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Abstract. Given the current research status in lattice-based cryptography, it is commonly
suggested that lattice-based signature could be subtler and harder to achieve. Among them,
Dilithium [DLL+17, LDK+17] is one of the most promising signature candidates for the post-
quantum era, for its simplicity, efficiency, small public key size, and resistance against side
channel attacks. The design of Dilithium is based on a list of pioneering works (e.g., [Lyu09,
Lyu12, BG14]), and has very remarkable performance by very careful and comprehensive
optimizations in implementation and parameter selection. Whether better trade-offs on the
already remarkable performance of Dilithium can be made is left in [CRYSTALS] as an
interesting open question.
In this work, we provide new insights in interpreting the design of Dilithium, in terms of
key consensus previously proposed in the literature for key encapsulation mechanisms (KEM)
and key exchange (KEX). Based on the deterministic version of the optimal key consensus
with noise (OKCN) mechanism, originally developed in [JZ16] for KEM/KEX, we present
signature from key consensus with noise (SKCN), which could be viewed as generalization
and optimization of Dilithium. The construction of SKCN is generic, modular and flexible,
which in particular allows a much broader range of parameters for searching better tradeoffs
among security, computational efficiency, and bandwidth. For example, on the recommended
parameters, compared with Dilithium our SKCN scheme is more efficient both in computation
and in bandwidth, while preserving the same level of post-quantum security. In addition,
using the same routine of OKCN for both KEM/KEX and digital signature eases (hardware)
implementation and deployment in practice, and is useful to simplify the system complexity of
lattice-based cryptography in general.
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1 Introduction
Over the last decades, lattice have emerged as a very attractive foundation for cryptography. Ever
since the seminal work of Ajtai [Ajt96] connecting the average-case complexity of lattice problems
to their complexity in the worst case, there has been an intriguing and fruitful efforts to base
cryptographic schemes on worst-case lattice assumptions. In addition to their unique theoretical
niche, lattice-based schemes enjoy many potential advantages: their asymptotic efficiency and
conceptual simplicity (usually requiring only linear operations on small integers); their resistance
so far to cryptanalysis by quantum algorithms; and the guarantee that their random instances are
“as hard as possible” [Reg09, BLP+13].

Given the importance of digital signature scheme in modern cryptography, it is natural to con-
sider building practical and provably secure digital signature schemes based on lattice assumptions.
Generally speaking, lattice-based signature schemes are designed by following either of the fol-
lowing paradigms: hash-and-sign paradigm [DH76, BR93, GPV08], and Fiat-Shamir heuristic
[FS87, Lyu09, DDLL13]. Nevertheless, given the current research status in lattice-based cryp-
tography, it is commonly suggested that lattice-based signature could be subtler and harder to
achieve. For instance, there are more than twenty submissions of lattice-based key encapsulation
mechanisms to NIST post-quantum cryptography (NIST-PQC), but only five lattice-based signature
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submissions [NIST]. Among them, Falcon [PFH+17], and pqNTRUSign [ZCHW17] follow the
hash-and-sign paradigm; Dilithium [DLL+17] and qTESLA [BAA+17] follow the Fiat-Shamir
heuristic. Now, Dilithium [DLL+17], qTESLA [BAA+17] and Falcon [PFH+17] are in the second
round submissions of NIST-PQC.

In this work, we focus on the study of Dilithium [DLL+17, LDK+17]. Dilithium is one of the
best lattice-based signature schemes that follow the Fiat-Shamir paradigm, and is one of the most
promising lattice-based signature candidates. Some salient features of Dilithium include: simplicity
(both for the algorithmic design and for the algebraic structure of the underlying lattice), efficiency,
small public key size, and resistance against side channel attacks. Its design is based on a list of
pioneering works (e.g., [Lyu09, Lyu12, BG14] and more), with very careful and comprehensive
optimizations in implementation and parameter selection. Whether better trade-offs on the already
remarkable performance of Dilithium can be made is left in [CRYSTALS] as an interesting open
question.

1.1 Our contributions

In this work, we present generalization and optimization of Dilithium. This is enabled by new
insights in interpreting the design of Dilithium, in terms of symmetric key consensus previously
proposed in the literature for achieving key encapsulation mechanisms (KEM) and key exchange
(KEX) [Reg09, LPR10, LP11, DXL12, Pei14, BCD+16, JZ16]. Based on the deterministic version
of the optimal key consensus with noise (OKCN) mechanism, originally developed in [JZ16] for
highly practical KEM/KEX schemes, we present signature from key consensus with noise (SKCN).
The construction of SKCN is generic, modular and flexible, which in particular allows a much
broader range of parameters.

We made efforts to thoroughly search and test a large set of parameters in order to achieve better
trade-offs among security, efficiency, and bandwidth. On the recommended parameters, compared
with Dilithium our SKCN scheme is more efficient both in computation and in bandwidth, while
preserving the same level of post-quantum security. This work also further justifies and highlights
the desirability of OKCN, originally developed in [JZ16] for highly practical KEM/KEX, as
the same routine can be used for both KEM/KEX and digital signature, which eases (hardware)
implementation and deployment in practice, and is useful to simplify the system complexity of
lattice-based cryptography in general.

2 Preliminaries

For any real number x ∈ R, let bxc denote the largest integer that is no more than x, and bxe :=
bx+1/2c. For any i, j ∈ Z such that i < j, denote by [i, j] the set of integers {i, i+1, · · · , j−1, j}.
For the positive integers r, α > 0, let r mod α denote the unique integer r′ ∈ [0, α − 1] such
that α | (r′ − r), and let r mod± α denote the unique integer r′′ ∈ [−

⌊
α−1

2
⌋
,
⌊
α
2
⌋
] such that

α | (r′′ − r). For a positive integer q and an element x ∈ Zq, we write ‖x‖∞ for |x mod± q|,
and let |x|q denote the absolute value of x mod± q. For every a =

∑n−1
i=0 ai · xi ∈ Rq, ai ∈ Zq,

define Power2Roundq,d (a) def=
∑
a′i · xi, where a′i

def=
(
ai −

(
ai mod± 2d

))
/2d.

For a finite set S, |S| denotes its cardinality, and x ← S denotes the operation of picking an
element uniformly at random from the set S. We use standard notations and conventions below for
writing probabilistic algorithms, experiments and interactive protocols. For an arbitrary probability
distribution D, the notation x← D denotes the operation of picking an element according to the
pre-defined distribution D. We say that a positive function f(λ) > 0 is negligible in λ, if for every
c > 0 there exists a positive λc > 0 such that f(λ) < 1/λc for all λ > λc.
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2.0.1 Digital signature scheme

A digital signature scheme Π consists of three probabilistic polynomial-time algorithms (KeyGen,Sign,Verify).
KeyGen is the key generation algorithm that, on input the security parameter 1λ, outputs (pk, sk).
Sign is the signing algorithm that, on input the secret key sk as well as the message µ ∈ {0, 1}∗
to be signed, outputs the signature σ. Verify is the deterministic verification algorithm that, on
input the public key pk as well as the message/signature pair (µ, σ), outputs b ∈ {0, 1}, indi-
cating whether it accepts the incoming (µ, σ) as a valid one or not. We say a signature scheme
Π = (KeyGen,Sign,Verify) is correct, if any sufficiently large λ, any (pk, sk) ← KeyGen(1λ)
and any µ ∈ {0, 1}∗, it holds

Pr[Verify(pk, µ,Sign(sk, µ)) = 1] = 1.

2.0.2 (S)EU-CMA

The security for a signature scheme Π = (KeyGen,Sign,Verify), is defined in the following
security game between a challenger and an adversary A.

• Setup. Given λ, the challenger runs (pk, sk)← KeyGen(1λ). The public key pk is given to
adversary A, whereas the secret key sk is kept in private.

• Challenge. Suppose A makes at most qs signature queries. Each signature query consists of
the following steps: (1) A adaptively chooses the message µi ∈ {0, 1}∗, 1 ≤ i ≤ qs, based
upon its entire view, and sends µi to the signer; (2) Given the secret key sk as well as the
message µi to be signed , the challenger generates and sends back the associated signature,
denoted σi, to A.

• Output. Finally, A outputs a pair of (µ, σ), and wins if (1) Verify(pk, µ, σ) = 1 and (2)
(µ, σ) 6∈ {(µ1, σ1), · · · , (µqs

, σqs
)}.

We say the signature scheme Π is strongly existentially unforgeable under adaptive chosen-
message attack, if the probability that every p.p.t. attacker A wins in the foregoing game is
negligible. A weaker model, i.e., the EU-CMA model, could be define by requiring that A wins if
and only if (1) Verify(pk, µ, σ) = 1 and (2) µ 6∈ {µ1, µ2, · · · , µqs

}. Then Π is called (standard)
existentially unforgeable under adaptive chosen-message attack, if no efficient adversary can win
in this weaker game with non-negligible probability.

2.0.3 Module-LWE and Module-SIS

In this work, we always have n = 256 and q = 1952257. Also, let R and Rq denote the rings
Z[x]/〈xn + 1〉 and Zq[x]/〈xn + 1〉, respectively. For the element w =

∑n−1
i=0 wix

i ∈ R, its `∞-
norm is defined as ‖w‖∞ := max ‖wi‖∞. Likewise, for the element w = (w1, · · · , wk) ∈ Rk, its

`∞-norm is defined as ‖w‖∞ := max
i
‖wi‖∞. In particular, when the other parameters are clear

from the context, let Sη ⊆ R denote the set of elements w ∈ R such that ‖w‖∞ ≤ η.
The hard problems underlying the security of our signature scheme are Module-LWE (MLWE),

Module-SIS (MSIS) (as well as a variant of MSIS problem). They were well studied in [LS15]
and could be seen as a natural generalization of the Ring-LWE [LPR10] and Ring-SIS problems
[LM06, PR06], respectively. Fix the parameter ` ∈ N. The Module-LWE distribution (induced by
s ∈ R`q) is the distribution of the random pair (ai, bi) over the supportR`q ×Rq , where ai ← R`q
is taken uniformly at random, and bi := aTi s + ei with ei ← Sη fresh for every sample. Given
arbitrarily many samples drawn from the Module-LWE distribution induced by s ← S`η, the
(search) Module-LWE problem asks to recover s. And the associated Module-LWE assumption
states that given A ← Rk×`q and b := As + e where k = poly(λ) and (s, e) ← S`η × Skη , no
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efficient algorithm can succeed in recovering s with non-negligible probability, provided that the
parameters are appropriately chosen.

Fix p ∈ [1,∞]. Given A← Rh×`q where h = poly(λ), the Module-SIS problem (in `p-norm)
parameterized by β > 0 asks to find a “’short” yet nonzero pre-image x ∈ R`q in the lattice
determined by A, i.e., x 6= 0,A · x = 0 and ‖x‖ ≤ β. And the associated Module-SIS assumption
(in `p-norm) states that no probabilistic polynomial-time algorithm can find a feasible pre-image
x with non-negligible probability, provided that the parameters are appropriately chosen. In the
literature, the module-SIS problem in Euclidean norm, i.e., p = 2, is well-studied; nevertheless,
in this work, we are mostly interested in the Module-SIS problem/assumption in `∞-norm, i.e.,
p =∞.

2.0.4 Hashing

As is in [DLL+17, LDK+17], when the other related parameters are clear from the context, for
every positive integer w > 0, let Bw := {x ∈ R | ‖x‖∞ = 1, ‖x‖1 = w} ⊆ R. In this work, we

always have w = 60, since the set B60 ⊆ R is of size 260 ·
(
n

60

)
≈ 2256 (recall that n = 256

by default in this work). Let H : {0, 1}∗ → B60 be a hash function that is modeled as a random
oracle in this work. In practice, to pick a random element in B60, we can use an inside-out version
of Fisher-Yates shuffle.

2.0.5 Extendable Output Function

The notion of extendable output function follows that of [DLL+17, LDK+17]. An extendable
output function Sam is a function on bit string in which the output can be extended to any desired
length, and the notation y ∈ S := Sam(x) represents that the function Sam takes as input x and
then produces a value y that is distributed according to the pre-defined distribution S (or according
to the uniform distribution over the pre-defined set S). The whole procedure is deterministic in the
sense that for a given x will always output the same y, i.e., the map x 7→ y is well-defined. For
simplicity we always assume that the output distribution of Sam is perfect, whereas in practice it
will be implemented by using some cryptographic hash functions (which are modelled as random
oracle in this work) and produce an output that is statistically close to the perfect distribution.

3 Building Tools of SKCN

In this section, we first propose the notion of deterministic symmetric key consensus (DKC); then
we construct and analyze a concrete DKC instance, i.e., the deterministic symmetric key consensus
with noise (DKCN), which is a variant of the optimal key consensus with noise (OKCN) scheme
presented in [JZ16]. Based on DKCN, we then define several algorithms/tools, and develop some
of their properties. These algorithms will serve as the building tools for our signature scheme to be
introduced in Section 4.

Note that although all these algorithms/tools proposed in this section are defined with respect to
the finite field Zq for some positive rational prime q, they could be naturally generalized to vectors
(as well as the ringRq) in the component-wise manner.

Definition 1. A DKC scheme DKC = (params,Con,Rec), is specified as follows.

• params = (q, k, g, d, aux) denotes the system parameters, where q, k, g, d are positive
integers satisfying 2 ≤ k, g ≤ q, 0 ≤ d ≤ b q2c, and aux denotes some auxiliary values that
are usually determined by (q, k, g, d) and could be set to be a special symbol ∅ indicating
“empty".
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• (k1, v) ← Con(σ1, params): On input (σ1 ∈ Zq, params), the deterministic polynomial-
time conciliation algorithm Con outputs (k1, v), where k1 ∈ Zk is the shared-key, and
v ∈ Zg is a hint signal that will be publicly delivered to the communicating peer to help the
two parties reach consensus.

• k2 ← Rec(σ2, v, params): On input (σ2 ∈ Zq, v, params), the deterministic polynomial-
time reconciliation algorithm Rec outputs k2 ∈ Zk.

A DKC scheme is correct, if k1 = k2 for any σ1, σ2 ∈ Zq such that |σ1 − σ2|q ≤ d.

Next, we develop a concrete instance of DKC, i.e., the rounded symmetric key consensus with
noise (DKCN) depicted in Algorithm 1. Note that by Theorem 1, as a concrete DKC, DKCN itself
is correct, provided that parameters are appropriately set.

Algorithm 1 DKCN: Deterministic Symmetric KC with Noise
1: params := (q, k, g, d, aux = ∅)
2: procedure CON(σ1,params) . σ1 ∈ Zq
3: v := kσ1 mod± q
4: if kσ1 − v = kq then
5: k1 := 0
6: else
7: k1 := (kσ1 − v)/q
8: end if
9: return (k1, v)

10: end procedure
11: procedure REC(σ2, v,params) . σ2 ∈ Zq
12: k2 := b(kσ2 − v)/qe mod k
13: return k2
14: end procedure

Theorem 1. When k ≥ 2, g ≥ 2 and 2kd < q, the DKCN scheme (params,Con,Rec) depicted in
Algorithm 1 is correct.

Before proving theorem 1, we introduce a lemma that was proposed in [JZ16].

Lemma 1 ([JZ16]). For any x, y, t, l ∈ Z where t ≥ 1 and l ≥ 0, if |x− y|t ≤ l, then there exists
θ ∈ Z and δ ∈ [−l, l] such that x = y + θt+ δ.

Proof of Theorem 1. Suppose |σ1−σ2|q ≤ d. Then by Lemma 1, there exist θ ∈ Z and δ ∈ [−d, d]
such that σ2 = σ1 + θq + δ. From Line 3 to 7 in Algorithm 1, we know that there exists θ′ ∈ Z
such that kσ1 = (k1 + kθ′) · q + v. Taking these into the formula of k2 in Rec ( Line 12), we have

k2 = b(kσ2 − v)/qe mod k = bk(σ1 + θq + δ)/q − v/qe mod k == bk1 + kδ/qe mod k.

It follows from 2kd < q that |kδ/q| ≤ kd/q < 1/2, making k2 = k1.

Based on DKCN, we then present several algorithms and some of their properties.
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1: procedure HIGHBITSq,k(r)
2: (r1, r0)← Con(r)
3: return r1
4: end procedure
5: procedure MAKEHINTq,k(z, r)
6: r1 := HighBitsq,k(r)
7: v1 := HighBitsq,k(r + z)
8: if r1 = v1 then
9: return 0

10: else
11: return 1
12: end if
13: end procedure

1: procedure LOWBITSq,k(r)
2: (r1, r0)← Con(r)
3: return r0
4: end procedure
5: procedure USEHINTq,k(h, r)
6: (r1, r0) := Con(r)
7: if h = 0 then
8: return r1
9: else if h = 1 and r0 > 0 then

10: return (r1 + 1) mod k
11: else
12: return (r1 − 1) mod k
13: end if
14: end procedure

Proposition 1. For every r, z ∈ Zq such that ‖z‖∞ < bq/(2k)c, we have

UseHintq,k(MakeHintq,k(z, r), r) = HighBitsq,k(r + z).

Proof. The outputs of (r1, r0) ← Con(r), (r′1, r′0) ← Con(r + z) satisfy 0 ≤ r1, r
′
1 < k, and

‖r0‖∞ , ‖r′0‖∞ ≤ q/2. Since ‖z‖∞ < bq/(2k)c, by Theorem 1, we have Rec (r, r′0) = r′1 =
HighBitsq,k(r+z). Let h def= MakeHintq,k(z, r). Since r′1 = Rec (r, r′0)=b(kr−r′0)/qe mod k=
br1+(r0−r′0)/qe mod k∈{r1−1, r1, r1+1}. When r0 > 0, we have Rec (r, r′0) ∈ {r1, r1 + 1};
when r0 < 0, we have Rec (r, r′0) ∈ {r1 − 1, r1}. Recall that by definition, h = 0 if and only if
r1 = r′1. The correctness of HighBitsq,k(r + z) = r′1 = Rec (r, r′0) = UseHintq,k(h, r) is thus
established.

Proposition 2. For r′1 ∈ Zk, r ∈ Zq , h ∈ {0, 1}, if r′1 = UseHintq,k(h, r), then ‖r − bq · r′1/ke‖∞ ≤
q/k + 1/2.

Proof. It is routine to see that for (r1, r0)← Con(r), we have r1 ∈ Zk, r0 ∈ (−q/2, q/2), and
there exists θ ∈ {0, 1} such that k · r = (r1 + kθ) · q + r0. If h = 0, then r′1 = r1, and hence
‖r − bq · r′1/ke‖∞ ≤ q/(2k) + 1/2. If h = 1 and r0 > 0, then r′1 = (r1 + 1) mod k, and hence
‖r − bq · r′1/ke‖∞ ≤ q/k + 1/2. Finally, if h = 1 and r0 < 0, then r′1 = (r1 − 1) mod k, and
therefore ‖r − bq · r′1/ke‖∞ ≤ q/k + 1/2.

Proposition 3. For r, z ∈ Z such that ‖z‖∞ ≤ U . If ‖r′0‖∞ < q/2 − kU where (r1, r0) ←
Con(r), (r′1, r′0)← Con(r + z), then r1 = r′1.

Proof. Since k ·r = q ·(r1 +kθ)+r0 (‖r0‖∞ < q/2) and k ·(r+z) = q ·(r′1 +kθ′)+r′0 (‖r′0‖∞ <
q/2) for some integers θ, θ′, it is easy to verify r1 = bkr/qe mod k = bk(r + z − z)/qe mod k =
br′1 + (r′0 − kz)/qe mod k = r′1.

4 SKCN: Signature from Key Consensus with Noise

In this section, we propose our signature scheme SKCN, which is defined in the module lattice,
and can be proven to be strongly existentially unforgeable under adaptive chosen-message attacks
in the quantum random oracle model.

SKCN could be seen as a generalization and optimization of Dilithium with the aid of DKCN,
and its correctness and security roughly follows from that of Dilithium as well.
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4.1 Description of SKCN

Our key generation, signing, and verification algorithms are fully described in Algorithms 2, 4 and
3, respectively.

Algorithm 2 Key Generation Algorithm
Input: 1λ
Output: (pk = (ρ, t1), sk = (ρ, s, e, t))

1: ρ, ρ′ ← {0, 1}256

2: A ∈ Rh×`q := Sam(ρ)
3: (s, e) ∈ S`η × Shη′ := Sam(ρ′)
4: t := As + e
5: t1 := Power2Roundq,d (t)
6: return (pk = (ρ, t1), sk = (ρ, s, e, t))

Algorithm 3 Verification Algorithm
Input: pk = (ρ, t1), µ ∈ {0, 1}∗ , (z, c,h)
Output: b ∈ {0, 1}

1: A ∈ Rh×`q := Sam(ρ)
2: w′1 := UseHintq,k(h,Az− ct1 · 2d)
3: c′ ← H(ρ, t1, bqw′1/ke , µ)
4: if c = c′ and ‖z‖∞ < bq/kc − U and the

number of 1’s in h is ≤ ω then
5: return 1
6: else
7: return 0
8: end if

Algorithm 4 The Signing Algorithm
Input: µ ∈ {0, 1}∗, sk = (ρ, s, e, t)
Output: σ = (z, c,h)

1: A ∈ Rh×`q := Sam(ρ)
2: t1 := Power2Roundq,d (t)
3: t0 := t− t1 · 2d
4: r ← {0, 1}256

5: y ∈ S`bq/kc−1 := Sam(r)
6: w := Ay
7: w1 := HighBitsq,k(w)
8: c← H(ρ, t1, bq · w1/ke , µ)
9: z := y + cs

10: (r1, r0) := Con(w− ce)
11: Restart if ‖z‖∞ ≥ bq/kc −U or ‖r0‖∞ ≥

q/2− kU ′ or r1 6= w1
12: h := MakeHintq,k(−ct0,w− ce + ct0)
13: Restart if ‖ct0‖∞ ≥ bq/2kc or the number

of 1’s in h is greater than ω
14: return (z, c,h)

Algorithm 5 The Simulator
Input: µ ∈ {0, 1}∗, ρ, t1, t0
Output: σ = (z, c,h)

1: A ∈ Rh×`q := Sam(ρ)
2: (z, c)← Sbq,kc−U ×B60
3: (r1, r0) := Con(Az− ct)
4: Restart if ‖r0‖∞ ≥ q/2− kU
5: if H has already been defined on

(ρ, t1, bq · r1/ke , µ) then
6: Abort
7: else
8: Program H(ρ, t1, bq · r1/ke , µ) = c
9: end if

10: h := MakeHintq,k(−ct0,Az− ct + ct0)
11: Restart if ‖ct0‖∞ ≥ bq/2kc or the number

of 1’s in h is greater than ω
12: return (z, c,h)

4.1.1 Practical Implementation

When we implement SKCN with our recommended parameter set (cf. Table 1), several improve-
ments that are similar to [DLL+17, LDK+17] are made, so as to improve its efficiency. Specifically,
the sign algorithm in our implementation is deterministic in nature which is similar to that of
Dilithium [LDK+17]. This is achieved by adding some new seeds (tr, key) into the secret key sk;
thus, the random nonce y in the sign algorithm could be obtained via a pseudorandom string, which
is obtained by extending the hash value of (tr, key), the message to be signed, and a counter. As a
result, the t1 in sk is no longer necessary, making sk = (ρ, tr, key, s, e, t0). This minor modification
can improve the efficiency of the sign algorithm significantly, and shorten the size of sk. Our
implementation code is available at https://github.com/mulansig.

https://github.com/mulansig
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4.2 Correctness Analysis

In SKCN, the key generation algorithm first chooses a random 256-bit seed ρ and expands it into a
matrix A← Rh×`q by an extendable output function Sam(·). The crucial component in the secret
key is (s, e) ∈ Rhq ×R`q , and each coefficient of s (resp., e) is drawn uniformly at random from the
set [−η, η] (resp., [−η′, η′]). Finally, we compute t := As+e ∈ Rhq . The public key is pk = (ρ, t1)
where t1 = Power2Roundq,d (t), and the associated secret key is sk = (ρ, s, e, t).

Given the secret key sk = (ρ, s, e, t) as well as the message µ ∈ {0, 1}∗ to be signed, the signing
algorithm first recovers the public matrix A ∈ Rh×`q via the random seed ρ in the secret key. After
that, the signing algorithm picks a “short” y from the set S`bq/kc−1 ⊆ R

`
q uniformly at random,

and computes w1 := HighBitsq,k(w), where w := Ay. Upon input (ρ, t1, bq · w1/ke , µ), the
random oracle H(·) returns a uniform c← B60. After obtaining c, the signing algorithm conducts
a rejection sampling process to check if every coefficient of z := y + cs ∈ R`q is “small” enough,
if every coefficient of r0 is “small” enough, and if r1 = w1, where (r1, r0) ← Con(w − ce);
otherwise, the signing algorithm restarts, until all the requirements are satisfied. We should point
out that if ‖ce‖∞ ≤ U ′, then by Proposition 3, the requirement ‖r0‖∞ < q/2 − kU ′ forces
r1 = w1. We hope ‖ce‖∞ > U ′ occurs with negligible probability, such that the probability that
the check r1 = w1 fails is negligible as well. In addition, U is chosen such that ‖cs‖∞ ≤ U holds
with overwhelming probability. Furthermore, the function MakeHintq,k(·) is invoked on input
(−ct0,w− ce + ct0) to generate the hint h, i.e., a binary vector in {0, 1}n·h. The signing algorithm
concludes by conducting the remaining two checks, i.e., if ‖ct0‖∞ < bq/2kc and if the number of
nonzero elements in h ∈ {0, 1}n·h does not exceed the pre-defined threshold ω; otherwise restart is
carried out again. Here, the hint h corresponds to the fact that it is t1, not the whole t = t1 · 2d + t0
that is contained in the public key. With the hint h, we can still carry out the verification, even
without t0.

Given the public key pk = (ρ, t1), the message µ ∈ {0, 1}∗ and the claimed signature (z, c,h),
the verifying algorithm first recovers A ∈ Rh×`q via the random seed ρ. After that, it computes
w′1 := UseHintq,k(h, Az − ct1 · 2d). If the given (z, c,h) is indeed a honestly generated signature
of the incoming message µ, then it is routine to see that every coefficient of z is “small” enough,
and the number of 1’s in h is no greater than ω; more importantly, we have HighBitsq,k(Ay) =
HighBitsq,k(Ay − ce) = w′1 and therefore c = c′, where c′ ← H (ρ, t1, bqw′1/ke , µ) . The
verifying algorithm would accept the input tuple if and only if the foregoing conditions are all
satisfied.

Next, we show that our SKCN signature scheme is always correct, provided that the involving
parameters are appropriately set. Roughly speaking, the correctness relies heavily on Proposition
1. When the public/secret key pair (pk, sk) is fixed, for a valid message/signature pair (µ, (z, c,h)),
it suffices to show that c = c′. Since ‖ct0‖∞ < q/2k and Az− ct1 · 2d = Ay− ce + ct0, it follows
directly from Proposition 1 that

UseHintq,k(h,Az− ct1 · 2d) = HighBitsq,k(Ay− ce).

Given that the signing algorithm forces HighBitsq,k(Ay − ce) = HighBitsq,k(Ay) by rejection
sampling, it follows from the following equality that c = c′:

UseHintq,k(h,Az− ct1 · 2d) = HighBitsq,k(Ay− ce) = HighBitsq,k(Ay).

4.3 Recommended Parameters, and Comparison

To improve the time/space efficiency, our SKCN signature scheme could be set asymmetrically,
in the sense that as long as the resulting scheme can resist the key-recovery attack, η may not
equal to η′. Moreover, the parameter U and U ′ are carefully chosen such that Pr [‖cs‖∞ ≥ U ] and
Pr [‖ce‖∞ ≥ U ′] are sufficiently small, say they are both small than 2−128. By default we have
η = η′ (and hence U = U ′).
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Table 2: Comparison between SKCN/Dilithium.

Parameter Value
q 1952257
n 256

(h, `) (5, 4)
d 13
k 8
U 118
U ′ 118
ω 96

SKCN Dilithium
q 1952257 8380417
n 256 256

(h, `) (5, 4) (5, 4)
(η, η′) (2, 2) (5, 5)

pk size (in byte) 1312 1472
sk size (in byte) 3056 3504

sig. size (in byte) 2573 2701
expected # of repetitions 5.67 6.6
quantum bit-cost against

key recovery attack 128 128

quantum bit-cost against
forgery attack 125 125

The efficiency of the signing algorithm is firmly connected to the expected number of repetitions,
which depends on the probabilities that the two rejection sampling steps occur. When some
assumption is made with respect to the distribution of w = Ay ∈ Rhq , the probability that the first
restart occurs is (

2(bq/kc − U)− 1
2 bq/kc − 1

)`·n
·
(

2(bq/2c − kU ′)− 1
q

)h·n
.

In regard to the second restart, experiments are carried to estimate the expected number of repeti-
tions, and parameters are chosen such that in the experiments, the second restarts are carried out
with probability no more than 1%. In sum, the average number of repetitions is dominated by the
probability that the first restart occurs.

To choose the set of recommended parameters for SKCN, the following requirements or goals
should be taken into account simultaneously: First, the parameters should be appropriately chosen
so as to ensure the correctness of our signature scheme; Second, the involved parameters should be
chosen with the goal of achieving 128-bit quantum security; Moreover, the parameters should be
chosen such that the expected number of repetitions in the signing algorithm should be as small
as possible, so as to ensure the efficiency of the signing algorithm; Finally, the parameters should
be chosen such that the sum of the public key size and the signature size should be as minimal as
possible.

Under such considerations, we choose the set of recommended parameters for SKCN which
is depicted in Table 1. And the quantitative comparison between recommended-SKCN and
recommended-Dilithium is summarized in Table 2. Note that for the security issue, the (quantum)
security of our recommended parameter set is estimated by following exactly the methodology
proposed in [DLL+17, LDK+17].

The strength of SKCN is best described by the foregoing quantitative measures. Roughly
speaking, compared with Dilithium, SKCN is more efficient: while preserving the same (quantum)
security level as Dilithium does, SKCN has shorter public/secret key, has shorter signature, and
runs fasters.

4.4 Implementation Details

In this subsection, we describe how our SKCN equipped with the set of recommended parameters
(cf. Table 1) is implemented in practice. Our implementation can be best described by Algorithms
6 - 8 presented in Appendix A. Roughly speaking, compared with our theoretical design depicted
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in Algorithms 2 - 4, several changes similar to [LDK+17] are made so as to improve the efficiency
of SKCN.

4.4.1 Deterministic signing procedure

First and foremost, the sign procedure in SKCN is made determinist by adding a seed to the secret
key and using this seed key as well as the message µ to be signed to produce the nonce y ∈ R4

q via
SHAKE-256. Given that repetition is almost necessary to generate a valid signature, we append a
counter κ into the secret key, which makes the SHAKE-256 output differ with each signing attempt
of the same message.

4.4.2 NTT operation

As in most lattice-based schemes that are based on operations over algebraic lattice, the underlying
ring in SKCN is well chosen so that the multiplication operation could be carried out efficiently
via the Number Theoretic Transform (NTT) over the finite field Zq. To enable the NTT, we need
to choose a prime q so that the cyclic group Z∗q has an element α ∈ Z∗q of order 2n = 512, or
equivalently, q ≡ 1 (mod 512). In our recommended parameter,

xn + 1 = x256 + 1 ≡ (x− α) · (x− α3) · · · (x− α511) (mod q),

and each polynomial f ∈ Zq[x]/〈xn + 1〉 could be represented in its NTT form as

f̂
def= (f(α), f(α3), · · · , f(α511)).

The homomorphic property of this conversion enables us to carry out the polynomial multiplication
efficiently.

4.4.3 Bit packing

Bit-packing is applied in the implementation of SKCN.
Take the binary representation of t0 ∈ R5

q as an example. Recall that t1 contains 5 polynomials
in Zq[x]/〈x256 + 1〉, and every coefficient belongs to

{
−212 + 1, · · · , 212}. Therefore, each

polynomial coefficient could be represented by 13 bits via a simple translation, and t0 could be
represented by 5 ·256 ·13 bits; in our implementation, they are bit-packed in little-endian byte-order.
Similar techniques apply to the polynomial vectors s, e, t1, z.

Also, the public key (ρ, t1) of SKCN is stored as the concatenation of the bit-packed represen-
tations of ρ and t1 in consecutive order. Similar considerations apply to the secret key and the
signature.

4.4.4 Collision resistant hash

Similar to [LDK+17], the function CRH in Appendix A is a collision resistant hash function. In
our implementation, it is instantiated by using the first 384 bits of the SHAKE-256 output.

4.4.5 Generation of A, s, e

To keep the public key as small as possible, the matrix A is shared in terms of the seed ρ: in
each procedure, the NTT representation of the matrix A, i.e., Â, is extracted from the seed ρ by
squeezing SHAKE-256 to obtain a stream of random bytes of arbitrary length. Similarly, part of
the secret key (s, e) is obtained from a random seed in the key generation procedure, via the use of
SHAKE-256.
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Table 3: The concrete harware/software details for the implementation comparison.

Hardware / Software Details
Operating System Ubuntu 18.04.3 LTS system

Computer Lenovo ThinkPad T480S
CPU Intel(R) Core(TM) i7-8550U

Memory 16G
Implementation of RO SHA-3

Compiler GCC
Hyperthreading option On

Table 4: Comparison between SKCN and Dilithium.

SKCN Dilithium
q 1952257 8380417
n 256 256

(h, `) (5, 4) (5, 4)
(η, η′) (2, 2) (5, 5)

pk size (in byte) 1312 1472
sk size (in byte) 3056 3504

sig. size (in byte) 2573 2701
average # of repetitions 5.7 6.6

KeyGen cycles 177707 198167
Sign cycles 859774 1056305

Verification cycles 191645 201511

4.4.6 Performance comparison

We test both the implementations of SKCN and that of Dilithium under the same software/hardware
environment depicted in Table 3. And the quantitative comparison between recommended-SKCN
and recommended-Dilithium is summarized in Table 4.

5 Security Analysis of SKCN

In this section, we analyze the security of the SKCN signature scheme. Roughly speaking, the
security proof consists of two phases: In Phase I, the behavior of the signing oracle is proven to be
statistically indistinguishable from that of an efficient simulator; In Phase II, we show that when
the underlying hardness assumption holds, no efficient attacker can forge a valid message/signature
pair with non-negligible probability, after interacting with the foregoing simulator polynomially
many times.

In the following security proof, we will assume that the public key of SKCN is (ρ, t1, t0) instead
of (ρ, t1), which is similar to that of Dilithium [DLL+17, LDK+17].

5.1 Security Proof in Phase I: the Simulator

The simulation of the signature follows from that of [DLL+17]. The associated simulator for
SKCN is depicted in Algorithm 5. It should be stressed that we assume the public key is t instead
of t1 as well. It suffices to show that the output of the signing oracle is indistinguishable from
that of the simulator. The following two facts plays an essential role for the indistinguishability
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proof. First, in the real signing algorithm, we have Pr[z, c] = Pr [c] · Pr[y = z − cs | c]. Since
‖z‖∞ < bq/kc−U and ‖cs‖∞ ≤ U (with overwhelming probability), we know that ‖z− cs‖∞ <
bq/kc, then Pr[z, c] is exactly the same for every such tuple (z, c). Second, when z does satisfy
‖LowBitsq,k(w− ce)‖∞ < q/2− kU ′, then as long as ‖ce‖∞ < U ′, we have

r1 = HighBitsq,k(w− ce) = HighBitsq,k(w) = w1

by Proposition 3. Thus the simulator does not need to perform the check whether r1 = w1 or not,
and can always assume that it passes.

With the foregoing facts, it is routine to see that the distribution of the pair (z, c) generated by
the simulator is statistically indistinguishable from that of the pair (z, c) generated by the signing
oracle.

After that, the simulator computes r1 and programs H(ρ, t1, bq · r1/ke , µ) = c. The resulting
(z, c) output by the simulator is indistinguishable from that of the real signing oracle in the security
game, provided that collision occurs with negligible probability.

It remains to show that for each query µ, the probability that H (ρ, t1, bq · r1/ke , µ) was
programmed previously is negligible. This follows directly from the following lemma, whose proof
is similar to that of [KLS18].

Lemma 2. For every A← Rh×`q , we have

Pr
[
∀w∗1 : Pr

y←S`
bq/kc−1

[
HighBitsq,k(Ay)=w∗1

]
≤
(

q/k+1
2 · bq/kc−1

)n]
> 1−(n/q)h`.

Proof. Since the polynomial xn + 1 splits into n linear factors modulo q, the probability that for
a uniform a← Rq, the probability that a is invertible in Rq = Zq[x]/〈xn + 1〉 is (1− 1/q)n >
1 − n/q. Thus the probability that at least one of h` polynomials in A ← Rh×`q is invertible is
greater than 1− (n/q)h`.

We shall now prove that for all A that contain at least one invertible polynomial, we will have
that for all w∗1,

Pr
y←S`

bq/kc−1

[
HighBitsq,k(Ay) = w∗1

]
≤
(

q/k + 1
2 · bq/kc − 1

)n
,

which establishes the correctness of this lemma.
First, let us only consider the row of A which contains the invertible polynomial. Call the

elements in this row [a1, · · · , a`] and without loss of generality assume that a1 is invertible. We
want to prove that for all w∗1 ,

Pr
y←S`

bq/kc−1

[
HighBitsq,k(

∑
aiyi) = w∗1

]
≤
(

q/k + 1
2 · bq/kc − 1

)n
.

Define T to be the set containing all the elements w such that HighBitsq,k(w) = w∗1 . By the
definition of Con in Algorithm 1, the size of T is upper-bounded by (q/k + 1)n. Therefore, we
can rewrite the above probability as

Pr
y←S`

bq/kc−1

[∑̀
i=1

aiyi∈T

]
= Pr

y←S`
bq/kc−1

[
y1∈a−1

1 (T−
∑̀
i=2

aiyi)
]
≤
(

q/k+1
2 · bq/kc−1

)n
,

where the last inequality follows due to the fact that the size of the set a−1
1

(
T −

∑`
i=2 aiyi

)
is

the same as that of T , and the size of the set S`bq/kc−1 is exactly (2 · bq/kc − 1)n.

It should be stressed that, both inequalities
(

q/k+1
2bq/kc−1

)n
� 2−128 and (n/q)h` � 2−128 holds

for our set of recommended parameters depicted in Table 1.
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5.2 Security Proof in Phase II

By applying forking lemma, we can show SKCN is strongly existentially unforgeable under adaptive
chosen-message attacks in the random oracle model, provided that the parameters are appropriately
chosen and the underlying MLWE and MSIS (in `∞ norm) assumptions hold. However, this proof
is not tight, and cannot be directly applied into the quantum setting. In contrast, in this section,
we shall develop a quantum reduction of SKCN that is tight in nature by introducing another new
underlying hardness assumption for SKCN, as is done in [DLL+17, LDK+17].

As is observed in [DLL+17, LDK+17], no counter-examples of schemes whose security is
actually affected by the non-tightness of the reduction has been proposed. The main reason for
this absence of counter-examples lies in that there is an intermediate problem which is tightly
equivalent, to the UF-CMA security of the signature scheme. What is more, this equivalence still
holds even under in quantum settings. Compared with classical hardness problems, this problem
is essentially a convolution of the underlying mathematical problem with a cryptographic hash
functionH(·). As is justified in [LDK+17], as long as there is no relationship between the structure
of the math problem and the hash function H(·), solving this intermediate problem is not easier
than solving the mathematical problem alone. In our setting, this intermediate problem is called
the SelfTargetMSIS problem, which is to be defined later.

5.3 The SelfTargetMSIS Problem, and Quantum Security of SKCN

We follow the definition in [LDK+17]. Assume H : {0, 1}∗ → B60 is a cryptographic hash
function. For a given adversary A, it is given a random A ← Rh×`q and access to the quantum
random oracle H(·), and is asked to output a pair

(
y = ([r, c]T , µ)

)
such that 0 ≤ ‖y‖∞ ≤ γ,

H(µ, [I,A] · y) = c. In other words, the adversary A is asked to solve the SelfTargetMSIS problem.
In this work, let AdvSelfTargetMSIS

H,h,`,γ (A) denote the probability thatA solves the given SelfTargetMSIS
problem successfully.

Similar to results in [LDK+17], given the similarity between SKCN and Dilithium, it follows
from [KLS18] that when H(·) is modeled as quantum random oracle, the probability a given
efficient adversary A breaks the SEU-CMA security of SKCN is

AdvSUF−CMA
SKCN (A) ≤ AdvMLWE

h,`,D (B) + AdvSelfTargetMSIS
H,h,`+1,ζ (C) + AdvMSIS

h,`,ζ′(D) + 2−254,

where D denotes the uniform distribution over Sη , and

ζ = max(bq/kc − U, bq/kc+ 1 + 60 · 2d−1), ζ ′ = max(2 · (bq/kc − U), 2 bq/kc+ 2).

Similar to Dilithium, SKCN is built upon three underlying hardness assumptions: intuitively, the
MLWE assumption is needed to protect against key-recovery attack, the SelfTargetMSIS is the
assumption upon which new message forgery is based, and the MSIS assumption is needed for
strong unforgeability instead of standard unforgeability.

Note that the simulation proof in Section 5.1 holds even in quantum setting; equivalently, if
an adversary having quantum access to H(·) and classical access to a signing oracle can produce
a forgery of a new message, then there is also an adversary who can produce a forgery after
interacting with the simulator defined in Section 5.1. When MLWE assumption holds with the
distribution D, it remains for us to analyze the following experiment: for an efficient adversary A,
it is given a random (A, t), and is asked to output a valid message/signature pair (µ, (z, c,h)) such
that ‖z‖∞ < bq/kc − U,H(µ,UseHintq,k(h,Az− ct1 · 2d)) = c, ‖h‖1 ≤ ω.

It follows from the properties presented in Section 3 that

Az− ct1 · 2d + u = bq/kc · UseHintq,k(h,Az− ct1 · 2d) = Az− ct + u′,

where ‖u′‖∞ ≤ ‖u‖∞+‖c · t0‖∞ ≤ 60·2d−1 +bq/kc . In sum, to forge a valid message/signature
pair means to find z, c,u′, µ such that
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• ‖z‖∞ < bq/kc − U ; and

• ‖c‖∞ = 1; and

• ‖u′‖∞ < 2 bq/kc; and

• c = H(µ,Az + ct + u′ · 1
bq/kc ).

This is the SelfTargetMSIS problem defined previously.
As is analyzed in [LDK+17], the only way to solving the SelfTargetMSIS problem appears

to be picking some w ∈ Rhq , computing H(µ,w) = c, and then finding the feasible z,u′ such
that Az + u′ = w + ct. And forging a valid forgery in the UF-CMA security of SKCN is finding
some z,u′ such that ‖z‖∞ ≤ bq/kc − U, ‖u′‖∞ ≤ 60 · 2d−1 + bq/kc, and Az + u′ = t′ for some
pre-defined t′.

Finally comes to the strong unforgeability of SKCN. In quantum setting, the analysis is similar
to that of [DLL+17, LDK+17]. In addition to the foregoing possible forgery, an extra one needs
considering for the strong unforgeability, i.e., when the adversary sees a valid message/signature
pair (µ, (z, c,h)) and then aims to forge another valid pair (µ, (z′, c,h′)). In this special case, a
successful forgery means the adversary obtains two valid signatures such that

UseHintq,k(h,Az− ct1 · 2d) = w1 = UseHintq,k(h′,Az′ − ct1 · 2d).

It is routine to see z 6= z′. Therefore,∥∥Az− ct1 · 2d − w1 · bq/kc
∥∥
∞ ,
∥∥Az′ − ct1 · 2d − w1 · bq/kc

∥∥
∞ ≤ bq/kc+ 1.

It follows from the triangular inequality that ‖A ·∆z‖∞ ≤ 2 bq/kc + 2, where ∆z def= (z − z′)
satisfies ‖∆z‖∞ ≤ 2(bq/kc − U). The hardness of this reduced problem is thus guaranteed by the
hardness of the Module-SIS problem (in the `∞-norm).

6 Concrete Security Analysis
In this section, we analyze how to conduct the concrete security analysis of SKCN. As mentioned
previously, we estimate the concrete hardness of SKCN by following the same methodology pro-
posed in [LDK+17], and the result shows our recommended-SKCN achieves the same (quantum)
security level as that of recommended-Dilithium.

For our signature schemes, two types of important attacks should be taken into consideration:
the key-recovery attack which aims to recover the secret key, with the given associated public
key; the forgery attack which tries to forge a signature in the security game of SEU-CMA. To our
knowledge, the best known algorithms to implement these two attack both involve the lattice basis
reduction as well as the Core-SVP problem.

6.1 Lattice Basis Reduction, BKZ Algorithm, and Core-SVP Prob-
lem

Given our recommended parameter, in practice the best known algorithm for finding a “short”
nonzero vector in Euclidean lattices is the BKZ algorithm as well as its variants, which outperforms
the combinatorial attacks (e.g., the BKW attack [BKW03]) and algebraic attacks (e.g., the Arora-Ge
algorithm [AG11]).

In order to solve the SVP problem in `2-norm, the BKZ algorithm solves a related yet more
generic problem, i.e., the lattice basis reduction problem. Generally speaking, BKZ solves the
lattice basis reduction problem by making polynomial calls to a SVP oracle with block-size b. The
hardness of lattice basis reduction problem is implied by the following two facts: to obtain a “good”
basis, the BKZ algorithm should be equipped with a SVP oracle with a large block-size b; the cost
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of implementing the underlying SVP oracle is exponential in the block-size b (in fact, the best
known quantum SVP solver [ADPS16] runs in time ≈ 2cQ·b, where cQ = log2

√
13/9 ≈ 0.265).

Since it is relatively difficult to analyze the upper-bound on the number of SVP calls, the Core-
SVP model is thus introduced [ADPS16], which identifies the cost of BKZ algorithm with the
cost of one single call to an SVP oracle with block-size b. This pessimistic estimation implies that
similar to [DLL+17, LDK+17], our security analysis is pretty conservative.

6.2 Forgery Attack and Module-SIS Problem

As indicated in Section 5.2, the forgery attack could be boiled down to solving the SelfTargetMSIS
problem. To solve the SelfTargetMSIS problem, we need either to break the security of H(·), or
to solve the MSIS problem with input (A, t′, β). The hardness of breaking the security of H(·) is
guaranteed by the assumption that H(·) is modeled as a random oracle in our security proof and by
the fact that the range B60 of H(·) is roughly of size 2256. Hence, we concentrate our analysis on
the hardness of the MSIS problem hereafter.

In essence, the MSIS problem could be seen as a variant of the SIS problem in the `∞-norm,
which is in sharp contrast to the ordinary SIS problem endowed with the `2-norm. Roughly
speaking, a “short” vector in the `∞-norm is also a “short” solution in the `2-norm, but the converse
may not hold. (In fact, for our signature scheme with our recommended parameter, the solution to
our SelfTargetMSIS problem has Euclidean length above q, whereas the trivial vector (q, 0, · · · , 0)t
has Euclidean length q, but its infinity norm is far from satisfactory.) This indicates that the problem
we are confronting is intuitively much harder than the SIS problem in the `2-norm.

Since BKZ algorithm works only on the Euclidean lattice, we cannot directly turn the MSIS
instance into a Core-SVP instance. Nevertheless, we shall follow the general methodology proposed
in [DLL+17, LDK+17] by sticking to using the BKZ algorithm to determine the solution in the
infinity norm.

To be specific, we first narrow down the range of our analysis by choosing a subset of w columns,
and zeroing the other dimensions of the targeted vector. Then we still seek to choose a desired
“short” vector by invoking the BKZ algorithm, but no longer the first one in the output lattice basis,
e.g., the shortest one in the Euclidean norm. Instead, we aim to find a lattice vector whose projection
in either direction is not very large, which is consistent with our purpose of finding a nonzero
vector with small `∞-norm. When the block-size in BKZ is determined, heuristic assumptions are
made so as to estimate the probability that such a desired lattice vector exists: we assume that for
those dimensions that are not affected by the BKZ algorithm, the associated coordinates follow
the uniform distribution modulo q, whereas for those dimensions that are affected by the BKZ
algorithm, the associated coordinates follows the Gaussian distribution with appropriate standard
deviation. Finally, the cost estimate is the inverse of that probability multiplied by the run-time of
our b-dimensional SVP-solver [DLL+17, LDK+17].
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A The Implementation Procedures

Algorithm 6 The key generation algorithm in
our implementation
Input: 1λ
Output: (pk, sk)

1: ρ← {0, 1}256

2: key← {0, 1}256

3: (s, e)← S`η × Shη′
4: A ∈ Rh×`q := Sam(ρ)
5: t := As + e
6: (t1, t0) := Power2Roundq,d(t)
7: tr ∈ {0, 1}384 := CRH(ρ, t1)
8: pk := (ρ, t1)
9: sk := (ρ, key, tr, s, e, t0)

10: return (pk, sk)

Algorithm 7 The Verification algorithm in our
implementation
Input: pk, µ, (z, c,h)
Output: b ∈ {0, 1}

1: A ∈ Rh×`q := Sam(ρ)
2: tr ∈ {0, 1}384 := CRH(ρ, t1)
3: µ ∈ {0, 1}384 := CRH(tr, µ)
4: w′1 := UseHintq,k(h,Az− ct1 · 2d)
5: c′ ← H(ρ, t1,w′1, µ)
6: if c = c′ AND ‖z‖∞ < bq/kc − U AND
‖h‖1 ≥ ω then

7: b := 1
8: else
9: b := 0

10: end if
11: return b

Algorithm 8 The Sign algorithm in our implementation
Input: sk, µ
Output: (z, c,h)

1: A ∈ Rh×`q := Sam(ρ)
2: µ ∈ {0, 1}384 := CRH(tr, µ)
3: κ := 0
4: while true do
5: y ∈ S`bq/kc−1 := ExpandMask(key, µ, κ)
6: κ := κ+ 1
7: w := Ay
8: w1 := HighBitsq,k(w)
9: c ∈ B60 := H(µ,w1)

10: z := y + cs
11: u := w− ce
12: (r1, r0) := Con(u)
13: if ‖z‖∞ ≥ bq/kc − U OR ‖r0‖∞ ≥ bq/2c − k · U ′ OR r1 6= w1 then
14: continue
15: end if
16: v := ct0
17: if ‖v‖∞ ≥ bq/(2k)c then
18: continue
19: end if
20: h := MakeHintq,k(−v,u + v)
21: if ‖h‖1 ≥ ω then
22: continue
23: end if
24: break
25: end while
26: return (z, c,h)
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