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Abstract. To determine the dimension of null space of any given lin-
earized polynomial is one of vital problems in finite field theory, with
concern to design of modern symmetric cryptosystems. But, the known
general theory for this task is much far from giving the exact dimension
when applied to a specific linearized polynomial. The first contribution
of this paper is to give a better general method to get more precise up-
per bound on the root number of any given linearized polynomial. We
anticipate this result would be applied as a useful tool in many research
branches of finite field and cryptography. Really we apply this result to
get tighter estimations of the lower bounds on the second order nonlinear-
ities of general cubic Boolean functions, which has been being an active
research problem during the past decade, with many examples showing
great improvements. Furthermore, this paper shows that by studying the
distribution of radicals of derivatives of a given Boolean functions one
can get a better lower bound of the second-order nonlinearity, through
an example of the monomial Boolean function g, = Tr(,um227‘+2”r1)
any finite field Fan.
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1 Introduction

To determine the dimension of null space of linearized polynomials is one of
vital problems in finite field theory, with concern to design of modern symmetric
cryptosystems. But, the known general theory for this task is much far from
giving the exact dimension when applied to a specific linearized polynomial. The
first contribution of this paper is to give a better general method to get more
precise upper bound on the root number of any given linearized polynomial.
As the second contribution we apply this result to get tighter estimations of
the lower bounds on the second order nonlinearities of cubic Boolean functions,



which has been being an active research problem during the past decade as
summarized below.

The r—th order nonlinearity of n—variable Boolean function f is the min-
imum Hamming distance between f and all n—variable Boolean functions of
degree at most r. Computing the r-th order nonlinearity of a given function
with algebraic degree strictly greater than r is a hard task for r > 1. Even the
second-order nonlinearity is unknown for all functions except for a few peculiar
ones and for functions in small numbers of variables. The best known upper
bound on the r—th nonlinearity for » > 1 credits to Carlet and Mesnager [10].
Proving lower bounds on the r-th order nonlinearity of functions is also a quite
difficult task, even for the second order [8].

In 2006, Carlet [11] and Carlet et al. [12] have presented two lower bounds
involving the algebraic immunity on the rth-order nonlinearity. None of them
improves upon the other one in all situations. In 2007, the first author [26]
presented an improved lower bound on the r—th-order nonlinearity profile of
Boolean functions, given their algebraic immunity. Her results improve signifi-
cantly upon the lower bound in [12] for all orders and upon the bound in [11]
for low orders (which play the most important role for attacks). Note that rela-
tion between nonlinearity and algebraic immunity have been studied further in
[24,32].

In 2008, Carlet [8] introduced a method to determine the lower bound of
the r-th order nonlinearity of a function from the maximum value or the lower
bounds of the (r — 1)-th order nonlinearity of its first derivatives, and obtained
the lower bounds on the second order nonlinearities of some functions including
Welch function and multiplicative inverse function and so on. Carlet [7] also lower
bounded the nonlinearity profile of the Dillon bent functions. In [22], Kolokotro-
nis and Limniotis get a tighter lower bound on the second-order nonlinearity
of the cubic Boolean functions within the Maiorana-McFarland class. In 2009,
Sun and Wu [30] have found lower bounds of the second-order nonlinearities of
three classes of cubic bent Boolean functions, and Gangopadhyay, Sarkar and
Telang [16] improved lower bounds on the second order nonlinearities of the cu-
bic monomial Boolean functions Tr()\x227.+27'+1) over Fon with n = 6r. Gode
and Gangopadhyay [18] lower bound the second-order nonlinearities of the cubic
monomial Boolean functions. In 2010, Li, Hu, Gao [23] extend these results from
monomial Boolean functions to Boolean functions with more trace terms, and get
better lower bound than those of Gode and Gangopadhyay [18] for monomial
functions. In 2011, Singh [29] lower bounded the second-order nonlinearity of
Tr(Ax?+2"+1) over Fyn with n = 3r. Sun and Wu [31] obtained a better lower
bound of second-order nonlinearity of Tr(Az2" +2'+1) over Fon with n = 4r.
Gangopadhyay and Garg [15] obtain a better lower bound of second nonlin-
carity of Tr(Az2 T2 +1) over Fyn with n = 5r. Garg and Gangopadhyay [17]
obtained a better lower bound of second-order nonlinearity for a bent function
via Niho power function. In 2018, Carlet [9] has obtained an upper bound on
the nonlinearity of monotone Boolean functions in even dimension and showed
a deep weakness of such functions.



In this paper, new results which significantly improve all these previous esti-
mations on lower bound of the second-order nonlinearity of general cubic Boolean
functions are achieved by applying the improved upper-bound estimation of root
number of linearized polynomials, together with a set of examples.

Furthermore, this paper shows that one can get a better lower bound of
the second-order nonlinearity by studying the distribution of radicals of deriva-
tives of a given Boolean functions, by an example of the Boolean function
gy = Tr(pa® +2"+1) over any finite field Fan.

The paper is structured as follows. Section 2 sets main notations and gives
background on Boolean functions. In Section 3, we present the known lower-
bounds on the second-order nonlinearity of Boolean functions. In Section 4, new
upper bound on the root number of linearized polynomials is given (Theorem 17).
We also focus on the related Problem 18 and presents an algorithmic approach to
this problem. In Section 5, we apply the results of the previous sections to derive
a better estimation on the second order nonlinearity of cubic Boolean functions
(Theorem 21). By examining examples, we show in Section 6 that our estimation
is more precise than the one given by Li, Hu and Gao [23]. In Section 7, a deep
analysis toward a better lower bound on the nonlinearity of cubic functions is
presented as well as several open problems for future considerations.

2 Preliminaries

Let L be a Galois extension of a field K and Gal(L/K) be the Galois group of
L over K. Let 0%(z) = z,07(z) = (077 (2)) for ¢ € Gal(L/K) and x € L.
Then for a given polynomial w(t) = Z;ZO ¢;t € LIt], a homomorphism w(o) is
defined to act as w(o)x = Zé‘:o cjo’(z) on the element z € L. The following
lemma characterizes the size of kernel space of the homomorphism w(o).

Lemma 1. ([19,14]). Let L be a cyclic Galois extension of K of degree n and
suppose that o generates the Galois group of L over K. Let m be an integer
satisfying 1 < m < n and w(t) be a polynomial of degree m in L[t]. Let R =
{z € Llw(c)x = 0}. Then we have dimg R < m.

Let K = Fy and L = Fan. Because given ged(n,s) = 1, o(z) = 2% is a
generator of the Galois group of L over K, as a corollary we can get following.

Lemma 2. [2] Let g(z) =Y ;_, rix2” (r; € Fan) be a linearized polynomial over
Fon with ged(n, s) = 1. Then, equation g(z) = 0 has at most 2¥ solutions in Fon.

A Boolean function f is an F,-valued function on the vectorspace Fy over
the prime field F, formed by all binary vectors of length n. We shall need a
representation of Boolean functions by univariate polynomials over the Galois
field Fon of order 2™. To this end, we identify the field Fay» with F% by choosing
a basis of Fan, viewed as vector space over Fo. We denote the absolute trace over
Fy of an element © € Fan by Tr](z) = Z?:_Ol 22", The function Tr} from Fon
to its prime field Fy is Fa-linear and satisfies (Tr7(z))? = Tri(x) = Tri(x?)



for every & € Fan. The function (z,y) — Tr(zy) is an inner product in Fan.
For any positive integer k, and r dividing k, the trace function from Fyr to Far,
denoted by Tr¥, is the mapping defined as:

E—1
Vo € For, Trk(z):= szw x4+ 4227 44
i=0

ok—r,

Recall that, for every integer r dividing k, the trace function T7F satisfies
the transitivity property.

Given an integer e, 0 < e < 2" — 1, having the binary expansion: e =
E?:—Ol e;2%, e; € {0,1}, the 2-weight of e, denoted by wa(e), is the Hamming
weight of the binary vector (eg, e, -+ ,e,—1). Every non-zero Boolean function
f defined on Fon has a (unique) trace expansion of the form:

Vo € Fon, f(x)= Z Tr‘f(j)(ajxj) +e(14+277Y), aj €Fpu (1)
JEIn

called its polynomial form, where I, is the set of integers obtained by choosing

one element in each cyclotomic class of 2 modulo 2™ — 1, the most usual choice
being the smallest element in each cyclotomic class, called the coset leader of the
class, and o(j) is the size of the cyclotomic coset containing j, e = wt(f) modulo
2. The algebraic degree of f, denoted by deg(f), is equal to the maximum 2-
weight of an exponent j for which a; # 0 if ¢ = 0 and to n if e = 1. Note that
e = 0 when wit(f) is even, that is, when the algebraic degree of f is less than
n. Note that when the integers modulo 2" — 1 are partitioned into cyclotomic
classes of 2 modulo 2™ — 1, all the elements in a cyclotomic class have the same
2-weight.

From now, we shall denote Tr the trace function from Fon to Fy defined by
Tr(z)=a+a%+22 +- +a22 .

A Boolean function on Fa is a function can be expressed as Tr(g[x]), where
glz] is any polynomial in Fan[z]. The Hamming weight of binary represen-
tation of integer degg[z] is the degree of Boolean function Tr(g[z]) on Fan.
The (Hamming) distance between Boolean functions f; and fy is defined by
d(f1, f2) = #{2 € Fan | fi(2) # fa(a) }.

Let f be any n—variable Boolean function on Fan. The r—th order nonlin-
earity of f, denoted by nl.(f), is the minimum Hamming distance between f
and all n—variable Boolean functions of degree at most r, a nonnegative integer
less than or equal to n. The sequence of values nl.(f) for r ranging from 1 to
n — 1 is said to be the nonlinearity profile of f. The first order nonlinearity of f
is referred to as the nonlinearity of f and denoted by ni(f).

The Walsh transform of function f at u € Far is defined by

Wf(u) = Z (71)f(1)+T7‘(’U4:E)7u € FQ"?

x€Fon



and the Walsh spectrum of f as the set { Wy(u)|u € Fon }. The nonlinearity
and the Walsh transform of f are related as:

1
—_on—1_ = .
nl(f) =2 5 max [Wy(u)|. (2)
The derivative of f with respect to b € Far is the Boolean function Dy f : x —
f(x)+ f(z +b). The kernel e of quadratic Boolean function f is the F,—linear
subspace of Fan, defined by e = {x € Fon |Vy € Fon, f(0)+ f(2)+ f(y) + f(z+
y) =0}

Lemma 3. [}/ Let f be any quadratic Boolean function. The kernel €4 of f is
the subspace consisting of those b € Fon such that the derivative Dy f is constant.

Lemma 4. [/] The dimension of the kernel €4 of quadratic Boolean function f
on Fan has the same parity as one of n.

Lemma 5. [4] The Walsh Spectrum of quadratic Boolean function f depends
only on the dimension k of the kernel. The weight distribution of the Walsh
spectrum 1S

Wi(u)|  Number of u € Fan
0 on _ 2n—k
T (on—h—1 4 (21) /0275

ntk n—k—2

—2%5 |2nkml _ (—1) (02"

Note Any quadratic Boolean form can be represented by T ( ZE& Sz ), 5,
Fan [27].
Any cubic Boolean function over Fa» can be written as

f(x) = Tr(zQ(x)) + Tr(zL(z)) + a(), 3)

where @) is a quadratic polynomial, L is a linearized polynomial and a is an
affine Boolean function. Denote ¢ the polar form associated to Q: ¢(z,y) =

Qla +y) + Qz) + Q(y). .

Set f(x) = Tr(zQ(x)) for every & € Fan. Note that nla(f) = nla(f). Now,
for a € F5n,

Daf(x) =Tr((z + a)Q(z + a) + 2Q(x))
= Tr(zd(a, ) + aQ(x)) + Tr(zQ(a) + ad(a, z) + aQ(a)).

Hence, nl(D,f) = nl(¥,), where for every « € Fan

Ya(x) = Tr(zd(a,x) + aQ(x)).
By the relation (2) and Lemma 5, the nonlinearity of a nonzero quadratic
form can be expressed in terms of its radical:

n+ra
—5 -1

nl(ip,) = 271 —2



where r,, is the dimension of the vector space ey, := {z € Fon|Vy € Fon, B,(z,y) =
0} over Fo, i.e. the radical of ¢,, where B, is the polar form of v¢,: B, =
ag(z,y) + zo(a,y) + yo(a, ). Note always a € €5, and therefore

rq > 1, for every a € F5.. (4)

The reader can consult [5] for more background on Boolean functions.

3 Known results on the lower bounds on the second-order
nonlinearity of Boolean functions

Let us now recall the following lower bound on the second-order nonlinearity
of Boolean functions. Let f be any Boolean function on Fon and r a positive
integer smaller than n.

Theorem 6. /8]
nl.(f) > 1 max nl.—1(Dgf). (5)

a€Fan

Theorem 7. [8§]

nl,(f) >2""1 - ;\/2% —2 )" nl_1(Daf). (6)

a€Fan

If we apply these lower bounds to a cubic function of the form (3), we get

an

1 rrla 1 n+rq
nly(f) > max | = max (2”*1 —9 > *1)72”*1 _ 2\/2271 —9 Z (2n-1 — 2%_1) 7

acF}
a€lFyn

or,

1 n+tra 1 ntr

l > "2 _ Z min 272 ,2" L — = [on 272 | 7
nla(f) = max i 5 + EEF* 2 (7)
acks,

From (7), immediately it follows:

Corollary 8. [8] For any cubic Boolean function f no possessing affine deriva-
tives,
3
nla(f) = 2 — 273 (8)

Gode and Gangopadhyay [18] have improved on this for monomial Boolean
functions:

Theorem 9. [18] Let f,(x) = Tr(pa? T2 1), where i € Fon, and i,j are inte-
gers such thatn >4 > j > 0.



Forn > 2i, if n is an even, then

n+2i

nla(f,) > 2" — \/2n 2n — , )

and if n is an odd, then

Theorem 10. [18] Let g,,(z) = Tr(pa® 2" +1), where p € Fan and ged(n,r) =
1.
Forn > 3, if n is an even, then

nly(gu) 2 27 = Syfan (2 - 1) (1)
and if n is an odd, then
nla(g,) > 2" — f\/2n 2 — 1)2"5°. (12)

Li, Hu and Gao [23] have improved on Corollary 8 for general cubic Boolean
functions, while for cubic monomial Boolean functions the improved estimation
are better than ones given in Theorem 9:

Theorem 11. [23] Let F,, = Tr(> %, i), where p € Fan and dj = 20+
n > 1 > 5 > 0. Let us suppose that any derivative of F), be a quadratic func-
tion. Let hy(z) = Tr(X ;- 11 Ciur? +1),ci,u € Fon, be the quadratic part of the
derivative of F, at u € Fan.
Let s = min{¢|3u, ¢ # 0,1 < i <n—1} t=max{i|3u € Fon,c;, #
0,1<i<n-—1}andt; =max{i|Iu € Fon,c; , #0,i £t} if s#t orn#2t.
D Ifn<s+t,

nly(F,) >2""1 — Loy (2n —1)2¢, (13)

2
@ If2t>n>s+t,

1
nly(F,) > 271 — 5\/2n + (27 — 1)27s, (14)

® Ifn=2t and s # t, let p=min{n — 2s,2t1},

nly(F,) 2"1—7\/271 on _ 1)2"%%, (15)

@ If n > 2t is an even, let p = min{n — 2s,2t},

nly(F,) > 2" — 7\/271 on —1)2"2", (16)
If n > 2t is an odd, let ¢ = min{n — 2s,2t — 1},
1 ntq
nly(F,) >2"1 — 5\/2” +(@2r—1)272 . (17)



Li, Hu and Gao also generalized the Gode-Gangopadhyay estimation for cubic
monomial Boolean functions g, (Theorem 10) to cubic Boolean functions G,, =
Tr(> L, mz®), where py € Fon and d; = 20707 4 > 5, > 0, ged(n,r) =
1,r # 1.

Theorem 12. [23] Let t = max{4;|1 < I < m}. Let us suppose that any
derivative of G, be quadratic function. For n > 2t, if n is an even, then

1 niar
nly(G,) > 2"t - f\/2n + (27 — 1)2"F. (18)
2
And if n is an odd, then
1 i
nly(G,) > 2"t - 5\/271 + (20 — 1)2"5 (19)

Note that Theorem 12 restricted to g, coincides with Theorem 10 and (a
generalization of) this is reformulated as Corollary 5 in [23].

4 On the root number of linearized polynomials

In this section, we present an improvement of the upper bound on the root
number of linearized polynomials as well as an algorithmic solution of Problem
18.

4.1 Improved upper bound on the root number of linearized
polynomials

To begin with, recall some simple facts which are found in elementary number
theory.

Definition 13. Let p be a prime. The p—adic norm (or, also called p—adic
valuation) of a rational number d = pTg, where A,B € Z and gcd(A,p) =
ged(B,p) =1, is denoted by ||d||, and defined by ||d||, =p~".

Definition 14. We define a function gg : Z* x Z* — Z* by gg9(A,B) =
1

Hp\B: prime HAHP ‘

Proposition 15. For any two nonzero integers A and B, followings are facts.

1. ged(A, B)|gg(a, B). In particular, ged(A, B) < gg(a, B).

2. gg(A, B) and gg(B, A) have the same prime factors, and ged(gg(4, B), gg(B, A)) =
ged(A, B).

3. the value gg(ﬁ,B) is an integer and it holds

A
cd(——— B) = 1.
8 (gg(AB) )

In fact, WAJi’) is the greatest divisor of A that is coprime to B.



4. If A divides A’, then divides

A
qq(A B) 99(A’,B) "

Then we are going to deduce an improved upper bound estimation on num-
bers of roots of linearized polynomials.

Lemma 16. Letry < ro be integers. Any linearized polynomial L(z) = >/2 o (o €

LT
ro ok oitktkin

Fon) over Fon has the same number of roots in Fan as L'(x) = 712 a;

has in Fon, where k, k;(i € {r1,m2}) are arbitrarily given integers.

Proof. © € Fan is a root of L(x ) — L(z)=0 <= L(l‘)2k =0 <=
DY ax = 0= Y2, of 7T =0

(Regarding to 22 " = 2 which follows from z € Fan)
<= x € Fan is a root of L'(x).

a linearized polynomial over Fon. Let us introduce follzwing notations: A =

{ila; #0,m1 <i <o} ={io,i1, - ,ig—1} andU = { K = (k, ko, k1,--- ,ki—1) €

28|V e {0,t — 1}, ij+k+kn >0}, For K € U, let us define following quan-

tities sequentially: Tx = ged({i; +k+k;n|j € {0,t —1}}), Sk =Tk /99(Tk, n),
ij+k+kjn

o 1}{L} and V = mingey Vi.

Then L(x) has at most 2V solutions in Fon.

Theorem 17. Let 11 < 1 be integers and L(z) = Y 72 aiin(ai € Fon) be

VK = max

Proof. By Lemma 16, we know that the number of Fa.-roots of L(z) equals to the
number of Fan-roots of L' (z) = 272 a2 22 "™ forany K = (k, ko, ,ki_1) €

i=r1 ¢
itktk;n

U. L'(z) =3 ,ca a2ka:2 D 0B 22" where 8 = Zan and the
sum is over all ¢+ € A such that [ = m (If there no exists such i € A, then
we think 8; = 0.) Since ged(Sk,n) = 1 by Proposition 15, Lemma 2 says that
the number of L/(z)’s roots belonging to Fan is not greater than 2%, so that
the number of L(x)’s roots belonging to Fa» is not greater than 2V% | from which
the theorem are validated.

SK-

4.2 Search for the Minimum V
In this subsection, we consider following problem.

Problem 18. Given an integer n and an integer set A = {ig, 41, ,i;_1}, where
n>ig >4 > - > iy_1 be assumed, and let U = { K = (k, ko, k1, ,ki—1) €
7t ‘Vj S {O,t— 1},an —‘rk‘—l—k‘ﬂl > O} For K = (k,k‘o,kl,"' ,k‘t_l) e U, let
us define T = ged({i; + k + k;jn|j € {0,t —1}}), Sk = Tk /99(Tk,n), Vi =

max m} and V = mingecy V. Find a K such that Vi = V.

7€{0,t— 1}{

Seemingly, it looks like one has to scan the infinite space U to solve this
problem. But, below we show that there exists a polynomial-time algorithm to
solve this problem.

To begin with, we have following useful fact:



Proposition 19. For every K = (k, ko, ,ki—1) attaining the minimum V =
Vi to be found in Problem 18,

min  {i; + k+k;jn} =0.
je{0,t—1}

Proof. Let us assume the opposition: minjem{ij +k+kjn}#0 (ie. >0).
We can assume wlog that minjem{ij + k+ kjn} = ig + k + kon. Let us
set k' = —ig — kon and K’ = (k' ko, - ,ki—1). Then, because i; + k' + kjn =

i; —i9 — kon + k;n = (i; + k+ kjn) — (io + k + kon) for every j € {0,t — 1},
it holds Tk |Tk and so Sk < Sk+ by the item 4 of Proposition 15. Also, since

ij+k +Ekn=(ij+k+kjn)— (io+k+kon) < (i; + k+ k;n) for every j, we get

;. / . ;. .
Vir = max {z]—&—k' —I—k;]n} < {z]—&—k‘—l—kjn

- VK7
jef0,i—1} Sk jef0,i-1} Sk )

which is a contradiction to the assumption that K attains the minimum V = V.

On the other hand, since K’ = (k mod n, ko + [£],--+ k1 + [£]) gives
the same Tk, Sk,Vik as K = (k,ko, - ,ki—1) gives, i.e. Txr = Tg,Sgr =
Sk, Vi = Vi, though there are infinite number of K’s such that Vg =V, we
can restrict the range of k into the sub-opened interval [0, n). Further specifically,
by making use of the assumption n > iy > i; > --- > i;_1 and Proposition 19,

we can restrict the range of k into the set ks = {(n —4;) mod n}jem.

Denote Vy = (ig—i¢—1) mod n. Letting Ko = (—ip_1, —|2==2], -+, — [ =221 ],0),

n

we have Ky € U and Vi, <V}, and therefore it follows
V<V <n.

Let us introduce denotations L; = w, 0<j<t—1landa= S[_(l mod n
(This value exists because gcd(Sk,n) = 1). It is true L; mod n = a(i; + k)
mod n. Also, we know that if K is a solution to Problem 18, then 0 < L; <
Vik =V <n,0<j<t-—1, and therefore identically

Li=a(ij+k) modn,0<j<t—1

With all these information, we are reduced to explore all possible ¢(n) a’s,
i.e. such as ged(a,n) = 1, where ¢ is Euler Phi-function.
Algorithm searching for a K attaining the minimum V
1.V« (ip — it—1) mod n;
2. For index =0 up to t — 1;
3. k+ (N — tindes) mod n;
4 Fora=1up ton—1,;
5. Compute d = ged(a,n);
6. If d =1 Then;
7 Forj=1uptot—1;
8 L; + (a x (k+1i;)) mod n;

10



9 End For;

10. If V > max; L; Then;

11. V max; Lj;

12. a' +—a ! mod n; ,

13. K « (k‘, a *L(];k—m) e *Ltfl’r:kflt—l );
14. End If;

15. End If;

16. End For;

17. End For;

18. Output K;

5 Application to second order nonlinearity estimation of
cubic Boolean functions

Following Lemma describes lower bounds of the second-order nonlinearities of
cubic Boolean functions by the dimensions of root sets of linearized polynomials.

Lemma 20. Let f be any cubic Boolean function. Define Q¢ := {a € Fon|nl(D,f) #
0}. Let us suppose that for every element a € Qy, the dimension of the kernel of
the derivative D, f (or, equivalently, its quadratic part) of f at a is not greater
than t, where t > 0 is some fixed integer. Then

1 it
() > 271 T f2m 2|2t — 2,

Proof. This is an immediate corollary from (2), Lemma 4, Lemma 5 and Theorem
7.

Following theorem gives the most precise estimation for lower bound of the
second-order nonlinearity of any cubic Boolean function no possessing affine
derivatives, including the special form G, = Tr(>,%, ™), where d; = 207+,

Theorem 21. Let F, = Tr(Y_ ", wa®), where yy € Fi. and d = 200+t
iy > ji > 0, be any cubic Boolean function. Define Qr, := {a € Fan|nl(D,F,) #
0}. Let o(x) = TT(Z?:_II ciax? 1Y), i € Foun, be the quadratic part of the
derivative of F,, at a € QFu'

Let A={i|3a € QF,,cia #0,1 <i<n—-1}U{—i|Ja € QF,,ciqa #0,1 <
ZS n— 1} = {io,il,"' ,Z‘tfl} and U = {K: (k,ko,kl,"' ,ktfl) € ZtJrl |VJ S
{0,t —1},i; + k+ kn > 0}. For K € U, let us define following quantities
sequentially: T = ged({i; + k + kjn|j € {0, —1}}), Sk = Tk/99(Tk,n),

VK = man€{07t_l} W} and V = minKeU VK
Then
1 n
nly(Fy) 2 274 — 2y —ojqp (2n-t - 212, (20)

and this estimation is at least as much precise as ones in Theorem 9 and 10.

11



In particular, if |QF,| = 2" — 1, i.e. for every a € F3., D, F}, is not affine,
then it holds

ntv)

nly(F,) > 271 — f\/zn 2n —1)2l (21)
Proof. From Lemma 20, one can see that a lower bound of second-order non-
linearity of F), is obtained from a upper bound for dimension of kernel of
Ya(x) = Tr(X0 7 ¢iaz® ), the quadratic part of the derivative D, F,. The
kernel ep, o of Yo () is given as the set of € Fan such that for any y € Fan

Ba(x, y) = ¢a(m) + Q/Ja( ) + %(fﬂ + y) T’I"(y Zz: (Cz ax2 + (Cz aCC) ) =0,
i.e. the root set of linearized polynomial

n—1

S (rar® + (cam)? ). (22)

i=1

Applications of Theorem 17 and Lemma 20 give the main assertion of the theo-
rem.

Let us compare the lower bound estimation given in Theorem 11 with ones
of Li, Hu and Gao. First remark that by the Note we made in Section 2 we
can suppose t < | 5] and therefore the cases D and @) of Theorem 11 can be
excluded from consideration. The Li-Hu-Gao estimation is obtained as a special
case of our discussion: Let ¢ = max{i € A|i > 0}, s = min{i € A|i > 0},
t1 = min{i € A|i > 0,7 # t}, using A introduced by us. Taking two integer
vectors K1 = {t,0,---,0} (|4|0s), K2 ={-s,0,---,0,1,---,1} (lel 1’s and
‘—?l 0’s) for @ (case n > 2t) of Theorem 11 and taking K; = {¢,0,---,0}( |4|
0s ), Ky = {-s,0,---,0,—1,0,--- ,0,1,--- ,1}(the numbers of 0’s and 1’s are
‘Al -1, ‘?l respectively and the place number of -1’s is k;) for @ (case n = 2t)
of Theorem 11, then letting Vy = min{V1, 12}, give

+V
n20J

a1
nly(F,) > 2 175\/2n+(2n—1)2t

Obviously Vy > V, therefore our estimation would be at least as much precise
as ones given by Li-Hu-Gao. Comparison with Theorem 12 is also similar.

Finally, we note that an assumption ¢;, = 0 when i > [ 5| can be made in
the formulation of Theorem 21.

6 Examples and comparisons

As shown in below examples, for almost all cases, our estimation would be more
precise than ones of Li, Hu and Gao [23].

Ezample 22. (Example 1 of [23]) Let F, = f, = Tr(uaz? ¥ +1). For every
u € F3., the quadratic part of the derivative of F), is represented as h,(z) =
Tr(N2" 2277+ 22 T 4 A 22’ ) for some A, € F5,..

12



1. n=20,i=9,7=5
Theorem 9 says

nly(f,) > 2" — \/220 (220 —1)219 ~ 153561,

and Theorem 11 says (in this case s =i —j =4,t =i =9, and since n > 2t
is an even, we can set p = min{12,18} = 12 by @ of Theorem 11)

nla(fu) = 2" — \/220 (220 —1)216 ~ 393216.

Now we will apply Theorem 21 to this case. By definition, A = {4, j,i —
j,—i,—j.j — i} = {9,5,4,—9,—5, —4}. For K = {-5,2,0,5,4,6,1}, T =
ged(9 — 5+ 40,5 — 5,4 — 54 100,—9 — 5+ 80,—5 — 5 + 120,—4 — 5 +
20) = ged(44,0,99,66,110,11) = 11, Sx = Tx = 11. Thus V < Vg =
max{4,0,9,6,10,1} = 10 and by Theorem 21 we have

nla(f,) > 2 — \/220 (220 — 1)215 ~ 431605.

2.n=19,i=9,7=5
Theorem 9 asserts

nla(f,) > 2" — \/219 (219 —1)218 ~ 76781.

Theorem 11 gives (in this case s =i — j = 4,t =i = 9 and since n > 2t is
an odd, we can set ¢ = min{11,18} = 11 by @ of Theorem 11)

1
nla(f,) > 2'8 — 5\/219 + (219 — 1)215 ~ 196608.

On the other hand, the application of our Theorem 21 can improve these esti-
mations as follows. By definition, A = {i, j,i—j, —i, —4, j—i} = {9,5,4, -9, =5, —4}.
For K = {-4,0,1,0,2,1,2}, Tx = ged(9 — 4,5 — 4 + 19,4 —4,—9 — 4 +
38,—5 —4+419,—4 — 4 + 38) = ged(5,20,0,25,10,30) = 5, Sk = Tk = 5.

Thus V < Vi = max{1,4,0,5,2,6} = 6 and Theorem 21 shows

nla(f,) > 2'8 — \/219 (219 — 1)212 ~ 238971.

The lower bound given by Theorem 21 also improves the Li-Hu-Gao estima-
tion (Theorem 12) for Boolean functions G,,.

Example 23. Let G, (x) = Tr(pa?” +27+1). The quadratic part of the derivative

of G, at u € F4. is represented as hy(z) = Tr(A2" 722" 77+ 4 3,227+ 4
Az2 1) for some A, € F,.

13



1.on=20,i=09,j=5~=2
Since n # (i + j)y,n # (2¢ — j)v, by Theorem 2 of [18] G, has no affine
derivative. Due to n > 2¢, by Theorem 12 we have

nla(G,) > 21 — \/220 (220 — 1)219 ~ 153561.

At this time, let us use Theorem 21 to estimate niz(G,). By definition,
A = {2i,2j,2i — 2j, —2i,—2j,2j — 2i} = {18,10,8, —18, —10, —8}. For K =
{8,-1,0,1,2,1,0}, Tx = gecd(18 + 8 — 20,10 + 8,8 + 8 + 20, —18 + 8 +
40,—10 + 8 + 20,—8 + 8) = ged(6,18,36,30,18,0) = 6, g9(Tk,n) = 2,
Sk =Tk /2 =3. Thus V < Vx = max{2,6,12,10,6,0} = 12 and Theorem
21 gives an improved estimation

1
nly(G,) > 2% — 5\/220 + (220 — 1)216 ~ 393216.

2. n=19,i=09,j=5,v=2.
Since n # (i+7)v,n # (2i — j)v, G, has no affine derivative. Due to n > 2i,
Theorem 12 says

1
nla(G,) > 218 — 5\/219 + (219 —1)218 ~ 76781.

Next, we will estimate nla(G,,) by using Theorem 21. By definition, A =
{2i,2j,2i—2j, —2i, —2j,2j—2i} = {18, 10,8, —18, —10, —8}. For K = {8,1,0,2,1,2,0},
Ty = ged(18+8+19,10+8,8+8+38, —18+8+19, —10+8+38, —8+8) =
ged(45,18,54,9,36,0) =9, Sk = Tk = 9. Thus V < Vx = max{5,2,6,1,4,0} =

6 and Theorem 21 proves the improved estimation

nla(G,) > 28 — \/219 (219 — 1)212 ~ 238971.

Ezample 24. For f,, the case of n = i 4 j,n # 2i — j is treated as Corollary
4 in [23]. Apply Theorem 21 to this case: A = {i,4,i — j,—i,—j,j — i}. For
K = {2‘]‘,7170 17170 1}3 K = JaSK - ]/gg(j7 ) Thus V S Vi = 499(3’ )
and Theorem 21 indicates

]. n j,n
nly(f,) > 2"t — 5\/2“ + +(2" — 1)2L%“U, (23)
And in particular, if ged(j,n) =1 (so gg(j,n) = 1), then

on—1 _ \/Qn on 2|_"+4J

This lower bound is better than ones (with complicated representations) given
by Corollary 4 of [23]. In fact, since

fu = Gur,

this is not other than Corollary 5 of [23] applied to g,,, or, Theorem 10. How to
improve this lower bound is discussed in Section 7.
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The exact values for the maximum second-order nonlinearity that a n—variable
Boolean function can achieve (i.e. the covering radius of RM(2,n)) are known
only for 3 < n < 6 [28]; its value is 1, 2, 6 an 18 respectively. It is conjectured
in [20] that the exact value of the maximum second-order nonlinearity is at-
tained by a coset of RM(2,n) in RM(3,n) (i.e. by a cubic function). Following
examples also confirm this conjecture.

Example 25. For the modified-Welch Boolean function fyeicn = Tr(x2t+3), t=
24l 'n odd, Carlet’s lower bound (Proposition 5 of [8]) states

1 n
nl2(fwelch’) 2 2n71 - 5\/2” + (2” — 1)2%3

For odd n > 1 (i.e. n = 3) smaller than 5, this lower bound becomes zero
(the approximation also becomes equality) and therefore non-meaningful.

But Theorem 21 gives a meaningful lower bound as follows: We have D, fyeicn () =
Tr(az? ™2 + a222 1 + a2 23) + I(z) = Tr(a*x®) + I(z) where [ is affine. There-
fore A = {1,—1}. Take K = {1,0,0}. Then Vx = 1. In fact, the kernel of the
quadratic Boolean function T'r(a*x?) is {0,a} when a # 0, and therefore has the
exact dimension 1. Hence for n = 3 we have

o fucten) 2 2" = *\/2” on —1)2%F =1,
that is, nls(fuweien) = 1 over Fas.

Ezample 26. For n = 4, consider the function f = Tr(x23+22+1). Note f =
Tr(( 23“2“) ) = Tr(x**2+1). At a € Fou, it has derivative D f = Tr(az? +2" +
a? 22 4 02 22 = Tr((a? + o)t 4 a2’ 2P ). If a =0 or a = 1, then
D,f =0and Qy = Faa \ {0,1}. For a # 0,1, We have A = {3,2, -2, -3}, and
taking K = {3,—1,—1,0,0}, we get V < Vx = 2. Following discussion shows
really V' = 2: The kernel €5, of D, f is the null space of

(a2+a22)x23+((a2+a22):c)2_ +(123332 +( )2
= (a+a?)*2® + (a + a®)*2? + (a® + a?)2?

= [(a+a®)a* + (a* + a)a® + (a* + a?)a]?
=[(a+a*)(2* +2)* + (a* + a®)(a® + 2)]?

= (a4 a®)*(2* + 2)*(2® + 2 + a® + a)?,

ie.erqa=90,1,a,14a} and V =r, = 2.
By using Theorem 21, we have

1 1
n12(f)22”—1—§\/22n—22 —2)(2n1-28) =20 V25 —2x 14 xd=2,

that is, nls(f) = 2 over Faa.
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Ezample 27. The second-order nonlinearity of gy = Tr(Az2 +2"+1) over Fan
with n = sr has been studied for s = 3,4,5,6 by independent papers:

1. Singh [29] discussed the case s = 3. Li-Hu-Gao [23] also discussed this case
(Corollary 3 of [23]).

2. Sun and Wu [31] discussed the case s = 4.

3. Gangopadhyay and Garg [15] discussed the case s = 5.

4. Gangopadhyay, Sarkar and Telang [16] discussed the case s = 6.

The lower bounds proved by all these works can be shown or even improved
by corollaries of Theorem 21: Remind A = {2r,r, —r, —2r}.

1. For n = 3r, by taking K = {2r,—1,—1,0,0}, V < Vg =r.

1
nla(ga) 2 2" = SV/2" £ (20 — )2 (24)

2. For n = 4r, by taking K = {3r,—1,—1,0,0}, V < Vx = 2r.

1
nla(gy) > 2" — V2 (2m — 1)23". (25)

3. For n = 5r, by taking K = {4r,—1,—1,0,0}, V < Vi = 3r.

1
nla(gy) > 2" — V2 (2m — 1)247. (26)

4. For n = 6r, by taking K = {2r,0,0,0,0}, V < Vi = 4r.

1
nla(ga) 2 2" — SV/2" £ (20 — 1)2° (27)

Furthermore, while for s > 8 the minimum V search program gives only
V < 4r which is trivial, for n = 7r a better result is shown: One can choose an
integer k such that ged(n, 7k+4) = 1. Then, by taking K = {6r, 2k, —1,3k+1, k}
we have V < Vx = max{(14k + 8)r/(7k + 4),0, (21k + 12)r/(Tk + 4), (Tk +
4)r/(7k 4+ 4)} = 3r and thus a novel result:

Corollary 28. Ifn = Tr, then

1
nla(ga) 2 2" = SV/20 + (20 — 1)2° (28)

7 Towards better lower bounding

In this section, it is shown that (7) based on studying the distribution of {r,, a €
F%,.} would lead to better lower bound on the second-order nonlinearity.
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7.1 Specific Case

Consider the cubic Boolean function f; = Tr(z") = Tr(x22+2+1). This function
is a special case (with 7 = 1,u = 1) of the wider Boolean function family
9u = Tr(um22r+2r+1) which will be considered in the next subsection. It was
known that when n = 4r, g, is highly nonlinear permutation [13], and has
differential uniformity of four [3], and thus the same resistance to both differential
and linear attacks as the inverse function.

In Example 25 and Example 26, we considered that for the cases n = 3 and
n = 4 this Boolean function achieves the maximum second-order nonlinearity.
For n > 5 Theorem 21 can give only the same lower bound as Theorem 12
because V = 3 for n = 5,7 and V = 4 for other values of n. In this section,
we show that (7) based on studying the distribution of {r,,a € F5.} leads to a
better lower bounding for nla(f7).

The quadratic part of derivative D, fr of f; at a € Fan is Tr(a*z® + a?2® +
ax®), and ey, , is the root set of the linearized polynomial a*z? + (a*z)? " +
a2zt + (a22)? " + (az?)? " + (az®)? " (vefer to (22)). We have

a4ac2+( 4 )2*1 +a2x4+( Qx)272+(ax2)272 +(ax4)271 -0
— a'%2® 4+ a2 + a®2'% + 0?2 4 a2’ + a®2® =0
— a®2'% + (a'® + a?)2® + (a® +a)z? +a*x =0
= (az)®(a + )% + (az)?(a® + 2*)* + ax(a +2) =0
<= (az)®(a + )% + (az)?*(a + 2)*(a* + az + 2°)* + az(a

+z)=0
<:>ax(a z) [(az)"(a+2)" + az(a + z)(a® + az + 2*)* + 1] =0
< az(a+ ) [a"(az + 2°) +a(a:r+:c)(a4+(ax+x2)2)+1}:0
> az(a+ ) [0’ (az + 2°)(a®(az + 2*)° + 1) + a(az + 2°)* + 1] =0
> az(a+ ) [a®(az + 2°) (ax+x) +1)* + (a(az + 2*)* +1)] =0
> az(a+ ) [a(az + 2%)% + 1] [a®(az + 2°)(a(az + 2*)* + 1) + 1] =0
1
— (az +27) - [ax+x)3+a]~[(ax+x)4+ (ax+x)+¥ =0.
Consequently, 7, , = K,1 U Kq2 U K, 3, where K1 = {m € Fonlax + 22 =

= {0,a}, K,2 = {33 € Forl(az + 2%)3 = 1}, K,3 = {z € Fan|(az +
)t + Llax + 2?) = 6} Note the polynomial (am +2%) - [(ax 4+ 2?3+ 1] .
[(az + 2%)* + L(ax + 2?) + %] is separable and so K1, K, K3 are disjoint each
one to another.

Now, we will consider | K, 2| and | K, 3|. First, note that

IKa,2| S 67 |Ka,3| S 8 (29)
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and that Lemma 4 let us know that

2 or 14, if n is even;

o (30)
0 or 6, if n is odd.

| Kg 2| + | Kas| = {

Then, from an easy consideration, one can see: K, # 0 iff a is a cubic
element in Fan and Tr(-%;) = 0 for a cubic root b of a, i.e. such as b* = a.
There are two cases to consider:

1. If n is even, then the 3-th powering is a three-to-one mapping of F3., and so

there are @ a’s with K, 2 = 0 (in this case, by (29) and (30) it must
a

2"-1) ,
3

be |K, 3| = 2). For remained S,

Kool = {® if Tr($5) =0 forall 0 <i<3;
@2 2, otherwise,

Kool = {® if Tr($5) =0 forall 0 <i<3;
@3 0, otherwise.

After all, for even n, denoting

1
VU, = {a € F5.|a is a cubic and Tr(Tb) = 0 for every cubic root b of a},
a

we have

{a € Fhulrq =4} =,
{a € Fsnlre =2} =TF5. \ L.

It should be stressed that |&,.| < (227_1) By (7), we get

n

- 1
nla(f7) > max (2“‘2 -9 227271—1 _ 5\/% "

n+4

2" (20 —1— |,])2"3

n—2

= max (2”2 -2z

1 . -
,2n 5\/271 + @275 + (27 — 1)2§2>

n+2>

n— 1 2" - 1 n n
> max <2"—2 — ot gnl 2\/2n + %2# + (20 —1)2%%"
i.e. for even n > 6 we have
B 1 8 n 8. a
nla(fr) = 2" 1—2\/2"+3'232—322- (31)

If 3tn and therefore the 7-th powering is a permutation of Fa», then for any

cubics a # a’ € F5,, when b® = a and b'® = @/, one has ﬁ * ﬁ, because
third powering to the both side of 7 = —17 leads to a” = a’" i.e. a = d’ i.e.

18

)



a contradiction. Thus, when a takes all cubics of F4, and b takes all three
cubic roots of a, ﬁ takes all 2" — 1 elements in F3,.. Since in F3,. there

are 2"~ — 1 elements with absolute trace 0, it follows that || < L‘;*Q)

Hence,

n+2

1 .
nly(fr) > 271 — 5\/2n + [T [27F + (20 — 1)273°

1 =1 _9) .
>2”—1—2\/2n+( 3 )2#+(2n—1)2%,

i.e. when n = 2,4 mod 6, we have

1 7 _sm 10 _n

2. If n is odd, then the 3-th power mapping is a permutation of Fon and there-
fore we have:

Kop #0 i Tr(—5)=0 i [Koo|=2.
a
The 7-th power mapping in F3. is injective if 3{n and eight-to-one if 3|n.
Therefore, the number of a(# 0)’s with |K, | = 2 is 2"7! — 1 if 2,31n (i.e.
n = £1 mod 6) and 2" — wt(f;) — 1 if 2tn and 3|n (i.e. n = 3 mod 6).
Furthermore, with regard to (29) and (30), if | K, 2| = 2 then |K, 3| = 4.
On the other hand, it can not happen |K, 3| = 6. In fact, |K, 3| = 6 means
that the degree-4 equation T% + éT—l— a% = 0 with T = ax + 22 has exactly 4
solutions Ty, Ty, T3, Ty in Fan such that Tr(L3) = Tr(%) = Tr(%) = 0 and
Tr(%) = 1, which can not happen because T + T» + T3 + T, = 0. Hence, if
|Ka72| =0 then |Ka73‘ =0.
After all, for odd n, denoting

X 1
glo = {a S FZH‘TT(W) = 0}7

we have

{a €F.|ro =3} =0,
{a €Fsulre =1} =F5. \ &,

Here, if n = 1 mod 6 then [¥,| = 2"~! — 1, and if n = 3 mod 6 then
|@,| = 2" — wt(f7) — 1.

By (7), we get

n+

B ono1- |w0|)2%>

2

n— 1
nla(f7) > max (2"_2 — 2737271—1 . 5\/271 4w,

m—_ ]_ n -
= max <2”2 — 2% g - 5\/271 + W, 275 4 (20 — 1)2?1) :
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If n =41 mod 6, then this gives

1 —3

y 1 n
nly(f7) > max (2“ —2t o ey (o 12 (2 - 1)22) ,

i.e. for n such asn = +1 mod 6 and n > 5,

1 n n
When n =3 mod 6 and n > 5, we obtain
1 I n
no(fr) 2 27 = Syfen r— 02 w2 . (3)

7.2 Generalization to g, with ged(n,r) =1

An improved lower bound on second-nonlinearity of the cubic Boolean function
gy = Tr(pa? 2 +1), where p € Fyn and ged(n,r) = 1, is derived in this
subsection, which can be seen as a generalization of Subsection 7.1.

Denote p = 2". The quadratic part of derivative D,g, of g, at a € Fon is
Tr(pax? +P 4 paPa?’ 1 + pa?” 2P1) = Tr(paPa?’ 1 + ((ua)% + pa?’)zP+1), and
€g,,a 18 the Toot set of the linearized polynomial

.
2

Lya(z) = paPz? + ((pa)? + pa? )a® + (naPx)” + (((pa)? + pa” )z)
(refer to (22)). We have

D=

1
paPz?” + ((pa)v + pa?")a? + (paPz) 7 + ((ua)? + pa? ) =0
— przapdajp4 + (pPa? + up2ap4)xp3 + paPx + (pa + /,Lpapd)xp =0,

i.e.

2 3 2 2
P (ax? + aPx)P + pP(ax? + aP z)P + p(ax? 4+ aPz) = 0. (35)
z+aPx 2 zp+ap2 zP
Now, we let z := az? + aPx. Then, xP = 2% and zP" = =7, and
2 2 2 2
2 2 2P + aP P 2 2P aP xP +aP TPy P P iz
ar’ +d? 1= ——+aP’ = = .
ap~! ap~! ap~1
Therefore, the above equation becomes
s 3 207 4 qp(®=1) p
pr 2P Py + pz = 0,

ap(p—1)
or, equivalently
W @0 0 P) g’z = 0
— ’up2ap22p3 + ’upapzf + Mpapszp + /mpzz =0
= (a4 e ) + (yPaP 2" + pa” ) = 0

— (upapzp2 + ,uap22)p + (/ﬂ’apzp2 + ,uapzz) =0,
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ie.
(,upap?ﬂ”2 + ,uap22) € F, =Fy. (36)

Given ged(n,r) = 1, since Fan N Far = {0,1}, (36) means that puPaPzP" +
,uaPZZ =0or upapzp2 + ua”zz = 1. When z # 0, we have

where it was regarded (p — 1,2 — 1) = 1 which follows from ged(n,r) = 1.
Consequently, ey, o = Ka1UKq2UKq 3, where Ko 1 = {2 € Fon|az? +aPx =

0}, Koo = {x € Fanl2Pt! = %,z = ax? + aPz}, K,3 = {x € Fan|2P” +
»P\P~1 1

(%) z—I—W:O,z:a:cp—Fapx}.
Now, we need following fact.

Lemma 29. (Lemma 11.1 in [25]) For 1 <r <mn,

1 if ged(2 = ocd
ged(2" +1,2" —1)={ 7 | ff ged(2r, n) = ged(r,n)
9gcd(r,n) +1, if gcd(?r, n) — 2gcd(r, n)

Therefore, when ged(n,r) = 1,

if n is an odd

ged(p+1,2" —1) = { (37)

3, if n is an even.

Since Ko,1 = {2 € Fon|(2)P+£ =0} = {x € Fon |2 € For} = {z € FonNalFyr} =
{0,a}, for every z € Fan, the linear equation z = ax? 4+ a?z has at most two
solutions. By using Lemma 2, we can see:

|Ka2| <6,|Kq3| <8 (38)
and that Lemma 4 let us know that

2 or 14, if n is even;

e (39)
0 or 6, if n is odd.

|Kaz2|+ | Kas| = {

On the other hand, when ged(n,r) = 1, if the equation z = az? + aPx
for z € Fa» has a solution x € Fan, then Tr(%r) = 0. The reverse of this
proposition is no generally validate and thus it seems hard to get the exact
distribution of | K, 2| as done in Subsection 7.1.

However the exactly same lower-bound-estimations as in Subsection 7.1 still
hold as described below. To begin with, let us note ged(p? +p + 1,27 — 1) =
ged((p® +p+1)(p —1),2" — 1) = ged(p® — 1,27 — 1) = 28°dBn) 1,

2(2" 1)

3
by (37), equivalently, % is a non-cubic) in Fon, i.e, |K, 2| = 0 (in this case

1. For even n, there are a’s such that % is not a (p + 1)-th power (or,
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|Kq 3] =2 by (38) and (39), and r, = 2). That is, there are at most (27}7_1)
a’s such that r, = 4.

Furthermore, if 3tn and therefore the (p?+p-+1)-th powering is a permutation
of Fan, then for any a # o' € Fj. such that % and “/p are (p + 1)-th

ﬂ

. P
powerings, when pP+! = - and pPHl = one has ST 75 —2r, because

(p + 1)—th powering to the both side of —2+ = W leads to a? TP+l =
aP’+P+1 je. q = a' i.e. a contradiction. Thus, when a takes all elements of
F3. such that %,, are (p + 1)-th powerings and b takes all three (p + 1)—th
power roots of %, a;% takes all 2" — 1 elements in F5.. On the other hand,
by (38) and (39), if r, = 4, then K, = 6 and so it must be true that
Tr(=%+) = 0 for all three (p+1)—th power root b’s of % Since in F3,. there
are 2"~ 1 — 1 elements with absolute trace 0, it follows that there are only at
most @Tb%ﬂ) a’s with r, = 4.
2. For odd n, by (37) every element of Fon is a (p + 1)-th power and it holds

T z _7 (%)1/@“) 7 1 o) 40
M) =T~ | =T\ oo ) |- (40

First, we will show that | K, 3| = 6 can not happen. Let us suppose the oppo-

-1
site: | K, 3| = 6. This is possible only when the equation 2Pt (%)p Z+
exactly one (assuming it is z4 wlog ) among these solutions the equation
z4 = axP 4+ aPz has no solution, which is a contradiction because given
1, T, x3 that are solutions of z; = axP +aPx, 29 = axP +aPzx, 23 = axP? +aPx
respectively, © = z1 + 22 + x3 is a solution of z4 = azP + aPx (since
24 =21+ 290 + 2:3).

(a) If n =41 mod 6, then ged(p? +p+1,2" —1) = 1 and by (40) there are

= 0 has 4 solutions z1, 29, 23, 24 (please, regard Lemma 2) and for

aP

1
exactly 2"~ a’s such that Tr(-Z+) = 1 for z = (7) " Thus, there

are at least 2" ! a’s such that | K, 2| = 0 (in this case, by (39) |K, 3| =0
and so r, = 1).

(b) If n =3 mod 6, then ged(p? +p+1,2" — 1) = 23 — 1 = 7 and therefore

L

there are exactly wt(fr) a’s such that Tr(5) = 1 for z = (% P

Thus, there are at least wit(f7) a’s such that |K, 2| = [K, 3| = 0 and
=1.
The exactly same derivation as done in Subsection 7.1 gives:

Theorem 30. Let g, = Tr(pa? 21, where i € Fan ged(n,r) = 1 and
n > 4.

1. Forn=2,4 mod 6,




2. Forn=0 mod 6,

1 n n
nla(g,) > 2" — 2\/2” + % 2% — 225. (42)

3. If n>5 and n = +1 mod 6, then

3n +1 n+3

nla(g,) > 2"~ 1—7\/2"+3 275 -2 (43)
4. If n=3 mod 6 and n > 5, then
n—1 L‘F?’ n4+1
nla(gu) > 2" — f\/Q” 2n — T —wt(fr)272 (44)

As evident, the new obtained lower bounds are significantly better than ones
given by Theorem 10.

7.3 Second-Order Nonlinearity of g,, with ged(n,r) #1

If n. = 3r, then (35) reduces to (4" + pP + p)(aa? + aPx) = 0 and therefore has
p solutions (to be precise, under the condition Tr(u) # 0), that is, r, < r for
every a € Fan. So, the lower bound stated in the item 1 of Example 27 follows.

When ged(n,r) # 1 and n # 3r, from (36) it follows that e , , is the solution
set of

P

p—1
— qqP 4 P p’ @ Y oy
z = az? + alx, H (= +<M> z+upap)—0

WEF jgcd(n,r)

Consequently, €gua = Ka1 U Ky2 U Ky 3, where K, = {z € Fanl|az? +
aPz = 0}, Koo = {x € Fau|2PT! = “pIF;gcd(n m, 2 = ax? +aPx}, K,3 = {z €

2 p\P1
Far| HWEF;gcd(n " Gl (%) Z ;wap) =0,z = az? + aPx}.
Since K, 1 = {x € Fon[(£)P + T = 0} = aFgscacn.my, for every z € Fon, the
linear equation z = az? + aPz has at most 28°4("") solutions. And, if the linear

equation 2 + (%)p ' 2+ == #pap = 0 has a solution in Fy», then it has the same
number of solutions as 2P~ + (%)p z = 0 has in Fon, i.e. 2Pt = & B catn.m
or z=0.

Corollary 1 and Corollary 2 of [13] states the upper bound on root number
of the special linearized polynomial 27" + azP + bz where a,b € Fon, p=2" and
ged(n,r) = 1, to be 4. When a = 0, but without the restriction ged(n,r) = 1,
we can get the exact root number by using Lemma 29.

Proposition 31. For the linearized polynomial 2P° + bz where b € F5. and
p =27, its root number is

23



1. 14fb is not a (p? — 1)—power in Fan;

2. 28¢dnr) yf |Inf|ly > ||7|lo and b is a (p — 1)—power (so also a (p*> —1)—power)
m an 5

3. 228cd(n) yf |in|y < ||rl|l2 and b is a (p* — 1)—power in Fan.

From the facts mentioned above, following inequalities follow.

Ky s| < gecdlmr)(2sedtnn) — 1), if ]z > [Ir]l2
T | 2eedm(@2eedtnr) — 1), if |y < lrl2.

g < {2 1), il 2
VT ettt — 1), it < rle.

Thus
. < 3ged(n,r), if [[nfl2 > [[r[l2
7 dged(n,r), i nllz < 7]z,

and by using Lemma 4 we improve on the lower bound (23) as follows:

n+3gcd(n,r)
nbagg) |

on—1 _ 1, [on on _ 1)2l T >
nlg(gu) > 2\/ +( ) 1 HTL||2 > ||T’||2 (45)
ant — é\/% +(2n —1)2!

n+dged(n,r)
=

if [|nflz < 7{l2-

Since ged(p + 1,287 — 1)|ged(p +1,2" — 1) = ged(2" + 1,27 — 1) = 1,
every element of F* has unique (p + 1)-th power root in the field itself.

Qgcd(n,r)
gged(n,r) n 5 aP -
W(Q — 1) a’s such that 7 1s not a
has no

(p + 1)-th power of some entry in Fan), the equation zPT1 = %]F;

Hence, when ||n|la < ||r|2, for the
ged(n,r)

. 2 p\P 1
solution, and so 2P + (“7) z 4+ /;7 = 0 for any w € F, i, has at most

(2" —1) a’s,

one solution. Thus, when ||n||2 < ||r||2, for such %
|Ka,2| =0, |Ka,3| — Qgcd(n,r) (zgcd(n,r) _ 1)

and
re < 2ged(n,r).

By (7), when ||n|l2 < ||r|l2 (note that in this case n is even ), we get

1 n+4ged(n,r) 2gcd(n,r) n+2ged(n,r)
P)

1 922 ged(n,r)+1 " "
—ont \/2n + (2% —23%).

nla(g.) = 2" - Nzn + (20— 1) )

9acd(mr) 4
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Theorem 32. For g, = Tr(pa? +2 41, where p € Fan, ged(n,r) # 1 and
n > 4.

21— g o )RRl 2

_ n cd(n,r) .
T1—5¢% 20— 128250 if e < Il

nla(g,) >

This lower bound is better than one which we showed in (23) in particular as
g99(n,r) = ged(n, ).
Corollary 33. If n = sr where s is an odd greater than 3, then

— 1 —
le(gu) Z 2" T 7\/27L _ (2n 1)27 453 ( )
lfn = sr where s is an even qr eater than 2, then
: 1 21 \/2 —1 2" o
> on 1 n "
nQ(Q;L) = (2 ) 2 d : ( )

The lower bounds presented by this corollary are better than ones given by
Items 2-4 of Example 27 which can be reformulated as: For n = sr,4 < s <6

le(gM > gn—1 _ \/2n on _ ’52(571)r.

On the other hand, when s = 7, this corollary gives the same lower bound
with Corollary 28.

7.4 Problems for further considerations
If Tr( %) = 1, then the equation z = az? + aPx has no solution in Fon.

Problem 34. Use this fact to improve on the}owgr bound of second-order nonlin-
earity given in Theorem 32 for g, = Tr(uz? +2"+1), where y € Fan, ged(n, 1) #
1 and n > 4.

Consider generic cubic monomial Boolean function f, = Tr(px? +2'+1), where
p € Fon and n > i > j > 0. Let us introduce denotations: p = 27, ¢ = 2%, The
quadratic part of derivative D, f, of f, at a € Fon is Tr(paz?™? + paPz?™* +
palzPthy = Tr(pt/Pat/Prd/PHl 4 paP2dtt + pa9zPt!). With reference to (22),
€f,.a 18 the solution set of linear equation

Ml/pal/pxq/p + paPz? + pala? +M1/qa1/qxp/q +M1/qap/qx1/q _|_,u1/paq/px1/p =0,
or, equivalently

L(z) = [(ap)a? + (@) + (a® pD]P + [(ap)a? + (a®w)z + (0¥ )] = 0.
(49)
Problem 85. Determine the set of a’s such that the equation (49) has solutions

of smaller number than 2" in Fon where V is given by Theorem 17 (or computed
by Section 4.2).
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8 Conclusion

When a linearized polynomial is given, to determine its root number is an im-
portant task in finite field and symmetric cryptography theory. This paper con-
tributes to give a better general method to get more precise upper bound on the
root number of any given linearized polynomial.

Then, as an application of this result, we improve the estimation for lower
bound of the second-order nonlinearities of cubic Boolean functions. For example,
for cubic monomial Boolean function f,(z) = Tr(pa?’+2°+1), the best previous
result [23] can say nla(f,) > 393216 over Fh20 and nla(f,) > 196608 over Fhie. By
this paper, now we know nlz(f,,) > 431605 over Fp2o and nls(f,) > 238971 over
Fyi0. And, while the best previous result can show only nly(Tr(pz? +2"+1)) >
76781 over Fhio, this paper proves nlg(Tr(ux?S“m*l)) > 238971.

Furthermore, this paper shows that by studying the distribution of radicals
of derivatives of a given Boolean functions one can get a better lower bound
of the second-order nonlinearity, through an example of the Boolean function
g = Tr(pa? +2+1) over any finite field Fan .

These results show that many cubic Boolean functions such as g, = Tr(ux
over any finite field Fon have larger Hamming distance to the affine functions
and quadratic functions than it was known (thus could be expected). They can
be used in choice of cubic Boolean functions which are resistant against linear
and quadratic approximation attacks.

227‘+2T+1)
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