
Shuffle and Mix:
On the Diffusion of Randomness in Threshold

Implementations of Keccak

Felix Wegener, Christian Baiker and Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany
{firstname.lastname}@rub.de

Abstract. Threshold Implementations are well-known as a provably first-
order secure Boolean masking scheme even in the presence of glitches. A
precondition for their security proof is a uniform input distribution at each
round function, which may require an injection of fresh randomness or an
increase in the number of shares. However, it is unclear whether violating
the uniformity assumption causes exploitable leakage in practice. Recently,
Daemen undertook a theoretical study of lossy mappings to extend the
understanding of uniformity violations. We complement his work by
entropy simulations and practical measurements of Keccak’s round
function. Our findings shed light on the necessity of mixing operations
in addition to bit-permutations in a cipher’s linear layer to propagate
randomness between S-boxes and prevent exploitable leakage. Finally, we
argue that this result cannot be obtained by current simulation methods,
further stressing the continued need for practical leakage measurements.

1 Introduction

Ensuring the integrity of a message is one of the central objectives in many
cryptographic applications. It can be achieved by using a hash algorithm in
conjunction with a secret key to compute a message authentication code (MAC).
As the integrity of a MAC depends on the secrecy of the key, the need to
protect against side-channel analysis (SCA), e.g. Differential Power Analysis
(DPA) [14], arises. To thwart DPA in hardware implementations of cryptographic
algorithms Nikova et al. [17] introduced Threshold Implementations (TI), a
provable first-order secure Boolean masking scheme.

Later, Bertoni et al. [4] developed the Keccak-family1 of sponge-based
hash-functions and suggested a three-share Threshold Implementation for their
quadratic non-linear layer χ. Subsequently, Bilgin et al. [6] noted that the
suggested TI violates the uniformity property and introduced two methods
to alleviate this flaw. First, the injection of four bits of fresh-randomness per
invocation of the non-linear building block χ. Second, the expansion to four
shares, which allows the authors to find a uniform TI. Orthogonally, Daemen [10]
investigated the implications of uniformity violation on the overall entropy

1standardized for selected parameters as SHA-3 in 2015

in Keccak and the local entropy of individual bits and suggested a cheap
method to re-mask the state bits with other state bits to prevent any exploitable
leakage. Later, Daemen [11] suggested a re-masking scheme called Changing of
the Guards to achieve uniformity of an arbitrary bijective S-box layer and noted
the applicability to Keccak.

Recently, De Meyer et al. [15] pointed out that uniformity is not a necessary
condition for first-order security. In fact, information leakage takes place when any
distribution observable by the attacker differs based on the unmasked secret value.
In the setting of infeasible exhaustive computations, they suggest to evaluate
this effect based on the χ2-Test. Previously, Moradi et al. [16] demonstrated the
applicability of the χ2-test in leakage detection both for simulated traces of noisy
Hamming-weight leakages and in practical measurements.

Our Contribution. We investigate the practical relevance of the diffusion layer
to counteract the uniformity loss in masked Keccak-f . In fact, we find that
diffusion between S-boxes solely based on bit-permutations (ρ, π) does not prevent
first-order leakage originating from the non-uniformity, while the mixing part
(θ) of Keccak-f alone is sufficient to counteract observable leakage through an
FPGA evaluation. Further, we show that this effect cannot be revealed with state-
of-the-art simulations, thereby indicating the need for practical SCA evaluations.
To our knowledge, this is the first practical analysis of uniformity loss thereby
complementing the theoretical foundation laid out by Daemen. [10].

Organization of the Paper. In Section 2, we describe our notation, recall
the specification of Keccak, describe Threshold Implementations and total
imbalance. In Section 3 we give an overview of the recent TI designs of Keccak.
In Section 4, we analyze the probability distributions of S-box inputs with
the methods of [10] and [15]. We describe the architecture of our hardware
implementation in Section 5, and our practical evaluations in Section 6.

2 Preliminaries

In this section we introduce relevant definitions and our notation for the rest of
the paper.

Introduction to Keccak Keccak [4] is a sponge-based hash function that
operates on a state of b = 25 · 2l bits for l between 0 and 6. We use the same
terminology as the authors to refer to individual parts of the state (cf. Figure 1
of [18]). Its core is the permutation Keccak-f [b] which iterates the round
function R a fixed number of times. The round function

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

consists of five sub-functions which are defined in the following:

2

– Theta: XORs the parity of two columns to each bit of a different column to
improve diffusion between columns.

θ : a[x][y][z] = a[x][y][z]⊕
4⊕

y′=0
a[x− 1][y′][z]⊕

4⊕
y′=0

a[x+ 1][y′][z − 1]

– Rho: performs a circular shift of all lanes, by a fixed constant per lane.

ρ : a[x][y][z] = a[x][y][z − const(x, y)]

– Pi: creates diffusion between rows in one slice.

π : a[x][y] = a[x′][y′], with x = y′, y = 2 · x′ + 3 · y′

– Chi: is the only non-linear function. It operates as a 5-bit quadratic bijection
on each row individually.

χ : a[x] = a[x]⊕ (1⊕ a[x+ 1]) · a[x+ 2]

– Iota: XORs a round constant to the first lane.

ι : a[0][0] = a[0][0]⊕RC[r]

A visual illustration of all steps can be seen in Figure 1. For the remainder of
this paper we focus on Keccak-f [200], which consists of 18 iterations of R.

x

y z z

(a) Theta (b) Rho

(c) Pi (d) Chi

Figure 1: The Keccak subfunctions (a) θ, (b) ρ, (c) π, (d) χ, taken from [4]

3

Threshold Implementations For brevity, we limit ourselves to three shares
and first-order security in the following introduction to Threshold Implementa-
tions [17].

Let x ∈ Fn2 , we call X = (a, b, c) ∈ F3n
2 a sharing or masking of x if

x = a⊕ b⊕ c.

Each part a, b and c is called a share. We denote ∫(x) for the set of all such
sharings. A sharing is called uniform, if all elements from ∫(x) occur with equal
likelihood.

Consider a Boolean function f : Fn2 → Fn2 , we call F = (FA,FB ,FC) : F3n
2 → F3n

2
a Threshold Implementation if the following properties are present.

– Correctness: XORing all output shares reveals the output of the orignal
function.

∀x : ∀X ∈ ∫(x) : FA(X)⊕ FB(X)⊕ FC(X) = f(x)

– Non-completeness: Each output share is independent of at least one input
share:

FA(X) = FA(b, c)
FB(X) = FB(c, a)
FC(X) = FC(a, b)

Provable security is achieved through the central theorem of TI [17] which states:
Let f be a Boolean function and F a TI of f. Let X1, . . . , XT be a sequence of
sharings of the value x, each uniformly drawn from ∫(x). Then, the evaluations
of F(Xi) do not reveal first-order information about x.

To ensure a uniform input share distribution during each round of an iterated
cipher, it is beneficial to demand a third property of TI:

– Uniformity: F maps a uniform input distribution to a uniform output distri-
bution.

∃k : ∀x ∈ Fn2 : ∀X ∈ ∫(x) : ∀Y ∈ ∫(f(x)) : Pr(F (X) = Y) = k

For Keccak’s non-linear function χ a uniform TI with four shares is known,
while a uniform TI with three shares is either not possible or has not been found
yet. Indeed, no statements about the existence of a uniform three share TI can
be made due to the high computational complexity of an exhaustive search over
all correction terms [5].

Entropy Study We recall several definitions from Daemen’s [9] work: Let P
be a probability distribution over Fn2 and v ∈ Fn2 be a mask. The imbalance of

4

P is defined as the Walsh-transformation of P and the total imbalance as its
summation:

P̃ (v) :=
∑
x

P (x)(−1)v
>x, φP :=

∑
∀v 6=0

P̃ (v)2.

The evaluation of P̃ in zero is omitted, as P̃ (0) = 1 regardless of the dis-
tribution of P . It can be shown that φP is zero if and only if P is a uniform
distribution.

The chance that two elements drawn according to the probability distribution
P over Fn2 are identical, is called the collision property Prcoll(P), which is
connected to φP via the relation

φP = 2nPrcoll(P)− 1.

It follows that φP ∈ [0, 2n − 1] can be used as a metric to estimate the
non-uniformity of a probability distribution P .

Pearson’s χ2-Test Pearson’s χ2 test allows a comparison between categorical
observations of multiple random variables. Consider a table T in which each
column (j) corresponds to a category and each row (i) to a variable. The integer
value in cell Ti,j expresses the number of times the realization of variable i has
been observed to adopt category j. To decide whether all variables follow the
same distribution (which forms the null-hypothesis H0) we define the test statistic

X =
r−1∑
i=0

c−1∑
j=0

(Ti,j − Ei,j)2

Ei,j

with the expected number of occurrences

Ei,j :=
(
∑c−1
k=0 Ti,k)(

∑r−1
k=0 Tk,j)∑c−1

k=0
∑r−1
l=0 Tk,l

.

The test statistic X follows a χ2-distribution

X ∼
df∑
i=1

N2
i , df = (c− 1)(r − 1)

where Ni are independent, standard normal random variables and df denotes the
degrees of freedom. To determine a confidence level, we compute the cumulative
distribution for X from the density function:

f(x, df) =

x
df
2 −1e−

x
2

2
df
2 Γ (df

2)
if x > 0

0 otherwise
p =

∫ ∞
x

f(x, df)

Under the assumption that H0 holds, p describes the likelihood that the
observations in table T could have occurred. We reject the null-hypothesis to the
level p < 10−5, which constitutes the common threshold in leakage assessments.

5

3 TI of Keccak

In this section, we summarize different shared constructions of χ. They all share
the properties of correctness and non-completeness, hence they constitute valid
TIs. The constructions differ in whether and how they achieve uniformity. In the
following we indicate the i-th bit of x by xi.

Original TI. As the non-linear χ was designed to enable efficient masking with
TI by limiting the algebraic degree to two, Bertoni et al. [4] also introduced a
three-share masking scheme, defined as χ′ : F15

2 → F15
2 , (A,B,C) = χ′(a, b, c)

with

Ai = bi ⊕ (bi+1 ⊕ 1) · bi+2 ⊕ bi+1 · ci+2 ⊕ ci+1 · bi+2

Bi = ci ⊕ (ci+1 ⊕ 1) · ci+2 ⊕ ci+1 · ai+2 ⊕ ai+1 · ci+2

Ci = ai ⊕ (ai+1 ⊕ 1) · ai+2 ⊕ ai+1 · bi+2 ⊕ bi+1 · ai+2

Contra to the original belief of the authors, the given TI is not uniform.
Hence, an iterated application reduces entropy. In the following we recall several
methods repairing χ′ to achieve uniformity.

Re-masking. A naive approach is to re-mask the entire output of χ′ according
to the equations

Ai = χ′
A
i (b, c)⊕ rbi ⊕ rci

Bi = χ′
B
i (c, a)⊕ rci

Ci = χ′
C
i (a, b)⊕ rbi .

This scheme requires 10 bits of fresh randomness (rb and rc) for every invocation
of χ′, which can easily surpass the available randomness in an embedded system,
in case several instances of χ′ are implemented to operate in parallel (e.g., a
round-based implementation).

Better Re-masking. Bilgin et al. [6] observed that only some bits require
re-masking. More precisely any choice of two successive bits to be re-masked

6

yields a uniform sharing.

Ai = χ′
A
i (b, c)⊕ rbi ⊕ rci i = 0, 1

Bi = χ′
B
i (c, a)⊕ rci i = 0, 1

Ci = χ′
C
i (a, b)⊕ rbi i = 0, 1

Ai = χ′
A
i (b, c) i = 2, 3, 4

Bi = χ′
B
i (c, a) i = 2, 3, 4

Ci = χ′
C
i (a, b) i = 2, 3, 4

Subsequently, the constructions by Daemen re-mask the same bits, but par-
tially [10] or fully [11] recycle randomness to achieve uniformity with reduced
fresh randomness. Further, Bilgin et al. [6] introduced a uniform four-share TI of
χ.

In the following, our focus is to study the original non-uniform three-share
TI χ′ interleaved with parts of the linear layer of Keccak-f to determine the
practical impact of uniformity violation.

4 Simulations

In this section we characterize χ′ as a lossy mapping by determining the number
of sharings and total imbalance after a given number of successive iterations.
Then, we sample the input distribution of χ′ from simulations of Keccak-200
with different linear layers.

Iterating χ′ alone. We iterated the three-share TI χ′ : F15
2 → F15

2 by feeding its
output back into the function as an input, until the number of observed different
sharings reached its minimum (5363) and the total imbalance its maximum (56.66).
The extremes are attained after 54 iterations (cf. Figure 2). In comparison, a
uniform mapping would maintain a total imbalance of zero and a constant number
of 215 possible sharings.

The figure clearly shows that the violation of uniformity from one round to
the next has a compounding effect over many rounds. In Section 6 we show that
this reduction of entropy is sufficient to practically exhibit leakage. Fortunately,
Keccak-f consists of more functions than χ, namely a linear layer with three
subfunctions:

– ρ - a bit-permutation for inter-slice diffusion
– π - a bit-permutation for intra-slice diffusion
– θ - a parity function to accelerate diffusion across columns

7

0 20 40 60 80
No. of iterations

0

10

20

30

40

50

60

to
ta
l
im

b
al
an

ce

0

5000

10000

15000

20000

25000

30000

35000

N
o.

of
sh
ar
in
gs

Figure 2: Illustration of the rise of total imbalance over the number of iterations of χ′

(red) in comparison with the decrease in the number of sharings (blue).

While ι is also a part of the linear layer, we disregard it for our analysis since it
consists only of an addition with a round constant to counteract slide attacks
and has limited relevance to SCA2.

Keccak-200. In our simulations we model the view of an attacker based on
the glitch-extended 1-probing model [12, 20]. More specifically, the attacker may
observe one output wire of the shared function χ′ after a given number of rounds,
which corresponds to observing the noise free values on two input wires to χ′
resembling 1024 different potential observations. We determine whether the
distribution seen on these wires is different between a fixed group consisting of
sharings of the 200-bit all-zero plaintext and a random group in which the shared
plaintext is chosen uniformly at random. Unfortunately, it is computationally
infeasible to conduct an exhaustive computation of the distribution over all
3-sharing of 200 bits3. Hence, we follow the suggestion of [15] to conduct a
χ2-test on the histograms of the input values to determine whether a difference
in the distributions of both groups is statistically significant. The results for
18 and 1800 iterations of variations of Keccak-f and 200 million samples are
displayed in Table 1. We simulated Keccak-f with its original linear layer,
only the bit-permuting part (ρ, π), only the mixing-part (θ) and without any
linear layer. Note that in the first three cases a diffusion between all 40 instances
of non-linear χ is achieved, while only in the last case no diffusion is present.

2The addition of round constants would further increase the total imbalance in the
χ′-only scenario, but it is of no interest for the investigation of full Keccak.

3As it is already computationally infeasible for Keccak-25, we kept the consistency
between measurements and simulations by evaluating Keccak-200.

8

Our simulations succeeded in finding the uniformity violation in the last (very
obvious) case without diffusion. In the other three cases the null hypothesis that
the input distribution is identical for both groups cannot be rejected given the
common threshold of p = 10−5 in a statistical test. Moreover, the null hypothesis
cannot even be rejected given a very weak threshold of p = 10−2. While the
results clearly indicate that a linear layer is necessary to counteract the effects
of uniformity violations, it remains unclear which parts of the linear layer are
crucial and which are dispensable from an SCA perspective.

enabled p18 p1800

χ′, π, ρ, θ 0.021 0.022
χ′, π, ρ 0.018 0.016
χ′, θ 0.022 0.020
χ′ 0.000 0.000

Table 1: χ2-Test with degree of freedom df = 1023 for 200 million samples. Only the
uniformity violation of applying χ′ alone is detected.

5 Implementation

Although a round-based implementation would be a natural choice to implement
Keccak and would lead to short SCA traces (hence accelerating the evaluation),
it would potentially increase the noise since the combinatorial circuit involving all
Keccak subfunctions would be active at all clock cycles. To achieve a compromise
between a high signal-to-noise ratio (SNR) and a fast leakage evaluation, we
chose to implement all variants of Keccak in a slice-serial manner by having
five instances of χ′ in parallel.

Slice-serial Implementation. In 2011 Jungk and Apfelbeck [13] introduced
an area/latency trade-off for Keccak by computing only eight slices in parallel
instead of all 64 slices in a full round. Later Bilgin et al. [6] introduced a fully slice-
serial architecture, which processes 25 state bits per clock cycle corresponding
to the simultaneous execution of five χ functions (cf. Figure 3). It contains a
shift register for the state that operates on 25-bit chunks and an additional 5-bit
register to keep track of the parity of the previously processed slice to realize θ.
A specialty is the application of θ to the first slice, which happens as the last
step of each round in parallel to processing the last slice, as it requires the parity
of the last slice. We implemented Keccak with a state size of 200 bits, which
requires 144 clock cycles to process a given input for 18 rounds.
Sharing the Implementation. We implemented several variants of three-share
designs according to the χ constructions described in Section 3. Following the

9

Figure 3: Serial Keccak-200 architecture [6], one of eight slices is processed per clock
cycle. The computation completes after 18 rounds corresponding to 144 clock cycles.

uncompressed design of [6], we maintained three shares throughout the entire
computations. As ρ, π and θ are linear functions, they can be applied to each
share of the state individually without modifications.

6 Practical Analysis

Measurement Setup. We synthesized our VHDL design in ISE Design Suite
with the KEEP_HIERACHY attribute to ensure that non-completeness is main-
tained throughout the Place&Route process. For the practical evaluation, we
used the SAKURA-G Side-Channel Evaluation Board [1] which includes two
SPARTAN-6 FPGAs to separate controller and target functionality. We recorded
power traces at a sampling rate of 625MS/s by a Picoscope 6402 and an external
amplifier (in addition to the amplifier embedded on the SAKURA-G board).
Following the methodology of [21] we performed a non-specific t-test “fixed vs.
random” 4 over 100 million traces of the last round of Keccak while operating
the FPGA at a clock frequency of 1.5MHz.

Results. A measurement of 100 million traces of full Keccak-200 with non-
uniform χ′ and 18 rounds did not reveal first-order leakage as can be seen in
Figure 4. Even a drastic increase of the number of rounds to 1800 did not lead to
first-order leakage (cf. Figure 5). However, the removal of θ leads to detectable
first-order leakage after 80 million traces (cf. Figure 6), while a removal of the
ρ and π does not indicate first-order leakage as illustrated in Figure 7. All
measurements show leakage at orders two and three. Removing the entire linear
layer causes each χ output to be taken as an input in the following round. Hence,
an additional register is required to avoid transitional leakage, i.e., the leakage
depending on the input of χ′ being replaced by its output. This doubles the
number of clock cycles to 288. Figure 8 shows the evaluation of 18 rounds of the
non-uniform χ′ function with 100 million traces. We observed, that the first-order

4The groups fixed vs. random are formed over the entire 200-bit state.

10

t-value exceeds the threshold of 4.5 by far. We can also see an increase of the
t-value along the time axis.

0 1000 2000 3000 4000 5000 6000
−5

0

5

t-
st
at
is
ti
c

0 1000 2000 3000 4000 5000 6000

−25

0

25

t-
st
at
is
ti
c

0 1000 2000 3000 4000 5000 6000
time samples

−50

−25

0

25

t-
st
at
is
ti
c

20 40 60 80 100
0.0

2.5

5.0

m
ax
.
t

20 40 60 80 100
0

20

m
ax
.
t

20 40 60 80 100
No. of traces x 106

0

25

50

m
ax
.
t

Figure 4: 18 round Keccak-f . top to bottom: t-test results first to third order over
time axis. Maximal t-values first order over trace axis. Entire last round.

Summary. Table 2 summarizes our practical leakage investigation. Based on the
results of our simulations in Section 4, we expected χ′ alone without re-masking
to show excessive first-order leakage which increases over time - this turned out
to be true in practice. We also expected 18-round Keccak-200 and 1800-round
Keccak-200 to show similar leakage behavior, which is also the case. Despite
similar simulation results (see Table 1), the omission of permutations ρ and π led
to no detectable first-order leakage, while leakage can be observed if θ is omitted.
This indicates that although such theoretical analysis can be considered as the
very first step, the results in practice might be slightly different.

Our results indicate that a diffusion between χ functions (S-boxes) should
not solely employ bit-permutations to cope with uniformity loss. Instead, a good
diffusion layer should apply additional linear mixing functions, that lead to partial
re-masking by means of uncorrelated state bits.

Discussion. The linear layer of Keccak has proven to mend a small violation
of uniformity in Threshold Implementations of χ. However, extending this result

11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

0

5

t-
st
at
is
ti
c

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−25

0

25

t-
st
at
is
ti
c

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time samples

−25

0

25

t-
st
at
is
ti
c

20 40 60 80 100
0.0

2.5

5.0

m
ax
.
t

20 40 60 80 100
0

20

m
ax
.
t

20 40 60 80 100
No. of traces x 106

0

20

m
ax
.
t

Figure 5: 1800 round Keccak-f . top to bottom: t-test results first to third order over
time axis. Maximal t-values first order over trace axis. Entire last round.

0 1000 2000 3000 4000 5000 6000
−5

0

5

t-
st
at
is
ti
c

0 1000 2000 3000 4000 5000 6000

−25

0

25

t-
st
at
is
ti
c

0 1000 2000 3000 4000 5000 6000
time samples

0

20

t-
st
at
is
ti
c

20 40 60 80 100
0

5

m
ax
.
t

20 40 60 80 100
0

20

40

m
ax
.
t

20 40 60 80 100
No. of traces x 106

0

20

m
ax
.
t

Figure 6: 18 rounds of ρ, π and χ′ (i.e., KECCAK-f without θ). top to bottom: t-test
results first to third order over time axis. Maximal t-values first order over trace axis.
Entire last round.

12

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−5

0

5

t-
st
at
is
ti
c

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−25

0

25

t-
st
at
is
ti
c

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time in µs

0

25

t-
st
at
is
ti
c

20 40 60 80 100
0.0

2.5

5.0

m
ax
.
t

20 40 60 80 100
0

20

m
ax
.
t

20 40 60 80 100
No. of traces x 106

0

20

m
ax
.
t

Figure 7: 18 rounds of θ and χ′ (i.e., KECCAK-f without ρ and π). top to bottom:
t-test results first to third order over time axis. Maximal t-values first order over trace
axis. Entire last round.

0 5000 10000 15000 20000 25000 30000 35000
−500

0

500

t-
st
at
is
ti
c

0 5000 10000 15000 20000 25000 30000 35000

0

200

t-
st
at
is
ti
c

0 5000 10000 15000 20000 25000 30000 35000
time in µs

−50
0
50

t-
st
at
is
ti
c

20 40 60 80 100
0

500

m
ax
.
t

20 40 60 80 100
0

200

m
ax
.
t

20 40 60 80 100
No. of traces x 106

0

50

m
ax
.
t

Figure 8: 18 rounds of χ′ alone. top to bottom: t-test results first to third order over
time axis. Maximal t-values first to third order over trace axis. Entire last round.

13

Table 2: Summary of practical first-order evaluations.

Active Layers Leakage?
χ′, ρ, π, θ No
χ′, θ No
χ′, ρ, π Yes
χ′ Yes

to other security primitives with a non-linear of higher than quadratic degree
is challenging. Consider the case of PRESENT [8], the cubic S-box can be
decomposed into two quadratic bijections f, g each possessing a non-uniform TI F,
G [19]. The non-uniformity caused by F cannot be alleviated by diffusion, before
causing leakage in the evaluation of G. Hence, a strictly uniform TI remains
important for decomposed non-linear layers.

While simulations of leakage behavior have already proven their utility in
finding non-completeness violations in state-of-the-art implementations [2] and in
known insecure constructions [3,7,15], finding a flaw based on uniformity violations
can be computationally more intensive. On one hand, finding a uniformity flaw
between S-box stages is easily possible by exhaustive computation [22]. On the
other hand, any simulation of an entire round has to constrain itself to merely
sampling the target distribution. It remains an open question how to obtain
useful results with few samples. Hence, practical measurements stay a crucial
part of leakage investigations.

7 Conclusion

We extended Daemen’s [10] theoretical study of lossy mappings with entropy
simulations and practical leakage evaluations of different variants of masked
Keccak-f . We conclude that Keccak-f achieves practical first-order security
even with the non-uniform three-share TI χ′ [4] since the diffusion property of its
linear layer is sufficient to counteract the loss of entropy. We especially highlight
the role of the mixing part (θ) in alleviating the non-uniformity in practical
evaluations, whereas shuffling alone (ρ, π) cannot counteract the uniformity loss.
Finally, a sampling-based simulation of input distributions is a fast method to
falsify security claims, but cannot (and does not aim to) be a substitute for
practical evaluation to intensify an indication of leakage absence.

Acknowledgments

The work described in this paper has been supported in part by the Ger-
man Federal Ministry of Education and Research BMBF (grant nr. 16KIS0666
SysKit_HW).

14

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html.

2. Victor Arribas, Svetla Nikova, and Vincent Rijmen. Vermi: Verification tool for
masked implementations. IACR Cryptology ePrint Archive, 2017:1227, 2017.

3. Gilles Barthe, Sonia Belaïd, Pierre-Alain Fouque, and Benjamin Grégoire. maskverif:
a formal tool for analyzing software and hardware masked implementations. IACR
Cryptology ePrint Archive, 2018:562, 2018.

4. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conf. on the Theory and Applica-
tions of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 313–314. Springer, 2013.

5. Tim Beyne and Begül Bilgin. Uniform first-order threshold implementations. In
Roberto Avanzi and Howard M. Heys, editors, Selected Areas in Cryptography -
SAC 2016 - 23rd International Conference, St. John’s, NL, Canada, August 10-12,
2016, Revised Selected Papers, volume 10532 of Lecture Notes in Computer Science,
pages 79–98. Springer, 2016.

6. Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Gilles Van Assche. Efficient and First-Order DPA Resistant Implementations of
Keccak. In CARDIS 2013, volume 8419 of Lecture Notes in Computer Science,
pages 187–199. Springer, 2014.

7. Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard,
and Johannes Winter. Formal verification of masked hardware implementations in
the presence of glitches. In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer
Science, pages 321–353. Springer, 2018.

8. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT:
An Ultra-Lightweight Block Cipher. In CHES 2007, volume 4727 of Lecture Notes
in Computer Science, pages 450–466. Springer, 2007.

9. Joan Daemen. On non-uniformity in threshold sharings. In Begül Bilgin, Svetla
Nikova, and Vincent Rijmen, editors, Proc. of the ACM Workshop on Theory of
Implementation Security, TIS@CCS 2016 Vienna, Austria, October, 2016, page 41.
ACM, 2016.

10. Joan Daemen. Spectral characterization of iterating lossy mappings. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy, and
Applied Cryptography Engineering - 6th International Conference, SPACE 2016,
Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076 of Lecture
Notes in Computer Science, pages 159–178. Springer, 2016.

11. Joan Daemen. Changing of the guards: A simple and efficient method for achieving
uniformity in threshold sharing. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of
Lecture Notes in Computer Science, pages 137–153. Springer, 2017.

12. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO

15

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer
Science, pages 463–481. Springer, 2003.

13. Bernhard Jungk and Jürgen Apfelbeck. Area-efficient FPGA implementations of
the SHA-3 finalists. In Peter M. Athanas, Jürgen Becker, and René Cumplido,
editors, 2011 International Conference on Reconfigurable Computing and FPGAs,
ReConFig 2011, Cancun, Mexico, November 30 - December 2, 2011, pages 235–241.
IEEE Computer Society, 2011.

14. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

15. Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating security notions
in hardware masking. IACR Cryptology ePrint Archive, 2018:597, 2018.

16. Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Standaert.
Leakage detection with the x2-test. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(1):209–237, 2018.

17. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, Information and Communications Security, 8th International
Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings,
volume 4307 of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

18. National Institute of Standards and Technology. Sha-3 standard: Permutation-based
hash and extendable-output functions. FIPS Publikcation, 2015:1–37, 2015.

19. Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang,
and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J. Cryptology,
24(2):322–345, 2011.

20. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
volume 9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

21. Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A Clear
Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293 of Lecture
Notes in Computer Science, pages 495–513. Springer, 2015.

22. Felix Wegener and Amir Moradi. A first-order SCA resistant AES without fresh
randomness. In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE
2018, Singapore, April 23-24, 2018, Proceedings, volume 10815 of Lecture Notes in
Computer Science, pages 245–262. Springer, 2018.

16

	Shuffle and Mix: On the Diffusion of Randomness in Threshold Implementations of Keccak

