains of two honest nodes at the beginning of round
Tena. Suppose that the last honest-forever block shared by extract(chain) and extract(chain’) has the
timestamp t*. It must hold that Tepg —t* —1<mn - [%]

Proof. Suppose not, i.e., suppose that Tepng —t* — 1> n - [%] Let k& > [%] be the largest integer
such that Ty,q —t* — 1 > kn. Recall that “block” is used as an alias of a prefix of a blockchain and
that distinctness of two blocks is defined disregarding the signatures (see Section .

Due to chain growth (Lemma [)), there are at least k(n — f) blocks after time t* in either chain
or chain’ (not counting the end-of-chain special boundary block). Due to chain quality (Lemma
and Fact [2, chain and chain’ must diverge in round t* +n — otherwise the block at t* cannot be
the latest shared honest-forever block of chain and chain’. This means that the number of distinct
blocks in chain and chain’ after time t* must be at least 2k(n — f) — n.

On the other hand, during every honest-forever leader round, only a unique block will be signed
by the honest-forever leader. For every eventually-corrupt round ¢, chain and chain’ can each
contain a block with the timestamp ¢. Recall that due to the definition of k, it must be that
Teng — t* — 1 < (k+ 1)n, ie., at most (k 4+ 1)n rounds have elapsed between t* 4+ 1 and Tepq.
Therefore, we have that the total number of distinct blocks after time ¢* in chain and chain’ must
be upper bounded by (k+1)f + (k + 1)n.

Our goal is to show the following inequality which would suffice for reaching a contradiction:

2k(n—f)—n>k+1)f+(k+1)n

Plugging in f = (1 — €)n, it suffices to show that 2k(2 +e)n —n > (k+ 1)(3 — e)n + (k + 1)n.
Simplifying the above, it suffices to show that 2k(2 +¢) — 1 > (k+ 1)(3 — €) + (k + 1), ie.,
%k +2ke—1> %k + % —ke—e+ (k+1),ie, e+ 3ke>2+ % The last inequality holds as long as
k>[1]. O
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Theorem 2 (Consistency for cpain). Let Teng == (1 + (%W)n Then, the longest-chain protocol
Menain satisfies consistency in (n, f)-environments as long as n > 3f + 1.

Proof. Straightforward from Lemma [3| and the definition of the protocol. O

Tighter proof. In Section[A] we present a tighter but more sophisticated proof for Tynq := 2n+ 1.
The most technical part of the proof is a combinatorics argument that a certain good event called
a “pivot” happens every n rounds.

3.4 An Explicit Attack with % Corruption

We now show that our analysis is tight in resilience by demonstrating a % attack against the
deterministic blockchain protocol Il hain. We consider 9 nodes numbered 0,1, ..., 8, and every node
i that is a multiple of 3 is corrupt; every remaining node is honest. Note that exactly % of the
nodes are corrupt. The goal of the adversary is to maintain two equal-length chains forever; and
he does so by diverging the honest nodes’ mining attempts. The attack is graphically illustrated
below where red blocks denote corrupt blocks and green blocks denote honest blocks — we will
explain the attack in detail below.

3([4][6]]7]]O

LIS LAl 6] 7] Of L] 3 ][]
o][2][3][5][e][&]]

JI[5][6[I8[|0f]2]]3

We now explain how the attack works — we assume that when there are two chains of equal
length, the adversary can control how honest nodes break ties, for example,

e imagine that the protocol prefers chains received earlier, the adversary can deliver one chain
slightly earlier than the other within the same roundﬂ

e if the protocol prefers chains that end a block lexicographically smaller, the adversary can
adjust the field data of a corrupt block to manipulate how honest nodes break ties;

We stress that our proofs earlier indeed hold even when the adversary can choose how honest nodes
break ties arbitrarily.

For convenience, we number the rounds starting from 0 too. Henceforth, without risk of ambi-
guity, we use a block’s timestamp to denote the block.

e Round 0: corrupt node 0 signs a block but he does not release this block yet.
e Round 1: the honest node 1 signs a block. At this moment, the adversary releases the 0-block.

e Round 2: the honest node 2 sees two longest chains, the “0”-chain and the “1”-chain respec-
tively. He chooses to extend the “0”-chain and signs the next block 2.

e Round 3: corrupt node 3 extends the “1”-chain and releases this block. Additionally, he also
extends the “0-2”-chain, but he withholds this block.

e Round 4: the honest node 4 extends the “1-3”-chain. In the same round, the adversary
releases the “0-2-3”-chain.

2This makes more sense when we imagine that each round is in fact a super-round consisting of A > 1 rounds.
As discussed in Section [2.1] our protocols in fact work in a generalized synchronous model where A may be greater
than 1; but assuming A = 1 in our description is without loss of generality since we can always rename A rounds as
one super-round and process all messages received only at super-round boundaries.
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e Round 5: the honest node 5 sees two longest chains, the “1-3-4”-chain and the “0-2-3”-chain.
He chooses to extend the “0-2-3”-chain.

e Round 6: corrupt node 6 extends the “1-3-4”-chain and releases this block. Additionally, he
also extends the “0-2-3-5”-chain but he withholds this block.

e Round 7: the honest node 7 extends the “1-3-4-6”-chain. In the same round, the adversary
releases the “0-2-3-5-6"-chain.

e Round 8: honest node 8 sees two longest chains “1-3-4-6-7" and “0-2-3-5-6" respectively. He
chooses to extend the chain “0-2-3-5-6”.

e Round 9: corrupt node 0 extends the “1-3-4-6-7” chain with the next block, and releases this
block. Additionally, he extends the “0-2-3-5-6-8” chain with the next block but withholds
this block.

e This goes on.

Summarizing, we have shown an attack in which both forks can be maintained forever and thus
no matter how many blocks an honest node chops off from the end, consistency can be violated.

We note that one way to prevent the adversary from arbitrarily manipulating honest nodes’ tie-
breaking is to specify in the protocol certain tie-breaking rules. Indeed Aura’s specific instantiation
introduces such a tie-breaking rule. In the next section, we will show even though Aura’s tie-
breaking rule limits the ability of the adversary to affect honest nodes’ tie-breaking behavior when
encountering equal-length forks, we can nonetheless construct a %—attack that breaks consistency
no matter how many blocks are chopped off for consistency.

4 Analysis of Aura’s Instantiation

Based on the insights gained from our earlier mathematical analysis, we turn our attention to Aura’s
specific instantiation. In this paper, the specific version of the Aura implementation we analyzed is
the snapshot that dates back to September, 2018. As mentioned, Aura’s specific choice and claim
are

1. they chop off only |5 | 4+ 1 blocks for finalization;

2. they employ the following tie-breaking rule: for two equal-length chains, they prefer the chain
whose last block has an earlier timestamp and

3. they claim to defend against any minority, Byzantine adversary [4].

We now reflect on Aura’s choices and claims.

A %-attack under Aura’s specific tie-breaking rule. Recall that earlier we argued that % is the
best we can hope for when the adversary is allowed to arbitrarily choose how honest nodes breaks
ties (when encountering equal-length chains). Aura adopts a specific tie-breaking rule (mentioned
above) in their protocol that does not give A complete freedom to choose how honest nodes break
ties.

We now demonstrate a %—attack against consistency even with Aura’s specific tie-breaking rule.
The attack is depicted below — based on this illustration, the detailed description of the attack is
similar to Section Note that this attack can maintain two equal length forks forever, thus even
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if honest nodes chop off an arbitrarily large number of blocks at the end for finalization, consistency
can still be broken.

LOT 21131 S I LIS ]| 4]]6]]O0] -
LB ]e]e][o][2][3][5 ][

Reduced resilience when chopping off fewer blocks. We now consider what resilience Aura
can achieve by chopping off only | 5| 4 1 blocks with distinct signers (and using their specific tie-
breaking rule). We show that a consistency attack is possible if the adversary controls just slightly
more than % fraction of the nodes. The attack depicted above has the following generalization: 3 f
corrupt nodes can sustain two equal-length forks of length 4f (each fork having distinct signers).
Thus with 3f corrupt nodes we have to chop off at least 4f blocks (if not more) for consistency.
Now suppose n = 8f — 3, then Aura would actually chop off only 4f — 1 blocks and this would lead
to a consistency attack when 3f out of 8 f — 3 nodes are corrupt.

Finally, it is not difficult to generalize our proof to see that if one actually chops off only [ 5] +1
trailing blocks with distinct signers, we can still guarantee consistency and liveness as long as
f < . This means that Aura’s concrete instantiation actually gives a resilience parameter that is
somewhere between é and %, and they cannot defend against corrupt minority as they claim.

5 State Machine Replication

Byzantine Agreement allows us to reach agreement only once. In practical applications, we often
need to reach agreement many times establishing a linearly ordered log (e.g., of transactions). A
protocol that allows a set of nodes to agree on an ever-growing, linearly ordered log is called a state
machine replication protocol [38139}42].

5.1 Definitions: State Machine Replication

A state machine replication protocol can be defined as below [38,39,42].

Syntax. In a state machine replication protocol, in every round, an honest node receives as input
a set of transactions txs from A at the beginning of the round, and outputs a LOG collected thus
far to A at the end of the round.

Security. Henceforth let Teonfirm(n) be a function in n that denotes the confirmation time.

Definition 1 (Security of a state machine replication protocol). We say that a state machine
replication protocol II satisfies consistency (or Tionfirm-liveness resp.) w.r.t. some adversary A, iff
in an execution of II involving A (henceforth denoted exec) consistency (or Tionfirm-liveness resp.)
is satisfied:

e (onsistency: the execution exec satisfies consistency iff the following holds:

— Common prefiz. Suppose that in exec, an honest node ¢ outputs LOG at time ¢, and an honest
node j outputs LOG' at time #' (i and j may be the same or different), it holds that either
LOG < LOG' or LOG’ < LOG. Here the relation < means “is a prefix of”. By convention we
assume that ) < x and = < x for any x.

— Self-consistency. Suppose that in exec, a node i is honest during [t, '], and outputs LOG and
LOG' at times ¢t and ¢’ respectively, it holds that LOG < LOG'.
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e Liveness: the execution exec satisfies Teonfrm-liveness iff the following holds: if in some round
t < |exec| — Teonfirm, some node honest in round ¢ either received from A an input set txs that
contains some transaction tx or has tx in its output log in round ¢, then, for any node i honest
at any time ¢’ > t + Teonfirm, let LOG be the output of node ¢ at time #’, it holds that tx € LOG.

Intuitively, liveness says that transactions input to an honest node get included in honest nodes’
LOGs within T,ongrm time; and further, if a transaction appears in some honest node’s LOG, it
will appear in every honest node’s LOG within Teonsm time.

We say that a state machine replication protocol II satisfies consistency and T.onfrm-liveness
in (n, f)-environments iff for every deterministic A that is (n, f)-respecting w.r.t. II, II satisfies
consistency and Teonprm-liveness w.r.t. A.

5.2 A Longest-Chain-Based SMR Protocol Ilg,,

Although our earlier Byzantine Agreement protocols are described for the binary case (i.e., when
the sender’s input is a bit), it is easy to modify the protocols to support multi-valued Byzantine
Agreement (i.e., when the sender’s input is an arbitrary string rather than a single bit). In the
synchronous model, it is relatively easy to construct state machine replication (SMR) from multi-
valued Byzantine Agreement (MV-BA), e.g., in each round, fork n instances of MV-BA where node
1 is the sender in the i-th instance; and the final log would be the concatenation of the output of all
these MV-BA instances [41]. This simple transformation from MV-BA to SMR, however, incurs a
rather large overhead.

One advantage of longest-chain-style protocols is that these protocols themselves naturally give
rise to state machine replication protocols. For example, our longest-chain protocol described in
Section [3|requires only a couple simple modifications to become a state machine replication protocol
(henceforth denoted Ilgpy,;):

e Transaction propagation. Upon receiving a set of tramsactions txs from A, multicast txs to
everyone.

e Block content. Whenever creating a block, instead of placing in the data field any bit that has
a signature from the sender, place in the data field any transaction the node has observed but
has not appeared in the current prefix of the blockchain.

e Qutput log. At the end of every round r, let chain be the longest chain at the beginning of this
round — output the prefix of chain with timestamps at most r — n.

We shall prove that Ilgy,, satisfies the following theorem assuming ideal signatures.

Theorem 3. The state machine replication protocol gy, satisfies consistency and (2n+1)-liveness
in (n, f)-environments as long as n > 3f + 1.

The proofs are a somewhat straightforward extension of our proofs for Byzantine Agreement.
We present the proofs in the next sub-section.
5.3 Proofs for State Machine Replication

We now prove Theorem Note that to obtain confirmation time Teonfirm = 2n + 1, the proofs
here build on the conclusions from our tighter analysis in Section [A]

The consistency proof is implied by Theorem[d] We now prove the liveness of gy, for Teonfirm :=
2n + 1. It suffices to prove the following lemma assuming the ideal signature model.
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Lemma 4. The following claims hold:

a) Suppose that A inputs a set containing the transaction tx to some honest node in round r, then
n round v + 2n + 1, every honest node’s output must contain tx; and further,

b) Suppose that in some round r some honest node’s output includes the transaction tx, then in
any round v’ > r +n+ 1, any honest node’s output must contain tx as well.

Proof. Claim (a) holds due to the following. If some honest node ¢ receives tx from A in some
round r, it will multicast tx to everyone in round r. Thus all honest nodes will have received tx at
the beginning of round r + 1. In round 7’ = r + 1 + 2n, let chain denote the longest chain of some
honest node 4, i will output to A the prefix of chain whose timestamps are at most r +n + 1 by
protocol definition. By chain qualityﬂ (Lemma , in chain, there must be an honest block whose
timestamp is in the range [r + 1,7 + n + 1] — by honest protocol definition, this honest block (or
the prefix chain till this block) must contain tx.

Claim (b) holds due to the following. Suppose that some honest node’s longest chain in round
r is chain, and some block in chain with the timestamp ¢ < r — n contains tx (and thus the node
outputs tx to A in round r). Now, in round 7' = r + n + 1, every honest node will output a prefix
of their longest chain then containing all blocks whose timestamps are no greater than r + 1. Due
to chain quality, there is at least one honest-forever block whose timestamp is between » — n and
r + 1. The remainder of the proofs follows due to consistency. O

6 A Largest-Set Protocol: Textbook Construction and Proof

In this section, we describe a variant of a deterministic, longest-chain protocol. In this variant,
when a node is elected as a leader in a round, it votes on the item with the most number of votes
seen so far. We call this protocol a “largest-set” protocol (as opposed to “longest-chain”). As we
shall see, this variant enables a very simple proof and we recommend it for pedagogical purposes —
and we use the single-shot version, Byzantine Agreement, for simplicity. Interestingly, the proofs
for this protocol can be viewed as a simplified, deterministic variant of the analysis of Nakamoto’s
blockchain [36},37,39].

6.1 Useful Definitions

Leader. In every round i, node (¢ mod n) is the leader. Thus each round has a unique leader.

Valid votes. A valid vote for a normal bit b € {0,1} is a tuple (b,t,4,0) where i € [0..n — 1]
is a node identifier, t > 1 is a round number (also called the vote’s timestamp), and o is a valid
signature under pk; for the tuple (b,¢). A valid vote for the dummy bit L is a tuple (L,¢,4,0)
where i € [0..n — 1] is a node identifier, ¢ > T'| is a round number no earlier than 7', and o is a
valid signature under pk; for the tuple (L,¢).

Two votes (b,t,4,0) and (V/,t',4',0") are said to be distinct iff (b,t,7) # (V/,t',4).

Vouch for. Given an execution trace exec, we define “vouch for” as below:

3Note that Lemma [2| holds for Ilsy, too in the same way it holds for Ilchain.
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o If b € {0,1} is a normal bit and node i does not have the sender’s signature on (propose, b) in
its view at the beginning of round r, then we say that there are no votes vouching for b w.r.t.
node 4 and round 7.

e Else, the number of votes vouching fogg € {0,1, L} w.r.t. node i and round 7 is defined to be
the number of distinct valid votes for b in node 7’s view at the beginning of round r.

Ifb e {0,1, L} has X votes vouching for it w.r.t. node i and round r in some execution exec, we
sometimes also say: at the beginning of round r, node ¢ has X votes vouching for b in exec. If b
has the most number of votes vouching for it (in comparison with any other bit) w.r.t. node i and
round r, we say that node 7 perceives b as the most popular bit in round r.

6.2 A Largest-Set Protocol Il

We now describe a simple largest-set protocol that realizes Byzantine Agreement as defined in
Section[2.2] In a longest-chain protocol such as Nakamoto’s blockchain [36] (and see also Section [3)),
nodes vote by extending the longest chain; in this largest-set protocol, there is no such concept of
a chain, and nodes vote on the bit that so far has the largest number of votes vouching for it (i.e.,
the most popular bit).

Imprecisely speaking, in every round, every node looks for a bit signed by the sender and
carrying the most number of votes, and then signs that bit. At the end of the protocol, whichever
bit has the most number of signatures will be the bit output (i.e., decided). One issue is that if the
sender is corrupt, it may not sign any bit. To handle this case, we introduce a dummy bit denoted
1 sometime T'| into the protocol — nodes are allowed to sign 1 7| time into the protocol start.
T is chosen to be large enough such that if the sender did sign a bit upfront, the dummy bit L
cannot outnumber a normal bit in terms of number of votes and thus honest nodes will agree on
a normal bit. On the other hand, 7| must be chosen to be small enough (w.r.t. to the protocol
duration T¢,q) such that the protocol retains consistency.

More concretely, the protocol works as follows.

e Round 0: let b be the sender’s input bit. The sender signs (propose, b) and multicasts the bit
and the resulting signature.

o Forroundr =1,2,...,Tenq:

— Receive all messages from the network and discard every vote whose timestamp is r or greater
(discarded votes do not become part of the node’s view in the protocol).

— If the current node is the leader of this round, perform the following steps (otherwise skip).
Let b € {0,1, L} be the most popular bit (w.r.t. the current node and round 7), sign (b, 1),
and multicast 1) the resulting vote; 2) all valid votes the node has for b so far in its view;
and 3) a sender’s signature on (propose,g) if applicable. If there are multiple most popular
bits, break ties arbitrarily.

e At the beginning of round Tepg + 1: Find the most popular bit b e {0,1, L} breaking ties
arbitrarily. If b € {0, 1}, output b. Otherwise output 0.

Parameters. Let ¢ = % — %, we will choose T\ = n + 1, and Typg = 2n - E} For example, if

n=3f+1,ie.,e= #, then the protocol will run for ©(n?) number of rounds.
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6.3 Proofs

If a round’s leader is honest-forever, we say that this round is an honest-forever leader round.
Otherwise, we say that it is an eventually-corrupt leader round.

Lemma 5 (Vote growth). Suppose that Teng — T + 1 > kn. At the beginning of round Tenq + 1,
any honest node i’s most popular bit must have at least k(n — f) votes vouching for it.

Proof. In every honest-forever leader round r > 7', suppose that the leader (r mod n) of round
r’s most popular bit at the beginning of  has X votes vouching for it, then, at the beginning of
round 7 + 1, every honest node’s most popular bit has at least X + 1 votes vouching for it — since
in round r node (r mod n) will add another vote to this most popular bit and multicast it to
everyone else. The remainder of the proof follows in a straightforward manner by observing that
there are at most f eventually-corrupt leader rounds among every n rounds. O

Lemma 6 (Consistency). Suppose that f = (% —e€)n. Then, at the beginning of round Teng + 1, all
honest nodes must output the same bit b € {0,1, L}.

Proof. Due to Lemma [5], at the beginning of round T,q + 1, every honest node’s most popular bit
must have at least k(n— f) votes where k = [2]—1 is the largest integer such that To,a—7 +1 > kn.
Suppose, for the sake of contradiction, at the beginning of round Tenq + 1, two honest node’s most
popular bit are different bits henceforth denoted b and &’. Then it holds that there are at least
2k(n— f) = 2k(% + €)n distinct votes whose timestamps are upper bounded by Ti,q.

On the other hand, note that in every honest-forever leader round, no more than one vote may
be cast for either b or b’ by the end of the protocol; whereas in every eventually-corrupt leader
round, one vote can be cast for each of b and b’ by the end of the protocol. Thus, the total number
of votes cast for either b or b’ by the end of the protocol is at most (k+1)(n+ f) = (k+1)(3 — e)n.

We conclude that A 0
(k+1) <3—€)n22k <3+e>n

Simplifying the above equation, we have that

4k 4 4k
g—l-g—ek—ezg—l—%:e

Therefore,

€

4 1
3—6236k;:3e<[]—1>23—3622

This is impossible and thus we reach a contradiction.

O]

Fact 3. If the sender is honest in round 0, then at the beginning of round t > kn+1 in the protocol,
any honest node’s most popular bit must have at least k(n — f) votes vouching for it.

Proof. Due to the same argument as Lemma [5| and the fact that the sender is honest and will sign
its input bit in round O. O

Lemma 7 (Validity). If the sender is honest-forever, then, all honest nodes must output the
sender’s input bit.
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Proof. If the sender is honest-forever, due to Fact [3, we have that at the beginning of round 7',
any honest node’s most popular bit must have at least n — f votes vouching for it; moreover, its
most popular bit must be the sender’s input bit b* since the sender will not sign 1 — b*.

Suppose for the sake of contradiction that some honest node did not output the sender’s input
bit b* at the end of the protocol. Since the sender never signed 1 — b*, this differing output bit
must be L. Let t* > T be the first round in which some honest node’s most popular bit is L.
By definition of the protocol, before round t*, no honest node will vote for L. Thus all valid
votes for L at the beginning of round ¢* must come from eventually-corrupt nodes and they must
have timestamps between [T,t* — 1]. The total number of eventually-corrupt votes for L with
timestamps between [T’} , t* — 1] must be upper bounded by the number of eventually-corrupt leader
rounds between [T’ ,t* — 1]. Let k be the largest integer such that t* — 7'} > kn. Then, the total
number of eventually-corrupt votes for L with timestamps between [T'|,t* — 1] must be upper
bounded by (k +1)f.

On the other hand, due to Fact |3 at the beginning of round t*, the most popular bit in any
honest node’s view must have at least (k 4+ 1)(n — f) votes vouching for it.

We have that

(h+1)f = (k+1)(n— f)

However, this is impossible if n > 3f + 1. O

7 Conclusion

In designing Bitcoin [36], Nakamoto proposed the first longest-chain-style consensus protocol, a
new consensus paradigm that departs from standard techniques in classical distributed systems.
Although Nakamoto’s protocol relies on Proof-of-Work (PoW), subsequent works [18,/19}[27}|40]
have shown how to remove PoW assuming that the initial consensus nodes’ public keys are common
knowledge. All of the aforementioned protocols are randomized, i.e., every time a random leader is
elected to propose the next block extending the longest chain.

In this paper, we provide the first analysis for natural, deterministic embodiments of the longest-
chain idea, i.e., block proposers, rotating in a deterministic fashion, propose the next block extend-
ing the current longest chain. Our results suggest that

1. the deterministic variant takes linear (in n) time to confirm transactions (c.f., earlier ran-
domized variants take only security parameter amount of time);

2. the deterministic variant resists upto 1/3 Byzantine corruptions whereas earlier randomized
variants can tolerate 1/2 — e fraction where € is an arbitrarily small constant margin.

In comparison with its randomized cousin, the deterministic variant incurs worse confirmation
time; however we point out that the deterministic variant secures against a stronger adversary who
is capable of “after-the-fact message removal” [8], i.e., the adversary can observe what an honest
node ¢ wants to send in some round r, adaptively corrupt node i, erase the message it originally
wanted to send, and then insert arbitrary corrupt messages on behalf of node 7 in round r. In
comparison, known randomized longest-chain protocols are secure only against a weaker adversary
who cannot perform such “after-the-fact message removal” — in fact, due to a recent lower bound
result by Abraham [§], protocols that reach agreement using only sublinear number of multicast
messages (e.g., known randomized longest-chain protocols [18}19,27,36}/39.,/40]) inherently cannot
tolerate “after-the-fact message removal”.
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We next turn our attention to deployed open-source implementations of deterministic, longest-
chain-style protocols. We provide an in-depth analysis of Parity’s specific instantiation called
Aura [1L{4]. We show that their specific embodiment and parameters can tolerate only between 1/6
and 3/8 Byzantine corruptions, thus refuting their public claim that Aura resists up to minority
Byzantine corruptions.

Finally, we present a largest-set analog of the longest-chain idea: this variant admits an ex-
tremely simple proof and thus we recommend it for pedagogical purposes.
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A A Tighter Proof for the Longest-Chain Protocol

In this section, we present a tight proof for our deterministic longest-chain protocol. In the main

body, we presented a much simpler proof that requires chopping off upto O(%) round numbers for
finalization where € := % — . In particular, if n = 3f + 1, then we need to chop off quadratic
number of blocks. In this section, we prove that in fact, chopping off the most recent n round
numbers from the end of the chain is sufficient. This tighter proof is obviously more technical than
the earlier proof in Section [3.3]

We begin by defining a good event called a pivot. We then argue why a pivot contributes to

consistency. Finally, we present a combinatorics argument why a pivot happens every n rounds.
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Pivot. Given an execution exec, a pivot is a point of time t such that for any window [to,¢1]
that contains t, there are strictly more honest-forever leader rounds than eventually-corrupt leader
rounds. Our definition of a pivot is inspired by the earlier work by Pass and Shi [40].

Note that by definition, if ¢ is a pivot in exec, then node ¢ mod n (i.e., the leader for round t)
must be an honest-forever node. Further, it is easy to see that the following fact holds:

Fact 4. The following holds for any execution exec where n > 2f + 1: t is a pivot in exec iff for
any window [ty, t1] that contains t and t; —tg+ 1 < n, there are strictly more honest-forever leader
rounds than eventually-corrupt leader rounds in exec.

Proof. Straightforward due to the following observation: for any consecutive n rounds, there must
be more honest-forever leader rounds than eventually-corrupt leader rounds. O

Lemma 8 (Pivot leads to convergence). Consider any execution denoted exec: suppose that t is a
pivot in exec; further, suppose that chain is the longest chain belonging to an honest node in round
r >t in exec and chain’ is the longest chain belonging to an honest node in round s >t in exec. It
holds that extract(chain) and extract(chain’) must agree for the prefix whose timestamps are at most
t.

Proof. Suppose that the honest-forever node (¢ mod n) signed a block at length ¢ in exec. It
suffices to prove that chain[¢] and chain’[¢(] must both be this honest-forever block. We prove it for
chain since the argument for chain’ is identical.

If chain[/{] is an honest-forever block, the proof follows directly by Fact [2l We thus focus on the
case when chain[f] is an eventually-corrupt block. In this case, let chain[¢z] := (¢1, -, -) be the latest
honest-forever block to the left of chain[¢]; if no such block exists, simply let ¢7, := 0 and t;, = 0.
Similarly, let chain[¢g] := (tg, -, -) be the earliest honest-forever block to the right of chain[¢]; if no
such block exists, simply let £ := |chain|+1 and let tp := r. Henceforth, we imagine that chain has
two imaginary blocks at length 0 and |chain| + 1 denoting beginning and end of chain respectively.
For any t € (t1,tR), if some honest-forever leader signed a block at length ¢ in round #, then chain[(]
must be an eventually-corrupt block. Since all blocks in chain must have distinct timestamps, we
have that between (¢1,tR), there are at least as many eventually-corrupt leader-rounds as there are
honest-forever leader-rounds. This contradicts the fact that ¢ is a pivot. O

Lemma 9 (Existence of a pivot every n rounds). Suppose that n > 3f + 1. Then, for every n
consecutive rounds (t,t + n], there must exist a pivot t* € (t,t + n).

Proof. Placing numbers on a circle. Imagine we place m numbers, either +1 or —1 on a
circle such that fewer than 3 of them are —1 — such a placement is henceforth said to be a valid
configuration.

Pivot. For any i,j € [0..m — 1] such that i # j, we use the notation s7[i..j] to denote the
cumulative sum going from the i-th number clockwise until we reach the j-th number (inclusive of
both the i-th and the j-th number). We define s7[i..i] to be the i-th number. s [i..j] is similarly
defined but going counter-clockwise.

The i-th number where ¢ € [0..m — 1] is said to be a pivot iff for any j € [0..m — 1], we have
that s7[i..7] > 0 and s [i..j] > 0. It is not difficult to see that this definition is equivalent to the
following: the i-th number is said to be a pivot iff for any clockwise segment spanning positions
a..b that includes i s7[a..b] > 0.

Configuration induced by an execution. An execution exec will induce a configuration as
explained below. We place n numbers on a circle based on exec: for i € [0..n — 1], if node i is
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honest-forever in exec, the i-th number is +1; otherwise it is —1. Since we assume that n > 3f + 1,
it must hold that the configuration induced by exec is a valid configuration.

To prove the above lemma, it suffices to prove that the configuration induced by any exec has
a pivot. We prove a generalization of the statement:

Claim 1. Suppose that we place m numbers, either +1 or —1, on a circle as mentioned above. In
any valid configuration (i.e., fewer than 3 of them are —1), there must exist a pivot.

Proof. We now prove the above claim. A negative group is a sequence of consecutive —1s on the
circle sandwiched by +1s on both sides. A positive group is sequence of consecutive +1s on the
circle sandwiched by —1s on both sides. If all numbers on the circle are +1 (or —1 resp.), all the
numbers form a single positive (or negative resp.) group. If a positive (or negative resp.) group
does not contain all numbers on the circle, it is said to be a proper positive (or negative resp.)
group.

Any proper positive (or negative resp.) has a left-most number and a right-most number:
essentially the group spans the left-most number going clockwise to the right-most number.

We now prove by induction.

Base case. All numbers form a single positive group. In this case the proof is trivial.

Induction step. If a valid configuration is not the base case, then it must contain a sequence of
alternating proper positive and proper negative groups — let T denote the total number of such
alternating positive and negative groups (the base case can be regarded as T' = 1). We need to
prove the following: if a pivot exists for every valid configuration where 7' < 7 (i.e., induction
hypothesis), then a pivot exists for every valid configuration where 7' < 7+ 1.

We now perform the following elimination procedure:

e Start: Say we start from a valid configuration C that is not all positive.

e Find negative group: Find an arbitrary proper negative group, let its right-most number be
position iz and the left-most number be position iy,.

o (Counter-clockwise scan: Scan counter-clockwise from ¢p until we reach the first position j such
that s7[j..ir] = 0.

o (Clockwise scan: Start from the left-most number of the negative group, say the ir-th number,
and scan clockwise until we reach the first position k such that s~ [ir..k] = 0.

e Elimination: Eliminate all numbers between positions [j..k], and the ending configuration is
called C".

Henceforth all numbers eliminated due to the counter-clockwise scan together comprise the “counter-
clockwise elimination”; and all numbers eliminated due to the clockwise scan together comprise the
“clockwise elimination”. The clockwise and counter-clockwise eliminations overlap in the negative
group chosen.

We now prove that the following facts hold for the above elimination procedure.

Fact 5. A number that is pivot in C cannot be eliminated by the above procedure.

Proof. 1t suffices to argue that a position p is a pivot in C' cannot be eliminated during a counter-
clockwise elimination (the argument is symmetric for clockwise). For p to be eliminated, it must
hold that s [p..i] < 0 where i is the right-most number of some proper negative group. This cannot
hold by the definition of a pivot. O
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Fact 6. A number that is pivot in C' must be a pivot in C.

Proof. For simplicity, we assume that the elimination simply rewrites eliminated numbers as 0s —
this way, we can use the same position labels for C' and C’.

Henceforth, we denote the cumulative sum s[a..b] in C' as Sla..b], and the cumulative sum
s7[a..b] in C" as S’[a..b]. Due to Fact [5| it suffices to prove that for any position p that is not
eliminated during the elimination procedure, for any p*, we have that S[p..p*] > S’[p..p*] (and the
other direction, i.e., counter-clockwise, is symmetric). We consider the following cases:

e Case 1: p* is not among the eliminated positions. In this case, the proof is obvious since the
eliminated positions sum up to 0.

e Case 2: p* is among the eliminated positions. Recall that j is the left-most among the eliminated
positions; and that ig is the right-most number of the negative group involved in the elimination
procedure. It suffices to prove that S[j..p*] > 0. This holds since otherwise j cannot the first
number scanning counter-clockwise from ip such that S[j..ig] = 0 — there must exist such a
number in between positions [p* + 1..ig].

O]

Fact 7. If the elimination procedure eliminates x number of —1s, it can eliminate no more than
2z number of +1s.

Proof. Straightforward by observing that in both the clockwise and the counter-clockwise elimi-
nations, there are as many —1s elimanted as there are +1s. Further, the —1s eliminated in both
directions can overlap whereas the +1s cannot overlap in both directions (since it is not difficult to
see that there must be numbers left after the elimination). O

Due to Facts |§| to prove the induction step, it suffices to prove that in C’ there is a pivot — the
latter holds due to Fact [7] and the induction hypothesis. O

O]

Theorem 4 (Consistency). Let chain be some honest node’s longest chain in round r; and let chain’
be some honest node’s longest chain in round t > r, it holds that chain and chain’ agree in the part
of their prefives with timestamps r — n or smaller.

Proof. Straightforward due to Lemma [§ and Lemma [9] O
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