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This paper introduces Freestyle, a randomized, and variable round version of the ChaCha cipher. Freestyle demonstrates the concept
of hash based halting condition, where a decryption attempt with an incorrect key is likely to take longer time to halt. This makes
it resistant to key-guessing attacks i.e. brute-force and dictionary based attacks. Freestyle uses a novel approach for ciphertext
randomization by using random number of rounds for each block of message, where the exact number of rounds are unknown to
the receiver in advance. Due to its inherent random behavior, Freestyle provides the possibility of generating up to 2256 different
ciphertexts for a given key, nonce, and message; thus resisting key and nonce reuse attacks. This also makes cryptanalysis through
known-plaintext, chosen-plaintext, and chosen-ciphertext attacks difficult in practice. Freestyle is highly customizable, which makes
it suitable for both low-powered devices as well as security-critical applications. It is ideal for: (i) applications that favor ciphertext
randomization and resistance to key-guessing and key reuse attacks; and (ii) situations where ciphertext is in full control of an
adversary for carrying out an offline key-guessing attack.
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1 INTRODUCTION

A randomized (aka probabilistic) encryption scheme involves a cipher that uses randomness to generate different
ciphertexts for a given key, nonce (a.k.a. initial vector), andmessaдe . The goal of randomization is to make cryptanalysis
difficult and a time consuming process. This paper presents the design and analysis of Freestyle, a highly customizable,
randomized, and variable-round version of ChaCha cipher[Bernstein 2008a]. ChaCha20 (i.e. ChaCha with 20 rounds)
is one of the modern, popular (for TLS [Langley et al. 2016] and SSH [Miller 2018; Miller and Josefsson 2018]), and
faster symmetric stream cipher on most machines[cha 2017; Bursztein 2014]. Even on lightweight ciphers, realistic
brute-force attacks with key sizes ≥ 128 bits is not feasible with current computational power. However, algorithms and
applications that have lower key-space due to: (i) generation of keys from a poor (pseudo-)random number generator
[cve 2017; Bello et al. 2008; Heninger et al. 2012; Kim et al. 2013; Lenstra et al. 2012; Yilek et al. 2009]; (ii) weak passwords
[Lorente et al. 2015] and poor implementations of password based key derivation [Ruddick and Yan 2016; Visconti et al.
2015]; and, (iii) poor protocol or cryptographic implementations [Adrian et al. 2015; Beurdouche et al. 2015; Vanhoef
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and Piessens 2017] are prone to key-guessing attacks (brute-force and dictionary based attacks). Such attacks are also
becoming increasingly feasible due to steady advances in the areas of GPUs [Agosta et al. 2013; Chiriaco et al. 2017; Gu
et al. 2017], specialized hardware for cryptography [Gürkaynak et al. 2017; Javeed et al. 2016; Khalid et al. 2017; Liu
et al. 2017; Malvoni et al. 2014; Wiemer and Zimmermann 2014], and memories in terms of storage size and in-memory
computations [Jain et al. 2017; Kim et al. 2016; Reis et al. 2018; Sebastian et al. 2017].

Techniques such as introducing a delay between incorrect key/password attempts, multi-factor authentication, and
CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) are being used to resist
brute-force attacks over the network (i.e. on-line brute-force attack). However, such techniques cannot be used if the
ciphertext is in full control of the adversary (i.e. offline brute-force attack); for example: encrypted data gathered from a
wireless channel, or lost/stolen encrypted files/disks. To resist offline brute-force attacks, key-stretching and slower
algorithms[Buchanan 2015] are preferred. Although, such techniques are useful, they are much slower on low-powered
devices, and also slow down genuine users.

1.1 Our contribution

This paper makes three main contributions: (i) We demonstrate the use of bounded hash based halting condition, which
makes key-guessing attacks less effective by slowing down the adversary, but remaining relatively computationally
light-weight for genuine users. We introduce the key guessing penalty, which acts as a measure for a cipher’s resistance
to key-guessing attacks. The physical significance of KGP is that the adversary would require at least KGP times
computational power than a genuine user to launch an effective key-guessing attack; (ii) We demonstrate a novel
approach for ciphertext randomization by using random number of rounds for each block of message; where the exact
number of rounds are unknown to the receiver in advance; (iii) We introduce the concept of non-deterministic CTR

mode of operation and demonstrate the possibility of using the random round numbers to generate up to 2256 different
ciphertexts - even though the key, nonce , andmessaдe are the same. The randomization makes the cipher resistant to
key re-installation attacks such as KRACK [Vanhoef and Piessens 2017] and cryptanalysis by XOR of ciphertexts in the
event of the key and nonce being reused.

The interesting feature of Freestyle’s decryption algorithm is: that it is designed to be computationally light-weight
for a user with a correct key; but, for an adversary with an incorrect key, the decryption algorithm is likely to take longer
time to halt. Thus, each key-guessing attempt is likely to be computationally expensive and time consuming.

The rest of the paper is structured as follows: Table 1 lists the notations used in the paper; section 2 presents the
background information on ChaCha cipher and its variants; section 3 describes the Freestyle cipher; section 4 presents
results and cryptanalysis of Freestyle cipher; section 5 presents related work; and section 6 concludes the paper.

2 CHACHA CIPHER AND VARIANTS

ChaCha20[Bernstein 2008a] is a variant of Salsa20[Bernstein 2005a, 2008b], a stream cipher. It uses 128-bit constant ,
256-bit key, 64-bit counter , and 64-bit nonce to form an initial cipher-state denoted by S(0), as:


constant[0], constant[1], constant[2], constant[3]

key[0], key[1], key[2], key[3]
key[4], key[5], key[6], key[7]

counter [0], counter [1], nonce[0], nonce[1]


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Table 1. List of symbols

Notation Description
Rmin Indicates the minimum number of rounds to be used for encryption/decryption. Rmin ∈ [1, 255].
Rmax Indicates the maximum number of rounds to be used for encryption/decryption. Rmax ∈ [Rmin + 1, 255].
R Number of rounds used to encrypt the current block of message. R = random(Rmin, Rmax )

Ri Number of rounds used to encrypt ith block of message. Ri = random(Rmin, Rmax ) and i ≥ 0.
r The current round number. r ∈ [1, R]

hf () Freestyle hash function which generates an 8-bit hash from a 144-bit input.
HI Round intervals at which an 8-bit hash has to be computed. HI is set to 1 at cipher initialization;

and during encryption/decryption HI is set to дcd (Rmin, Rmax ).
Pb The number of pepper bits to be used during cipher initialization. Pb ∈ [8, 32]
Ih The number of initial hashes/round-numbers to be used for cipher initialization. Ih ∈ [7, 56]
Pr The number of rounds to be pre-computed
Cp The 32-bit cipher-parameter created by concatenating Rmin, Rmax , HI , Pb , Ih, Pr

pepper The number of iterations required for cipher initialization. pepper = random(0, 2Pb − 1).
R∗i The number of rounds computed using the expected hash and pepper for ith block ofmessaдe .

rand The 256-bit value that is generated at the sender side and is to be computed at the receiver side.
E[pepper ] The expected value of pepper .
E[R+] The expected number of rounds executed by an user when an incorrect key or pepper is used.
E[R] The expected number of rounds executed by a genuine user to encrypt/decrypt a block ofmessaдe .

If an uniform (P)RNG is used, then E[R] =
Rmin + Rmax

2 .

v (r ) The value of v after r rounds of Freestyle. If v (0) is not explicitly defined, then v (0) = 0.
v[n] nth element of v .
a ⊕ b Bit-wise XOR of a and b .
a ⊞ b Addition of a and b modulo 232 .
|v | The length of v in bits.

Nb The number of blocks in amessaдe . Nb =
⌈
|messaдe |

512

⌉

Prn (X = 1) The probability of getting a valid round number at the nth trial, when using an incorrect key or pepper .

Nc The total number of ciphertexts possible for a given: key , nonce , andmessaдe .
Nr The number of ways a block of message can be encrypted using random number of rounds (R).

Nr =
(
Rmax − Rmin

HI
+ 1

)
t ime(o) The expected time taken to execute the operation ’o’.

S The 512-bit cipher-state for a given block ofmessaдe .
counter The counter in the CTR mode of operation.
null An empty string.
R A random number that is independent of the key , nonce ,messaдe , and pepper .

ChaCha20 uses 10 double-rounds (or 20 rounds) on S(0); where each of the double-round consists of 8 quarter rounds
(QR) defined as:

Odd round Even round

QR (S [0], S [4], S [ 8], S [12]) QR (S [0], S [5], S [10], S [15])
QR (S [1], S [5], S [ 9], S [13]) QR (S [1], S [6], S [11], S [12])
QR (S [2], S [6], S [10], S [14]) QR (S [2], S [7], S [ 8], S [13])
QR (S [3], S [7], S [11], S [15]) QR (S [3], S [4], S [ 9], S [14])

(1)

where the 16 elements of the cipher-state matrix are denoted in row-wise fashion, using an index in the range [0,15].
And the quarter-round QR(a,b, c,d) is defined as:

a ← a ⊞ b; d ← d ⊕ a; d ← d ≪ 16;
c ← c ⊞ d ; b ← b ⊕ c; b ← b ≪ 12;
a ← a ⊞ b; d ← d ⊕ a; d ← d ≪ 8;
c ← c ⊞ d ; b ← b ⊕ c; b ← b ≪ 7;

(2)
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After 20 rounds, the initial state (S(0)) is added to the current state (S(20)) to generate the final state. The final state is
then serialized in the little-endian format to form the 512-bit key-stream, which is then XOR-ed with a block (512 bits)
of plaintext/ciphertext to generate a block of ciphertext/plaintext. The above operations are performed for each block
ofmessaдe to be encrypted/decrypted.

ChaCha is a simple and efficient ARX (Add-Rotate-XOR) cipher, and is not sensitive to timing attacks. ChaCha has
two main flavors with reduced number of rounds i.e. with 8 and 12 rounds. ChaCha12 is considered secure enough as
there are no known attacks against it yet [Choudhuri and Maitra 2016]. ChaCha20 has two main variants: (i) IETF’s
version of ChaCha20 [Langley et al. 2016; Nir and Langley 2015] which uses a 32-bit counter (instead of 64-bit) and
96-bit nonce (instead of 64-bit); and (ii) XChaCha20 [Denis 2018], which uses 192-bit nonce (instead of 64-bit), where a
randomly generated nonce is considered safe enough [lib 2017]. The larger nonce in XChaCha20 makes the probability
of nonce reuse low.

3 THE FREESTYLE CIPHER

The Freestyle’s core is similar to the IETF’s version of ChaCha, but uses hash based halting condition. Traditionally
ciphers are designed to use fixed number of rounds in the encryption and decryption process. Even in variable round
ciphers, the number of rounds is well known in advance. This makes the cipher to take nearly the same amount of
time to execute the decryption function, irrespective of the key being correct or incorrect. This is advantageous for an
adversary if the cipher is lightweight and parallelizable. To resist such attacks, Freestyle uses the concept of hash based
halting condition.

It works on the following principle: a sender encrypts a block of message using a random number of round (R),
which is never shared with the receiver. However, the sender along with the ciphertext shares the hash of the cipher
state (or partial cipher-state) after executing R rounds. The hash is sent in cleartext; and the receiver can compute R
using the correct key, and the received hash. This expected hash acts as a halting condition for the decryption process;
i.e. the receiver has to keep executing the decryption algorithm till the computed hash matches the expected hash. For
an adversary using brute-force or dictionary based attack, since the key is incorrect, during the decryption process, the
hash is expected to take longer time to match. This asymmetry makes offline brute-force and dictionary based attacks
less efficient.

The proposed approach makes the assumption that: (i) the hash function is secure enough, that from the hash it
is computationally infeasible to compute the number of rounds, key, or any other secret information; (ii) the round
number (R) is generated using a good uniform (P)RNG like hardware random number generator or cryptographically
secure pseudo-random number generator (CPRNG) (e.g. arc4random [De Raadt 2014]).
To achieve hash based halting condition and ciphertext randomization, Freestyle uses the following 5 parameters:

(1) Rmin ∈ [1, 255], indicating the minimum number of rounds to be used for encryption/decryption. Rmin is
recommended to be ≥ 8; however for security-critical applications: Rmin ≥ 12 is preferred.

(2) Rmax ∈ [Rmin + 1, 255], indicating the maximum number of rounds to be used for encryption/decryption. Using
Rmin and Rmax , for each block ofmessaдe , a round number (R) is generated randomly by the sender which will
be used to encrypt the current block of message.

(3) Pb ∈ [8, 32], indicating the number of pepper bits to be used during cipher initialization. Pb determines the
number of iterations that will be needed to initialize the cipher. The pepper serves the same function as salt ,



Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks 5

Rmin Rmax Pb Ih Pr
(8 bits) (8 bits) (6 bits) (6 bits) (4 bits)

Fig. 1. The 32-bit cipher-parameter (Cp )

however it may not be stored along with the hash or ciphertext (i.e. can be forgotten by the sender after use)
[Forler et al. 2013; Kedem and Ishihara 1999]. Pb ≥ 16 is recommended for security-critical applications.

(4) Ih ∈ [7, 56], indicates the number of initial random-rounds to be used for cipher initialization. Ih determines the
number of possible ciphertexts that can be generated for a given key,nonce , andmessaдe . Ih ≥ 28 is recommended
for security-critical applications.

(5) Pr ∈ [0, 15] and Pr ≤ (Rmin − 4), indicates the number of Freestyle rounds to be pre-computed.

Using the values of Rmin and Rmax , a hash interval denoted by HI ∈ [1,Rmin ] is computed. HI indicates the
round intervals at which an 8-bit hash of partial cipher-state must be computed. The value of HI is set to 1 during
cipher-initialization and is set to дcd(Rmin ,Rmax ) during encryption and decryption. For a given Rmin and Rmax , the
дcd(Rmin ,Rmax ) is the optimal value of hash interval possible for performance. At the time of encryption, the sender
computes the hash after every HI rounds; and at the end of R rounds the hash is sent to the receiver. On the other hand,
while decrypting a block of message, the receiver computes the hash after every HI rounds; and decryption is stopped
only if it matches with the received hash. While decrypting a block of message, if the computed hash does not match
the expected hash even after executing Rmax rounds, then either the key, nonce , or one of the parameters provided by
the receiver is incorrect.
Remark 1 It must be noted that hashes are computed only after executing Rmin rounds. This avoids accidentally
terminating after executing fewer than expected number of rounds.
Remark 2 The performance of Freestyle is ∝ HI × Pr

Rmin × Rmax × Pb × Ih
. Thus the parameters must be carefully chosen

based on the required security level and performance.

3.1 The initial cipher-state (S(0))

The initial cipher-state of Freestyle, denoted by S(0) (equation 3) is a 4×4 matrix of 32-bit words consisting of: 128-bit
constant , 256-bit key, 32-bit counter , and 96-bit nonce . Unlike ChaCha[Bernstein 2008a], the counter size has been
reduced to 32-bit as in practice most of the protocols such as the SSH transport protocol [Ylonen and Lonvick 2006]
recommend re-keying after 1GB of data sent/received.

Freestyle’s initial cipher-state is similar to the IETF’s version of ChaCha, except that the constants are modified
using the cipher-parameter (Cp ). Cp is formed by concatenating all the 5 parameters i.e. Rmin , Rmax , Pb , Ih , and Pr

to generate a unique 32-bit string as shown in the figure 1. The Cp is then XOR-ed with the constant[0] (equation 3).
This step makes encryption with one cipher-parameter incompatible with other cipher-parameters by design; thus,
cryptanalysis data collected from a cipher with weaker cipher-parameter cannot be reused against a cipher with stronger
cipher-parameter.
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S(0) =



©­­­«
constant[0]
⊕

Cp

ª®®®¬ , constant[1], constant[2], constant[3]

key[0], key[1], key[2], key[3]

key[4], key[5], key[6], key[7]

counter , nonce[0], nonce[1], nonce[2]



(3)

3.2 Initialization for encryption

After the initial cipher-state (S(0)) is computed, the following temporary configuration is set irrespective of the cipher-
parameter (Cp ):

Rmin = 8, Rmax = 32, HI = 1, and Pr = 4 (4)

This is done to ensure there is enough entropy even if weaker values of Rmin and Rmax are set by the user. This step
also helps in cases where the parameters can be downgraded in Man in the middle (MiTM) attacks such as Logjam
[Adrian et al. 2015].

As the number of pre-computed rounds (Pr ) is now set to 4; 4 rounds of Freestyle are pre-computed using 0 as the
counter ; which results in S(4). After which, a random pepper from [0, 2Pb ) is generated by the sender and added to
S(4)[0] to form the intermediate cipher-state (S∗) as shown in equation 5.

S∗ =



©­­­«
S(4)[0]
⊞

pepper

ª®®®¬ , S(4)[1], S(4)[2] S(4)[3]

S(4)[4], S(4)[5], S(4)[6] S(4)[7]
S(4)[8], S(4)[9], S(4)[10] S(4)[11]
S(4)[12], S(4)[13], S(4)[14] S(4)[15]


(5)

After which, S∗[12] is used as the counter in CTR mode to generate Ih number of cipher states. Here, as 4 rounds
have been already been pre-computed, each of the Ih blocks will now only require (Ri − 4) additional rounds (where,
Ri = random(8, 32),∀i ∈ [0, Ih )). Then, from each of the Ih number of cipher states, Ih number of expected hashes are
computed using Freestyle’s hash function (figure 2, code in Appendix - A).

The above hashes are used for the hash based halting condition described earlier in section 3. Freestyle’s hash
function generates an 8-bit hash using: (i) the 8-bit current round number (r ), (ii) the 128 bits from the anti-diagonal
elements of the current cipher-state (S(r )), and (iii) the 8-bit previous hash (i.e. hash(r−HI )).

It must be noted that at this point only Ih number of hashes are generated, and no encryption is performed yet.
The sender then using the Ih number of random round numbers: {R0,R1, ...,RIh−1}, a 256-bit rand is computed using
ADD-XOR-Rotate instructions as shown in figure 3. The number of possible values of rand is dependent on the Ih value.
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r hash(r−HI)

� ⊕�S(r)[3]
32

8 8

⊕

≪16

� S(r)[6]
32⊕

≪12

S(r)[9] �
32 ⊕

≪8

� S(r)[12]
32⊕

≪7

32

hash(r)

8 LSBs

Fig. 2. The Freestyle hash function - hf (), for the round r (the size of variables are in bits). Note that hash(Rmin−HI ) = 0.

If Ih = 7, Freestyle can generate 232 possible values of rand ; where as if Ih = 56, Freestyle can generate 2256 possible
values of rand . The rand value is then used to modify the current cipher-state (S∗) as shown in equation 6. This makes
Freestyle resistant to chosen IV attacks [Maitra 2016] and cryptanalysis due to potential biases and Probabilistic Neutral
Bits (PNBs) [Choudhuri and Maitra 2016].

S∗ ←



S∗[0],
©­­­«

S∗[1]
⊕

rand[1]

ª®®®¬ ,
©­­­«

S∗[2]
⊕

rand[2]

ª®®®¬ ,
©­­­«

S∗[3]
⊕

rand[3]

ª®®®¬
©­­­«

S∗[4]
⊕

rand[4]

ª®®®¬ ,
©­­­«

S∗[5]
⊕

rand[5]

ª®®®¬ ,
©­­­«

S∗[6]
⊕

rand[6]

ª®®®¬ ,
©­­­«

S∗[7]
⊕

rand[7]

ª®®®¬
S∗[8], S∗[9], S∗[10], S∗[11]

S∗[12], S∗[13], S∗[14], S∗[15]



(6)

After which, the values of Rmin ,Rmax ,HI , and Pr are set back to its original values; and the current cipher-state
(S∗) is used as an input to pre-compute Pr number of rounds using S∗[12] as the counter (equation 7).

S∗ ← (S∗)(Pr ) (7)
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R7i

≪16

� R7i+1
32⊕

32

≪12

R7i+2 �
32 ⊕

≪8

� R7i+3
32⊕

≪7

� ⊕R7i+4

≪16

⊕

≪12

�R7i+6
32

� R7i+5
32

⊕

≪8

� R7i
32⊕

≪7

rand [i]

32

Fig. 3. Generation of rand [i], where i ∈ [0, 7] (the size of variables are in bits)

From now on, the new cipher-state (S∗) will be used as an input to generate the key-stream for encryption. It is to be
noted that since Pr rounds have been pre-computed, for encrypting the ith block of a message, only (Ri − Pr ) rounds
are required.

3.3 Encryption

As described earlier in section 3.2, for initialization, Freestyle uses plain CTR mode of operation for the first Ih blocks.
However for encryption, Freestyle uses non-deterministic CTR mode (figure 4). Here, we introduce the concept of
non-deterministic CTR mode of operation: in this mode, the counter is XOR-ed with a secret random number (R) that is
independent of the key, nonce ,messaдe , and pepper (unlike randomized-CTR mode where the bytes used to modify
the counter is derived from the key and/or nonce). The non-deterministic CTR mode offers two main benefits: (i) it
eliminates the need for setting the initial value for the counter ; and (ii) the counters are now chosen from a secret
random permutation of the set [0, 2Nb ), that is independent of the key, nonce ,messaдe , and pepper .
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encrypt

(counter � 0)⊕R

ciphertext0

key, nonce

plaintext0

encrypt

(counter � 1)⊕R

ciphertext1

key, nonce

plaintext1

· · · · · · encrypt

(counter � n)⊕R

ciphertextn

key, nonce

plaintextn

Fig. 4. Non-deterministic CTR mode of operation, where the counter is XOR-ed with a random number (R) that is independent of
the key , nonce ,messaдe , and pepper . In case of Freestyle, counter is S (4)[12] and R is rand [0].

In Freestyle, the random number (R) to be XOR-ed with the counter (i.e. S∗[12]) is rand[0]. The rationale behind
choosing rand[0] to be XOR-ed with the counter is: the minimum possible value of Ih is 7, which can only generate
a 32-bit random number i.e. rand[0]. The values of rand[i],∀i ∈ [1, 7] will be 0 in this case. Hence, in the worst-case
scenario, the counters are always random and unknown to an adversary.
Remark 3 The non-deterministic CTR mode may appear similar to key-whitening technique. However, in the non-
deterministic CTR mode, the counter is XOR-ed with a random number independent of the key, nonce,pepper , or the
messaдe . And the random number is likely to change for each initialization even if key, nonce , pepper , andmessaдe are
reused. Also, unlike key-whitening schemes, non-deterministic CTR mode in Freestyle does not require extra key bits
to resist key-guessing attacks. ■

Using the S∗ from the equation 7, the key-stream for a block of plaintext is computed by running random number
of round (Ri − Pr ) on S∗. The S∗i is then added to S∗ to generate the keystream (equation 9). The keystream is then is
XOR-ed with a block of plaintext to generate a block of ciphertext. For a given ith block of a message, ∀i ∈ [0,Nb ) the
ciphertext is generated as shown in equations 8,9, and 10.

S∗i = (S
∗)(Ri−Pr ) (8)

keystreami = S∗i ⊞ S∗ (9)

ciphertexti = plaintexti ⊕ keystreami (10)

Where Ri = random(Rmin ,Rmax ),∀i ∈ [0,Nb ); and Nb is the total number of blocks in a message.

3.4 Initialization for decryption

For initializing the cipher for decryption, the receiver like the sender first computes cipher-parameter (Cp ) and sets the
following temporary configuration:

Rmin = 8, Rmax = 32, HI = 1, and Pr = 4 (11)
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and computes S(4) using the key and nonce . Then the receiver iterates pepper from 0 to (2Pb − 1) using equation 5,
until Ih number of valid round numbers are found, corresponding to each of the received Ih number of hashes. Once
successful, the receiver computes the 256-bit rand value using the valid round numbers: {R0,R1, ...,RIh−1}, as shown
in figure 3.

Using the rand , the new cipher-state (S∗) is computed as shown in equation 6. The original values of Rmin ,Rmax ,HI ,

and Pr provided by the user are restored; and Pr number of rounds are pre-computed (equation 7).

3.5 Decryption

Similar to the encryption (section 3.3), non-deterministic CTR mode is used to decrypt all the blocks of message. And,
key-stream is generated using S∗ (equations 8 and 9). The plaintext is generated by XOR-ing the ciphertext with
key-stream (equation 12).

plaintexti = ciphertexti ⊕ keystreami (12)

Similar to encryption, since Pr rounds have been pre-computed, for decrypting the ith block of a message, only
(Ri − Pr ) rounds are required.

4 RESULTS AND DISCUSSIONS

4.1 Number of possible ciphertexts

For a givenmessaдe of length |messaдe | bits, themessaдe is divided into Nb =
⌈
|messaдe |

512

⌉
blocks. Since, each block

can be encrypted with a random number (R) of rounds in the range [Rmin ,Rmax ]; the total number of ways a given
block ofmessaдe can be encrypted using random number of rounds is denoted by Nr , given as:

Nr =
Rmax − Rmin

дcd(Rmin ,Rmax )
+ 1 (13)

And since all the Nb blocks of themessaдe use the Pb bits of pepper , and 32×Ih
7 -bit rand as inputs; the total number

of possible ciphertexts are:

Nc = 2Pb × 2(
32
7 ×Ih) × (Nr )

Nb (14)

From equation 14, as the number of pepper bits, number of initial hashes, or the number of blocks in amessaдe increases,
the number of possible ciphertexts for a given key,messaдe , and nonce increases exponentially.

4.2 Resistance to cryptanalysis

This section presents some of the results on Freestyle’s resistance to cryptanalysis. Here we restrict our analysis to the
additional benefits offered by Freestyle; as ChaCha with 12 rounds is known to be secure [Choudhuri and Maitra 2016].
And the detailed cryptanalysis of ChaCha can be found in [ch- 2017; Aumasson et al. 2008; Choudhuri and Maitra 2016;
Ishiguro 2012; Maitra 2016; Procter 2014].

4.2.1 Cryptanalysis using the hash. Unlike a typical cryptographic hash function, Freestyle does not require high
collision-resistant hash function; the probability of 2−8 for collision is sufficient for its purpose. The hash function
handles collisions by incrementing the hash till there is no collision (appendix E, line:46).
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Freestyle’s hash function uses 128-bits of the cipher-state (S(R)), at least 6-bits of current round number (r ), and 8
bits of previous hash (hash(r−HI )). Hence, to generate all possible partial cipher-states that may collide with a given
hash (figure 2) will require 2142 operations. Also, assuming the 8-bit hashes are equally spread over 256 buckets, there
are likely to be 2134 collisions.

The hash function uses Add-Rotate-XOR (ARX) operations, the same set of operations used by ChaCha/Freestyle’s
quarter-round (QR) (equation 1); hence are not sensitive to timing attacks by design.

4.2.2 Known-plaintext attacks (KPA), Chosen-plaintext attacks (CPA), and differential cryptanalysis. For a known or
chosen plaintext, due to the random behavior of Freestyle, even if the nonce is controlled by the adversary, there are Nc

possible ciphertexts. Hence, the effort required in cryptanalysis using known plaintext, chosen plaintext, differential
analysis increases Nc times.

4.2.3 Chosen-ciphertext attacks (CCA). In chosen-ciphertext attacks we consider two cases based on the adversary’s
ability to control the nonce .

(i) If nonce cannot be controlled by the adversary. To generate an arbitrary ciphertext, an adversary while initializing
the cipher (section 3.4) has to provide Ih valid hashes, and at least one valid hash for sending block(s) of ciphertext. As a
random round is chosen between [8,32] to initialize the rand (equation 13), there are only 25 valid hash values possible
for a given block. Hence, at the time of decryption, the total possible hashes that can be accepted by the receiver for a
block of ciphertext is Nr =

(
Rmax−Rmin

HI
+ 1

)
. And as there are 256 possible values for hash, to send a valid ciphertext,

the adversary has to send (Ih + Nb ) valid hashes. By brute-force approach, the probability of such an event occurring is:

=

(
25
256

) Ih
×

(
Nr
256

)Nb

<



2−23 for Ih = 7,

2−26 for Ih = 8,
...

2−67 for Ih = 20,
...

2−187 for Ih = 56

(15)

Assuming a constant time cryptographic implementation to check the validity of (Ih +Nb ) hashes, for Ih ≥ 20, it is hard
in practice to generate an arbitrary ciphertext (CCA) that can be accepted by a receiver if nonce cannot be controlled by
the adversary.

(ii) If nonce can be controlled by the adversary. In this case, the adversary can launch CPA which can reveal (Ih + Nb )
valid hashes. And, the adversary can replay them to make the receiver accept arbitrary ciphertext of Nb blocks.

In either of the two cases, after successfully sending a valid ciphertext, the adversary still has to guess the 128-bit
rand (in case of Ih = 28). It is computationally infeasible to know which combination of key and rand the Ih hashes
map to.
Remark 4 It must be noted that Freestyle’s hash function does not use plaintext/ciphertext as an input. Hence, cannot
prevent ciphertext tampering. In practice, Freestyle like ChaCha must be used with a message authentication code
(MAC) such as Poly1305 [Bernstein 2005b].
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4.2.4 XOR of ciphertexts when key and nonce are reused. Let us consider two messaдes M1 and M2 which when
encrypted, produce ciphertexts C1 and C2. In the event of key and nonce being reused, in a deterministic stream cipher,
C1 ⊕ C2 = M1 ⊕ M2. Whereas in Freestyle, for |M1 | and |M2 | ≥ loд2(Nc ):

Pr (C1 ⊕ C2 = M1 ⊕ M2) =
1
Nc

(16)

The equation 16 indicates that Freestyle is resistant to key re-installation attacks like KRACK [Vanhoef and Piessens
2017]. Also, in existing approaches of ciphertext randomization, in case of key and nonce being reused, the random
bytes that are shared with the receiver are prone to XOR attacks. However, such attacks are not possible in Freestyle, as
only hashes are sent to the receiver.

4.3 Resisting brute-force and dictionary attacks

Freestyle by design resists brute-force and dictionary attacks by: (i) Restricting pre-computation of stream, and (ii)
Wasting adversary’s time and computational power.

4.3.1 Restricting pre-computation of key-stream. In ChaCha, the key-stream can be pre-computed for various keys if
nonce is known. Pre-computation of stream is advantageous for a genuine receiver, as there is no need to wait for the
message. However, for an adversary, pre-computation of streams with various keys is ideal to perform brute-force and
dictionary attacks.

In Freestyle, since the key-stream depends on the rand and hash, the exact key-stream cannot be pre-computed
unless the sender sends the entire expected hashes. This however, also restricts pre-computation of key-stream even for
a genuine receiver.

4.3.2 Wasting adversary’s time and computational resources. For an adversary attempting key-guessing attack, during
the cipher initialization, for a given attempt, after executing the Rmin rounds the attacker checks if the hash meets the
expected hash after every HI rounds. If the hash does not match, the attacker does not know if: (i) the key is wrong,
or (ii) the pepper is wrong, or (iii) the number of rounds is wrong. The only way to confirm that the key or pepper is
wrong is to execute until Rmax rounds and find that the computed hash does not match with the expected hash. In
case the hash matches for a round number in range [Rmin ,Rmax ], the attacker will execute more number of rounds to
compute the round number for the next block of message. This has to be performed until all the Ih number of valid
rounds are found. Thus, paying penalty for each brute-force attempt. To quantify the penalty an adversary has to pay
in terms of computational power, we introduce the Key-guessing penalty (KGP) metric.
Definition : Key-guessing penalty (KGP) - The ratio of expected time taken to attempt decryption of amessaдe

using an incorrect key, and the expected time taken to decrypt amessaдe using the correct key (equation 17).

KGP = time(attempt decryption of amessaдe using an incorrect key)
time(decrypt themessaдe using the correct key) (17)

KGP is the measure of a cipher’s resistance to brute-force and dictionary attacks. Based on KGP, a cipher can be classified
in to two categories (i) Ciphers with KGP ≤ 1, which are not resistant to brute-force and dictionary attacks; and (ii)
KGP > 1, ciphers that are brute-force and dictionary attack resistant. Ciphers with KGP > 1 are useful in scenarios
where an adversary has higher computational power (e.g. a powerful multi-core laptop) than the victim’s system (e.g. a
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low powered RFID/IoT device). Such ciphers forces the adversary to use a machine that is at least KGP times faster than
the victim’s system to launch an effective attack.
Remark 5 KGP > 1 is a bare minimum criteria necessary to for an algorithm to be brute-force resistant. In the later
sections of the paper we will show that in Freestyle, KGP can be as high as 109. ■
Remark 6 KGP > 1 may also be achieved by using delays and CAPTCHAs for each incorrect key attempt. However,
this this not due to the property of the cipher itself. Also, such techniques are not useful in resisting offline brute-force
and dictionary attacks. ■

As mentioned in section 3.2, Freestyle uses pepper to achieve KGP > 1. If the sender uses a uniform (P)RNG to
generate the pepper value, the E[pepper ] will be 2(Pb−1); however, for an adversary, since the hashes are unlikely to
match, would require 2Pb attempts in the worst-case scenario. Hence, the maximum KGP one can expect using a
uniform (P)RNG is 2. To improve KGP, the sender must use a right-skewed distribution which is kept secret and need
not be shared with the receiver. Not that a right-skewed (P)RNG is the one which tends to generate smaller values for
pepper .
Remark 7 Irrespective of the distribution used to generate the pepper and number of rounds for encryption/decryption,
to generate the rand , a secure (P)RNG with uniform distribution must be used. ■

The probability of an 8-bit hash colliding at the nth trial when an incorrect key or pepper is used (denoted by
Prn (X = 1)) is given as:

Prn (X = 1) =
(n−1∏
i=1

256 − i
257 − i

)
︸           ︷︷           ︸
(n−1) failures

×

(
1

257 − n

)
︸      ︷︷      ︸
1 success

(18)

Then, the expected number of rounds a user with an incorrect key or pepper will execute is denoted by E[R+] can be
computed as given in equation 19.

E[R+] ≈

Ih∑
h=1

( Nr∑
n=1

Prn (X = 1)
)h−1 [( Nr∑

n=1
(Rmin + nHI ) × Prn (X = 1)

)
+ Rmax ×

(
1 −

Nr∑
n=1

Prn (X = 1)
)]

(19)

E[R+] ≈ 34.2727 (20)

During the cipher initialization, for a correct key and pepper , the expected number of rounds a user will execute is
E[R] = 20 (i.e. average of 8 and 32). After initialization, Rmin , Rmax , and HI are set to their original values, and while
decryption, if the expected number of rounds a genuine user executes is denoted by E[R]. Then, the adversary executes
2Pb × E[R+] rounds during the initialization. For an adversary, the probability of getting all Ih valid round numbers
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Fig. 5. KGP vs E[pepper ] for Rmin = 8, Rmax = 32, HI = 1, Ih = 7, E[R] = 20, Pb ∈ {20, 24, 28, 32}, and various message sizes (64
bytes to 4GB).

from the Ih expected hashes, and attempting to decrypt the first block ofmessaдe using an incorrect key is:

=

( Nr∑
n=1

Prn (X = 1)
) Ih
<



2−23 for Ih = 7,

2−26 for Ih = 8,
...

2−67 for Ih = 20,
...

2−187 for Ih = 56

(21)

which is very low for Ih ≥ 20. On the other hand, a genuine user executes E[pepper ] × E[R+] rounds during the
initialization, and Ih × E[R] rounds when using the correct pepper , and Nb × E[R] rounds to decrypt amessaдe of Nb

blocks. Then, the KGP using equation 17 is:

KGP ≈ 2Pb × E[R+]
E[pepper ] × E[R+] + Ih × E[R] + Nb × E[R]

(22)
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Fig. 6. Number of brute-force attempts possible for various ciphers on a single core of i5-6440HQ processor for a 64 byte message

The figure 5 shows the result of KGP vs. E[pepper ] for Rmin = 8,Rmax = 32, Ih = 7, E[R] = 20, Pb ∈ {20, 24, 28, 32},
and for various message sizes 64 bytes to 4GB. The results indicate that KGP ∝ 1

|messaдe | ; and can be as large as 109 by
using a right-skewed probability distribution for generating the pepper value.

To demonstrate the effectiveness of the KGP, we compare the number of brute-force attempts per second possible on
a single core of i5-6440HQ processor. The results (figure 6) indicate that Freestyle even with the lowest possible values
of pepper bits (i.e. Pb = 8) and initial hashes (i.e. Ih = 7) outperforms most of the commonly used ciphers by a wide
margin.

4.4 Better security for smaller keys

Though, not recommended, ChaCha supports 128-bit keys by concatenating the key with itself to form a 256-bit
key. In Freestyle, rand is used to modify the initial state of cipher to provide an additional 128-bit random secret (in
case of Ih = 28). The rand is statistically independent of the key, nonce , pepper , andmessaдe (equation 3); hence, for
applications where 128-bit keys have to be used, Freestyle offers better security than ChaCha.

Also, some applications may have lower key-space due to poor (P)RNG. In such cases, Freestyle can resist up to
loд2(KGP) bits of key being leaked. It is to be noted that the source of (P)RNG to generate key may be different from
the (P)RNG available with the sender. Here we assume that the (P)RNG at the sender for generating pepper and initial
Ih round numbers are not leaked.
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Fig. 7. Performance comparison of Freestyle vs. ChaCha20 on a single core of Intel i5-6440HQ processor using randen and
arc4random() as the PRNG. Note that the result does not account for the time taken for cipher initialization.

4.5 Overheads

4.5.1 Computational overhead. Freestyle has twomain overheadswhen compared to ChaCha: (i) Overhead in generating
a random number for each block ofmessaдe; (ii) Computation of a hash after every HI rounds, which uses 1 quarter
rounds of Freestyle. Hence for encryption the computational overhead is:

= time(to generate Nb random numbers) +
Nb∑
i=1

(
Ri − Rmin

HI
+ 1

)
× time(1 QR of Freestyle) (23)

Note that the equation 23 does not account for the time taken for cipher initialization. And the worst case performance
overhead is when Ri = Rmax ,∀i . The figure 7 shows the comparison of performance between optimized versions
of Freestyle and ChaCha201 and Freestyle2 with various configurations, without accounting for the time taken for
initialization. The results were obtained by running the benchmarks on a single core of Intel i5-6440HQ processor using
arc4random[De Raadt 2014] (during cipher initialization) and randen[Wassenberg et al. 2018]3 (during encryption)
and as the CPRNG. For the performance comparison test, Rmin = 8, Rmax = 32 has been used to make the cipher
performance comparable to ChaCha20, as an uniformly distributed random number generator is used. The results
indicate that Freestyle could be 1.13 to 1.60 times slower than ChaCha20 (figure 7). The difference between the

1http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/chacha.c?rev=1.1
2https://github.com/arun-babu/freestyle/tree/master/optimized/8-32
3https://github.com/jedisct1/randen-rng

http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/chacha.c?rev=1.1
https://github.com/arun-babu/freestyle/tree/master/optimized/8-32
https://github.com/jedisct1/randen-rng
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performance of encryption and decryption in Freestyle (figure 7) is mostly due to the delay in generating a random
round number during encryption.

4.5.2 Bandwidth overhead. Freestyle algorithm requires a sender to send the final round’s 8-bit hash; i.e. requiring to
send extra 8 bits for each block ofmessaдe to be sent. Also, for initialization of rand , it requires extra 8 × Ih bits. Hence,
the total bandwidth overhead in bits is (8Ih + 8Nb ), i.e.

Bandwidth overhead (in %) = 800 × (Ih + Nb )

|messaдe |
≈ 1.5625% (for a block of message) (24)

5 RELATEDWORK

5.1 Randomized encryption schemes

Use of randomized encryption schemes have been in practice for many years, and a taxonomy of randomized ciphers is
presented in [Rivest and Sherman 1983]. Also, some approaches to randomized encryption for public-key cryptography
was proposed in [Cramer and Shoup 1998; ElGamal 1985; Goldwasser and Micali 1984]. Approaches based on chaotic
systems for probabilistic encryption were also proposed [Papadimitriou et al. 2001]. However, the main concern with
some of the existing approaches are high bandwidth expansion factor and computational overhead [Li et al. 2003; Rivest
and Sherman 1983].

One of the approaches in practice is to generate random bytes and sending it in the encrypted form. The random
bytes along with the key will be used for encryption/decryption [Rivest and Sherman 1983]. Though such approaches
are capable of generating large number of ciphertexts for a givenmessaдe and a key; they do not provide the possibility
of KGP > 1. Also, for stream-ciphers, if the key and nonce are reused, there is a possibility of cryptanalysis by XOR-ing
ciphertexts. Also, in Freestyle, the random bytes are never sent to the receiver in plain nor in the encrypted form. The
random bytes must be computed by the receiver from the initial Ih hashes. The initial Ih hashes also serve the purpose
of preventing an adversary from sending arbitrary ciphertext, thus resisting CCA if the nonce cannot be controlled by
the adversary. Also, Freestyle offers the possibility of generating up to 2256 different ciphertexts even if key, nonce , and
other cipher parameters are reused. Also unlike some of the existing randomized ciphers, Freestyle has a low bandwidth
overhead of ≈ 1.5625%.

5.2 Approaches based on difficulty and proof of work

Several algorithms have been proposed in literature to increase the difficulty in key and password guessing using an
CPU intensive key-streaching[Kelsey et al. 1997] or key-setup phase [Provos and Mazieres 1999] using a cost-factor.
Also approaches that consume large amount of memory have also been proposed [Forler et al. 2013; Percival and
Josefsson 2016]. Another related area is use of client puzzles [Boyen 2007] and proof-of-work (e.g. Bitcoin [Nakamoto
2008]) to delay cryptographic operations.

The hash based halting condition described in section 3, on a high-level uses similar principle as the Halting Key
Derivation Function (HKDF) proposed in [Boyen 2007]. In HKDF, a sender with a password and random bytes, uses the
key derivation function till n iterations (or based on certain amount of time) to generate a key and a publicly verifiable
hash. On the other hand, the receiver uses the random bytes and password to generate the key till the verifiable hash
matches.

Our approach however differs from [Boyen 2007] in the following ways: (i) The minimum and maximum number of
iterations is explicitly defined and is expected to be public. This step is crucial as it ensures a minimum level of security
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for genuine user during encryption/decryption. It also ensures that an adversary executes at least the minimum number
of iterations. The maximum iterations ensures that a genuine user cannot run more than specified iterations; thus
preventing the possibility of DoS attacks or getting stuck in an infinite loop due to human errors; (ii) Freestyle does not
require a complex collision resistant hash function, as hash collisions are handled simply incrementing the hash if a
collision occurs. Also, the hash function uses ARX instructions to resist any side-channel cryptanalysis; (iii) In Freestyle,
the security of the cipher is not dependent on amount of time taken or number of iterations for cipher initialization, but
on the length of pepper bits; (iv) Freestyle uses Ih number of 8-bit hashes for initialization and an 8-bit hash for every
block of message being sent, thus the total size of hash is not fixed and is ∝ |messaдe |; (v) Freestyle does not require
hash computation at every iteration, instead a hash interval (HI ) parameter is used to determine round intervals at
which hash must be computed, thus offering flexibility to adjust performance and security; and (vi) Freestyle forces
the cipher initialization with Rmin = 8 and Rmax = 32, thus ensures enough randomness even in cases where user
provides insecure parameters for cipher initialization; and (vii) Freestyle offers the possibility of much higher KGP by
allowing the sender to choose a right-skewed distribution to generate pepper and Ri .

5.3 Freestyle vs ChaCha

When compared to ChaCha, Freestyle offers better security for 128-bit keys (section 4.4). It also provides the possibility
of generating 2256 ciphertexts for a givenmessaдe even if nonce and key is reused (section 4.1). This makes Freestyle
resistant to XOR of ciphertext attacks if key and nonce is reused. Randomization also makes Freestyle resistant to KPA,
CPA, and CCA (section 4.2.2). Freestyle offers the possibility of KGP > 1, which makes it resistant to brute-force and
dictionary based attacks (section 4.3). Also, due to the KGP, Freestyle can resist against attacks which can leak upto
loд2(KGP) key bits. In ChaCha20, S(0) is added with S(20) to generate keystream; which would leak the values of S(20)[i],
for i ∈ {0, 1, 2, 3, 12, 13, 14, 15} in case of CPA or CCA attacks. Although, there are no known attacks yet to extract any
key bits from the above leaked values; Freestyle is not prone to such leaks as none of the elements of S∗ in equation 8 is
known to an adversary.

On the other hand, Freestyle was found to be 1.13 to 1.60 times slower than ChaCha20 (section 4.5), and also has a
higher cost of initialization (sections 3.2, 3.4). In terms of bandwidth overhead, Freestyle generates ≈ 1.5625% larger
ciphertext. In implementation overhead, Freestyle’s encryption and decryption logic differ slightly. ChaCha is a simple
constant time algorithm, where as Freestyle is a randomized algorithm and adds complexity to make cryptanalysis
difficult in practice. Finally, Freestyle assumes that the sender has a cryptographically secure PRNG.

6 CONCLUSION

In this paper we have introduced Freestyle, a novel randomized cipher capable of generating up to 2256 different
ciphertexts for a given key, nonce , andmessaдe; making known-plaintext (KPA), chosen-plaintext(CPA) and chosen-
ciphertext (CCA) attacks difficult in practice. We have introduced the concepts of bounded hash based halting condition

and key-guessing penalty (KGP), which are helpful in development and analysis of ciphers resistant to key-guessing
attacks. Freestyle has demonstrated KGP > 1 which makes it run faster on a low-powered machine having the correct
key, and is KGP times slower (with high probability) on an adversary’s machine. Freestyle is ideal for applications where
the ciphertext is assumed to be in full control of the adversary i.e. where an offline brute-force or dictionary attack can
be carried out. Example use-cases include disk encryption, encrypted databases, password managers, sensitive data
in public facing IoT devices, etc. The paper has introduced a new class of ciphers having KGP > 1. There is further
scope for research on other possible and simpler ways to achieve KGP > 1, and study the properties of such ciphers.
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The possibility of forcing an adversary to solve a NP-hard problem for every decryption attempt with an incorrect key
could be an attractive topic of research. The key challenge however is to make the time taken for decryption attempt
with an incorrect key, greater than the time taken to detect if the problem is NP-hard.
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Appendix A REFERENCE CODE - FREESTYLE HASH FUNCTION

1#define AXR(a,b,c,r) {a = PLUS(a,b); c = ROTATE(XOR(c,a),r);}

2
3u8 freestyle_hash (

4const u32 cipher_state [16],

5const u8 previous_hash ,

6const u8 rounds)

7{

8u8 hash;

9
10u32 temp1 = rounds;

11u32 temp2 = previous_hash;

12
13AXR (temp1 , cipher_state[ 3], temp2 , 16);

14AXR (temp2 , cipher_state[ 6], temp1 , 12);

15AXR (temp1 , cipher_state[ 9], temp2 , 8);

16AXR (temp2 , cipher_state [12], temp1 , 7);

17
18hash = temp1 & 0xFF;

19
20return hash;

21}

Appendix B REFERENCE CODE - INITIALIZATION FOR ENCRYPTION

1#define MAX_INIT_HASHES (56)

2
3void freestyle_randomsetup_encrypt (freestyle_ctx *x)

4{

5u32 i;

6
7u8 R [MAX_INIT_HASHES ]; /* actual random rounds */

8u8 CR[MAX_INIT_HASHES ]; /* collided random rounds */

9
10u32 temp1;

11u32 temp2;

12
13const u32 saved_min_rounds = x->min_rounds;

14const u32 saved_max_rounds = x->max_rounds;

15const u32 saved_hash_interval = x->hash_interval;

16const u8 saved_num_precomputed_rounds = x->num_precomputed_rounds;

17
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18u32 p;

19
20if (! x->is_pepper_set)

21{

22x->pepper = arc4random_uniform (

23x->pepper_bits == 32 ? -1 : (1 << x->pepper_bits)

24);

25}

26
27/* set sane values for initalization */

28x->min_rounds = 8;

29x->max_rounds = 32;

30x->hash_interval = 1;

31x->num_precomputed_rounds = 4;

32
33for (i = 0; i < MAX_INIT_HASHES; ++i) {

34R [i] = CR[i] = 0;

35}

36
37/* initial pre -computed rounds */

38freestyle_precompute_rounds(x);

39
40/* add a random/user -set pepper to constant [0] */

41x->input[CONSTANT0] = PLUS(x->input[CONSTANT0], x->pepper );

42
43for (i = 0; i < x->num_init_hashes; ++i)

44{

45R[i] = freestyle_encrypt_block (

46x,

47NULL ,

48NULL ,

490,

50&x->init_hash [i]

51);

52
53freestyle_increment_counter (x);

54}

55
56if (! x->is_pepper_set)

57{

58/* set constant [0] back to its previous value */
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59x->input[CONSTANT0] = MINUS(x->input[CONSTANT0], x->pepper );

60
61/* check for any collisions between 0 and pepper */

62for (p = 0; p < x->pepper; ++p)

63{

64x->input[COUNTER] = x->initial_counter;

65
66for (i = 0; i < x->num_init_hashes; ++i)

67{

68CR[i] = freestyle_decrypt_block (

69x,

70NULL ,

71NULL ,

720,

73&x->init_hash [i]

74);

75
76if (CR[i] == 0) {

77goto retry;

78}

79
80freestyle_increment_counter(x);

81}

82
83/* found a collision; use the collided rounds */

84memcpy(R, CR, sizeof(R));

85break;

86
87retry:

88x->input[CONSTANT0] = PLUSONE(x->input[CONSTANT0 ]);

89}

90}

91
92for (i = 0; i < 8; ++i)

93{

94temp1 = 0;

95temp2 = 0;

96
97AXR (temp1 , R[7*i + 0], temp2 , 16);

98AXR (temp2 , R[7*i + 1], temp1 , 12);

99AXR (temp1 , R[7*i + 2], temp2 , 8);
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100AXR (temp2 , R[7*i + 3], temp1 , 7);

101
102AXR (temp1 , R[7*i + 4], temp2 , 16);

103AXR (temp2 , R[7*i + 5], temp1 , 12);

104AXR (temp1 , R[7*i + 6], temp2 , 8);

105AXR (temp2 , R[7*i + 0], temp1 , 7);

106
107x->rand[i] = temp1;

108}

109
110/* set user parameters back */

111x->min_rounds = saved_min_rounds;

112x->max_rounds = saved_max_rounds;

113x->hash_interval = saved_hash_interval;

114x->num_precomputed_rounds = saved_num_precomputed_rounds;

115
116/* set counter to the value that was after pre -computed rounds */

117x->input[COUNTER] = x->initial_counter;

118
119/* modify constant [1], constant [2], and constant [3] */

120x->input[CONSTANT1] ^= x->rand [1];

121x->input[CONSTANT2] ^= x->rand [2];

122x->input[CONSTANT3] ^= x->rand [3];

123
124/* modify key[0], key[1], key[2], and key[3] */

125x->input[KEY0] ^= x->rand [4];

126x->input[KEY1] ^= x->rand [5];

127x->input[KEY2] ^= x->rand [6];

128x->input[KEY3] ^= x->rand [7];

129
130/* Do pre -computation as specified by the user */

131freestyle_precompute_rounds(x);

132}

Appendix C REFERENCE CODE - INITIALIZATION FOR DECRYPTION

1void freestyle_randomsetup_decrypt (freestyle_ctx *x)

2{

3u32 i;

4
5u8 R [MAX_INIT_HASHES ]; /* random rounds */

6
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7u32 temp1;

8u32 temp2;

9
10const u8 saved_min_rounds = x->min_rounds;

11const u8 saved_max_rounds = x->max_rounds;

12const u8 saved_hash_interval = x->hash_interval;

13const u8 saved_num_precomputed_rounds = x->num_precomputed_rounds;

14
15u32 pepper;

16
17u32 max_pepper = x->pepper_bits == 32 ?

18UINT32_MAX : (u32) ((1 << x->pepper_bits) - 1);

19
20/* set sane values for initalization */

21x->min_rounds = 8;

22x->max_rounds = 32;

23x->hash_interval = 1;

24x->num_precomputed_rounds = 4;

25
26for (i = 0; i < MAX_INIT_HASHES; ++i) {

27R[i] = 0;

28}

29
30/* initial pre -computed rounds */

31freestyle_precompute_rounds(x);

32
33/* if initial pepper is set , then add it to constant [3] */

34x->input [CONSTANT0] = PLUS(x->input[CONSTANT0], x->pepper );

35
36for (pepper = x->pepper; pepper <= max_pepper; ++ pepper)

37{

38x->input[COUNTER] = x->initial_counter;

39
40for (i = 0; i < x->num_init_hashes; ++i)

41{

42R[i] = freestyle_decrypt_block (

43x,

44NULL ,

45NULL ,

460,

47&x->init_hash [i]
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48);

49
50if (R[i] == 0) {

51goto retry;

52}

53
54freestyle_increment_counter (x);

55}

56
57/* found all valid R[i]s */

58break;

59
60retry:

61x->input[CONSTANT0] = PLUSONE(x->input[CONSTANT0 ]);

62}

63
64for (i = 0; i < 8; ++i)

65{

66temp1 = 0;

67temp2 = 0;

68
69AXR (temp1 , R[7*i + 0], temp2 , 16);

70AXR (temp2 , R[7*i + 1], temp1 , 12);

71AXR (temp1 , R[7*i + 2], temp2 , 8);

72AXR (temp2 , R[7*i + 3], temp1 , 7);

73
74AXR (temp1 , R[7*i + 4], temp2 , 16);

75AXR (temp2 , R[7*i + 5], temp1 , 12);

76AXR (temp1 , R[7*i + 6], temp2 , 8);

77AXR (temp2 , R[7*i + 0], temp1 , 7);

78
79x->rand[i] = temp1;

80}

81
82/* set user parameters back */

83x->min_rounds = saved_min_rounds;

84x->max_rounds = saved_max_rounds;

85x->hash_interval = saved_hash_interval;

86x->num_precomputed_rounds = saved_num_precomputed_rounds;

87
88/* set counter to the value that was after pre -computed rounds */
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89x->input[COUNTER] = x->initial_counter;

90
91/* modify constant [1], constant [2], and constant [3] */

92x->input[CONSTANT1] ^= x->rand [1];

93x->input[CONSTANT2] ^= x->rand [2];

94x->input[CONSTANT3] ^= x->rand [3];

95
96/* modify key[0], key[1], key[2], and key[3] */

97x->input[KEY0] ^= x->rand [4];

98x->input[KEY1] ^= x->rand [5];

99x->input[KEY2] ^= x->rand [6];

100x->input[KEY3] ^= x->rand [7];

101
102/* Do pre -computation as specified by the user */

103freestyle_precompute_rounds(x);

104}

Appendix D REFERENCE CODE - ENCRYPTION AND DECRYPTION

1#define freestyle_encrypt (...) freestyle_xcrypt(__VA_ARGS__ ,true)

2#define freestyle_decrypt (...) freestyle_xcrypt(__VA_ARGS__ ,false)

3
4int freestyle_xcrypt (

5freestyle_ctx *x,

6const u8 *plaintext ,

7u8 *ciphertext ,

8u32 bytes ,

9u8 *hash ,

10const bool do_encryption)

11{

12u32 i = 0;

13u32 block = 0;

14
15while (bytes > 0)

16{

17u8 bytes_to_process = bytes >= 64 ? 64 : bytes;

18
19u32 num_rounds = freestyle_xcrypt_block (

20x,

21plaintext + i,

22ciphertext + i,

23bytes_to_process ,
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24&hash [block],

25do_encryption

26);

27
28if (num_rounds < x->min_rounds) {

29return -1;

30}

31
32i += bytes_to_process;

33bytes -= bytes_to_process;

34
35++block;

36
37freestyle_increment_counter(x);

38}

39return 0;

40}

Appendix E REFERENCE CODE - ENCRYPT OR DECRYPT A BLOCK OF MESSAGE

1#define MAX_HASH_VALUES (256)

2
3u8 freestyle_xcrypt_block (

4freestyle_ctx *x,

5const u8 *plaintext ,

6u8 *ciphertext ,

7u8 bytes ,

8u8 *expected_hash ,

9const bool do_encryption)

10{

11u32 i;

12
13u8 hash = 0;

14
15u32 output [16];

16
17bool init = (plaintext == NULL) || (ciphertext == NULL);

18
19u8 r;

20u8 rounds = do_encryption ? freestyle_random_round_number (x): x->max_rounds;

21
22bool do_decryption = ! do_encryption;



Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks 29

23
24bool hash_collided [MAX_HASH_VALUES ];

25
26memset (hash_collided , false , sizeof(hash_collided ));

27
28for (i = 0; i < 16; ++i) {

29output [i] = x->input [i];

30}

31
32/* modify counter */

33output[COUNTER] ^= x->rand [0];

34
35for (r = x->num_precomputed_rounds + 1; r <= rounds; ++r)

36{

37if (r & 1)

38freestyle_column_round (output );

39else

40freestyle_diagonal_round (output );

41
42if (r >= x->min_rounds && r % x->hash_interval == 0)

43{

44hash = freestyle_hash (x,output ,hash ,r);

45
46while (hash_collided [hash]) {

47++hash;

48}

49
50hash_collided [hash] = true;

51
52if (do_decryption && hash == *expected_hash) {

53break;

54}

55}

56}

57
58if (do_encryption)

59*expected_hash = hash;

60else

61if (r > x->max_rounds)

62return 0;

63
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64if (! init)

65{

66u8 keystream [64];

67
68for (i = 0; i < 16; ++i)

69{

70output[i] = PLUS(output[i], x->input[i]);

71U32TO8_LITTLE (keystream + 4 * i, output[i]);

72}

73
74for (i = 0; i < bytes; ++i) {

75ciphertext [i] = plaintext[i] ^ keystream[i];

76}

77}

78
79return do_encryption ? rounds : r;

80}
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