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Abstract In this paper we investigate the impact of decryption failures
on the chosen-ciphertext security of (Ring/Module)-Learning With Er-
rors and (Ring/Module)-Learning with Rounding based primitives. Our
analysis is split in three parts: First, we use a technique to increase
the failure rate of these schemes called failure boosting. Based on this
technique we investigate the minimal effort for an adversary to obtain a
failure in 3 cases: when he has access to a quantum computer, when he
mounts a multi-target attack and when he can only perform a limited
number of oracle queries. Secondly, we examine the amount of infor-
mation that an adversary can derive from failing ciphertexts. Finally,
these techniques are combined in an attack on (Ring/Module)-LWE and
(Ring/Module)-LWR based schemes with decryption failures. We pro-
vide both a theoretical analysis as well as an implementation to calculate
the security impact and show that an attacker can significantly reduce
the security of (Ring/Module)-LWE/LWR based schemes that have a
relatively high failure rate. However, for the candidates of the NIST
post-quantum standardization process that we assessed, the number of
required oracle queries is above practical limits due to their conservative
parameter choices.

1 Introduction

The recent developments in quantum computing have led to increased research
into post-quantum cryptography and motivated NIST to organize a post-quantum
cryptography standardization process, with the goal of standardizing one or
more quantum-resistant public-key cryptographic primitives. Submissions origi-
nate from various fields within post-quantum cryptography, such as lattice-based,
code-based and multivariate cryptography.

A lot of research has been done on the security of post-quantum cryptography,
such as provable post-quantum secure transformations from IND-CPA to IND-
CCA secure schemes [14,30,24,17], security estimates of post-quantum primitives
[2,3] and provable reductions for various hard problems underlying the schemes
[23,22,20,6].

A striking observation is that numerous proposed Key Encapsulation Mech-
anisms (KEM’s) have a small failure probability during decryption, in which the



involved parties fail to derive a shared secret key. This is the case for the major-
ity of schemes based on lattices, codes or Mersenne primes. The probability of
such failure varies from 2−64 in Ramstake [29] to 2−216 in New Hope [26], with
most of the failure probabilities lying around 2−128. As this failure is dependent
on the secret key, it might leak secret information to an adversary. However, as
suggested by the wide range of failure probabilities in the NIST submissions, the
implications of failures are still not well understood.

The first works on cryptanalysis of lattice-based schemes using decryption
failures has primarily focused on chosen ciphertext attacks against schemes that
are not IND-CCA secure. Jaulmes and Joux [16] presented such an attack on
NTRU, which has been extended in [15] and [12]. Later, Fuhrer [10] described
an attack against Ring-Learning with Errors (RLWE) schemes.

However, these attacks can be thwarted using an appropriate transformation
to a chosen ciphertext secure scheme, such as the Fujisaki-Okamoto transforma-
tion [11]. Hofheinz et al. [14] and later Jiang et al. [17] proved a bound on the
impact of the failure rate on an IND-CCA secure KEM that is constructed using
this transformation, but their bounds are squared in the failure probability in
the quantum oracle setting, which seems a very conservative result.

In the absence of a clear evaluation technique for the impact of the fail-
ure rate, most NIST submissions have chosen a bound on the decryption fail-
ure probability around 2−128 based on educated guessing. As far as we know,
only NIST-submission Kyber [25] provides an intuitive reasoning for its security
against decryption failure attacks, but this approximation is not tight. They in-
troduced a methodology that uses Grover’s search algorithm to find ciphertexts
that have a relatively high probability of triggering a decryption failure.

1.1 Our contributions

In this paper we investigate the requirements for KEM’s to resist decryption
failure cryptanalysis. Having better security estimates can benefit the param-
eter selection process, resulting in improved security and efficiency. We focus
on IND-CCA secure KEM’s based on the (Ring/Module-)Learning with Errors
and (Ring/Module-)Learning with Rounding paradigms. Nonetheless, the gen-
eral method can also be applied to investigate the impact of failures on other
schemes.

The exploitation of decryption failures of an IND-CCA secure cryptographic
scheme proceeds in two main steps: obtaining ciphertexts that result in a de-
cryption failure and estimating the secret based on these ciphertexts. In the first
step, an adversary can use failure boosting to find ‘weak’ input vectors that ar-
tificially enlarge the failure rate of the scheme. In Section 3, we examine how an
adversary can generate these ‘weak’ ciphertexts that increase the failure prob-
ability. We provide a theoretical framework and a Python implementation 1 to

1 The software is available at https://github.com/KULeuven-COSIC/PQCRYPTO-

decryption-failures
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calculate an estimate of the minimum effort required for an adversary to obtain
one failing ciphertext.

Once ciphertexts that trigger a decryption failure are collected, they can be
used to estimate the secret. In Section 4, we study how much information is
leaked by the collected failures. We develop a statistical model to estimate the
secret from the failures and determine the residual entropy of the secret after a
certain number of failures is collected. The estimate of the secret can be used to
construct an easier problem that can be solved faster.

Section 5 combines failure boosting and the secret estimation technique from
Section 4 to estimate the security of schemes based on (Ring/Module)-Learning
with Errors and (Ring/Module)-Learning with Rounding under an attack ex-
ploiting decryption failures. We show that an attacker can significantly reduce
the security of these schemes if he is able to perform sufficient decryption queries.

2 Preliminaries

2.1 Notation

Let Zq be the ring of integers modulo q represented in (−q/2, q/2], let Rq denote
the ring Zq[X]/(Xn + 1) and let Rk1×k2q denote the ring of k1×k2 matrices over
Rq. Matrices will be represented with bold uppercase letters, while vectors are
represented in bold lowercase. Let AAAij denote the element on the ith row and
jth column of matrix AAA, and let AAAijk denote the kth coefficient of this element.
Denote with AAA:j the jth column of AAA.

The rounding operation bxeq→p is defined as bp/q · xe ∈ Zp for an element
x ∈ Zq, while abs(·) takes the absolute value of the input. These operations
are extended coefficient-wise for elements of Rq and Rk1×k2q . The two-norm of a

polynomial a ∈ Rq is written as ‖a‖2 and defined as
√∑

i a
2
i , which is extended

to vectors as ‖aaa‖2 =
√∑

i ‖aaai‖
2
2. The notation a ← χ(Rq) will be used to

represent the sampling of a ∈ Rq according to the distribution χ. This can be
extended coefficient-wise for AAA ∈ Rk1×k2q and is denoted as AAA← χ(Rk1×k2q ). Let
U be the uniform distribution. Denote with χ1 ∗ χ2 the convolution of the two
distributions χ1 and χ2, and denote with χ∗n = χ ∗ χ ∗ χ ∗ · · · ∗ χ ∗ χ︸ ︷︷ ︸

n

the nth

convolutional power of χ.

2.2 Cryptographic definitions

A Public Key Encryption (PKE) is defined as a triple of functions PKE =
(KeyGen, Enc, Dec), where the key generation KeyGen returns a secret key sk and
a public key pk, where the encryption Enc produces a ciphertext c from the
public key pk and the message m ∈ M, and where the decryption Dec returns
the message m′ given the secret key sk and the ciphertext c.

A Key Encapsulation Mechanism (KEM) consists of a triple of functions
KEM = (KeyGen, Encaps, Decaps), where KeyGen generates the secret and public
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keys sk and pk respectively, where Encaps generates a key k ∈ K and a ciphertext
c from a public key pk, and where Decaps requires the secret key sk, the public
key pk and the ciphertext c to return a key k or the decryption failure symbol ⊥.
The security of a KEM can be defined under the notion of indistinguishability
under chosen ciphertext attacks (IND-CCA),

Advind-cca
KEM (A) =

∣∣∣∣∣∣P
b′ = b :

(pk, sk)← KeyGen(), b← U({0, 1}),
(c, d, k0)← Encaps(pk),

k1 ← K, b′ ← ADecaps(pk, c, d, kb),

− 1

2

∣∣∣∣∣∣ .
2.3 LWE/LWR problems

The decisional Learning with Errors problem (LWE) [23] consists of distin-
guishing a uniform sample (AAA,UUU) ← U(Zk1×k2q × Zk1×mq ) from an LWE-sample

(AAA,BBB = AAASSS+EEE), wereAAA← U(Zk1×k2q ) and where the secret vectors SSS andEEE are

generated from the small distributions χs(Zk2×mq ) and χe(Zk1×mq ) respectively.
The search LWE problem states that it is hard to recover the secret SSS from the
LWE sample.

This definition can be extended to Ring- or Module-LWE [20,18] by using
vectors of polynomials. In this case, the problem is to distinguish the uniform
sample (AAA,UUU) ← U(Rk1×k2q × Rk1×mq ) from a generalized LWE sample (AAA,BBB =

AAASSS + EEE) in which AAA ← U(Rk1×k2q ) and where the secret vectors SSS and EEE are

generated from the small distribution χs(R
k2×m
q ) and χe(R

k1×m
q ) respectively.

Analogous to the LWE case, the search problem is to recover the secret SSS from
a generalized LWE sample.

The decisional generalized Learning with Rounding (LWR) problem [6] is
defined as distinguishing the uniform sample (AAA, bUUUeq→p), with AAA← U(Rk1×k2q )

and UUU ← U(Rk1×mq ) from the generalized LWR sample (AAA,BBB = bAAASSSeq→p) with

AAA← U(Rk1×k2q ) and SSS ← χs(R
k2×m
q ). In the analogous search problem, one has

to find SSS from a generalized LWR sample.

2.4 (Ring/Module-)LWE based encryption

Let gen be a pseudorandom generator that expands seedAAA into a uniformly
random distributed matrix AAA ∈ Rk×kq . Define enc as an encoding function that
transforms a message m into a polynomial representation, and dec as the inverse
decoding function. A general (Ring/Module-)LWE based PKE, consisting of a
key generation, an encryption and a decryption phase, can then be constructed
as described in Algorithms 1 to 3 respectively. The randomness required for the
generation of the secrets SSS′B , EEE′B and EEE′′B during the encryption, is generated
pseudorandomly from the uniformly distributed seed r that is given as an input.

Using this general framework, specific schemes can be described with ap-
propriate parameter choices. When the ring Rq is chosen as Zq, the encryption
is LWE-based as can be seen in FrodoKEM [21] and Emblem [27]. A value of
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Algorithm 1: PKE.KeyGen()

1 seedAAA ← U({0, 1}256)

2 AAA = gen(seedAAA) ∈ Rl×l
q

3 SSSA ← χs(Rl×m
q ),EEEA ← χe(Rl×m

q )
4 BBB = bAAASSSA +EEEAeq→p

5 return (pk := (BBB, seedAAA), sk := SSSA)

Algorithm 2: PKE.Enc(pk = (BBB, seedAAA),m, r)

1 AAA = gen(seedAAA) ∈ Rl×l
q

2 SSS′B ← χs(Rl×m
q ),EEE′B ← χe(Rl×m

q )
3 EEE′′B ← χe(Rm×m

q )
4 BBBr = dBBBep→q

5 BBB′ = bAAATSSS′B +EEE′Beq→p

6 VVV ′ = bBBBT
r SSS
′
B +EEE′′B + enc(m)eq→t

7 return c = (VVV ′,B′B′B′)

l = 1 indicates a Ring-LWE based scheme including New Hope [4], LAC [19],
LIMA [28] or R.Emblem [27]. If l 6= 1 and Rq 6= Zq, the scheme is based on the
Module-LWE hard problem such as Kyber [7]. The special case that χe = 0 corre-
sponds to (Module/Ring)-LWR-based schemes such as Round2 [5] and Saber [9].
In Lizard [8], a combination of an LWE and LWR problem is proposed. In most
(Ring/Module-)LWE based schemes, q = p and no rounding is performed in the
calculation of BBB and BBB′, while t is in most schemes much smaller than q leading
to a drastic rounding of VVV ′.

We defineUUUA,UUU ′B enUUU ′′B as the errors introduced by the rounding operations,
which is formalized as follows:

UUUA = AAASSSA +EEEA −BBBr (1)

UUU ′B = AAATSSS′B +EEE′B −BBB′r (2)

UUU ′′B = BBBTr SSS
′
B +EEE′′B + enc(m)− VVV ′r (3)

Let SSS be the vector constructed as the concatenation of the vectors −SSSA and
EEEA+UUUA, let CCC be the concatenation of EEE′B+UUU ′B and SSS′B , and letGGG = EEE′′B+UUU ′′B .
An attacker that generates ciphertexts can compute CCC andGGG and tries to obtain
information about SSS. These variables are summarized below:

SSS =

(
−SSSA

EEEA +UUUA

)
CCC =

(
EEE′B +UUU ′B

SSS′B

)
GGG = EEE′′B +UUU ′′B (4)

After the execution of this protocol, the two parties will arrive at the same
key if the decoding dec(VVV ′r−VVV ) equals m. The term VVV ′r−VVV can be rewritten as
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Algorithm 3: PKE.Dec(sk = SSSA, c = (VVV ′,B′B′B′))

1 BBB′r = bBBB′ep→q

2 VVV ′r = bVVV ′et→q

3 VVV = BBB′Tr SSSA

4 m′ = dec(VVV ′r − VVV )
5 return m′

Algorithm 4: KEM.Encaps(pk)

1 m← U({0, 1}256)
2 r = G(m)
3 c = PKE.Enc(pk,m, r)
4 K = H(r)
5 return (c,K)

(EEEA +UUUA)TSSS′B −SSSTA(EEE′B +UUU ′B) + (EEE′′ +UUU ′′B) + enc(m) = SSSTCCC +GGG+ enc(m).
The message can be recovered if and only if abs(SSSTCCC +GGG) < qt for a certain
threshold qt that is scheme dependent.

We will say that a (decryption) failure occurred if the parties do not arrive at
a common key due to a coefficient of abs(SSSTCCC+GGG) that is larger than qt, and will
define F (CCC,GGG) as the probability of a decryption failure given CCC andGGG averaged
over all SSS, which can be expressed as

∑
SSS P (abs(SSSTCCC +GGG) > qt | SSS)P (SSS).

2.5 Fujisaki-Okamoto transformation

Using the Fujisaki-Okamoto transform [11,14], one can transform a chosen plain-
text secure PKE to an IND-CCA secure KEM. On top of the encryption from the
PKE, the KEM defines an encapsulation and decapsulation function as described
in Algorithms 4 and 5, using hash functions H and G.

3 Failure boosting

In this section, we will develop a method to estimate the minimum amount of
work to obtain one ciphertext that triggers a decryption failure. In contrast to
an honest party that generates ciphertexts randomly, an attacker can search
for ciphertexts that have a higher failure probability than average, which will
be called ‘weak’. As CCC and GGG are the only terms with which an attacker can
influence decryption failures, the search for weak ciphertexts boils down to the
search for weak (CCC,GGG). However, the pair (CCC,GGG) is generated through a hash H()
with random seed r, and during decryption it is checked whether the generator
of the ciphertext knew the preimage r of (CCC,GGG). Therefore an attacker is forced
to resort to a brute force search, which can be sped up at most quadratically
using Grover’s algorithm [13].
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Algorithm 5: KEM.Decaps(sk, pk, c)

1 m′ = PKE.Dec(sk, c)
2 r′ = G(m′)
3 c′ = PKE.Enc(pk,m′, r′)
4 if c = c′ then
5 return K = H(r)
6 else
7 return K =⊥

To find a criterion for our search, we sort all possible (CCC,GGG) according to an
increasing failure probability F (CCC,GGG). This list can then be divided into two sets
using a threshold failure probability ft: weak vectors with a failure probability
higher or equal than ft, and strong vectors with lower failure probability. Let
f() be the deterministic function that generates CCC and GGG from the random
seed r. For a certain ft, we can calculate the probability of generating a weak
pair: α = P (F (CCC,GGG) > ft | r ← U , (CCC,GGG) = f(H(r))), and the probability of a
decryption failure when a weak pair is used: β = P (abs(SSSTCCC +GGG) > qt | r ←
U , (CCC,GGG) = f(H(r)), F (CCC,GGG) > ft).

The amount of work for an adversary to find a weak pair (CCC,GGG) is pro-
portional to α−1, but can be sped up quadratically using Grover’s algorithm
on a quantum computer, resulting in an expected workload of

√
α−1. On the

other hand, the probability of a decryption failure given a weak pair cannot
be improved using quantum computation assuming that the adversary has no
quantum access to the decryption oracle. This assumption is in agreement with
the premise in the NIST Post-Quantum Standardization Call for Proposals [1].
The expected work required to find a decryption failure given ft is therefore the
expected number of queries using weak ciphertexts times the expected amount
of work to find a weak ciphertext, or (α · β)−1 with a classical computer and
(
√
α ·β)−1 with a quantum computer. An optimization over ft gives the minimal

effort to find one decryption failure.

3.1 Practical calculation

For most schemes, the full sorted list (CCC,GGG) is not practically computable, but
using some observations and assumptions, an estimate can be found. The next
three steps aim at calculating the distribution of the failure probability F (CCC,GGG),
i.e. what is the probability of finding a (CCC,GGG) pair with a certain failure prob-
ability f . This distribution gives enough information to calculate α and β for a
certain ft.

First, we can remove the hash H(.) in the probability expression by assum-
ing the output of f(H(.)) given random input r to behave as the probability
distributions (χC , χG), resulting in: α = P (F (CCC,GGG) > ft | (CCC,GGG) ← (χC , χG))
and β = P (abs(SSSTCCC +GGG) > qt | (CCC,GGG)← (χC , χG), F (CCC,GGG) > ft).
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Secondly, we assume that the coefficients of SSSTCCC are normally distributed,
which is reasonable as the coefficients are a sum of 2(l · n) distributions that
are somewhat close to a Gaussian. The coefficients of the polynomial (SSSTCCC)ij
will be distributed with mean µ = 0 because of symmetry around 0, while the
variance can be calculated as follows, after defining χe+u as the distribution of
the coefficients of EEEA +UUUA:

var((SSSTCCC)ijk) =var(

l−1∑
i=0

n−1∑
k=0

CCCijksijk +

2l−1∑
i=l

n−1∑
k=0

CCCijkeijk) (5)

where: sijk ← χs and eijk ← χe+u (6)

=

l−1∑
i=0

n−1∑
k=0

CCC2
ijkvar(χs) +

2l−1∑
i=l

n−1∑
k=0

CCC2
ijkvar(χe+u) (7)

=‖(EEE′B +UUU ′B):j‖22var(χs) + ‖(SSS′B):j‖22var(χe+u) (8)

Therefore, the variance of the coefficients of SSSTCCC for a given CCC is the same
for all coefficients in the same column. This variance will be denoted as σ2

j

for coefficients in the jth column of SSSTCCC. Furthermore, following the Gaussian
assumption, the failure probability given σ2

j is the same as the failure probability

given the jth column of CCC.
In the third step we gradually calculate the distribution of the failure proba-

bility. We start from the distribution of the failure probability of the coefficient
at the ijkth position given σj , denoted with χcoef |σ. This distribution expresses
the probability of finding aGGG so that the failure probability is equal to fijk given
a certain value of CCC (or equivalently σ2

j ) and can be expressed as follows:

P (fijk |GGG← χG,CCC) (9)

(10)

where:

fijk = P (abs(SSSTCCC +GGG)ijk > qt |GGG,CCC) (11)

≈ P (abs(x+GGGijk) > qt |GGG, x← N (0, σ2
j ), σ2

j ) (12)

The distribution χcol |σ, which models the probability of a failure in the jth

column of abs(SSSTCCC +GGG) given σ2
j , can be calculated using the convolution of

the distributions of the mn individual coefficient failures χcoef |σ as follows:

χcol |σ = χ∗nmcoef |σ (13)

The conditioning on σ2
j is necessary to counter the dependency between the

coefficients of the columns of abs(SSSTCCC +GGG), which are dependent as a result of
sharing the same variance σ2

j .
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The distribution of failure probabilities in the jth column of SSSTCCC, denoted
as χcol, can then be calculated using a weighted average over the possible values
of σ2

j as follows:

χcol =
∑
lc

P (f | f ← χ∗nmcol,σ)P (σ2
j = lc) (14)

Finally we can calculate the full failure distribution χFAIL as the convolution
of the m probability distributions corresponding to the failure distributions of
the different columns. This convolution does not have the dependency on σ2

j as
failures of different columns are independent conditioned on CCC and GGG.

χFAIL = χ∗mcol (15)

From this failure distribution, we can calculate α and β for an arbitrary value
of ft:

α = P (f > ft | f ← χFAIL) (16)

β =

∑
f>ft

f · P (f | f ← χFAIL)

α
(17)

We want to stress that this calculation is not exact, mainly due to the Gaus-
sian assumption in the second step. More accurate estimates could be obtained
with a more accurate approximation in step 2, tailored for a specific scheme. In
this case, the assumptions and calculations of step 1 and step 3 remain valid.
For the estimations of LAC [19] in subsequent paragraphs, we followed their ap-
proach for the calculation of the effect of the error correcting code. Note that this
is not an exact formula as the inputs of the error correcting code are correlated
through their polynomial structure.

In Figure 1 we compare the values of α and β calculated using the technique
described above, with exhaustively tested values on a variant of LAC128 without
error correction. For step 2 of the practical calculation, we use both a Gaussian
approximation as well as a binomial approximation that is more tailored for
LAC. We can observe that our estimation of the effect of failure boosting is
relatively close to reality.

3.2 Applications of failure boosting

Failure boosting is a useful technique in at least three scenarios: first, if there is
no multi-target protection, second, if the adversary can only perform a limited
number of queries to the decryption oracle and third, if the adversary has access
to a quantum computer.

In some (Ring/Module-)LWE/LWR schemes, the seed r is the only input to
the pseudorandom generator that generates CCC and GGG. This paves the way to
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Figure 1: The failure rate of one weak ciphertext (β) as a function of the work
required to generate one weak ciphertext (α) on a classical computer for LAC128
without error correction.

a multi-target attack where precomputed weak values of r can be used against
multiple targets: after choosing the parameter ft, the adversary can generate
weak ciphertexts in approximately α−1 time (

√
α−1 if he has access to a quantum

computer). Each precomputed sample has then a failure probability of β against
every target. Figure 2 shows the failure probability of one weak ciphertext versus
the amount of work to generate that ciphertext on a classical computer. Multi-
target protection, for example by including the public key into the generation
of CCC en GGG as proposed in Kyber [7] and Saber [9] is a relatively cheap option to
resolve this issue.

If the adversary can only perform a limited number of decryption queries, for
example 264 in the NIST Post-Quantum Standardization Call for Proposals [1],
the adversary can use failure boosting to reduce the number of required decryp-
tion queries. To this end, he chooses the parameter ft so that the inverse of the
failure probability β−1 equals the decryption query limit nd, which results in a
probability of finding a decryption failure of approximately (1−e−1) ≈ 0.63 . To
find i failures with similar probability, the failure probability should be brought
up so that β−1 = nd/i. Since the amount of work to generate one input of the

decryption query is approximately α−1 (
√
α−1 quantumly), the total amount of

work expected is α−1β−1, (
√
α−1β−1 quantumly). Figure 3 shows the expected

total amount of work to find one decryption failure with a classical computer,
versus the failure rate of one weak ciphertext.
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Figure 2: The failure rate of one weak ciphertext (β) as a function of the work
required to generate one weak ciphertext (α) on a classical computer.
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Figure 3: The expected amount of work (α−1β−1) on a classical computer, as
a function of the failure rate of one weak ciphertext (β). The red dotted line
indicates a failure rate of 2−64.
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An adversary with a quantum computer always benefits from failure boosting,
as the search for weak ciphertexts can be sped up using Grover’s algorithm.
However, this speedup is not quadratic if the adversary has no quantum access
to the decryption oracle. Figure 4 shows the total amount of expected work to
find one decryption failure, versus the amount of work to find one weak ciphertext
on a quantum computer

√
α−1.
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Figure 4: The expected amount of work (
√
α−1β−1) as a function of the work

required to generate one weak ciphertext (
√
α−1) on a classical computer.

4 Estimation of the secret

Finding a decryption failure does not immediately break the security of the
KEM, but it does provide extra information to an adversary. In this section we
will investigate how much this information leaks about the secret. An adversary
that has obtained ciphertexts that produce decryption failures can use them to
make an estimation of the secret SSS.

When a failure occurs, we know that at least one coefficient of abs(SSSTCCC+GGG)
is larger than the threshold qt. This leads to a classification of the coefficients
in the set of fail coefficients vf and no-fail coefficients vs. To each coefficient at
position (i, j, k), a vector of integers sss can be associated by taking the coefficients
of SSS:i. Similarly, the coefficient can be linked to a vector of integers ccc calculated
as a function of CCC :j and k, so that the multiplication sssccc equals that coefficient.

No-fail vectors will contain negligible information about the secret sss, but
failure vectors do carry clues, as the threshold exceeding value of the coefficients
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of SSSTCCC +GGG implies a correlation between the corresponding ccc and sss. This cor-
relation can be positive, in case of a large positive value of the coefficient, or
negative, in case of a large negative value of the coefficient. Consequently, the
fail coefficients can be further divided into the sets of positive vfp and negative
vfn fail coefficients respectively. Moreover, negative fail vectors can be trans-
formed into positive fail vectors by multiplication with −1. Note that failure
coefficients at position (i, j, k) will only contain information about the jth col-
umn of SSS, which is why the estimation of the columns of SSS can be performed
independently.

4.1 One positive failure vector

We will first examine the case where we know one positive fail vector ccc and
associated coefficient GGGi,j,k, which we will denote with g. This corresponds to
the case where one failing ciphertext and the location and sign of the error is
known. The question is how much the knowledge about ccc and g can improve
our estimate of the associated secret sss. Applying Bayes’ theorem and assuming
independence between the coefficients of ccc and sss that are on different positions,
we can write:

P (sssi |ccc, g, sssccc > qt − g) ≈P (sssi |ccci, g, sssccc > qt − g) (18)

=
P (sssccc > qt − g |sssi, ccci, g)P (sssi |ccci, g)

P (sssccc > qt − g |ccci, g)
(19)

=
P (
∑j 6=i
j sssjcccj > qt − g − sssiccci |sssi, ccci, g)P (sssi)

P (sssccc > qt − g |ccci, g)
(20)

The improved estimates for the coefficients of sss can in turn be used to get
an estimate sssest that minimizes its variance E[(sssest − sss)2] as follows:

0 =
d

dsssest,i
E((sssest,i − sssi)2) (21)

= 2
∑
sssi

(sssest,i − sssi)P (sssi) (22)

or: sssest,i =
∑
sssi

sssi · P (sssi) (23)

The estimate of sss gives the estimate of the jth column of SSS, which can be
divided trivially in an approximation SSSA,est of (SSSA):j and EEEA,est of (EEEA+UUUA):j .
These vectors can be used to transform the original (Ring/Module-)LWE/LWR
sample (AAA,AAA(SSSA):j + (EEEA + UUUA):j) into a (Ring/Module-)LWE alike problem
with a smaller secret variance by subtracting AAASSSA,est +EEEA,est. This results in
the sample (AAA,AAA((SSSA):j −SSSA,est) + (EEEA +UUUA):j −EEEA,est), which is a problem
with smaller secret (SSSA):j −SSSA,est and noise (EEEA +UUUA):j −EEEA,est. We will call
this new problem the simplified problem.
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4.2 Multiple fail vectors

Having access to m positive fail vectors ccc(1) . . . ccc(m) from the same column, with
corresponding values of G as g(1) . . . g(m), an adversary can improve his estimate
of P (sss) and therefore obtain a better estimate sssest, assuming that the failure
vectors ccci are independent conditioned on sss. This corresponds to knowing m
failing ciphertexts and the location and sign of their errors.

P (sssi |ccc(1) . . . ccc(m), g(1) . . . g(m)) ≈ P (sssi |ccc(1)
i . . . ccc

(m)
i , g(1) . . . g(m)) (24)

=
P (ccc

(1)
i . . . ccc

(m)
i |sssi, g(1) . . . g(m))P (sssi | g(1) . . . g(m))

P (ccc
(1)
i . . . ccc

(m)
i | g(1) . . . g(m))

(25)

=
P (sssi)

∏m
k=1 P (ccc

(k)
i |sssi, g(k))∏m

k=1 P (ccc
(k)
i | g(k))

(26)

Similar to Equation 20, P (ccci |sssi, g(k)) can be calculated as:

P (ccci |sssi, g, sssccc > qt − g) =
P (sssccc > qt − g |sssi, ccci, g)P (ccci |sssi, g)

P (sssccc > qt − g |sssi, g)
(27)

=
P (
∑j 6=i
j sssjcccj > qt − g − sssiccci |sssi, ccci, g)P (ccci)

P (sssccc > qt − g |sssi, g)
(28)

In subsequent calculations, each value of the coefficient of g is taken as the
maximum possible value.

4.3 Classification of vectors

The above approach assumes a prior knowledge of the exact position and sign
of the errors. This information is needed to link coefficients of CCC with their
corresponding coefficient of SSS. However, this is not always a trivial problem.
For most schemes there are three sources of extra information that will allow to
perform this classification with a high probability using only a few decryption
failures.

Firstly, a large coefficient of GGG would induce a higher failure probability for
the corresponding coefficient of the error term SSSTCCC+GGG. Thus, failures are more
likely to happen at positions linked to that coefficient of GGG. Moreover, a positive
value of the coefficient suggests a positive error so that ccc ∈ vfp, while a negative
value hints at a negative error, or ccc ∈ vfn.

Secondly, as |sssccc + g| > qt for ccc ∈ vf , the vectors ccc and sss are correlated.
Therefore, vectors ccc ∈ vf they are also correlated with each other. Moreover, a
high positive correlation suggests that the vectors share the same class vfp or
vfn, while a high negative correlation indicates that the vectors have a different
classes. This allows for a clustering of the fail vectors using the higher than
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average correlation, under the condition that the correlation difference is high
enough. This correlation difference is related to the failure rate: a low failure rate
implies a higher correlation because only ciphertexts that are highly correlated
with the secret lead to a failure rate in this case. For example, Figure 5 shows an
estimate of the correlations between vectors of the classes vfp (pos), vfn (neg)
and vs (nofail) in Kyber768. This approach does not work for schemes with
strong error correcting codes (ECC) such as LAC, as the bit error rate before
correction is relatively high for these types of algorithms, leading to a relatively
low correlation between failure vectors.
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Figure 5: The probability of a certain value of the correlation between different
classes of vectors in Kyber768.

In case of a ring/module structure of the coefficients of SSS, an additional
structure arises leading to an artifact in which some pairs of no-fail coeffi-
cients within the same polynomial also have high correlation of their corre-
sponding vectors. Imagine a pair of failure coefficients at positions (i, j, k1)
and (i, j, k2) from different decryption failures a, b, with corresponding matri-
ces CCC(a) and CCC(b). The correlation of the vectors ccc(a) and ccc(b) can be written
as Xk1CCC

(a)T
:,j Xk2CCC

(b)
:,j = Xk1+k2CCC

(a)T
:,j CCC

(b)
:,j , from which is clear that the vectors

from CCC(a) and CCC(b), with respective positions (i, j, k1 − t) and (i, j, k2 + t) have
the same correlation. The clustering will thus result in n classes, with one class
containing the failure vectors. Combining this information with the information
of the first method gives an adversary the failure vectors with high probability.
Otherwise, an adversary can estimate the secret n times and check the validity
of the result using the (Ring/Module-)LWE/LWR problem.

Finally, for schemes that use error correcting codes to reduce their failure
probability, side channel leakage during the error correction might reveal infor-
mation on the presence or position of failure coefficients. Note that if this is the
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case, it might not even be necessary to obtain a decryption failure since failing
coefficients could also be collected on successful decryptions where there is at
least one failing coefficient.

4.4 Implications

Figure 6 depicts the relative variance reduction of the secret as a function of the
number of positive failure vectors for various schemes. For schemes that have
a very low failure probability for individual coefficients of SSSTCCC + GGG, such as
Kyber, Saber and FrodoKEM, the variance of the secret drastically reduces upon
knowing only a few failing ciphertexts. Assuming that the simplified problem,
that takes into account the estimate of the secret, has the same complexity
as a regular (Ring/Module-)LWE problem with similar secret variance, we can
calculate the remaining hardness of the simplified problem as a function of the
number of positive failure vectors as shown in Figure 7 using the toolbox provided
by Albrecht et al. [3] using the Q-core sieve estimate.

The effectiveness of the attack declines as the failure probability of the in-
dividual coefficients increases, since the correlation between the secret and the
failing ciphertext is lower in this case. This can be seen in the case of LAC, where
the individual coefficients have relatively high failure rates due to a strong error
correcting code. On the other hand, a failing ciphertext will contain multiple
errors, making it easier to collect multiple failure vectors.

Note that once one or more failures are found, they can be used to estimate
the secret. This estimate in turn can be used to improve the search for weak
ciphertexts by considering F (CCC,GGG) as

∑
SSS P (FAIL(CCC,GGG),SSS), where SSS is not

sampled from χSSS , but from the new probability distribution χSSSest
. Therefore,

the search for ciphertexts that trigger a decryption failure could become easier
the more failures have been found. However, we do not take this effect into
account in this paper.

5 Decryption failure attack

Using the failure boosting technique from Section 3 and the secret estimation
method from Section 4, we can lower the security of a (Ring/Module-)LWE/LWR
scheme on the condition that its failure rate is high enough. To this end, we first
collect i decryption failures using the failure boosting technique, which would
cost approximately i

√
α−1β−1 work. Then, the exact error position and failure

type should be determined for all of the failure vectors using the techniques of
Subsection 4.3. Based on this information, the secret can be estimated, which
in turn can be used to simplify the (Ring/Module-)LWE/LWR problem. These
last two operations require a negligible amount of work compared to finding
decryption failures. Finally, we need to solve the simplified problem, with has a
complexity Ssimplified(i) as estimated in Section 4. The total amount of work is

therefore O(Ssimplified(i)+i
√
α−1β−1), which is depicted in Figure 8 as a function

of the number of failures i. Note that the practical security of Kyber relies on
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Figure 6: The relative reduction in entropy as a function of the number of positive
failure vectors
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Figure 7: The hardness of the simplified problem as a function of the number of
positive failure vectors
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an error term EEEA as well as a rounding term UUUA. Both are taken into account
in the security calculation.
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Figure 8: The full amount of work to break the scheme as a function of the
number of collected decryption failures

Table 1 gives an overview of the original hardness of the scheme before de-
cryption failure usage S, and the attack cost Ssimplified(i) + i

√
α−1β−1 using

decryption failures for ideal values of i and ft, which are calculated through a
brute force sweep. The number of collected decryption failures i and the expected
number of decryption queries iβ−1 is also included. These values are calculated
assuming that the adversary can perform an unlimited number of decryption
queries. From this table we can see that the security of Kyber and Saber is con-
siderably reduced. This is due to the fact that finding a failure is easier than
breaking the security of the scheme S. For the case of FrodoKEM976, the se-
curity is not affected as the work to obtain a failure is considerably larger than
breaking the security S.

In other situations such as a multi-target attack or having only a limited
number of decryption queries, other values of ft and i will obtain optimal re-
sults. For example in a multi-target attack scenario one would select a higher
threshold ft to be able to efficiently re-use the precomputation work α−1 for
weak ciphertexts and therefore reduce the overall work. A limit on the number
of decryptions nd could make it necessary to increase the amount of precomputa-
tional work α−1 in order to reduce the failure rate β−1 < nd/i. This would make
the attack more expensive or might even invalidate it. For example, the NIST
Post-Quantum Standardization Process decryption limit is set to 264, which rules
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out a decryption failure attack on schemes with a low enough failure rate such
as Saber and Kyber, which can be deduced from Figure 3. As such, the security
of this schemes is not affected within the NIST framework.

original attack reduction decryption decryption
security cost factor failures queries

Saber 2184 2139 245 77 2131

FireSaber 2257 2170 287 233 2161

Kyber768 2175 2142 233 42 2131

Kyber1024 2239 2169 270 159 2158

LAC256 2293 297† 2196 106 · 56 280

FrodoKEM976 2188 2188 20 0 0

† Note that it seems not straightforward for LAC256 to obtain the exact position and

type of the errors, which is required to obtain this result

Table 1: The security of different schemes with and without decryption failures

6 Conclusion

In this paper we investigated failure boosting, a method to increase the decryp-
tion failure rate of a scheme based on the search for ‘weak’ ciphertexts. This
method benefits an adversary in at least three scenarios: if he has access to
a quantum computer, if he can only perform a limited number of decryption
queries or if he wants to stage a multi-target attack on schemes that do not
have the appropriate protection. We explicitly calculated the effect of failure
boosting in these scenarios for various (Ring/Module-)LWE/LWR schemes. We
also proposed a method to estimate the secret key given ciphertexts that lead to
decryption failures. The remaining security after a certain number of decryption
failures was calculated, given the exact location of the error. We suggested three
methods to obtain the exact location of errors in failing ciphertexts. Finally, we
estimated the security of several schemes under an attack that optimally uses
these decryption failures and show that for some schemes the security could
be reduced drastically if an attacker could perform sufficient decryption queries.
However, for most NIST post-quantum standardization candidates, the expected
number of required decryption queries is too high for a practical attack. We also
identify the changes to this attack under a multi-target scenario or when an
attacker has only access to a limited number of decryption queries.
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14. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the fujisaki-
okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017. http:
//eprint.iacr.org/2017/604.

15. N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman,
A. Singer, and W. Whyte. The impact of decryption failures on the security of
ntru encryption. In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003,
pages 226–246, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

20

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://eprint.iacr.org/2018/331
https://eprint.iacr.org/2017/1183
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2016/1126
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
http://eprint.iacr.org/2017/604
http://eprint.iacr.org/2017/604
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