
Automatic Search for A Variant of Division
Property Using Three Subsets

(Full Version)

Kai Hu, Meiqin Wang?

Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan, 250100, China

hukai@mail.sdu.edu.cn, mqwang@sdu.edu.cn

Abstract. The division property proposed at Eurocrypt’15 is a novel
technique to find integral distinguishers, which has been applied to most
kinds of symmetric ciphers such as block ciphers, stream ciphers, and
authenticated encryption, etc. The original division property is word-
oriented, and later the bit-based one was proposed at FSE’16 to get bet-
ter integral property, which is composed of conventional bit-based divi-
sion property (two-subset division property) and bit-based division prop-
erty using three subsets (three-subset division property). Three-subset
division property has more potential to achieve better integral distin-
guishers compared with the two-subset division property. The bit-based
division property could not be to apply to ciphers with large block sizes
due to its unpractical complexity. At Asiacrypt’16, the two-subset divi-
sion property was modeled using Mixed Integral Linear Programming
(MILP) technique, and the limits of block sizes were eliminated. How-
ever, there is still no efficient method searching for three-subset division
property. The propagation rule of the XOR operation for L 1, which is a set
used in the three-set division property but not in two-set one, requires to
remove some specific vectors, and new vectors generated from L should
be appended to K when Key-XOR operation is applied, both of which are
difficult for common automatic tools such as MILP, SMT or CP. In this
paper, we overcome one of the two challenges, concretely, we address the
problem to add new vectors into K from L in an automatic search model.
Moreover, we present a new model automatically searching for a variant
three-subset division property (VTDP) with STP solver. The variant is
weaker than the original three-subset division property (OTDP) but it is
still powerful in some ciphers. Most importantly, this model has no con-
straints on the block size of target ciphers, which can also be applied to
ARX and S-box based ciphers. As illustrations, some improved integral
distinguishers have been achieved for SIMON32, SIMON32/48/64(102),
SPECK32 and KATAN/KTANTAN32/48/64 according to the number
of rounds or number of even/odd-parity bits.

Keywords: Division Property, Three-Subset, STP, Automatic Research

? Corresponding author.
1 The definition of L and K is introduced in Section 2.

2

1 Introduction

Division property, a generalization of the integral property [6], was proposed
by Todo at Eurocrypt’15 [12], which has been applied to most kinds of sym-
metric ciphers, such as block ciphers, stream ciphers and authenticated encryp-
tion [13,14], etc. The most impressive application is that it was used to break,
for the first time, the full MISTY1 at CRYPTO’15 [13]. Furthermore, the divi-
sion property made significant progress in the cube attack because the limits of
practical data complexity have been eliminated [14].

Since the division property was put forward, this cryptanalytic technique has
been further investigated. The original division property [12] is word-oriented,
and it can only describe the algebraic degree of S-box instead of the particular
Boolean function. In order to further consider the Boolean function of S-box,
Boura et al. gave more precise description for S-box in division property at
CRYPTO’16 [3].

At FSE’16, Todo and Morii [15] introduced the bit-based division property
which depicts the components of target primitive at bit level so that more in-
formation of the cipher structures can be utilized. Compared with the original
word-level division property, the bit-based one is more likely to find better inte-
gral characteristics. Bit-based division property family proposed in [15] includes
two-subset and three-subset division property. The two- and three-subset divi-
sion property classify all vectors u ∈ Fn

2 into two and three subsets, respectively,
according to the parity of a Boolean polynomial related to u. In detail, the parity
is even or unknown for two-subset division property while even, odd or unknown
for three-subset division property. Because the odd-parity set is extracted from
the unknown set in three-subset division property, it means that more infor-
mation of Boolean function is traced. Therefore, three-subset division property
has more potential to achieve better integral distinguishers. For example, the
14-round integral characteristic of SIMON32 has been found by two-subset di-
vision property while 15-round integral characteristic was found by three-subset
division property [15].

Although the bit-based division property under Todo and Morri’s framework
is quite effective to find integral distinguishers, unfortunately, they can only work
on ciphers with small block sizes because of the huge memory and time require-
ments. As pointed in [15], for a cipher with block size n, the time and memory
complexities are upper bounded by 2n. Xiang et al. have solved the problem of
searching for two-subset division property by utilizing the MILP tools at Asi-
acrypt’16 [17] . They transformed the search problem into an MILP problem
which can be used to find division property for ciphers with large block size. Au-
tomatic tools such as MILP solvers can describe the set with some constraints
and conduct some inner optimization automatically, which do not need to go
through all the vectors. Xiang et al.’s method has been extended and applied to
improve the integral attacks on many ciphers [5,9,10,16]. Especially, the MILP
model to search division property was used to extend the cube attack, which has
improved the attacks on Trivium, Grain128a, and Acorn [14].

3

Since the automatic search model for three-subset division property is still
not constructed, it can be merely used on ciphers with small size until now.
For two-subset division property, we only trace the set K but both the set K
and L should be considered for three-subset division property. There are two
challenges to face when we construct the automatic search model by MILP,
SMT or CP. In one hand, the propagation rules for L are very different because
some vectors which appear an even number of times should be removed from L
and the propagation rule of XOR should remove the vectors occurring an even
number of times, too. On the other hand, some new vectors generated from
vectors in L will be added into K.

In common MILP, SMT or CP models, the constraints are used only to
narrow the range of the sets which the variables belong to. There are no direct
methods which can solve the two following problems as far as we know,

1. decide the duplicated vectors which appear even times and remove them
dynamically.

2. extend the range of a set which the specific variable belongs to.

In this paper, we introduce one new technique by an STP solver to overcome
the second problem directly. We do not remove the duplicated vectors in L and
then we get a variant of three-subset division property. Although VTDP is not
more efficient than OTDP, we prove that the results of VTDP are valid and
useful. Most importantly, we can automatically search for VTDP without the
limits of block sizes. It can also be applied to S-box based and ARX ciphers.

1.1 Our Contributions

1.1.1 Automatic Search Algorithm for VTDP

In this paper, we introduce VTDP and construct a general model of automatic
search for it. The details of our technical contributions are three-fold, which are
listed as follows.

VTDP and Variant Three-Subset Division Trail. We describe the method
to obtain VTDP from OTDP and prove the validity of this variant. Compared
with OTDP, VTDP does not remove any duplicated vector in L and modify
the propagation rule of XOR for L. As a result, we can prove that the integral
distinguishers found by VTDP are valid according to OTDP. To construct the
automatic search model for VTDP, we introduce the definition of variant three-
subset division trail. The definition of division trail to illustrate the propagation
of two-subset division property is introduced in [17]. Similarly, we define the
variant three-subset division trail in order to construct the automatic search
model for VTDP. With this definition, the problem of searching for VDTP can
be transformed to a problem of searching for a valid variant three-subset division
trail.

4

Models of Key-Independent Components for L. To search for VTDP, we
should build the models for propagation for K and L. For K, the models are the
same as those in the two-subset division property [11,17], which can be referred
directly. However, we should construct the models of all kinds of operations
for L. We first give a variant propagation rule of XOR for L and construct the
automatic search models for common component such as Copy, AND and XOR.
Then, to make our models more general, we consider Modular Addition and
S-box also.

Model for Key-XOR. The difficult problem in constructing the models for VTDP
is how to update the set K with the set L when a Key-XOR operation is applied
to the state. By introducing the logical OR operation in STP, which is a simple
but efficient solver for the theory of quantifier-free bit vectors, we succeed to
solve this difficult problem. Thus, we can give a model for Key-XOR based on
STP.

1.1.2 Applications
We apply our model to search for integral distinguishers of SIMON [1],

SIMECK [18], SIMON(102) [7], SPECK [1], KATAN/KTANTAN [4]. The results
are shown in Table 1. Details for these applications are described as follows.

We first apply our model to SIMON and SIMECK. For SIMON32, VTDP can
find 15 round integral distinguishers, which are more effective than two-subset
division property. For the variant SIMON, SIMON(102), we get the improved
integral distinguishers according to the number of even/odd-parity bits.

Compared with those from two-subset division property [9], we obtained the
improved integral distinguishers for KATAN/KTANTAN32/48 concerning the
number rounds also, better ones according to the number of even/odd-parity
bits.

For ARX cipher SPECK32, we can find an additional integral characteristic
which has the same length as that discovered by the two-subset division property.

1.2 Organization of The Paper

We briefly recall some background knowledge about the bit-based division prop-
erty in Sect. 2. In Sect. 3, we introduce VTDP and construct the whole automatic
search model for it. We show some applications of our model in Sect. 4. At last,
we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Bit-Based Division Property

At Eurocrypt’15, the division property, a generalization of the integral property,
was proposed [12], where better integral distinguishers for word-oriented cryp-
tographic primitives have been detected. Later, Todo and Morii introduced the

5

Table 1. Results of VTDP for Some Ciphers

Cipher Data Round
Number of
even/odd-
parity bits

Time Reference

SIMON32 231 14 32 [17]
15 3 27s [15], Sect. 4.1

SIMON32(102) 231 20 1 [17]
20 3 25s Sect. 4.1

SIMON48(102) 247 28 1 [17]
28 3 9.3s Sect. 4.1

SIMON64(102) 263 36 1 [17]
36 3 1.1h Sect. 4.1

KATAN/KTANTAN32 231 99 1 [9]
101 1 5.6h Sect. 4.4

KATAN/KTANTAN48 247 63.5 1 [9]
64 1 16h Sect. 4.4

KATAN/KTANTAN64 263 72.3 1 [9]
72.3 2 18h Sect. 4.4

SPECK32 231 6 1 [11]
6 2 3.5m Sect. 4.2

bit-based division property [15] where the propagation of integral characteris-
tic can be described in a more dedicated manner for the concrete structures of
the target primitives. As a result, more rounds of integral characteristics have
been found with this new technique. For example, the integral distinguishers of
SIMON32 have been improved from 10-round to 15-round.

Bit-based division property traces the propagation of vectors u ∈ Fn
2 accord-

ing to the parity of πu(x) for all x, where πu(x) is a polynomial πu(x) = Πix
ui
i

and xi, ui are the i-th bit of vector u and v. For the traditional bit-based divi-
sion property, only two cases are considered where u can be classified into two
sets according to that the parity of πu(x) is even or unknown. In this paper, we
name it as two-subset bit-based division property.

Definition 1 (Two-Subset Bit-Based Division Property [15]). Let X be
a multiset whose elements take a value of Fn

2 . Let K be a set whose elements
take an n-dimensional bit vector. When the multiset X has the division property
D1n

K , it fulfils the following conditions:

⊕
x∈X

πu(x) =

{
unknown, if there exist k ∈ K s.t. u � k,

0, otherwise,

where u � k if ui > ki for all i.

6

The two-subset bit-based division property uses the set K to represent the subset
of u such that the parity of πu(x) is unknown. According to [15], the two-subset
bit-based division property is insufficient to find more accurate integral charac-
teristic because it cannot exploit the fact that the parity of πu(x) is definitely
odd. Motivated by this fact, the three-subset bit-based division property is in-
troduced in [15].

The three-subset bit-based division property classifies u into three sets on
the basis of what the parity of

⊕
x∈X πu(x) is unknown, definitely even or odd.

Therefore, the set K is used to represent the set of u with unknown
⊕

x∈X πu(x),
and the set L is used to denote the set of u with

⊕
x∈X πu(x) equal to one.

Definition 2 (Three-Subset Bit-Based Division Property[15]). Let X be
a multiset whose elements take a value of Fn

2 . Let K and L be two sets whose
elements take n-dimensional bit vectors. When the multiset X has the division
property D1n

K,L, it fulfils the following conditions:

⊕
x∈X

πu(x) =


unknown, if there exist k ∈ K s.t. u � k

1, else if there is l ∈ L s.t. u = l

0, otherwise

.

According to [15], if there are k ∈ K and k′ ∈ K satisfying k � k′, then k is
redundant. Moreover, if there are l ∈ L and k ∈ K, the vector l is also redundant
if l � k. The redundant vectors in K and L will not affect the parity of πu(x)
for any u.

Since we only focus on the bit-based division property in this paper, all
notations of division property is for the bit level by default if we do not declare
it.

Propagation Rules

those for K are the same as those of two-subset one.

Rule 1 (Copy [15]) Let F be a copy function, where the input (x1, x2, . . . , xm)
takes values of (F2)n, and the output is calculated as (x1, x1, x2, x3, . . . , xm). Let
X and Y be the input and output multiset, respectively. Assumethat X has D1m

K,L,

Y has D1m+1

K′,L′ , where K′ and L′ are computed as

K′ ←

{
(0, 0, k2, . . . , km), if k1 = 0

(1, 0, k2, . . . , km), (0, 1, k2, . . . , km), if k1 = 1
,

L′ ←

{
(0, 0, l2, . . . , lm), if l1 = 0

(1, 0, l2, . . . , lm), (0, 1, l2, . . . , lm), (1, 1, l2, . . . , lm), if l1 = 1
.

from k ∈ K and l ∈ L, respectively.

7

Rule 2 (AND [15]) Let F be a function compressed by an AND, where the in-
put (x1, x2, . . . , xm) takes values of (F2)m, and the output is calculated as (x1 ∧
x2, x3, . . . , xm). Let X and Y be the input and output multiset, respectively. As-

sume that X has D1m

K,L, Y has D1m−1

K′,L′ , where K′ is computed from k ∈ K as

K′ ←
(⌈

k1 + k2
2

⌉
, k3, k4, . . . , km

)
.

Moreover, L′ is computed from l ∈ L s.t. (l1, l2) = (0, 0) or (1, 1) as

L′ ←
(⌈

l1 + l2
2

⌉
, l3, l4, . . . , lm

)
.

Rule 3 (XOR [15]) Let F be a function compressed by an XOR, where the in-
put (x1, x2, . . . , xm) takes values of (F2)m, and the output is calculated as (x1 ⊕
x2, x3, . . . , xm). Let X and Y be the input and output multiset, respectively. As-

sume that X has D1m

K,L, Y has D1m−1

K′,L′ , where K′ is computed from k ∈ K s.t.
(k1, k2) = (0, 0), (1, 0), or (0, 1) as

K′ ← (k1 + k2, k3, k4, . . . , km).

Moreover, L′ is computed from l ∈ L s.t. (l1, l2) = (0, 0), (1, 0), or (0, 1) as

L′ x←− (l1 + l2, l3, l4, . . . , lm),

where L x←− l means

L =

{
L ∪ {l} if the original L does not include l,

L\{l} if the original L includes l.

Boura et al. presented the propagation rules of S-box for K at bit-level in [3] for
the first time. We summarize the technique in Rule 4.

Rule 4 (Bit-Based S-box for K [3]) Let F : Fm
2 → Fn

2 be a function of sub-
stitution composed of (f1, f2, . . . , fn), where the input x = (x1, x2, . . . , xm) takes
values of (F2)m, and the output y = (y1, y2, . . . , yn) is calculated as

y1 = f1(x1, x2, . . . , xm),

y2 = f2(x1, x2, . . . , xm),

...

yn = fn(x1, x2, . . . , xm).

For each vector u ∈ K representing the input division property, check each vector
v ∈ Fn

2 whether the polynomial πv(y) contains any monomial πk′(x) that k′ � k.
If so, then (u,v) is a valid division trail for the S-box function.

8

Modular Addition is the nonlinear component of ARX ciphers. The Modular
Addition operation can be decomposed into a series of basic operations such
as Copy, AND and XOR. Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) and
z = (z0, z1, . . . , zn−1). If z = x�y, the Boolean function of zi can be iteratively
expressed as follows,

zn−1 = xn−1 ⊕ yn−1 ⊕ cn−1, cn−1 = 0,

zi = xi ⊕ yi ⊕ ci, ci = xi+1 · yi+1 ⊕ (xi+1 ⊕ yi+1) · ci+1,

i = n− 2, n− 3, . . . , 0.

With some auxiliary variables, Sun et al. modeled Modular Addition at Aisacryp-
t’17 in [11] as follows.

Rule 5 (Modular Addition for K [11]) Let (a0, a1, . . . , an−1, b0, b1, . . . , bn−1,
d0, d1, . . . , dn−1) be a division trail of n-bit Modular Addition operation, to de-
scribe the division property propagation, the Copy, AND and XOR models should
be applied in a specific order specified in Appendix A.

Rule 6 (Key-XOR) Assuming F is a component of Key-XOR, (K,L) and (K′,L′)
are the input and output division property, respectively. According to [15], the
propagation is as follows,

L′ ← l, for l ∈ L,
K′ ← k, for k ∈ K,
K′ ← (l1, l2, . . . li ∨ 1, . . . , lm), for l ∈ L satisfying li = 0, 1 6 i 6 m.

2.2 Automatic Search for Bit-Based Division Property

As pointed in [15], the time and memory complexities for bit-based division
property are upper-bounded by 2n, where n denotes the block length. Therefore,
the bit-based division property was just applied to SIMON32 and SIMECK32
in [15].

Recently, the techniques of automatic search for distinguishers have devel-
oped a lot. Automatic search can trace the transitions of sets in an efficient
way. The propagation of vectors can be modeled by a serial of constrained op-
timization or decision statements. The technique has been used to find better
differential and linear characteristics. Especially, it is very efficient to search for
the division property.

Xiang et al. transformed the problem of finding two-subset division property
into an MILP problem for the first time [17]. With the help of MILP solver
Gurobi, they can find division property for ciphers with large block sizes, e.g.,
SIMON128 or PRESENT. To search for two-subset bit-based division property,
they introduced the definition of two-subset division trail.

Definition 3 (Two-Subset Division Trail [17]). Let us consider the prop-

agation of the division property {k} def
= K0 → K1 → . . . → Kr. Moreover, for

9

any vector k∗i+1 ∈ Ki+1, there must exit a vector k∗i ∈ Ki such that k∗i can prop-
agate to k∗i+1 by the propagation rules of the division property. Furthermore,
for (k0,k1, . . . ,kr) ∈ K0 × K1 × . . . × Kr if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → . . .→ kr) an r-round division trail.

2.2.1 Models of Propagation with SMT/SAT Since we will use STP
solver to implement our model, we introduce the SMT/SAT models for K de-
scribing the basic components Copy, AND, XOR and complex components Modular
Addition according to Rule 5.

Model 1 (Bit-Based Copy for K [11]) Denote (a)
Copy−−→ (b0, b1) a division

trail of Copy operation, the following logical equations are sufficient to depict
the propagation of bit-based division trail,

b̄0 ∨ b̄1 = 1

a ∨ b0 ∨ b̄1 = 1

a ∨ b̄0 ∨ b1 = 1

ā ∨ b0 ∨ b1 = 1

.

Model 2 (Bit-Based XOR for K [11]) Denote (a0, a1)
XOR−−→ (b) a division trail

of XOR function, the following logical equations are sufficient to evaluate the bit-
based division trail through XOR operation,

ā0 ∨ ā1 = 1

a0 ∨ a1 ∨ b̄ = 1

a0 ∨ ā1 ∨ b = 1

ā0 ∨ a1 ∨ b = 1

.

Model 3 (Bit-Based AND for K [11]) Denote (a0, a1)
AND−−→ (b) a division trail

of AND function, the following logical equations are sufficient to evaluate the bit-
based division trail through AND operation,

ā1 ∨ b = 1

a0 ∨ a1 ∨ b̄ = 1

ā0 ∨ b = 1

.

Model 4 (Bit-Based Modular Addition for K [11]) According to Rule 5, we
can use the models of basic operations Copy, AND and XOR and some auxiliary
variables to implement the Modular Addition.

2.2.2 Initial and Stopping Rules of Two-Subset Division Property An
MILP or SMT/SAT model to search for two-subset bit-based division property
needs to set proper initial and stopping rules, i.e., assign values to the initial
and output variables in the division trail.

10

Assume that (a00, a
0
1, . . . , a

0
n−1)→ . . .→ (ar0, a

r
1, . . . , a

r
n−1) is an r-round divi-

sion trail for an n-bit length cipher. Let D1n

k denote the initial division property
with k = (k0, k1, . . . , kn−1), and then we append the following constraints to the
search model,

a0i = ki, i = 0, 1, 2, · · · , n− 1.

To check whether the i0-th (0 6 i0 6 n − 1) output bit is balanced or not, we
just add constraints on ari (i = 0, 1, . . . , n− 1) that

ari =

{
1, if i = i0,

0, else.

If there is a division trail, the i0-th output bit is decided as unknown; otherwise,
the i0-th output bit is balanced.

3 Search for Variant Three-Subset Division Property

3.1 Variant of Three-Subset Division Property

Firstly, we introduce a compromising propagation rule of XOR for L for VTDP
as follows,

Rule 7 (Variant XOR) Let F be a function compressed by an XOR, where the
input (x1, x2, . . . , xm) takes values of (F2)m, and the output is calculated as
(x1 ⊕ x2, x3, . . . , xm). Let X and Y be the input and output multiset, respec-

tively. Assuming that X has D1m

K,L, Y has D1m−1

K′,L′ , where K′ is computed from
k ∈ K s.t. (k1, k2) = (0, 0), (1, 0), or (0, 1) as

K′ ← (k1 + k2, k3, k4, . . . , km).

Moreover, L′ is computed from l ∈ L s.t. (l1, l2) = (0, 0), (1, 0), or (0, 1) as

L′ ← (l1 + l2, l3, l4, . . . , lm),

In VTDP, we do not remove the duplicated vectors which appear even number
of times in L, and there are no other differences between VTDP and OTDP.

In VTDP, some duplicated vectors which appear even times will further gen-
erate some unexpected vectors in L and K by Key-XOR. As a result, there are
many unexpected division trails in K and L. Note that these extra trails will not
change the original division trails inherited from OTDP if we do not remove the
redundant vectors. Let KV and LV be the set containing all the division trails
from all the duplicated vectors which appears even times and KO and LO be the
set containing all the division trails which are from the OTDP. The following
proposition describes the relationships between VTDP and OTDP.

Proposition 1. Regarding one fixed bit of ciphertext, the VTDP will determine
the parity of this bit by checking the vectors in K and L after r-round encryption.
Compared with the results from OTDP, those from VTDP satisfy the following
three properties.

11

1. If VTDP indicates that the parity of the bit is not unknown (even or odd),
the parity of this bit is not unknown, too, according to OTDP.

2. If VTDP indicates that the parity of the bit is even, the parity of this bit is
really even.

3. If VTDP indicates that the parity of the bit is odd, the parity of this bit will
be constant.

The proof is provided in Appendix B. According to Prop. 1, we can illustrate
the relationship between VTDP and OTDP by Fig. 1. In Fig. 1, the colors rep-
resent the results based on OTDP while the line patterns stand for those based
on VTDP. If one bit is determined as an odd-parity bit, we can know the bit is
definitely not unknown. Therefore, we can still obtain some useful information
from these results. In practice, we can encrypt all possible plaintexts by travers-
ing all active plaintext bits under a random key, and Xor all the correponding
considered ciphtext bits to determine the parity of the considered ciphertext bit-
s. This parity result holds for any key, which can be applied to attack the target
cipher with any key. In other words, with our searching result, the test for only
one key can achieve the available integral distinguisher for any key. Thus, our
searching result is significant for attack. It is reasonable to encrypt the plaintexts
because we need all the details of the cipher structure except the key-schedule
to construct the model to search for VTDP. Note that the requirement also lies
in the algorithm to search for OTDP [15].

Fig. 1. Relationship between VTDP and OTDP.

3.2 Variant Three-Subset Division Trail

To model the the automatic search for VTDP, we introduce the variant three-
subset division trail.

Definition 4 (Variant Three-Subset Division Trial). Let us consider the

propagation of the division property {(k, l)} def
= K0 × L0 → K1 × L1 → · · · →

12

Kr × Lr. Moreover, for any vector tuple (k∗i+1, l
∗
i+1), k∗i+1 ∈ Ki+1 and l∗i+1 ∈

Li+1, there must exit a vector tuple (k∗i , l
∗
i), k∗i ∈ Ki and l∗i ∈ Li, such that

(k∗i , l
∗
i) can propagate to (k∗i+1, l

∗
i+1) by the propagation rules of the division

property for i = 0, 1, . . . , r−1. Furthermore, for ((k0, l0), (k1, l1), . . . , (kr, lr)) ∈
K0 × L0 ×K1 × L1 × · · · ×Kr × Lr, if (ki, li) can propagate to (ki+1, lk+1) for
all i ∈ {0, 1, . . . , r − 1}, we call (k0, l0) → (k1, l1) → · · · → (kr, lr) an r-round
variant three-subset division trail.

Similar to methods in [17], we decide the parity of one output bit by checking
whether certain division trails exist. Therefore, we need to transform the prop-
agation rules of each component into constraints and solve the problem by an
MILP or SMT/SAT tool. We divide all components into key-independent and
key-dependent components according to whether there are secret keys involved.

For key-independent components, we construct the models of Copy, AND, XOR
and Modular Addition operations for L according to Rule 1, 2, 5 and 7. Since
there is no rule of S-box for L, we give the rule and then model the S-box in
Sect. 3.3 for the first time.

For key-dependent components, we concentrate only on the Key-XOR opera-
tion. We introduce a new technique that we can use the logical OR operation
of STP solver to model the dependencies between K and L when a Key-XOR

component is applied.

Note 1. Since redundant vectors do not affect the result of
⊕

x∈X πu(x), our
model will not remove them.

3.3 Models of VTDP for Key-Independent Components

Assuming that f is a key-independent component of a cipher, (K,L) and (K′,L′)
are the input and output division property of f , respectively. In our automatic
search model, we allocate variables to represent the vectors in K, L, K′ and L′
at the bit level at first and then the constraints are added on these variables

according to the propagation rule of f . Note that the propagations of K f→ K′

and L f→ L′ are conducted separately according to their own rules.
In this paper, we use STP solver to implement our model. STP is a simple

but efficient solver for the theory of quantifier-free bit vectors. It is first intro-
duced to find optimal differential characteristic by Mouha and Preneel [8]. At
Asiacrypt’17, Sun et al. took it to search for division property [11]. We can de-
scribe the propagation rules in CNF formulas using the method proposed in [11].
The automatic search models for K has been listed in Sect. 2.1. We construct
models for the basic operations Copy, AND, XOR and Modular Addition for L in
a similar way.

For Copy operation, let a, b0 and b1 be three binary variables and (a)
Copy−−−→

(b0, b1) be the division trail. There are four possible division trails according to
Rule 1, which are (0) → (0, 0), (1) → (0, 1), (1) → (1, 0) and (1) → (1, 1). To
make (a, b0, b1) follow these four division trails only we put constraints on a, b0
and b1 as follows.

13

Model 5 (Bit-Based Copy for L) Denote (a, b0, b1) a division trail of Copy

function, the following logical equations are sufficient to evaluate the bit-based
division trail through Copy operation,

a ∨ b0 ∨ b̄1 = 1

ā ∨ b0 ∨ b1 = 1

a ∨ b̄0 = 1

.

For AND operation, let a0, a1 and b be three binary variables and (a0, a1)
AND−−→

(b) be the division trail. There are two possible division trails according to Rule
2, which are (0, 0) → (0) and (1, 1) → (1), To make (a0, a1, b) follow these two
division trails only we add constrains on a0, a1 and b as follows.

Model 6 (Bit-Based AND for L) Denote (a0, a1, b) a division trail of AND func-
tion, the following logical equations are sufficient to evaluate the bit-based divi-
sion trail trough AND operation, {

a0 = b

a1 = b
.

For XOR operation, we follow the Rule 7 rather than Rule 3, let a0, a1 and b be

three binary variables and (a0, a1)
XOR−−→ (b) be the division trail. There are three

possible division trails according to Rule 7, which are (0, 0) → (0), (0, 1) → (1)
and (1, 0) → (1). To make (a0, a1, b) follow these three division trails only we
append constraints on a0, a1 and b as follows.

Model 7 (Bit-Based Variant XOR for L) Denote (a0, a1, b) a division trail of
XOR function, the following logical equations are sufficient to evaluate the bit-
based division trail trough XOR operation,

a0 ∨ a1 ∨ b̄ = 1

ā1 ∨ b = 1

ā0 ∨ a1 ∨ b = 1

ā0 ∨ ā1 ∨ b̄ = 1

.

Model 8 (Bit-Based Modular Addition for L) The model of Modular Addition

for L is totally same with that for K except that we use basic models of Copy,
AND and variant XOR for L rather than K.

Modeling S-box for L
The rule to calculate all the division trails of an S-box for K was presented in
[3,17]. Here we introduce the rules to find all the division trails for L.

Let F : (F2)m → (F2)n be a function of substitution composed of (f1, f2, . . . , fn),
where the input x = (x1, x2, . . . , xm) takes values of (F2)m, and the output

14

y = (y1, y2, . . . , yn) is calculated as

y1 = f1(x1, x2, . . . , xm),

y2 = f2(x1, x2, . . . , xm),

...

yn = fn(x1, x2, . . . , xm).

Similar to Rule 4, for each input vector u ∈ L, we consider each output vector
v ∈ Fn

2 seperately to derive all the valid division trails. According to Def. 2,
for each vector v ∈ Fn

2 , (u,v) is a valid division trail if the polynomial πv(y)
contains the monomial πu(x) but does not contain the monomial πu′(x) for any
u′ satisfying u′ � u.

We give Algorithm 1 to calculate all the valid division trails of S-box for L.

Algorithm 1: Calculating Division Trails of S-box for L
Input: a vector u representing the input division property
Output: A set L of vectors representing the output division property

1 S̄ = {ū|ū � u};
2 F (X) = {πū(x)|ū ∈ S̄};
3 AllocateL = ∅;
4 for each v ∈ Fn2 do
5 if πv(y) does not contain any monomial in F (X) and πv(y) contains

πu(x) then
6 L← v;

7 return L;

To implement the model for S-box, firstly we use Algorithm 1 to compute
all the division trails. Then we need to describe these trails in STP solver. We
define an array variable to store all the trails and then use this array to add
constraints on the variables representing the input and output division property2.
We provide an example to describe the methods to implement the model in
Appendix C.

3.4 Model of VTDP for Key-XOR

For Key-XOR operation fk, the input and output division properties are {K,L}
and {K′,L′}, respectively. In our model, we use four n-bit variables K,L,K′ and
L′ to denote them, where n is the block size. Because the dependencies between

2 We can implement the model of S-box using the exclusion method as those of Copy,
AND and XOR, also.

15

K and L work on the block rather than a single bit, we use n-bit variables rather
than binary variables.

According to Rule 6, fk does not affect the propagation from L to L′. There-
fore, the constraint on L and L′ is L′ = L.

In many ciphers, round key is only XORed with a part of block. Without loss
of generality, we assume that the round key is XORed with the left s (1 6 s 6 n)
bits. This operation can be divided into two steps.

1 Allocate n-bit variables Vj (j ∈ {0, 1, 2, . . . , s−1}). Check each bit of L, i.e.,
L[0],L[1], . . . ,L[s− 1], and assign Vj as follows,

Vj =

{
L ∨ ej , if L[j] = 0,

1, otherwise,

where ej is an n-bit unit vector whose bit j is one and 1 is the vector with
all components one. If L[j] 6= 0, we set Vj as 1 because we use the STP
statement IF-THEN-ELSE to implement it, which follows a strict grammar.
Note that 1 has no effect on the search results.

2 Let {K′} = {K} ∪ {V0} ∪ {V1} ∪ · · · ∪ {Vs−1}.

In STP solver, we can implement the first step with an IF-THEN-ELSE
branch statement as follows,

ASSERT Lj = IF L[j] = 0 THEN L ∨ ej ELSE 1 ENDIF;

For the second step, we use the following statement with the logical OR operation
in STP to implement,

ASSERT K′ = K OR K′ = V0 OR K′ = V1 OR . . . OR K′ = Vs−1;

Algorithm 2 concludes the model of the Key-XOR operation.

Note 2. We just know that the STP solver supports the logical OR operation,
so our model relies on it. However, any tool that can implement the two steps
is suitable to our algorithm also.

3.5 Initial and Stopping Rules for VTDP

Initial Rule
In [15], to search for three-subset division property, Todo and Morii set the
initial division property as (k = 1, l), where the active bits of l are set as
one or zero for constant bits. It is the same for VTDP. For example, if we
find integral characteristic for SIMON32 using 231 chosen-plaintexts with first
bit constant, the initial division property is then set as (k = 1, l = 7fffffff).
Let ((K0

0,K0
1, . . . ,K0

n−1), (L0
0,L0

1, . . . ,L0
n−1)) denote the initial division property,

where n is the block size. The constraints on K0
i and L0

i are

K0
i = 1, for i = 0, 1, 2, . . . , n− 1.

L0
i =

{
1, if the i-th bit is active,

0, otherwise.

16

Algorithm 2: Generating Constraints of Propagation Rule of Key-XOR

Input: n-bit variables K,K′,L,L′.
Output: A set C with constraints on K,K′,L,L′.

1 Allocate C as ∅;
2 C← L′ = L;
3 Allocate n-bit variables Vj (j = 0, 1, . . . , s− 1);
4 for j = 0; j < s; j = j + 1 do
5 if L[j] == 0 then
6 C← Vj = L ∨ ej ;

7 else
8 C← Vj = 1;

9 C← K′ = K OR K′ = V0 OR K′ = V1 OR · · · OR K′ = Vs−1;
10 return C;

Stopping Rule
Our automatic search model only focuses on the parity of one output bit. With-
out loss of generality, we consider the i0-th output bit. According to Def. 2, the
first step is to examine whether there is a unit vector ei0 ∈ K for the r-th round,
so we only need to set the constraints on (Kr

0,Kr
1, . . . ,Kr

n−1) as follows,

Kr
i =

{
1, if i = i0,

0, otherwise.

If the constraint problem has solutions, the i0-th bit is unknown, and our algo-
rithm stops. Otherwise, we need to remove the constraints on Kr

i (0 6 i 6 n−1)
and add the following constraints on (Lr

0,Lr
1, . . . ,Lr

n−1),

Lr
i =

{
1, if i = i0,

0, otherwise.

If there is still no solution, the i0-th bit is balanced, otherwise the parity of the
i0-th bit is even or odd.

3.6 Connection between Key-Independent and Key-XOR Components

Note that we use bit-level variables to model the key-independent components
in Sect. 3.3, but the implementations for key-XOR are based on n-bit vari-
ables. Therefore, in order to connect bit variables and n-bit variables, the con-
catenation operation ”@” in STP is used to link them. Let the bit variables
(L0,L1, . . . ,Ln−1) denote the output division property for L of a key-independent
component, whose following operation is Key-XOR with input division property
L′ ∈ Fn

2 . The link constraint on them is

ASSERT L′ = L0@L1@ . . .@Ln−1;

17

Conversely, if L′ is the output of Key-XOR while (L0,L1, . . . ,Ln−1) are the input
of next key-independent component, we use the statement above, too.

3.7 Automatic Search Algorithm

In this subsection, we present the whole algorithm to decide the parity of the
i0-th output bit with the given initial input division property D1n

k,l for an n-bit
cipher. Firstly, we allocate all round variables and auxiliary variables with STP
language. Secondly, all the constraints are set on these variables according to
our models. At last, the variables related to the initial and stopping division
property are constrained more according to the initial and stopping rules. We
illustrate the whole framework in Algorithm 3.

Since our algorithm is designed to decide one bit balanced or not, we can run
the STP program paralleling to find integral distinguishers for r-round cipher.

4 Applications

In this section, we apply our model to SIMON, SIMECK, SIMON(102), SPECK,
PRESENT and KATAN/KTANTAN. All our experiments are implemented on a
server with 48 Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz and 96 GB mem-
ory. And some of the programs run in a parallel way as long as the memory is
enough. In our illustrations, the character ’?’ represents unknown, ’*’ repre-
sents even or odd and ’0’ stands for even. All the programs for these algorithms
are public in website https://github.com/VTDP/submission_for_ctrsa/.

4.1 VTDP of SIMON-Like Ciphers

SIMON [1] is a family of lightweight block ciphers published by the U.S. National
Security Agency (NSA) in 2013. SIMON adopts Feistel structure and it has a
very compact round function which only involves bit-wise And, XOR and Circular

Shift. The structure of one round SIMON encryption is depicted in Fig. 2 where
Si denotes left circular shift by i bits. According to the block size, SIMON family
is composed of SIMON32, SIMON48, SIMON64, SIMON96, SIMON128.

For SIMON32, we identify a 15-round integral characteristic which is as fol-
lows,

(7fff,ffff)
14r−−→ (????,????,????,????,?*??,????,*???,???*).

Then we can encrypt the corresponding 231 chosen-plaintexts and determine the
three bits represented by ’*’ are all even, which is the same result as that in [15].
However, our automatic algorithm takes about 27 seconds which is much more
efficient than that in [15]. Unfortunately, the results for SIMON48/64/96/128
with VTDP have no improvements compared with the previous distinguishers.

SIMECK is a family of lightweight block cipher proposed at CHES’15 [18].
The round function of SIMECK is very like SIMON except the rotation con-
stants. We apply our automatic search algorithm to 15-, 18- and 21-round

https://github.com/VTDP/submission_for_ctrsa/

18

SIMECK32/48/64, respectively. All the integral characteristics from our algo-
rithm are the same as those found by Xiang et al. .

In [7], another variant of SIMON family named SIMON(102) is proposed
with rotation constants (1,0,2).

For 20-round SIMON32(102), we find the following improved integral distin-
guisher

(7fff,ffff)
19r−−→ (????,????,????,????,0*??,????,????,???*),

which has two additional odd or even parity bits compared with the previous
best results,

(7fff,ffff)
19r−−→ (????,????,????,????,0???,????,????,????).

Similarly, for 28-round SIMON48(102) and 35-round SIMON64(102), a new
distinguisher with two extra odd or even parity bits have been found, respec-
tively.

(7fff, ffff, ffff)
27r−−→

(????,????,????,????,????,????,0*??,????,????,????,???*).

(7fff, ffff, ffff, ffff)
35r−−→

(????,????,????,????,????,????,????,????, 0*??,????,????,????,????,????,????,???*).

4.2 VTDP of ARX Cipher SPECK

SPECK [1] is a family of lightweight block ciphers published by NSA, too. Dif-
ferent from SIMON, SPECK takes the Modular Addition as its nonlinear op-
eration. According to the block size, SPECK family has 5 members, SPECK32,
SPECK48, SPECK64, SPECK96 and SPECK128. Fig. 2 shows one round of
SPECK where Si means left circular shift by i bits and � represents the Modular
Addition operation.

For SPECK32, there only exists one two-subset bit-based integral distin-
guisher for 6 rounds with 231 chosen-plaintexts as follows,

(ffff,ffdf)
6r−→ (????,????,????,???0,????,????,????,????).

However, based on VTDP, we can find one more distinguisher besides the above
one,

(ffff,ffbf)
6r−→ (????,????,????,???*,????,????,????,????).

4.3 VTDP of S-Box Based Cipher PRESENT

PRESENT [2] is an SP-network block cipher, of which the linear layers are bit
permutations.

19

In [17], Xiang et al. found a 9-round integral distinguisher with 260 chosen-
plaintexts under the two-subset division property framework. Our algorithm
achieves the same result. Furthermore, If we use more data complexity such as
263 chosen-plaintexts with the leftmost 63 bits active, we find a new distinguisher
with 28 balanced bits which is listed as follows,

(ffff, ffff, ffff, fffe)
9r−→

(???0,???0,???0,0000,???0,???0,???0,0000,???0,???0,???0,0000,???0,???0,???0,0000).

Note that this distinguisher can be found by Xiang et al.’s model.

4.4 VTDP of KATAN/KTANTAN Family

KATAN and KTANTAN [4] are two families of hardware oriented block ciphers
and have three variants of 32-bit, 48-bit, 64-bit block. KATAN/KTANTAN takes
a very simple structure composed of two LFSR’s which is depicted in Fig. 3.

KATAN/KTANTAN32, 48, 64 conduct the round function once, twice and
three times in one round with the same round key, respectively. The only differ-
ence between KATAN and KTANTAN is the key schedule.

Compared with the previous results [9], we obtained the longer integral dis-
tinguishers for KATAN/KTANTAN32 and 48 with our automatic algorithm for
VTDP. Moreover, our identified integral characteristic for 72 1

3 -round
KATAN/KTANTAN64 has two more balanced bits.

For KATAN/KTANTAN32, Sun et al. found the following 99-round integral
characteristic with the two-subset division property [9],

(fffb, ffff)
99r−−→ (????,????,????,????,????,????,????,???0).

However, our new distinguishers based on VTDP are listed as follows,

(fffb, ffff)
100r−−−→ (????,????,????,????,????,????,????,??*0),

(fffb, ffff)
101r−−−→ (????,????,????,????,????,????,????,???*).

For 64- and 72 1
2 -round KATAN/KTANTAN48 and KATAN/KTANTAN64,

respectively, the search program requires too much time to get VTDP. Therefore,
we introduce a compromising strategy to simplify some propagation of vectors.
For two-subset division property, we only trace K, but for three-subset division
property, K and L are considered. In general, the program of two-subset division
property will take less time than that of the three-subset one. In our program,
we can trace K and L for the first N rounds only; and append u to K for all
u ∈ L at the N -th round; then trace the modified K merely. Since after N
rounds, the program becomes a two-subset division property, the stopping rules
should follow that of the two-subset division property.

With the compromising strategy, we still find better integral distinguishers
for KATAN/KTANTAN48 and 64 than those in [9].

20

For 64-round KATAN/KTANTAN48, the distinguisher we found is presented as
follows (N = 100),

(ffff, efff, ffff)
64r−−→

(????,????,????,????,????,????,????,????,????,????,???0),

which covers half more round than that in [9]. For KATAN/KTANTAN64, we
find the same length of integral distinguisher with the previous best one [9] but
ours has one more balanced bit as follows (N = 50),

(ffff, ffbf, ffff, ffff)
72.3r−−−→

(????,????,????,????,????,????,????,????,????,????,????,????,????,????,??00).

5 Conclusions

In this paper, we proposed an automatic search model for a variant of three-
subset division property and it can be applied to ciphers with large block sizes.
Furthermore, we give the rules of S-box and Modular Addition for L, which
extend the usage of three-subset division property. With this model, the better
integral distinguishers have been found compared with the previous results.

Acknowledgement

The authors would like to thank Yosuke Todo for his important help to this
paper. This work is supported by National Cryptography Development Fund (M-
MJJ20170102), National Natural Science Foundation of China (Grant No.61572293)
and Major Scientific and Technological Innovation Projects of Shandong Province,
China (2017CXGC0704).

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In PADAC,
2015, pages 175:1–175:6, 2015.

2. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Ax-
el Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES 2007, pages 450–466, 2007.

3. Christina Boura and Anne Canteaut. Another view of the division property. In
CRYPTO 2016, pages 654–682, 2016.

4. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
CHES 2009, pages 272–288, 2009.

5. Yuki Funabiki, Yosuke Todo, Takanori Isobe, and Masakatu Morii. Improved in-
tegral attack on HIGHT. In ACISP 2017, pages 363–383, 2017.

21

6. Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In FSE 2002,
pages 112–127, 2002.

7. Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
block cipher family. In CRYPTO 2015, pages 161–185, 2015.

8. Nicky Mouha and Bart Preneel. Towards finding optimal differential characteristics
for arx: Application to salsa20. Cryptology ePrint Archive, Report 2013/328, 2013.

9. Ling Sun, Wei Wang, Ru Liu, and Meiqin Wang. Milp-aided bit-based division
property for arx-based block cipher. IACR Cryptology ePrint Archive, 2016:1101,
2016.

10. Ling Sun, Wei Wang, and Meiqin Wang. Milp-aided bit-based division property
for primitives with non-bit-permutation linear layers. IACR Cryptology ePrint
Archive, 2016:811, 2016.

11. Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division
property for ARX ciphers and word-based division property. In ASIACRYPT 2017,
pages 128–157, 2017.

12. Yosuke Todo. Structural evaluation by generalized integral property. In EURO-
CRYPT 2015.

13. Yosuke Todo. Integral cryptanalysis on full MISTY1. In CRYPTO 2015, pages
413–432, 2015.

14. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In CRYPTO 2017, pages
250–279, 2017.

15. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
simon family. In Fast Software Encryption 2016, pages 357–377, 2016.

16. Qingju Wang, Lorenzo Grassi, and Christian Rechberger. Zero-sum partitions of
PHOTON permutations. IACR Cryptology ePrint Archive, 2017:1211, 2017.

17. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In ASIACRYPT 2016, pages 648–678, 2016.

18. Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and Guang Gong.
The simeck family of lightweight block ciphers. In CHES 2015, pages 307–329,
2015.

22

A Specification of Modular Addition Rules

(an−1)
Copy−−→ (an−1,0, an−1,1)

(bn−1)
Copy−−→ (bn−1,0, bn−1,1)

(an−1,0, bn−1,0)
XOR−−→ (dn−1)

(an−1,1, bn−1,1)
AND−−→ (v0)

(v0)
Copy−−→ (g0, r0)

(an−2)
Copy−−→ (an−2,0, an−2,1, an−2,2)

(bn−2)
Copy−−→ (bn−2,0, bn−2,1, bn−2,2)

(an−i,0, bn−i,0, gi−2)
XOR−−→ (dn−i)

(an−i,1, bn−i,1)
AND−−→ (vi−1)

(an−i,2, bn−i,2)
XOR−−→ (mi−2)

(mi−2, ri−2)
AND−−→ (qi−2)

(vi−1, qi−2)
XOR−−→ (wi−2)

(wi−2)
Copy−−→ (gi−1, ri−1)

(an−i−1)
Copy−−→ (an−i−1,0, an−i−1,1, an−i−1,2)

(bn−i−1)
Copy−−→ (bn−i−1,0, bn−i−1,1, bn−i−1,2)



iterated for i = 2, 3, . . . , n− 2 ,

(a1,0, b1,0, gn−3)
XOR−−→ (d1)

(a1,1, b1,1)
AND−−→ (vn−2)

(a1,2, b1,2)
XOR−−→ (mn−3)

(mn−3, rn−3)
AND−−→ (qn−3)

(vn−2, qn−3)
XOR−−→ (wn−3)

(a0, b0, wn−3)
XOR−−→ (d0)

where ai,j , bi,j , vi, mi, gi, ri, qi and wi are all auxiliary variables. We refer the
readers to read [11] for more information about their usage.

B Proof of Proposition 1

Proof. We divide all the situations into two categories.

1. If there is a division trail in KO which ends at the corresponding unit vector
e, both the VTDP and OTDP will indicate that the parity of this bit is
unknown.

2. If there is no any division trail in KO ending at e, the parity of this bit is
indicated as not unknown (even or odd) according to the OTDP. Next, we
divide the situations into two cases in terms of KV .

23

(a) If there is a division trail in KV which ends at e, the VTDP will determine
the parity is unknown.

(b) If there is no division trail in KV ending at e, the VTDP will indicate
the parity of this bit is not unknown, either. Then we need to deter-
mine whether the parity of the bit is even or odd. Again, we divide the
situations into two subcases according to LV and LO.

i. If there is at least a duplicated division trail which appears odd
number of times in LO which ends at e, both VTDP and OTDP will
indicate that the parity of this bit is odd.

ii. If there are only division trails occuring even number of times3 in LO

ending at e, the parity of the bit is even definitely, but the result of
VTDP will indicate that the parity of the bit is even or odd according
to the fact whether there is a division trail ending at e in LV .

C Example for Implementation of S-box

Example 1 (Division Trails for L of PRESENT S-box). We list the divi-
sion trails of PRESENT S-box for L in Table 2. Bit variables (L0,L1,L2,L3)
and (L′0,L′1,L′2,L′3)4 denote the input and output division property for L. First-
ly, we allocate an array variable as SBOX with 4-bit index and 4-bit value in
STP language5 as follows,

SBOX : ARRAY BITVECTOR(4) OF BITVECTOR(4);

And then we assign values to each item of the array according to Table 2.

ASSERT SBOX [0h0] = 0h0;

ASSERT SBOX [0h1] = 0h1;

ASSERT SBOX [0h3] = 0h5;

...

ASSERT SBOX [0h7] = 0h2 OR SBOX [0h7] = 0h3 OR · · · OR SBOX [0h7] =0hd;

...

ASSERT SBOX [0hf] = 0hf;

At last, constraints on the input and output variables are set as follows,

ASSERT SBOX [L0@L1@L2@L3] = L′0@L′1@L′2@L′3;

3 Including the situation of zero division trail.
4 About the subscript, when we describe the principle, we follow the style which starts

from 1 [15], but when we do the implementation, we start from 0.
5 STP supports the SMT-LIBv2 and part of CVC language as its input. Our paper

uses CVC language only but for simplicity, we call it STP language.

24

where the character ”@” represents concatenation. According to Table 2, there
is no division trail for input 0x2 and 0x4. Therefore, we need another two state-
ments to exclude the two impossible input, where ”/=” means unequal.

ASSERT L0@L1@L2@L3 /= 0h2;

ASSERT L0@L1@L2@L3 /= 0h4;

Input Division Output Division

0x0 0x0

0x1 0x1

0x2

0x3 0x5

0x4

0x5 0x5, 0xc

0x6 0x1, 0xa, 0xc

0x7 0x2, 0x3, 0x6, 0x8, 0x9, 0xb, 0xd

0x8 0x1

0x9 0x5

0xa 0x9

0xb 0x2, 0x3, 0x4, 0x6, 0x7, 0x8, 0xa, 0xc, 0xd

0xc 0x3, 0xc

0xd 0x2, 0x4, 0x7, 0x8, 0x9, 0xa, 0xe

0xe 0x5, 0x7, 0xb, 0xd, 0xe

0xf 0xf
Table 2. Division Trails of PRESENT S-box for L

25

Algorithm 3: Deciding Parity of the i0-th Output Bit.

Input: A cipher with key-independent and Key-XOR components,
the initial and stopping division property.

Output: UNKNOW, EVEN, or ODDorEVEN

1 Allocate all the variables denoting the input and output division property;
2 for each component O do
3 if O is key-independent then
4 Add constraints to the variables related to O according to the

propagation rules of O;

5 if O is Key-XOR then
6 Add constraints to the variables related to O according to the

propagation rules of O;

7 Add the initial and stopping constraints for K;
8 Input above constraints to STP solver and run it;
9 if program has solutions then

10 return UNKNOWN;

11 Remove the stopping constraints for K and add stopping constraints for L;
12 if program has solutions then
13 return ODDorEVEN;

14 else
15 return EVEN;

Fig. 2. Round function of SIMON and SPECK

xi yi

S8

S1

S2

ki

xi+1 yi+1

xi yi

S−α

Sβ

xi+1 yi+1

ki

26

Fig. 3. The Structure of KATAN

L1

L2

IR

kb

ka

	 Automatic Search for A Variant of Division Property Using Three Subsets (Full Version)

