
On Lions and Elligators: An efficient
constant-time implementation of CSIDH

Michael Meyer1,2, Fabio Campos1, and Steffen Reith1

1 Department of Computer Science, University of Applied Sciences Wiesbaden,
Germany

2 Department of Mathematics, University of Würzburg, Germany
{Michael.Meyer, FabioFelipe.Campos, Steffen.Reith}@hs-rm.de

Abstract. The recently proposed CSIDH primitive is a promising can-
didate for post quantum static-static key exchanges with very small keys.
However, until now there is only a variable-time proof-of-concept imple-
mentation by Castryck, Lange, Martindale, Panny, and Renes, recently
optimized by Meyer and Reith, which can leak various information about
the private key. Therefore, we present an efficient constant-time imple-
mentation that samples key elements only from intervals of nonnegative
numbers and uses dummy isogenies, which prevents certain kinds of side-
channel attacks. We apply several optimizations, e.g. Elligator and the
newly introduced SIMBA, in order to get a more efficient implementa-
tion.

Keywords: CSIDH · Isogeny-based Cryptography · Post-Quantum Cryp-
tography · constant-time Implementation

1 Introduction

Isogeny-based cryptography is the most juvenile family of the current proposals
for post-quantum cryptography. The first cryptosystem based on the hardness
of finding an explicit isogeny between two given isogenous elliptic curves over a
finite field was proposed in 1997 by Couveignes [10], eventually independently
rediscovered by Rostovtsev and Stolbunov [19] in 2004, and therefore typically
called CRS. Childs, Jao, and Soukharev [7] showed in 2010 that CRS can be
broken using a subexponential quantum algorithm by solving an abelian hid-
den shift problem. To avoid this attack, Jao and De Feo [13] invented a new
isogeny-based scheme SIDH (supersingular isogeny Diffie-Hellman) that works
with supersingular curves over Fp2 . The current state-of-the-art implementation
is SIKE [12], which was submitted to the NIST post-quantum cryptography
competition [17].

De Feo, Kieffer and Smith optimized CRS in 2018 [11]. Their ideas led to the
development of CSIDH by Castryck, Lange, Martindale, Panny, and Renes [6],
who adapted the CRS scheme to supersingular curves and isogenies defined over

This work was partially supported by Elektrobit Automotive, Erlangen, Germany.

a prime field Fp. They implemented the key exchange as a proof-of-concept,
which is efficient, but does not run in constant time, and can therefore leak
information about private keys. We note that building an efficient constant-time
implementation of CSIDH is not as straightforward as in SIDH, where, speaking
of running times, only one Montgomery ladder computation depends on the
private key (see [9]).

In this paper we present a constant-time implementation of CSIDH with
many practical optimizations, requiring only a small overhead of factor 3.03
compared to the fastest variable-time implementation from [14].

Organization. The rest of this paper is organized as follows. The following
section gives a brief algorithmic introduction to CSIDH [6]. Leakage scenarios
based on time, power analysis, and cache timing are presented in Section 3.
In Section 4, we suggest different methods on how to avoid these leakages and
build a constant-time implementation. Section 5 contains a straightforward ap-
plication of our suggested methods, and various optimizations. Thereafter, we
provide implementation results in Section 6 and give concluding remarks in Sec-
tion 7. Appendices A and B give more details about our implementations and
algorithms.

Note that there are two different notions of constant-time implementations, as
explained in [3]. In our case, it suffices to work with the notion that the running
time does not depend upon the choice of the private key, but may vary due to
randomness. The second notion specifies strict constant time, meaning that the
running time must be the same every time, independent from private keys or
randomness. Throughout this paper, ‘constant time’ refers to the first notion
described above.

Related work. In [3], Bernstein, Lange, Martindale, and Panny describe cons-
tant-time implementations in the second notion from above, which is required
for quantum attacks. In this paper, we follow the mentioned different approach
for an efficient constant-time implementation, but reuse some of the techniques
from [3].

2 CSIDH

We only cover the algorithmic aspects of CSIDH here, and refer to [6] for the
mathematical background and a more detailed description.

We first choose a prime of the form p = 4 · `1 · ... · `n − 1, where the `i are
small distinct odd primes. We work with supersingular curves over Fp, which
guarantees the existence of points of the orders `i, that enable us to compute
`i-isogenies from kernel generator points by Vélu-type formulas [20].

A private key consists of a tuple (e1, ..., en), where the ei are sampled from
an interval [−B,B]. The absolute value |ei| specifies how many `i-isogenies have

2

Algorithm 1: Evaluating the class group action.

Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, and a list
of integers (e1, ..., en) with ei ∈ {−B, ..., B} for all i ≤ n.

Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 while some ei 6= 0 do
2 Sample a random x ∈ Fp.
3 Set s← +1 if x3 + ax2 + x is a square in Fp, else s← −1.
4 Let S = {i | sign(ei) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x : 1), k ←
∏
i∈S `i, P ← [(p+ 1)/k]P .

8 foreach i ∈ S do
9 K ← [k/`i]P .

10 if K 6=∞ then
11 Compute a degree-`i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
12 a← a′, P ← ϕ(P), k ← k/`i, ei ← ei − s.

to be computed, and the sign of ei determines, whether points on the current
curve or on its twist have to be used as kernel generators. One can represent
this graphically: Over Fp, the supersingular `i-isogeny graph consists of distinct
cycles. Therefore, we have to walk |ei| steps through the cycle for `i, and the
sign of ei tells us the direction.

Since this class group action is commutative, it allows a basic Diffie-Hellman-
type key exchange: Starting from a supersingular curve E0, Alice and Bob choose
a private key as described above, and compute their public key curves EA resp.
EB via isogenies, as described in Algorithm 1. Then Alice repeats her computa-
tions, this time starting at the curve EB , and vice versa. Both parties then arrive
at the same curve EAB , which represents their shared secret. Furthermore, pub-
lic keys can be verified efficiently in CSIDH (see [6]). Therefore, a static-static
key-exchange is possible.

However, the quantum security is still an open problem. For our implemen-
tation we use CSIDH-512, the parameter set from [6], that is conjectured to
satisfy NIST security level 1. In the light of the subexponential quantum attack
on CRS and CSIDH [7], more analysis on CSIDH has been done in [4,5,3].

3 Leakage scenarios

It is clear and already mentioned in [6] that the proof-of-concept implementation
of CSIDH is not side-channel resistant. In this paper we focus on three scenarios
that can leak information on the private key. Note that the second scenario
features a stronger attacker. Further, there will of course be many more scenarios
for side-channel attacks.

3

Timing leakage. As the private key in CSIDH specifies how many isogenies
of each degree have to be computed, it is obvious that this (up to additional
effort for point multiplications due to the random choice of points) determines
the running time of the algorithm. As stated in [14], the worst case running
time occurs for the private key (5, 5, ..., 5), and takes more than 3 times as much
as in the average case. The other extreme is the private key (0, 0, ..., 0), which
would require no computations at all. However, in a timing-attack protected
implementation, the running time should be independent from the private key.

Power analysis. Instead of focusing on the running time, we now assume that
an attacker can measure the power consumption of the algorithm. We further
assume that from the measurement, the attacker can determine blocks which
represent the two main primitives in CSIDH, namely point multiplication and
isogeny computation, and can separate these from each other. Now assume that
the attacker can separate the loop iterations from each other. Then the attacker
can determine which private key elements share the same sign from the isogeny
blocks that are performed in the same loop, since they have variable running
time based on the isogeny degree. This significantly reduces the possible key
space and therefore also the complexity of finding the correct key.

Cache timing attacks. In general, data flow from the secret key to branch
conditions and array indices must be avoided in order to achieve protection
against cache timing attacks [1]. Our implementation follows these guidelines to
avoid vulnerabilities against the respective possible attacks.

4 Mitigating Leakage

In this section we give some ideas on how to fix these possible leakages in an
implementation of CSIDH. We outline the most important ideas here, and give
details about how to implement them efficiently in CSIDH-512 in Section 5.

Dummy isogenies. First, it seems obvious that one should compute a constant
number of isogenies of each degree `i, and only use the results of those required
by the private key, in order to obtain a constant running time. However, in
this case additional multiplications are required, if normal isogenies and unused
isogenies are computed in the same loop3. We adapt the idea of using dummy
isogenies from [14] for that cause. There it is proposed to design dummy isogenies,
which instead of updating the curve parameters and evaluating the curve point
P , compute [`i]P in the degree-`i dummy isogeny. Since the isogeny algorithm
computes [`i−12]K for the kernel generator K, one can replace K by P there, and
perform two more differential additions to compute [`i]P . The curve parameters
remain unchanged.

3 This is required, since otherwise, an attacker in the second leakage scenario can
determine the private key easily.

4

In consequence, a dummy isogeny simply performs a scalar multiplication.
Therefore, the output point [`i]P then has order not divisible by `i, which is
important for using this point to compute correct kernel generators in following
iterations. Further, one can design the isogeny and dummy isogeny algorithms
for a given degree `i such that they perform the same number and sequence of
operations with only minor computational overhead compared to the isogenies
from [14]. This is important to make it hard for side-channel attackers to dis-
tinguish between those two cases, since conditionally branching can be avoided
with rather small overhead.

Balanced vs. unbalanced private keys. Using dummy isogenies to spend
a fixed time on isogeny computations in not enough for a constant-time imple-
mentation, however. Another problem lies in the point multiplications in line 7
and 9 of Algorithm 1. We use an observation from [14] to illustrate this. They
consider the private keys (5, 5, 5, ...) and (5,−5, 5,−5, ...) and observe that for
the first key, the running time is 50% higher than for the second key. The reason
for this is that in the first case in order to compute one isogeny of each degree,
the multiplication in line 7 is only a multiplication by 4, and the multiplication
in line 9 has a factor of bitlength 509 in the first iteration, 500 in the second
iteration, and so on.

For the second key, we have to perform one loop through the odd i and one
through the even i in order two compute one isogeny of each degree `i. Therefore,
the multiplications in line 7 are by 254 resp. 259 bit factors, while the bitlengths
of the factors in the multiplications in line 9 are 252, 244,..., resp. 257, 248, and
so on (see Figure 1). In total, adding up the bitlengths of all factors, we can
measure the cost of all point multiplications for the computation of one isogeny
per degree, where we assume that the condition in line 10 of Algorithm 1 never
fails, since one Montgomery ladder step is performed per bit. For the first key,
we end up with 16813 bits, while for the second key we only have 9066 bits.

Fig. 1. Bitlengths of factors for computing one isogeny per degree for the keys
(5, 5, ..., 5) (left) and (5,−5, 5,−5, ...) (right).

5

This can be generalized to any private key: The more the key elements (or
the products of the respective `i) are unbalanced, i.e. many of them share the
same sign, the more the computational effort grows, compared to the perfectly
balanced case from above. This behavior depends on the private key and can
therefore leak information. Hence, it is clear that we have to prevent this in order
to achieve a constant-time implementation.

One way to achieve this is to use constant-time Montgomery ladders that
always run to the maximum bitlength, no matter how large the respective factor
is. However, this would lead to a massive increase in running time. Another
possibility for handling this is to only choose key elements of a fixed sign. Then
we have to adjust the interval from which we sample the integer key elements, e.g.
from [−5, 5] to [0, 10] in CSIDH-512. This however doubles the computational
effort for isogenies (combined normal and dummy isogenies). We will return to
this idea later.

Determining the sign distribution. In our second leakage scenario, an at-
tacker might determine the sign distribution of the key elements by identifying
blocks of isogeny resp. dummy isogeny computations. One way of mitigating this
attack would be to let each degree-`i isogeny run as long as a `max-isogeny, where
`max is the largest `i. As used in [3], this is possible because of the Matryoshka-
doll structure of the isogeny algorithms. This would allow an attacker in the
second leakage scenario to only determine the number of positive resp. negative
elements, but not their distribution, at the cost of a large increase of compu-
tational effort. We can also again restrict to the case that we only choose non-
negative (resp. only nonpositive) key elements. Then there is no risk of leaking
information about the sign distribution of the elements, since in this setting the
attacker knows this beforehand, at the cost of twice as many isogeny computa-
tions.

Limitation to nonnegative key elements. Since this choice eliminates both
of the aforementioned possible leakages, we use the mentioned different interval
to sample private key elements from. In CSIDH-512, this means using the inter-
val [0, 10] instead of [−5, 5]. One might ask if this affects the security properties
of CSIDH. As before, there are 1174 different tuples to choose from in CSIDH-
512. Castryck et al. argue in [6] that there are multiple vectors (e1, e2, ..., en),
which represent the same ideal class, meaning that the respective keys are equiv-
alent. However, they assume by heuristic arguments that the number of short
representations per ideal class is small, i.e. the 1174 different keys (e1, e2, ..., en),
where all ei are sampled from the interval [−5, 5], represent not much less than
1174 ideal classes. If we now have two equivalent keys e 6= f sampled from [−5, 5],
then we have a collision for our shifted interval as well, since shifting all elements
of e and f by +5 results in equivalent keys e′ 6= f ′ with elements in [0, 10], and
vice versa. Therefore, our shifted version is equivalent to CSIDH-512 as defined

6

in [6]4.

In the following sections we focus on optimized implementations, using the men-
tioned countermeasures against attacks, i.e. sampling key elements from the
interval [0, 10] and using dummy isogenies.

5 Efficient Implementation

5.1 Straightforward Implementation

First, we describe the straightforward implementation of the evaluation of the
class group action in CSIDH-512 with the choices from above, before applying
various optimizations. We briefly go through the implementation aspects of the
main primitives, i.e. point multiplications, isogenies and dummy isogenies, and
explain why this algorithm runs in constant time, and does not leak information
about the private key.

Parameters. As described in [6], we have a prime number p = 4·`1 ·`2 ·...·`n−1,
where the `i are small distinct odd primes. We further assume that we have
`1 > `2 > ... > `n. In CSIDH-512 we have n = 74, and we sample the elements
of private keys (e1, e2, ..., en) from [0, 10].

Handling the private key. Similar to the original implementation of Castryck
et al., we copy the elements of the private key in an array e = (e1, e2, ..., en),
where ei determines how many isogenies of degree `i we have to compute. Fur-
thermore, we set up another array f = (10−e1, 10−e2, ..., 10−en), to determine
how many dummy isogenies of each degree we have to compute. As we go through
the algorithm, we compute all the required isogenies and dummy isogenies, re-
ducing ei resp. fi by 1 after each degree-`i isogeny resp. dummy isogeny. We
therefore end up with a total of 10 isogeny computations (counting isogenies
and dummy isogenies) for each `i.

Sampling random points. In Algorithm 2 line 3, we have to find curve points
on the current curve that are defined over Fp instead of Fp2\Fp. As in [6] this
can be done by sampling a random x ∈ Fp, and computing y2 by the curve
equation y2 = x3 + ax2 + x. We then check if y is defined over Fp by a Legendre
symbol computation, i.e. by checking if (y2)(p−1)/2 ≡ 1 (mod p). If this is not
the case, we simply repeat this procedure until we find a suitable point. Note
that we require the curve parameter a to be in affine form. Since a will typically
be in projective form after isogeny computations, we therefore have to compute
the affine parameter each time before sampling a new point.

4 One could also think of using the starting curve E′, which is the result of applying
the key (5, 5, ..., 5) to the curve E0. Then for a class group action evaluation using key
elements from [−5, 5] and the starting curve E′ is equivalent to using key elements
from [0, 10] and the starting curve E0.

7

Algorithm 2: Constant-time evaluation of the class group action in
CSIDH-512.
Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, and a list

of integers (e1, ..., en) with ei ∈ {0, 1, .., 10} for all i ≤ n.
Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 Initialize k = 4, e = (e1, ..., en) and f = (f1, ..., fn), where fi = 10− ei.
2 while some ei 6= 0 or fi 6= 0 do
3 Sample random values x ∈ Fp until we have some x where x3 + ax2 + x is

a square in Fp.
4 Set P = (x : 1), P ← [k]P , S = {i | ei 6= 0 or fi 6= 0}.
5 foreach i ∈ S do
6 Let m =

∏
j∈S,j>i `i.

7 Set K ← [m]P.
8 if K 6=∞ then
9 if ei 6= 0 then

10 Compute a degree-`i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
11 a← a′, P ← ϕ(P), ei ← ei − 1.

12 else
13 Compute a degree-`i dummy isogeny:
14 a← a, P ← [`i]P , fi ← fi − 1.

15 if ei = 0 and fi = 0 then
16 Set k ← k · `i.

Elliptic curve point multiplications. Since we work with Montgomery curves,
using only projective XZ-coordinates, and projective curve parameters a = A/C,
we can use the standard Montgomery ladder as introduced in [15], adapted to
projective curve parameters as in [9]. This means that per bit of the factor, one
combined doubling and differential addition is performed.

Isogenies. For the computation of isogenies, we use the formulas presented in
[14]. They combine the Montgomery isogeny formulas by Costello and Hisil [8],
and Renes [18] with the twisted Edwards formulas by Moody and Shumow [16],
in order to obtain an efficient algorithm for the isogeny computations in CSIDH.
For a `i-isogeny, this requires a point K of order `i as kernel generator, and the
projective parameters A and C of the current curve. It outputs the image curve
parameters A′ and C ′, and the evaluation of the point P . As mentioned before,
the algorithm computes all multiples of the point K up to the factor `i−1

2 . See
e.g. [3] for more details.

Dummy isogenies. As described before, we want the degree-`i dummy isoge-
nies to output the scalar multiple [`i]P instead of an isogeny evaluation of P .
Therefore, we interchange the points K and P in the original isogeny algorithm,

8

such that it computes [`i−12]P . We then perform two more differential additions,

i.e. compute [`i+1
2]P from [`i−12]P , P , and [`i−32]P , and compute [`i]P from

[`i+1
2]P , [`i−12]P , and P .

As mentioned before, we want isogenies and dummy isogenies of degree `i to
share the same code in order to avoid conditionally branching. Hence, the two
extra differential additions are also performed in the isogeny algorithm, without
using the results. In our implementation, a conditional point swapping based on a
bitmask ensures that the correct input point is chosen. This avoids conditionally
branching that depends on the private key in line 9 of Algorithm 2 (and lines 11
and 27 of Algorithm 5).

If one is concerned that a side-channel attacker can detect that the curve
parameters A and C are not changed for some time (meaning that a series of
dummy isogenies is performed), one could further rerandomize the projective
representation of the curve parameter A/C by multiplying A and C by the same
random number5 1 < α < p.

5.2 Running time

We now explain why this algorithm runs in constant time. As already explained,
we perform 10 isogeny computations (counting isogenies and dummy isogenies)
for each degree `i. Furthermore, isogenies and dummy isogenies have the same
running time, since they share the same code, and conditionally branching is
avoided. Therefore the total computational effort for isogenies is constant, inde-
pendent from the respective private key. We also set the same condition (line 8 of
Algorithm 2) for the kernel generator for the computation of a dummy isogeny,
in order not to leak information.

Sampling random points and finding a suitable one doesn’t run in constant
time in Algorithm 2. However, the running time only depends on randomly
chosen values, and does not leak any information on the private key.

Now for simplicity assume that we always find a point of full order, i.e. a point
that can be used to compute one isogeny of each degree `i. Then it is easy to see
that the total computational effort for scalar multiplications in Algorithm 2 is
constant, independent from the respective private key. If we now allow random
points, we will typically not satisfy the condition in line 8 of Algorithm 2 for
all i. Therefore, additional computations (sampling random points, and point
multiplications) are required. However, this does not leak information about the
private key, since this only depends on the random choice of curve points, but
not on the private key.

Hence, we conclude that the implementation of Algorithm 2 as described
here prevents the leakage scenarios considered in Section 3. It is however quite
slow compared to the performance of variable-time CSIDH-512 in [14,6]. In the
following section, we focus on how to optimize and speed up the implementation.

5 One could actually use an intermediate value α ∈ Fp\{0, 1} of the isogeny compu-
tation, since the factor is not required to be truly random.

9

5.3 Optimizations

Sampling points with Elligator. In [3] Bernstein, Lange, Martindale, and
Panny pointed out that Elligator [2], specifically the Elligator 2 map, can be
used in CSIDH to be able to choose points over the required field of definition.
Since we only need points defined over Fp, this is especially advantageous in our
situation. For a 6= 0 the Elligator 2 map works as follows (see [3]):

– Sample a random u ∈ {2, 3, ..., (p− 1)/2}.
– Compute v = a/(u2 − 1).
– Compute e, the Legendre symbol of v3 + av2 + v.
– If e = 1, output v. Otherwise, output −v − a.

Therefore, for all a 6= 0, we can replace the search for a suitable point in line
3 of Algorithm 2, at the cost of an extra inversion. However, as explained by
Bernstein et al., one can precompute 1/(u2 − 1) for some values of u, e.g. for
u ∈ {2, 3, 4, ...}. Then the cost is essentially the same as for the random choice of
points, but we always find a suitable point this way, compared to the probability
of 1/2 when sampling random points. This could, however, potentially lead to
the case that we cannot finish the computation: Consider that we only have one
isogeny of degree `i left to compute, but for all of the precomputed values of u,
the order of the corresponding point is not divided by `i. Then we would have
to go back to a random choice of points to finish the computation. However, our
experiments suggest that it is enough to have 10 precomputed values. Note that
the probability for actually finding points of suitable order appears to be almost
unchanged when using Elligator instead of random points, as discussed in [3].

For a = 0, Bernstein et al. also show how to adapt the Elligator 2 map to this
case, but also argue that one could precompute a point of full order (or almost
full order, i.e. divided by all `i) and simply use this point whenever a = 0. We
follow their latter approach.

SIMBA (Splitting isogeny computations into multiple batches). In
Section 4, we analyzed the running time of variable-time CSIDH-512 for the
keys e1 = (5, 5, ..., 5) and e2 = (5,−5, 5,−5, ...). For the latter, the algorithm is
significantly faster, because of the smaller multiplications during the loop (line
9 of Algorithm 1), see Figure 1. We adapt and generalize this observation here,
in order to speed up our constant-time implementation.

Consider for our setting the key (10, 10, ..., 10) and that we can again al-
ways choose points of full order. To split the indices in two sets (exactly as
Algorithm 1 does for the key e2), we define the sets S1 = {1, 3, 5, ..., 73} and
S2 = {2, 4, 6, ..., 74}. Then the loops through the `i for i ∈ S1 resp. i ∈ S2 re-
quire significantly smaller multiplications, while only requiring to compute [4k]P
with k =

∏
i∈S2

`i resp. k =
∏

i∈S1
`i beforehand. We now simply perform 10

loops for each set, and hence this gives exactly the same speedup over Algorithm
2, as Algorithm 1 gives for the key e2 compared to e1, by using two batches of
indices instead of only one.

10

One might ask if splitting the indices in two sets already gives the best
speedup. We generalize the observation from above, now splitting the indices
into m batches, where S1 = {1,m + 1, 2m + 1, ...}, S2 = {2,m + 2, 2m + 2, ...},
and so on6. Before starting a loop through the indices i ∈ Sj with 1 ≤ j ≤ m,
one now has to compute [4k]P with k =

∏
h/∈Sj

`h. The number and size of these
multiplications grows when m grows, so we can expect that the speedup turns
into an increasing computational effort when m is too large.

To find the best choice for m, we computed the total number of Montgomery
ladder steps during the computation of one isogeny of each degree in CSIDH-512
for different m, with the assumptions from above. We did not take into account
here that when m grows, we will have to sample more points (which costs at
least one Legendre symbol computation each), since this depends on the cost
ratio between Montgomery ladder steps and Legendre symbol computations in
the respective implementation. Table 1 shows that the optimal choice should be
around m = 5.

Table 1. Number of Montgomery ladder steps for computing one isogeny of each degree
in CSIDH-512 for different numbers of batches m.

m 1 2 3 4 5 6 7

Ladder steps 16813 9066 6821 5959 5640 5602 5721

If we now come back to the choice of points through Elligator, the assumption
from above does not hold anymore, and with very high probability, we will need
more than 10 loops per index set. Typically, soon after 10 loops through each
batch the large degree isogenies will be finished, while there are some small
degree isogenies left to compute. In this case our optimization backfires, since in
this construction, the indices of the missing `i will be distributed among the m
different batches. We therefore need large multiplications in order to only check
a few small degrees per set. Hence it is beneficial to define a number µ ≥ 10, and
merge the batches after µ steps, i.e. simply going back to Algorithm 2 for the
computation of the remaining isogenies. We dub this construction SIMBA-m-µ.

Sampling private key elements from different intervals. Instead of sam-
pling all private key elements from the interval [0, 10], and in total computing
10 isogenies of each degree, one could also consider to choose the key elements
from different intervals for each isogeny degree, as done in [11]. For a private key
e = (e1, e2, ..., en), we can choose an interval [0, Bi] for each ei, in order to e.g.
reduce the number of expensive large degree isogenies at the cost of computing

6 Note that in [3] a similar idea is described. However, in their algorithm only two
isogeny degrees are covered in each iteration. Our construction makes use of the fact
that we restrict to intervals of nonnegative numbers for sampling the private key
elements.

11

more small degree isogenies. We require
∏

i(Bi+1) ≈ 1174, in order to obtain the
same security level as before. For the security implication of this choice, similar
arguments as in Section 4 apply.
Trying to find the optimal parameters Bi leads to a large integer optimization
problem, which is not likely to be solvable exactly. Therefore, we heuristically
searched for parameters likely to improve the performance of CSIDH-512. We
present them in Section 6 and Appendix A.

Note that if we choose B = (B1, ..., Bn) differently from B = (10, 10, ..., 10),
the benefit of our optimizations above will change accordingly. Therefore, we
changed the parameters m and µ in our implementation according to the re-
spective B.

Skip point evaluations. As described before, the isogeny algorithms compute
the image curve parameters, and push a point P through the isogeny. However,
in the last isogeny per loop, this is unnecessary, since we choose a new point
after the isogeny computation anyway. Therefore, it saves some computational
effort, if we skip the point evaluation part in these cases.

Application to variable-time CSIDH. Note that many of the optimizations
from above are also applicable to variable-time CSIDH-512 implementations as
in [14] or [6]. We could therefore also speed up the respective implementation
results using the mentioned methods.

6 Implementation Results

We implemented our optimized constant-time algorithm in C, using the imple-
mentation accompanying [14], which is based on the implementation from the
original CSIDH paper by Castryck et al. [6]. For example the implementation
of the field arithmetic in assembly is the one from [6]. Our final algorithm, con-
taining all the optimizations from above, can be found in Appendix B.

Since we described different optimizations that can influence one another, it
is not straightforward to decide which parameters B, m, and µ to use. Therefore,
we tested various choices and combinations of parameters B, m, and µ, assuming
`1 > `2 > ... > `n. The parameters and implementation results can be found in
Appendix A. The best parameters we found are given by

B = [5, 7, 8, 8, 8, 8, 8, 8, 8, 11, 11, 11,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13

13, 13]

using SIMBA-5-11, where the key element ei is chosen from [0, Bi]. We do not
claim that these are the best parameters; there might be better choices that we
did not consider in our experiments.

We further tried to rearrange the order of the primes `i in the different loops.
As pointed out in [14], it is beneficial to go through the `i in descending order.

12

However, if we suppress isogeny point evaluations in the last iteration per loop,
this means that these savings refer to small `i, and therefore the impact of this is
rather small. Hence, we put a few large primes at the end of the loops, therefore
requiring more computational effort for point multiplications, which is however
in some situations outweighed by the larger savings from not evaluating points.

In this way, the best combination we found for CSIDH-512 is `1 = 349,
`2 = 347, `3 = 337,..., `69 = 3, `70 = 587, `71 = 373, `72 = 367, `73 = 359,
and `74 = 353, using SIMBA-5-11 and B from above, where the Bi are swapped
accordingly to the `i.

Table 2. Performance of one class group action evaluation in CSIDH-512 with the
mentioned parameters. All timings were measured on an Intel Core i7-6500 Skylake
processor running Ubuntu 16.04 LTS, averaged over 1 000 runs.

Clock Cycles ×108 wall clock time

3.145 121.3 ms

In Table 2, we give the cycle count and running time for the implementation using
the parameters from above. The code is freely available at https://zenon.cs.
hs-rm.de/pqcrypto/constant-csidh-c-implementation.

To give a comparison that mainly shows the impact of SIMBA and the dif-
ferent choice of B, we also ran the straightforward implementation according
to Algorithm 2 with B = [10, 10, ..., 10], also using Elligator. In this case, we
measured 621.5 million clock cycles in the same setting as above.

Compared to the performance of the variable-time implementation from [14],
the results from Table 2 mean a slowdown of factor 3.03. However, as mentioned,
also the variable-time implementation can benefit from the optimizations from
this paper, so this comparison should not be taken too serious.

7 Conclusion

We present the first implementation of CSIDH that prevents certain side-channel
attacks, such as timing leakages. However, there might be more leakage models,
depending on how powerful the attacker is. There is also more work to be done
on making this implementation as efficient as possible. It may e.g. be possible
to find a CSIDH-friendly prime p that allows for faster computations in Fp.

Also the security features of CSIDH remain an open problem. More analy-
sis on this is required, to show if the parameters are chosen correctly for the
respective security levels.

We note that our results depend on the parameters from CSIDH-512. How-
ever, it is clear that the described optimizations can be adapted to other param-
eter sets and security levels as well.

13

https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation

Acknowledgments. This work was partially supported by Elektrobit Automo-
tive, Erlangen, Germany. We thank Joost Renes for answering some questions
during the preparation of this work, and the anonymous reviewers for their help-
ful and valuable comments.

References

1. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

2. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. pp. 967–980.
ACM (2013)

3. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. Cryptology ePrint Archive,
Report 2018/1059 (2018), https://eprint.iacr.org/2018/1059

4. Biasse, J.F., Jacobson Jr, M.J., Iezzi, A.: A note on the security of CSIDH. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018, LNCS 11356. pp. 153–168.
Springer (2018)

5. Bonnetain, X., Schrottenloher, A.: Quantum Security Analysis of CSIDH and Ordi-
nary Isogeny-based Schemes. Cryptology ePrint Archive, Report 2018/537 (2018),
https://eprint.iacr.org/2018/537

6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, LNCS 11274. pp. 395–427. Springer (2018)

7. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014)

8. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbi-
trary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology
ASIACRYPT 2017. Lecture Notes in Computer Science, vol 10624, pp. 303–329.
Springer, Cham (2017)

9. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology -
CRYPTO 2016, pp. 572–601. Lecture Notes in Computer Science, 9814, Springer
(2016)

10. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

11. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, LNCS
11274. pp. 365–394. Springer (2018)

12. Jao, D., et al.: Supersingular isogeny key encapsulation, Round 1 submission, NIST
Post-Quantum Cryptography Standardization (2017)

13. Jao, D., De Feo, L., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3), 209–247
(2014)

14. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018, LNCS 11356. pp. 137–152. Springer (2018)

15. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation 48(177), 243–264 (1987)

14

https://eprint.iacr.org/2018/1059
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2006/291

16. Moody, D., Shumow, D.: Analogues of Vélu’s Formulas for Isogenies on Alternate
Models of Elliptic Curves. Math. Comput. 85(300), 1929–1951 (2016)

17. National Institute of Standards and Technology (NIST): Submission requirements
and evaluation criteria for the post-quantum cryptography standardization process
(2016)

18. Renes, J.: Computing isogenies between Montgomery curves using the action of
(0, 0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018, 9th International
Conference on Post-Quantum Cryptography. pp. 229–247. Springer (2018)

19. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006), http://eprint.iacr.org/2006/
145

20. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A. 271,
238–241 (1971)

A Implementation Results

We tested several parameters in a dynamical implementation, as explained in
the paper. The setting is the same as in Section 6. For the parameters B0, ..., B4

we chose

B0 = [10, 10, 10, ..., 10],

B1 = [1, 6, 8, 8, 8, 8, 8, 8, 8,

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14],

B2 = [5, 7, 8, 8, 8, 8, 8, 8, 8,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13,

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,

13, 13, 13, 13, 13, 13, 13, 13],

B3 = [2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16], and

B4 = [2, 12, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20].

In an earlier version of our implementation we measured many different combina-
tions with different m and µ, running SIMBA-m-µ as described above, averaging
the running time over 1 000 runs per parameter set, given in 106 clock cycles.

15

http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145

Table 3. Performance of one class group action evaluation in CSIDH-512 with different
combinations of parameters. All timings are given in 106 clock cycles, and were mea-
sured on an Intel Core i7-6500 Skylake processor running Ubuntu 16.04 LTS, averaged
over 1 000 runs.

B 1st 2nd 3rd

0
µ=10

338.1
µ=10

343.5
µ=11

343.7
m=5 m=6 m=5

1
µ=12

329.3
µ=14

330.6
µ=13

330.8
m=4 m=4 m=4

2
µ=11

326.5
µ=12

327.0
µ=11

327.6
m=5 m=5 m=4

3
µ=16

333.8
µ=17

337.6
µ=16

339.3
m=4 m=4 m=3

4
µ=20

397.5
µ=20

399.0
µ=21

399.5
m=3 m=4 m=3

For each Bi, we present the three best combinations we found in the Table 3.

We further tried to rearrange the order of the primes `i in the different loops,
as described in Section 6. However, the fastest parameter set from above was
the best choice in all our tests.

B Algorithms

In this section we describe our constant-time algorithm, containing the optimiza-
tions from above. We split the application of SIMBA in two parts: SIMBA-I
splits the isogeny computations in m batches, and SIMBA-II merges them after
µ rounds. Note that in our implementation, it is actually not required to gener-
ate all the arrays from SIMBA-I.

Algorithm 5 shows the full class group action evaluation. Due to many loops
and indices, it looks rather complicated. We recommend to additionally have a
look at our implementation, provided in Section 6.

16

Algorithm 3: SIMBA-I.

Input : e = (e1, ..., en), B = (B1, ..., Bn), m.
Output: ei = (ei1, ..., e

i
n), f i = (f i1, ..., f

i
n), ki for i ∈ {0, ...,m− 1}.

1 Initialize ei = f i = (0, 0, ..., 0) and ki = 4 for i ∈ {0, ...,m− 1}
2 foreach i ∈ {1, ..., n} do
3 ei%mi ← ei

4 f i%mi ← Bi − ei
5 foreach j ∈ {1, ...,m} do
6 if j 6= (i%m) then
7 ki ← ki · `i

Algorithm 4: SIMBA-II.

Input : ei = (ei1, ..., e
i
n) and f i = (f i1, ..., f

i
n) for i ∈ {0, ...,m− 1}, m.

Output: e = (e1, ..., en), f = (f1, ..., fn), and k.

1 Initialize e = f = (0, 0, ..., 0), and k = 4.
2 foreach i ∈ {1, ..., n} do
3 ei ← ei%mi

4 fi ← f i%mi

5 if ei = 0 and fi = 0 then
6 k ← k · `i

17

Algorithm 5: Constant-time evaluation of the class group action in
CSIDH-512.
Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, a list of

integers (e1, ..., en) with 0 ≤ ei ≤ Bi for all i ≤ n, B = (B1, ..., Bn),
m, µ.

Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 Run SIMBA-I(e, B, m).
2 foreach i ∈ {1, ..., µ} do
3 foreach j ∈ {1, ...,m} do
4 Run Elligator to find a point P , where yP ∈ Fp.
5 P ← [kj]P

6 S = {ι | ejι 6= 0 or f jι 6= 0}
7 foreach ι ∈ S do
8 α =

∏
κ∈S,κ>ι `κ

9 K ← [α]P.
10 if K 6=∞ then
11 if ejι 6= 0 then
12 Compute a degree-`ι isogeny ϕ : Ea → Ea′ with

ker(ϕ) = 〈K〉.
13 a← a′, P ← ϕ(P), ejι ← ejι − 1.

14 else
15 Compute a degree-`ι dummy isogeny:

16 a← a, P ← [`ι]P , f jι ← f jι − 1.

17 if ejι = 0 and f jι = 0 then
18 Set kj = kj · `ι.

19 Run SIMBA-II(ei and f i for i ∈ {0, ...,m− 1}, m).
20 while some ei 6= 0 or fi 6= 0 do
21 Run Elligator to find a point P , where yP ∈ Fp.
22 Set P = (x : 1), P ← [k]P , S = {i | ei 6= 0 or fi 6= 0}.
23 foreach i ∈ S do
24 Let m =

∏
j∈S,j<i `i.

25 Set K ← [m]P.
26 if K 6=∞ then
27 if ei 6= 0 then
28 Compute a degree-`i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
29 a← a′, P ← ϕ(P), ei ← ei − 1.

30 else
31 Compute a degree-`i dummy isogeny:
32 a← a, P ← [`i]P , fi ← fi − 1.

33 if ei = 0 and fi = 0 then
34 Set k = k · `i.

18

	On Lions and Elligators: An efficient constant-time implementation of CSIDH

