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Abstract

This study compares the experimental results of Template Attacks
(TA) and Deep Learning (DL) techniques called Multi Layer Perceptron
(MLP) and Convolutional Neural Network (CNN), concurrently in front
of classical use cases often encountered in the side-channel analysis of
cryptographic devices (restricted to SK). The starting point regards their
comparative effectiveness against masked encryption which appears as
intrinsically vulnerable. Surprisingly TA improved with Principal Com-
ponents Analysis (PCA) and normalization, honorably makes the grade
versus the latest DL methods which demand more calculation power. An-
other result is that both approaches face high difficulties against static
targets such as secret data transfers or key schedule. The explanation of
these observations resides in cross-matching. Beyond masking, the effects
of other protections like jittering, shuffling and coding size are also tested.
At the end of the day the benefit of DL techniques, stands in the better
resistance of CNN to misalignment.

1 Introduction

In this paper we examine the effects of the recent introduction of Deep Learning
(DL) techniques in the domain of supervised side-channel attacks (SCA) [28][6]
as concurrent method to the so-called Template Attacks (TA) [7]. These new
methods aim at enlarging the scope of TA in front of design protections used
against any kind of side-channel attacks. We remind some details about the
two favorite targets of supervised attacks: data transfers and encryption with
secret keys (SK). By the way public key cryptography is not addressed here
even though PK algorithms and parameters loading are also concerned. Then
the basic protections used to prevent such analyses are reminded and discussed:
jittering, shuffling, masking and coding size. New DL methods called Multi
Layer Perceptron (MLP) and Convolutional Neural Network (CNN) will be
experimentally compared with TA and some important basic lessons drawn out
of this concurrent study.
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1.1 The advent of Deep Learning in supervised methods

Supervised attacks consider 2 phases called learning phase (a.k.a profiling) and
a test phase (a.k.a matching). In the learning phase the cryptographic Device
Under Test (DUT) is assumed open. So the secrecy chunks can be set freely
with every values and the traces associated accordingly in order to build up a
-hopefully bijective- model that maps the value onto the signal. The test phase
applies this model on the locked twin DUT to be attacked: its aims at identifying
the chunks of secret values by submitting to the model the signal produced while
playing a comparable process as in learning phase. The portability issues regards
the difficulty of reproducing the same measurement conditions in both phases
so as to preserve the signals compatibility and keep them comparable.

Template attacks (TA) are well knwon for 20 years now and based upon
sound classical statistics [13, 7]. They are based upon Bayesian inference and
multivariate Gaussian behavior (see formulation in appendix A). Some improve-
ments have been proposed in 2006 by Archambeau et al. [2] with Principle
Components Analysis (PCA) originally introduced to facilitate the identifica-
tion and management of the points of interest (POI) within the signals. TA
are seen as theoretically optimal [35] but perceived as poorly effective on the
field: they are difficult to implement in practice; their requirements are seldom
encountered because open DUTs are not often available for learning and the
portability remains as a hard point (when profiling and matching are not con-
ducted on the same DUT). Besides they are considered as easily thwarted with
some well-known countermeasures that will be discussed in this paper.

New techniques derived from Artificial Intelligence, Machine Learning, Neu-
ral Networks have recently been introduced into the scope of supervised SCA
[23, 24]. With the help of important computational resources (memory and cal-
culation power), they prove to be applicable, generic and effective. Following
Benadjila et al. [4] two of them are implemented in this study and designated
by MLP (MultiLayer Perceptron) and CNN (Convolutional Neural Network).
These methods are interesting and challenging for classical TA methods because
have been presented as capable of circumventing some known protections that
defeat TA such as random boolean masking and jittering.

An important remaining issue regards the portability referring to the fact
that the learning and test phases might have not been conducted against the
same device and/or under the same measurement conditions. Moreover a basic
issue in test/matching phase remains the amount of the candidate traces. We
will see in this study that, as the DL techniques, TA can also apply some
preprocessing to the traces such as normalization and PCA.

1.2 Typology of targets

Historically Inferential Power Attacks (IPA) and TA [13, 7] were introduced as
concurrent to Differential Power Analysis (DPA) [21] in order to extend the
application fields of SCA beyond encryption. Indeed it was shown that under
the condition of learning phase availability some new operations could become
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new targets: secret transfers (key loading), key scheduling or poorly exposed
encrypted data (secret codes or cryptograms). We designate these f(K) cases
as static targets because the secret data do not change during the test phase.
Conversely encryption f(K,M) can be designated as a potentially dynamic
target because the message varies in test phase. For sake of simplicity we
follow many papers and target the first SubByte function at the beginning of
the AES algorithm SBox(Ki⊕Mi) to illustrate this kind of target although the
DES first round could be considered as well. These are typically the targets of
non-profiled attacks DPA/CPA [21, 5, 20] but they are often addressed by the
supervised ones for the following reasons:

• Regardless of their applicability, supervised attacks may succeed with less
traces during the test phase than the amount required for statistical esti-
mation as in CPA for instance.

• The message variability can be considered as a workaround to relieve the
open device requirement of the learning phase. As long as only the leakages
of Ki⊕Mi (input) and SBox(Ki⊕Mi) (output) are observed, no need to
vary the key anymore, only to know it! Key loading and scheduling are
excluded.

1.3 Cross matching

Let’s take this opportunity to introduce the notion of cross-matching which
is specific to dynamic targets. Of course if the classes are labelled at profiling
according to the exclusive-OR value K ⊕M , the matching will have to redirect
the comparisons labels through K∗ = M∗ ⊕K ⊕M , if K∗ (the unknown) and
M∗ (supposedly known) designate the variables in test phase.

1.4 Classical protections

1.4.1 Jittering

Traces jittering designates a random misalignment implemented by any kind of
hardware and software means (clock instability, fake cycles, additional random
code insertion). It must be implemented as a minimal countermeasure. But if
too simplistic its effect can sometimes be cancelled by the attacker with signal
preprocessing and pattern matching. If not fixed it is effective against many
kinds of SCA. But some most recent techniques show to be insensitive to it and
designed in that purpose.

1.4.2 Shuffling

Shuffling refers to words indices random permutations at each execution: if
the signals ever looked aligned the same word index is never handled at the
same position anyway. This spreads the leakage over several occurrences and
reduces the leakage SNR in proportion. Shuffling should be applied in any case,
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but unfortunately less used in data transfers routines. Here again some new
analysis techniques aim at mitigating it.

1.4.3 Masking

Boolean masking [11] replaces natural encryption functions by randomized vari-
ables such as SBox′(Ki⊕Mi⊕ u) = SBox(Ki⊕Mi)⊕ v with modified look-up
tables(LUT) and random masks u and v internally refreshed at each execution.
The objective is to make variables unpredictable (It is also used in key schedul-
ing but rather poorly in data transfers). It is well known in the domain of
non-profiles attacks that this sort of implementation is prone to second order
analyses [27, 14, 12] the secret key can be inferred if the random mask and
the masked variable leakages are observed jointly soas to exploit their mutual
dependence. But so far data masking undermined TA methods except is very
unrealistic conditions (simplistic and noise free leakages, known mask at profil-
ing!). As a matter of fact masking requires 2nd order DPA for POI identification
(SNR, SOST become powerless). The variable leakage turns multifaceted for
each value and the templates all equivalent!

1.4.4 Coding size

Coding size refers to the size of the machine words or registers that host the
internal variables (from 8, 16, 32, 64, 128 bits to more exotic values in hardware
coprocessors). Splitting the data into words as imposed or proposed by the
hardware architecture has a major impact on the applicability of supervised
attacks. This topic is insufficiently discussed in papers that mainly deal with
8 bits implementations. It will be addressed along with the static targets. In
2014 an interesting and daring study has been proposed by Choudary and Kuhn
[9] aiming at a full extension to 16 bits, with partitioning over 65536 classes!
Unfortunately they deal with a couple of successive bytes that leak successively
and not simultaneously. Beyond the digital acquisitions and data management
difficulties, working with numerous classes raises estimation problems. So this
paper will just consider the realistic case of 8 bits partitioning (which could be
extended to 10 or 12) whereas the leakage is due to 16 bits (or 32) at the same
time.

1.5 Experimental purpose of this paper

Each of these protections proves to be weak when used alone. But proper combi-
nations of them are very robust. In this paper their intrinsic resistance against
supervised attacks is going to be experienced. The tests consist in perform-
ing the profiling/learning phase and then play the matching/test phase with
the knowledge of the secret in order to calibrate the attacks. The assessment
is based on solution ranking and convergence performance (needed number of
challenge traces).
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Target Leakage Traces (profile) Traces (test)
A Masked SubByte High (EM) 45,000 5,000
B Masked SubByte Low (EM) 900,000 100,000
C 8 bits transfer High (power) 900,000 100,000
D 8, 16, 32 bits transfer Low (EM) 500,000 500,000

Table 1: Designation of the datasets.

Concurrent analyses of TA and DL (MLP and CNN) will be experienced
against 4 targets all operated in favorable experimental conditions, free of any
portability issue: the acquisitions set-up are the same and consistent for both
learning and test phases.

Target A refers to the public ASCAD dataset (MNIST dataset from [4]). It
consists of 50,000 training and 10,000 testing traces of 700 electromagnetic (EM)
samples from an ATMega8515 microcontroller performing the first round of AES
encryption. Target variable is an output of the second byte masked AES SBox.
Therefore dataset poses 256-class classification problem. For testing purpose
the mask is also known with the message and can be used or not. There exist
3 versions of dataset: one without jittering and 2 with jittering simulated by
randomly shifting. Jittering effects will be testes on this special implementation.

Target B refers to another hardware implementing also masked AES substi-
tution. Two sets of data are available with or without shuffling (but no jittering)
and monitored through both EM and power signals. The leakage is much weaker
but 1 million traces are available in each set.

Target C is a simplistic 8 bit data transfer implemented on a old chip for
smart card and strongly leaking the data through its power reaching CPA rates
up to 0.6.

Target D is a realistic chip for smart card monitored with EM and imple-
menting data transfers with various word sizes: 8, 16, 32 bits, with or without
shuffling. CPA leakage rates stand between 0.1 to 0.15.

This paper starts with a bibliographic overview of the supervised methods
applied to the SCA problems. Then DL-MLP and DL-CNN techniques are
experienced on dynamic targets A and B. The following section does the
same with TA improved by PCA and normalization. Then static targets are
tested with both DL and TA methods before a final synthesis of the results
draws some basic practical lessons out of these experiments.

2 Literature overview

This sections quickly reminds the basics of profiled and supervised attacks.
If Machine Learning is the most general framework of classification problems,
historically template attacks came first in side-channel analysis [13, 7]. TA are
often seen in literature as a baseline for more machine learning techniques and
deep learning more specifically.
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2.1 Template attacks

Template attacks are the profiling attacks holding the assumption that attacker
is in possession of an identical copy of the cryptographic device being attacked
(DUT). TA consists in collecting a large time signal made of N samples for
each operation Oi (which in machine learning terminology would correspond to
classification problem with |O| = K classes). By the way the classical gaussian
formulation of TA (textitappendix A) is named Quadratic Discriminant Analysis
(QDA) in regular statistics (and used in machine learning terminology).

Typically, classical papers consider operations processed by a 8-bit micro-
controller for which there are K = 256 possible values. Surprisingly the issue
related to the size of the selection variable has been very lately addressed in
literature for data transfers [9] and key schedule [36]. The other types of pro-
tections are considered as rather weak but relatively effective when combined
jointly. Let’s notice that from 2007 Oswald et al. [29] have addressed the issue
of TA against boolean masking but under so unrealistic assumptions (profil-
ing with known mask!) that masking is generally also recommended as a good
protection.

2.2 Principal component analysis

A major problem of the template attacks is the dimensionality N of the input
samples. Typically N is O(105) depending on the sampling rate of an oscil-
loscope. A lot of research effort has been invested to find the optimal way
to project data in low dimensional subspaces while maximizing the predictive
power of the features. To address this issue Archambeau et al. [2] proposed to
perform attacks in principal subspaces, using PCA [18] projection both as the
dimensionality reduction tool and as an automated way to more efficiently select
the points of interest POI (see appendix B). They performed successful attacks
against secret key ciphers. In the case of AES, the attack was conducted on a
non-masked implementation of the algorithm. To our best knowledge, there is
no published literature on the use of the template attacks with PCA on masked
implementations.

Prior to likelihood computation, PCA projects the vectors and matrices (see
appendix B) into a linear sub-space. The projection matrix results from an Eigen
problem applied to the inter-classes scatter matrix S = E[(Tk − T )(Tk − T )T ]
which is the related to the global and classes covariance matrices by R = E[Rk]+
S (literally the ”variance of the average templates” plus the ”average of the
covariances” taken over all classes k). Furthermore it may also apply to R−1S as
a kind of SNR criterion maximizing inter-classes scattering over global scattering
and noise (a.k.a Linear Discriminant Analysis LDA [33]). The choice of matrix
R is not optimal in ordinary cases. But the sequel of this paper will show that
the Eigen vectors of R are more relevant in the masked case for which S tends
to 0.
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2.3 Machine Learning based methods

The first attempt of using Machine Learning methods dates from 2002 [31],
where authors were using Kohonen Neural Networks to learn from electromag-
netic signatures. Later in 2012, people were using Support Vector Machine
(SVM) instead of TA to get rid of the issue of the underlying Gaussian hypoth-
esis of the latter [1]. Other non-parametric approaches have also been shown to
be competitive with TA [16, 24]; drawbacks have been highlighted though, such
as increased computational power or other non-decidable issue as the choice of
the hyper parameters. More recently, neural network approaches showed up to
attack an AES implementation [26].

2.4 Deep learning based methods

To our best knowledge, the first publication on using Deep Learning models
for side-channel attacks is by E. Cagli et al. in 2017 [6]. The authors use
Convolutional Neural Networks [22] to perform an attack on a non-masked im-
plementation of AES. In their perspective, primal interest in using CNN comes
from the problem of traces alignment. Raw traces always come with some form
of random misalignment from one trace to the other due to natural jittering,
hardware countermeasures or software desynchronization. Post-alignment is a
non-trivial and costly procedure; there are no common techniques to perform it.
Traces cannot be exploited by most of the classical SCA techniques (e.g CPA)
if they cannot be realigned before.

The authors find that translation invariance properties of CNN can help deal
with cases of misalignment. In their tests, they use the Hamming Weight of un-
masked SBox output as their target variable, which in this case corresponds to
9 classes classification problem. They also test some common protection mech-
anisms such as jittering and random delays. With random delay they are able
to achieve 0.78 accuracy and it takes 7 traces to achieve constant key entropy
of 1 using a training set of 500,000 examples. With real jittering, the achieved
results are below random benchmark. Timon in a 2018 paper [34] studies the
topic of non-profiled side-channel attacks using deep learning methods. In this
setting, an attacker only has access to the limited number of traces without
knowing the key so he uses the following approach for the attack: train some k
models using each possible Hamming Weight of key hypothesis, then, the correct
key hypothesis should give the good results in terms of a chosen metric, while
incorrect hypotheses would not converge. Timon conducts his experiments on
an unmasked implementation of AES. This method is suboptimal since the dif-
ference in validation accuracy between true key hypothesis and predicted key is
0.02 points, which does not give confidence to prediction.

Authors also experiment with second and third order attacks. They use
both MLP and CNN architectures. Here, provided motivation for CNN usage
is the same as in work discussed previously, they successfully perform second
and third order attacks on several data sets (including target A picked up from
them). Weak differences between true and false key hypothesis accuracy raise
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questions about the method’s robustness. Nevertheless, the issue of learning
in a non-profiled setting is important and motivates the replay of the methods
provided in the publication.

2.5 Metrics

In DL there are two funcdamental metrics: the loss function (minimized by
the learning algorithm) and the accuracy which assesses the model efficiency
(see appendix C ). Applied to side-channel, the accuracy metric corresponds to
single trace matching, i.e. the situation when only one trace is available to
recover the key. While this metric is perfectly valid for the non-masked case, in
case of masked implementation of AES it is seldom possible to achieve a level
of accuracy which will permit to perform the attack in a single trace. When
possible in test phase, it becomes interesting to exploit multiple challenges to
recover the key. Experiments conducted in the present paper will show (on
targets A and B) that single trace matching results in the level of accuracy of
random guessing. But if multiple presentations are combined, the correct key
is recovered in most cases or at least ranked significantly so as to reduce the
brute-force search space and keep the attack feasible. Thus ranking is used for
calibrating multiple traces matching and the average rank is a primary metric
along with accuracy.

Rank is a common metric in side-channel and crytographic community often
used to simulate an attack with known keys and evaluate its effectiveness. Hav-
ing the datasets Dtrain and Dtest (containing L experiments Xi), to respectively
adjust and validate the model ĝ, a single rank is formally defined as 1 plus the
amount of hypothetical key values k ∈ K providing with higher probability (or
log-likelihood score) than the true key k∗:

rank(ĝ, Dtrain, Dtest, i) = 1 + |{k ∈ K/p(k|Xi) > p(k∗|Xi)}|

Less formally the rank is seen by DL methods as a distance between the
predicted and true key value. This definition slightly differs from the one of [4]
with the +1 added for cryptanalytic reasons. For L multiple traces challenges
the mean rank is also considered:

RANKL(ĝ) = E[rank(ĝ, Dtrain, Dtest, i)]

In practice, the rank is computed over some L traces as an iterative argmax
over the log of probabilities. Let’s notice that the rank spans the interval [1,
256] if there are 256 hypotheses : the average rank is 128.5 and corresponds to
matching at random. In cryptanalysis the residual entropy is directly computed
in bit as log2(RANK). One bit is gained each time the average ranking is
divided by 2.
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3 DL results against protected dynamic targets
A and B

Prouff et al. [4] in their extended paper make an overview of different deep
learning techniques (mainly CNN and MLP), present ASCAD dataset, and fi-
nally propose several models as a benchmark for this dataset. This section
follows their steps in view of replaying their analysis on enlarged cases for our
own understanding and possible improvements.

3.1 Implementation on target A

The authors propose a couple of neural network architectures named MLP best
and CNN best. The latter is a variation of a network called VGG16 [32] with
changes on input and classification layers. The former is an MLP architecture
with 4 hidden layers, 200 nodes each. These architectures have been taken in
the present study as a replay baseline on this dataset. The authors come up
to the conclusion that MLP architecture performs better than CNN except in
presence of random shifting where CNN prevails.

Both in the reference paper and in the present replica, the results produce
a apparently low level of accuracy (0.007, random guessing accuracy is 0.004).
Despite the intuitive idea that the model does not learn anything at all, accept-
able results are obtained in terms of ranking. The explanation hypothesis is
that despite performing extremely poor in terms of single trace matching,
the model achieves to approximate the distribution enough for allowing multiple
traces matching. More theoretical research in this domain is required to drive
some concrete conclusions.

Investigating further into the code provided by the authors it can be seen
that despite the rigorous use of 10-fold for choosing the hyperparameters, they
do not use the validation set for checking during the training. Moreover, they
do not implement any form of regularization either.

3.2 Bias-variance trade-off

During the learning phase we investigated classical methods of network opti-
mization. On the one hand some like batch normalization aim at improving the
learning capabilities with variance reduction. But on the other hand some others
generate variance in order to fight against overfitting: dropout, regularization,
data augmentation. Our first intention on the provided model was to fight the
overfit. Empirically, in order to go to the extreme, with given complexity of the
network it is possible to achieve 100% accuracy on the train set while reducing
the learning rate to 10−5. But the difficulty is to find a satisfactory trade-off
between these antagonist effects.

We first tested the Batch Normalization technique proposed by [17]. During
all our experiments it either improved the results or remained neutral, except
sometimes when combining it with Dropout. Empirically, we observed degrading
results when using both together. From the theoretical point of view, [25] give a
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Figure 1: Left: Base Convolutional architecture; Right: Base MLP Architecture

rigorous explanation of this phenomenon. While Batch Normalization reduces
the internal variance, Dropout with its stochastic properties does exactly the
opposite, inducing randomness in weights distribution.

We also tested regularizations based on both L1 and L2 norms. During the
optimization, the best results were achieved using L2 regularization in combina-
tion with Batch Normalization. This showed better performance than Dropout.

Data augmentation has also been experienced as a regularization tool. To
conduct our experiment, we used 2 control groups: original dataset and dataset
with 30,000 training examples. For the remaining (augmented) data we took
30,000 original curves and oversample 20,000 from it. We used shifting by some
Y ∈ [0, 150], addition of random noise from N (−11, 6) and U(0, 6) by using
estimated parameters of original distribution. We observed that in our case data
augmentation by all proposed techniques only worsen the performance of the
network. This approach is not worth being implemented because we generally
have enough material available in our learning data sets.
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3.3 Results on target A

On target A data the key has been retrieved in 42 challenge traces using much
smaller MLP network with only one hidden layer and 512 units, L2 regulariza-
tion and Batch Normalization. This validates the replica of the reference paper
that left room for improvement since the authors needed around 200 challenges
to succeed.

3.3.1 Jittering:

Then the jittering protection has been simulated with random shifting on the
signals in order to test the CNN architecture. Due to the presence of translation
invariance properties of convolutional networks, the model is able to find the
information even when it is shifted randomly as long as it is still present in a
vector. For the same reason, the MLP architecture was not tested at all. The
results confirm that the performances are not particularly influenced. In the
extreme cases (max shift 500 samples) it takes more time to converge and also
requires to decrease the learning rate more often during the training. But a
mean rank of 20 is still achievable.

Another protection test consisted in rotating randomly by 0 to 3 clock cycles,
the 12 last clock cycle patterns (amongst 20) where the masked variable is
supposed to be. Contrary to expectations the MLP architecture performed
quite well reaching rank 1 in only 46 traces, quicker than non-optimized CNN
that needed 250.

3.4 Results on target B

On target B the key could be retrieved in 150 challenge traces with CNN archi-
tecture.

3.4.1 Jittering:

In non-masked case (unmasking with the knowledge of the mask) the observable
level of accuracy is above 0.95 for all cases which allows single trace matching.
If artifical jittering is injected the accuracy is lightly lowered and the fitting
time increased due to the higher dimensionality of the traces. In the end the
same trend can be observed and the model resists to the shifting.

3.4.2 Shuffling:

Here shuffling is applied over the 16 bytes of the AES substitution without
masking, but only one byte is addressed at a time. After manual extraction
of an approximate region of interest, the traces are resumed with 3000 points
per trace. This dimensionality of input caused computational difficulties with
unstable behavior of a GPU and frequent memory overflows. Radically decreas-
ing the batch size increased the learning process to an unreasonable amount of
time. This issue was finally solved with subsampling by a factor 2.
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Figure 2: Validation accuracy during training CNN on electromagnetic traces
with random shifting [0,500].

N Traces N Epochs Accuracy
100,000 50 0.32
500,000 40 0.51
1000,000 40 0.55

Table 2: Test set accuracy on using shuffling protection mechanism on un-
masked target B

By construction the shuffling protection demands the translation invariance
properties from the classifier since each addressed byte is handled each time at
a random position amongst 16. This excluded a MLP based classifier and CNN
architecture came up as a natural choice.

With ”unlimited” data (practically 106 curves were available for learning)
the effect of continuous data augmentation on attack efficiency could be studied.
Since the training process was taking a considerable amount of time ( 3h per
epoch using 950,000 training set) only extreme values of the set size, mainly
50,000, 500,000, 1000,000 were tested. The latter was also use to repeat the
experiment against another byte as a target. The results are provided in Table
2.

With a CNN architecture 0.55 accuracy is achieved on 95,000 learning traces.
The key can be recovered in a few traces (2 for the specific used value, but all
of them were not tested).

Even with 100,000 traces the tested key could be recovered from single trace
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testing with probability 1
3 . With 500,000, 2 challenge traces were enough inthe

worst case. This clearly confirms that CNN works quite well when the leakage
does not occur at a fixed time position. From a defensive point of view, in
absence of masking, shuffling only is not a sufficient protection.

3.5 Lessons drawn

A general lesson drawn confirms the DL capability of attacking masked imple-
mentations of AES SBox with even less challenge traces than in the reference
paper. Regarding the neural network architectures a first lesson concerns the
interest of CNN versus MLP when time translation invariance is needed, that
is in presence of jittering or shuffling. However MLP remains more effective in
any other cases. A second observation regards the dimensional hypermaram-
eters: roughly speaking, for a given amount of trainable parameters (imposed
by computational ressources), deep networks with more layers work better than
broad ones (with more neurons per layer but less layers).

Some other practical lessons deduced from DL techniques implementation
regard data preprocessing and optimization.

3.5.1 Data Preprocessing

Data preprocessing seems to play a key role in performing a successful attack.
There are two important issues: normalization and outliers detection. Nor-
malization refers to centering and rescaling the observation Xi, as classically
done in statistics with empirical mean T and standard deviation σ through :
Xnorm

i = (Xi − T )/σ. The importance of scaling for deep neural networks
is a known fact in machine learning literature [28]. Applied to side channel
analysis this has a crucial effect of the classifier capacity. Several experiments
were conducted in order to find the better data preprocessing techniques (no
preprocessing at all, only mean, only standart L2 normalization). The best per-
formance on all datasets was achieved using the described approach. Moreover,
when using relatively small datasets (on target A) the particular values of em-
pirical mean affect the performance of the model. Assuming that the empirical
mean is hard to estimate in real test phase, the one from the training set were
used instead to rescale the test set and achieved the reasonable results.

The drawback of scaling (by σ) in the context of side channel analysis is
that model become much more susceptible to outliers when using rank as
a metric. Outliers come from hardware glitches during the signal acquisition.
When using rank as a principal metric, outliers aggravate the result significantly
with particularly distant predictions. A favor can be given to the the predictions
which are closer to true class more than those that are more distant.

3.5.2 Achieving optimal learning rate

As a starting point for the selection of most suitable architecture, the models
were borrowed from [4]. The main challenge here was to select the optimal
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means of increasing the capacity of the model. Since there are multiple ways
to achieve the same result from the point of view of the model complexity,
there is no robust methodology on how to select the best (apart of grid/random
search). The problem is not trivial. The tricks explained hereafter for optimizing
the hyperparameters of our model are derived from the methodological advices
found in [15].

During the study, it turned out that the learning rate is by far the most
important machine learning parameter. It is quite difficult to preset it prop-
erly. Moreover, the definition of good learning rate changes during the training.
Intuitively, we would like to have high learning rate in the early stages of train-
ing and lower learning rate when reaching some saddle points. To achieve this
result several methods can be used: first start by using ADADELTA proposed
by [37] which is an automatic way to adjust the learning rate. While observing
improvement as compared to standard Batch Gradient Descent, one also notice
the oscillations of loss during latter stages of training, incriminating a too high
learning rate. The second idea to tackle this problem was to use learning rate
schedule, i.e. decrease the learning rate after some number of epochs. The prob-
lem here is that since the topology of the loss function is unknown, it is hard to
decide when to apply this decrease a priori. Therefore, this method can be used
only in case of well-known topology, where the saddle points are detected and
the learning rate schedule triggered appropriately. Finally ReduceLROnPlateau
callback from Keras library was used. This heuristic consists in reducing learn-
ing rate once there is no improvement observed during some number of epochs.
Empirically, this helps to reduce the oscillations during the late stages of training
and significantly increase the final accuracy.

Also, in order to reduce overfitting and to use computational resources more
efficiently , early stopping was applied. It consists in stopping the training
while there is no improvement in validation loss during some number of epochs.
The combination of both early stopping and learning rate reduction showed
particularly efficient performance.

4 PCA Improved TA

It is challenging for TA at least too understand how DL succeeds against mask-
ing. By the way let’s mention a usual reproach addressed to techniques derived
from machine learning: they provide with effective results but do not give any
explanation and thus do not help the designer of secure routines. (One can also
doubt about the DL capability of achieving a successful attack in real on the
field conditions).

4.1 PCA in the masked case

A uniform random mask equalizes every average signal assigned to any value.
This means that all templates Tk tend to the same global average T . Conse-
quently the scatter matrix should tend to 0 just like the SNR or SOST indicators.
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In that point of view the analysis is deemed to failure if the POIs cannot even
be identified.

For the class covariance matrices Rk, things are somewhat different. As soon
as the mask leakage is included into the observation time window, the covari-
ance should contain significant non diagonal elements relating the dependence
between the mask and the masked variable leakages. To roughly illustrate this
statement let us consider a constant value k masked with a random mask u; be-
sides let’s assume a simplistic Hamming weight HW leakage over b bits for both
(variance is b/2). Following [12] it can be shown that there exists a correlation
between those leakage points.

ρ(HW (u), HW (k ⊕ u)) = 1− 2×HW (k)

b

There are some (second order) remainders of these cross dependences in
(PTRkP )−1 if the projection P is based on the global covariance matrix R
(which tends to E[Rk] if S = 0). As a consequence the PCA must solve the
Eigen problem applied to the covariance matrix (and not to S anymore).

The test is akin to second order analysis in non-profiles SCA. Including the
mask leakage in the observation window along with the masked variable may
represent a practical issue when thinking that the mask can be initialized far
before using it. During profiling this requires refined reverse engineering of the
process and possibly alignment tools. The random mask generator should also
entail variance within the signal but not correlated to any available data.

If all required conditions are fulfilled, masking impacts also the matching
phase. Even though the acquisition is supposed free of measurement noise,
single trace matching is utopic because every value will appear concealed by any
possible masks. So it is expected that the matching can succeed only statistically
with multiple presentations.

4.2 Normalization

Normalization is very often applied in machine learning methods as a prereq-
uisite to neural networks which demands homogeneously scaled data. By the
way this is interesting as a possibility of solving the portability issue in TA.
Rescaling all signals (Xi − T )/σ - at profiling as well as at matching - can be
seen as a smart way of fixing gains and offsets that might have been introduced
during the acquisition phase (portability on other DUT in test phase). This
possibility is mitigated by the estimation problem since the test set is not nec-
essarily rich enough and possibly biased to provide with a good estimate of its
own average and variance. When applicable, normalization induces a couple of
drawbacks. First the susceptibility to outliers is increased or, in other words,
non informative features are magnified. It may appear as relevant to discard
candidate traces that are too far from the average. Secondly the noise is altered
by the standard deviation rescaling, entailing Eigen values spreading with poor
contrast, so that PCA needs much more Eigen vectors for the TA matching to
succeed (typically 10 times more).
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Normalization Mask Mask + CC shuffling
No 50 2000
Yes 45 200

Table 3: TA-PCA matching results on target A: the table displays the amount
of candidates required for reaching rank 1 with likelihood aggregation. Single
traces average ranking remains beyond 100 or around 60 after normalization.

4.3 TA results on target A

The results of TA-PCA on target A are summarized in the following table 3.
45,000 traces were used for profiling and 5000 for matching. They prove that
the method also works in the masked case as DL techniques even when the last
clock cycles are slightly shuffled. Conversely it completely fails against random
jittering, unlike DL-CNN. Normalization also brings some substantial benefit
but it requires more principal components (less than 10 up to 60 here).

4.4 TA results on target B

When applied to target B traces as such, TA-PCA failed for any number of
principal components. After normalization (taking advantage of the privileged
condition in this study), the ranking converged down to 1 after 4500 candidate
traces. The performance is much lower than the 150 of DL. However convergence
could be accelerated below 1000 by the discarding of outliers (which was used
by DL).

Figure 3: Average trace (up) and first 3 Eigen vectors of target B: without
normalization (left), with normalization (right). Normalization kills the phys-
ical interpretation whereas the 2 regions of interest mask/masked are visible
otherwise.

4.5 Synthesis of the results

So far the encryption masking was considered as an effective countermeasure
against TA attacks (without mask knowledge at profiling). DL methods have
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Figure 4: Ranking convergence with and without normalization.

proved that supervised attacks could be successful however. The previous results
show that TA can also succeed provided PCA is applied first to the covariance
matrix R, in order to exploit cross dependences for unmasking. As a matter of
fact PCA seems to be the success condition. Possibly it is implicitly included
within DL neural networks across all the multilinear combinations implemented.

Beware that if the principal components of R are necessary to identify the
significant POIs at 2ndorder, the hypotheses discrimination during matching
relies on the classes covariances Rk and not anymore on the templates Tk them-
selves, since masking equalizes them all. It would not make any sense either to
use the common covariance R in the likelihood formula as often done for non
masked situations.

Knowing that unlike CNN-DL, TA remains dependent on the good alignment
of traces, it appeared also that the improved TA was able to break implemen-
tation protected with combined masking and shuffling. This sounds natural
since shuffling does not misalign the signals. As counterpart more challenges
are necessary in test phase, but (still inspired but DL techniques) the normal-
ization seems to bring substantial optimization allowing a quicker convergence
of multiple traces matching.

5 Results against static targets

Targets C and D are addressed in this section. Both concern data transfers as
they could be implemented for key loading purpose into a cryptographic library.
The secret is fixed during matching phase and not masked. Fir both targets the
data are chosen randomly. One million well aligned traces are available: the set
can be split at will say 900,000 for profiling/learning and 100,000 reserved for
matching/testing, or half a million for each without any portability issue. The
challenge traces are assigned to randomly chosen data so that the effectiveness
of the analysis can be assessed for every amongst 256 possible values. So each
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value of the secret can be candidated with around 390 traces if all 100,000
challenges are submitted.

Case C is the most simplistic. The leakage is analysed through power. Sub-
stantial correlation up to 0.6 can be observed with HW (Kj) and HW (Kj ⊕ j)
where j is the byte index. A couple of POI with different leakage params and
reasonable noise make one of the most favorable situation for TA.

Case D is more realistic since it is implemented on a recent chip for smart
card. The transfer is performed with 32 bit words. But the words are set in
different experiments with either 8 or 16 or 32 random bits (unused bits are 0).
The correlation rate of EM leakage is around 0.15 with the Hamming weight
of the word (no matter the number of used bits). Alignment is perfect and
optionally shuffling can be activated.

5.1 TA on target C

Average ranking results (1-256) of classical TA are summarized in figure 6 show-
ing the benefit of likelihood aggregation when compared with single trace match-
ing. It is to be noticed that a dimensionality reduction to 40 POI is performed
here classically through SNR/SOST and no PCA. Besides it is remarkable that
prenormalization proves to have strictly no effect on the values ranking even if
combined with PCA.

Figure 5: Templates with correlation (left) and raw signals (right).

5.2 Comparison with DL-MLP on target C

A MLP test has been conducted on the same dataset with comparable set-up
as used for TA: 900,000 traces for learning, 100,000 for testing; same 40 POIs.
The neural network is simple with only 3 layers of 256 neurons each.

Comparative results of classical TA versus DL-MLP are summarized in table
4 showing that both approaches perform well with an advantage for the MLP
which converges faster.

These results on a ”good leaking” target give the opportunity to remind a
couple of fundamental limitations of template attacks even in absence of any
protection. They concern single trace matching and the leakage surjectivity.
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Figure 6: TA ranking (1-256 restricted to 1-101) vs values (0:255): aggregated
(left) and single traces rank averages (right). Multiplying the number of chal-
lenge traces per values improves the ranking but converges after a while.

5.2.1 Is single trace matching utopic?

As soon as even a little noise is involved in measurement it is hard for the right
solution to reach rank 1 in one shot (even for MLP). Likelihood integration of
aggregated challenges (which is equivalent to challenges averaging) remains the
only solution for extracting the secret out of noise (or reducing the noise).

5.2.2 Surjective leakage.

Even after noise reduction, the ranking is often limited by the leakage law itself.
If it is too surjective (relatively to the residual noise) the matching cannot
distinguish some hypotheses. When considering a simple byte transfer, it is
well known that separating values is very difficult if the data leak according
to their Hamming weight. This traditional model maps 256 values into only 9
levels whereas the attacker hopes for a 1 to 1 bijective relationship. The reality
holds in between because the leakage is more informative thanks to multiple
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Figure 7: DL-MLP ranking (1-256 restricted to 1-101) vs values (0:255): aggre-
gating 8, 39 and 390 challenges per value (top-down).

combinations of POIs (e.g. additional Hamming distances) and unbalanced bits
weights that disperse the templates over more than 9 levels. This explains why
some values seem to perform better than others. All of them should be calibrated
in test phase but also during profiling. Displaying all the templates gives already
a qualitative view of the scattering better than SNR/SOST which are statistics.
The grouping status or distinguishability power can be represented by the matrix
of pairwise weighted distances δij = (Ti − Tj)TR−1(Ti − Tj).

5.3 TA on target D

Target D is managed in a slightly different way: half a million traces are used for
profiling and half a million for matching. The leakage is weaker in magnitude but
wider (in time) than on target C, providing with more POI (due to a pipe-lining
effect). Here again all values cannot be distinguished easily despite multiple
traces submissions of each and likelihood aggregation. A reference result is
provided for 8 bit transfers in table 5: the performance is similar with or without
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N Traces Nb traces /val TA avg rank (aggr) MLP avg rank (aggr)
2,000 8 24 2.16
10,000 39 8.9 1.24
100,000 390 3.5 1.07

Table 4: Comparative average results on target C after aggregation: MLP needs
less challenges to performs better.

N Traces Avg traces nb /val Avg aggregated rank
1000 4 92

10,000 39 56
50,000 195 33
100,000 390 28
500,000 1950 26

Table 5: TA matching average results on target D (8 bit case): over all values
ranking after likelihood aggregation are to be compared versus single traces
average ranking 110 which is not far from 128.5 which means ”matching at
random”.

PCA (on S).

5.4 Extension beyond 8 bits

This section addresses the effect of the words size. Obviously ”templating”
the traces over 216 or 232 values is impossible and prohibits any full profiling
with good estimates of Tk and Rk within each class. Choudary and Kuhn [9] has
proposed to use the stochastic model (multilinear bit decomposition) introduced
by Schindler et al. [35], to efficiently manage the issue of extension beyond 8
bits. In their 16 bit example, they resume the whole dictionary of templates
with 16 bit weight coefficients and one offset (all time vectors). But, as noticed
by [3], only a global covariance R can be used: it is less efficient than class
covariances Rk which are out of reach anyway. The good ranking obtained on a
data transfer by Choudary and Kuhn [9] proves that the approach makes sense.
Unfortunately their test case is not fully significative because the 16 bits do not
leak simultaneously. The data transfer is simulated with a couple of consecutive
byte loadings spanning several clock periods: in fact a couple of 8 bit problems!

More significant and challenging is the case where all the bits leak within the
same clock cycle. This raises again the issue of surjective mapping. How 65536
values might generate as many distinguishable profiles? Pushing to the extreme,
if they were leaking exactly at the same time at least a 16 bits digitizer would
be necessary. In real cases however there are always slight differences between
the bits both in terms of magnitude and timing. Moreover their combinations
can also be more complex with multiple POI exposures. This situation has
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Experiment phase Selection byte Other bytes Comment
Profiling Random Random

Matching on learning set Fixed Random All values calibrated
Matching Fixed Fixed Real test attack

Table 6: Analysis situations with leaking words larger than the selection byte

been addressed by Wagner et al. [36] against the round key registers of a
hardware DES (exclusive OR input). The leakage is due to 48 bits that flip at
each round update. The authors noticed that some special transitions, called
”rings”, between the same key bits are repeated from round to round. They
implemented the profiling on 8 bits among 48 and then played several variants
of the TA with many single trace matchings over a lot of keys. They showed
that some information can be gleaned on the key. But the assessment of the
guessing entropy remains on debate.

5.4.1 Implementation issues

Following this example we have implemented this partial selection operated over
a subset and chosen 1 byte amid 4. The question is to know the impact the 24
non selected bits during the learning phase and during the test phase (Partial
CPA rate falls from 0.12 down below 0.04 typically). During the learning phase
they can be chosen as fixed (set with which value?) or random.

If the non selected bits are fixed at learning they will probably introduce a
special bias on the templates which has high chances to differ from the one at
matching. In the best case this bias is equivalent to an offset. As a consequence
a chosen data strategy can be implemented in learning phase: for instance, for
each selection byte, the others could be set to zero. But this approach has high
chances to be inconsistent with the test phase (even with normalization).

If the 24 bits vary at random they introduce an average bias on templates and
drastically increase the variance of noise (within each class in the TA paradigm).
Let’s illustrate that point with a Hamming weight: the variance for 8 bit is 2;
for 24 bits it becomes 6. This “data noise” is not present in test phase but the
24 bits have a fixed value.

As a consequence the only hope for removing the data noise resides in av-
eraging the effect of these bits during the test phase. This possibility can be
encountered only with dynamic targets thanks to the varying message or maybe
in case of masking. But this should drastically increase the amount of challenge
traces in test phase to succeed the attack. Indeed the aggregation of many
candidate traces will be necessary to extract the leakage out of this stronger
noise.
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5.4.2 Target D in 16 and 32 bit cases:

These approaches have been experienced in the present study. First, all data
have been chosen randomly for both the profiling (200,000 traces) and the testing
(400,000 traces). Having unselected bytes set with random is interesting in terms
of calibration (Beware, this makes sense only if the subset used is different from
the one used for learning). This must be viewed as best case highly favorable to
the attacker: if it fails the attack will fail too forcely. Another advantage is that
all possible values of the selected part can be tested. But it is not realistic since
the true attack deals with a fully fixed key which cannot benefit from averaging
multiple presentations (tab 6). Results per secret value are summarized in figure
8. They behave the same with 16 or 32 bit sized data. Let’s notice that they
are the same no matter the POI are selected with classical SNR/SOST or PCA.

Figure 8: Rank vs value presented around 1500 time seach: single trace matching
(right) looks like matching at random with average rank around 128 on any value
unlike aggregate rank per value (left) which shows high variability (some values
work, some others not at all).

A couple of complementary tests have been conducted. In a second step real
32 bit, resp 16 bit fixed keys have been compared 50,000 times each to the same
dictionary of templates profiled on one byte only. Ranking goes up beyond 200
in both cases (although the effect of measurement noise has been reduced by
50,000 presentations).

Then in a third step the dynamic target has been simulated on the same
set of data. For that purpose the 400,000 challenge values were all artificially
aggregated with cross-matching into one single result. This test showed that
the ranking could go down to low values, asymtotically to rank 1, but only after
at least 200,000 presentations!

5.4.3 Preconclusion

To sum up these results confirm that large words resists TA quite well. The
main reason is obviously that the involved bits belong to and vary within the
same word, generating additional variance. The use of large words is more
performant and secure at the same time: unfortunately programmers are often
reluctant because of memory management constraints. Of course it can be
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argued that the selection byte can be enlarged beyond 8 bits so as to reduce the
variance of non-selected ones. The experience shows that 16 bits partitioning is
prohibitive; 10 to 12 is accessible but the implementation becomes tedious and
the results remain hazardous. Anyway this is unsignificant in front a 32 bit or
larger leakages (as in hardware devices).

The large coding size has a different impact dynamic targets that can still
benefit from the challenges aggregation since there still remains values which
perform not so bad. Obviously integration remains the only solution against
noise.

5.5 DL method on target D

5.5.1 8 bit case

The basic 8 bit case has been addressed with DL-MLP on the basis of 500,000
traces for learning and 50,000 for testing, all of them with random byte. So all
secret bytes could be tested with around 200 submissions for each. In learning
phase overfitting needs L2 regularization. The testing phase produces results
similar as TA. Single trace matching does not work at all. Aggregation is neces-
sary to gain some information : then all values do not perform the same but an
average ranking of 28 can be achieved, which is barely better than TA results
(33 with 50,000 challenges in table 5).

Then an attempt has been done to play a real attack against a fixed di-
versified 8 bytes key (transferred 50,000 times). As expected the bytes do not
perform the same at all : one byte is ranked below 10, another beyond 240 and
several others around 100 ! Surprisingly the ranks do not match with the ones
expected from the previous test. This shows that the portability remains a hard
point even on the same device.

5.5.2 16 bit case

The same test against the 16 bit implementation has been tried also. In that
case the training phase completely fails to provide with significant accuracy
because of too much randomness. Finally the test phase is not even worth being
launched. This means that there exist some situations where the learning phase
can early conclude that the attack is deemed to failure without implementing
the challenge phase. This represents a practical interest for testing purpose.

5.6 Lessons drawn

The tests presented in this section confirm that static targets are difficult to
attack. DL does not seem to succeed much better than TA. Even in the 8 bit
case, when the partitioning and the leakage operate on the same amount of bits,
the attacks are not effective especially against recent chips with weak leakage.
The performances are lowered by too surjective leakage laws even if noise can be
reduced with challenges averaging. It turns out that some values can be ranked
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quite easily whereas some others cannot be distinguished at all. On average the
overall yield is poor.

The effect of coding size is confirmed as merely dissuasive for supervised
attacks (as long as integration remains impossible). When the selection data is
smaller than the manipulated words, the test phase looks like random challenge.
So far even DL techniques fail because non selected bits pollute the learning
phase with intense randomness and introduce constant deviations at matching
against which averaging is powerless. Larger words are more secure. This
conclusion is rather reassuring for designers who have to protect data transfers
for instance. Beware however not to set the non selected bits with random data
in testing phase : this is not masking but just additive noise which effect can
be mitigated with averaging.

6 Synthesis

6.1 Supervised attacks can defeat masked encryption

TA can succeed against masked encryptions and performs not so bad when com-
pared with DL techniques. For TA the condition is to work on PCA subspaces
computed from the global covariance matrix for 2nd order POI identification
and exploit of the non diagonal elements of the classes covariance matrices. It is
possible that DL techniques proceed the same implicitly as multiple linear com-
binations are performed within the networks. This has practical consequences
during profiling. When using SNR/SOST indicators for raw data dimensionality
reduction, bias peaks are erased by the masking : this does not necessarily mean
that matching will fail. The SNR/SOST must be recomputed after projection
onto the Eigen vectors subspace in presence of masking protection: this helps
the truncation to retained principal components.

This conclusion stems from tests conducted against masked encryption which
is seen as a dynamic target (varying mask in test phase) and considered as rel-
evant for supervised attacks mainly by the research community. This situation
is much less encountered on the field where cryptographic implementations are
much more protected against DPA/CPA.

6.2 Static targets offer good resistance

As traditional targets of TA, the static data manipulations (e.g. data transfers)
are more suited to supervised analyses even on real products. This study shows
that they are most often difficult to attack with DL and TA techniques. The
main explanation resides in a too surjective leakage that thwarts the templates
distinguishing even though the noise is removed. A few secret values can be
inferred quite well whereas most of the others do not work at all.

In practice one observes the paradox that the presence of SNR/SOST peaks
at profiling does not necessarily entail a successful matching. This depends
on both the templates scattering and also on the presence of other secret bits
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within the leaking word, beside the selection ones. Coding secrets over large
words seems to be merely dissuasive even to DL methods, at least so far.

6.3 The effect of cross-matching

A basic consequence of the previous points is that dynamic targets, even
when protected with masking, are intrinsically more vulnerable that the static
ones. By the way, it can be deduced that if encryption is not masked the
weakness is even worse. The reason for such a vulnerability is the presence of the
varying message in the test data set. It allows the so-called cross-matching
that redirects -through the K ⊕ M operation- the challenges traces towards
easily distinguishable classes even if there are only a few. Amongst the varying
messages there is always one to hit such a class and make the right guess stand
out. A condition for this is that many challenges are necessary to aggregate
the corresponding likelihoods. Regardless of noise, single trace matching looks
utopic especially in the masked case.

6.4 Residual case: masked static targets

Among the different use cases considered so far, there is a residual situation
concerning static targets protected with random masking. For example it is
often encountered during key scheduling within SK block ciphers where the
key is hidden with its own random mask before being combined with message
material. One could devise that the presence of the random mask reintroduces
some variability into the leakage during the matching test as the message does
in encryption.

We have experienced it with TA. We just had to replay the tests of dynamic
targets A and B without cross-matching aggregation. The cryptographic vari-
able are simply viewed as transferred data, but concealed with a random mask.
The results of ranking for each (8 bit) value, look like those of figure 8. A few
values perform not so bad. But the average rank over every values is 55 on tar-
get A (around 20 challenges per value) and 92 on target B (200 challenges per
value). When compared with the aggregated case (cross-matching) the conver-
gence curves leave no doubt about the unfeasibility of the attack: they merely
kill any chance of success even though the amount of challenges were increased.
There is still a remaining floor to ranking as long as cross-matching aggregation
cannot help circumventing the leakage surjectivity.

This result confirms that adding a masking protection does not decrease the
security of data transfers. This would sound paradoxical. As an outcome table
7 can be derived to summarize the intrinsic resistance of the different use cases
encountered in SK implementations against DL and TA supervised attacks.

6.5 Protection of static targets

Static targets resist supervised attacks if their leakage law is very surjective.
This highly depends on the hardware which is not necessarily well known by
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Leakage observation Type of problem Resistance
L(SBox[K ⊕M ]) Encryption Very low

L(u),L(SBox[K ⊕M ]⊕ u) Masked encryption Low
L(K) Secrecy transfer Possibly high

L(u),L(K) Masked key schedule Very high

Table 7: Typical targets of supervised attacks and their intrinsic resistance.

software designers. In case of bijective leakage (and low noise), some protections
are needed. Since DL techniques such as CNN can still perform through slight
jittering and shuffling, it is recommended to implement additional protections
as large coding sizes (preferably for data transfers) and/or random masking (key
schedule). Beware that random padding (of unsused bit within a large word) is
not theoretically sufficient because aggregation can potentially cancel its effect
with statistical integration.

6.6 Protection of dynamic targets

In front of supervised attacks (including TA), the main weakness of -even
masked- encryption resides in the presence of the message in test/matching
phase which circumvents the difficulty of surjective leakages thanks to cross-
matching. This variability has a second consequence in case of large coding
size (which has not been fully tested on dynamic targets during this study).
Indeed it has been seen on a static case that if the non selected data vary ran-
domly in test phase, the rank can converge down to low values if a large amount
of challenge traces are aggregated. So for encryption large words are not to be
considered as an absolute protection as such, just as an efficient noise additioner.

Besides DL-CNN still operate through jittering and shuffling provided these
are not too strong. So what can a programmer do in front of this darkened
picture of possible protections? As a matter of fact the situation is well known
in the context of DPA/CPA attacks. A first recipe consists in pushing the
countermeasures to their maximum. Further robust cryptographic libraries use
to implement complex combinations of the abovementioned types of protections.
When two or three of them are present the analysis becomes highly difficult.
In the worst cases it remains theoretically possible but demands a prohibitive
number of exposures, incompatible with the application context.

6.7 DL versus TA

This concurrent study shows that DL techniques perform better than TA when
the attack is feasible, thanks to a much bigger computational effort. But TA
competes honorably even against masked encryption. However both TA and
DL fail against tough targets as example D.

It must be underlined that the datasets used on targets A and B are partic-
ularly suited for addressing masked implementations. But they come out of a
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preprocessing and extraction step. The method used for feeding the model with
relevant signals (mask + masked variable leakages) requires the same signal pre-
processing and profiling methods used for TA (which demands alignement). A
special hard point also regards the possibility of working with long signals: DL
public libraries quickly meet memory limitations in such situations. In other
words DL techniques would face the highest difficulties without the initial re-
verse engineering steps of classical approaches. This mitigates their benefit,
knowing that TA can also be improved on its side with PCA and normalization.

A significant advantage of DL-CNN is the capability of working with mis-
aligned data. This feature is of highest importance against the desynchronizing
countermeasures. It deserves being challenged and pushed to the limits on
tougher examples with large jitter combined with shuffling. An original point
is that the filters responses convolved with the traces are not prior defined
(they are initialized with random!). But they are fully part of the model fit-
ting optimization process, including the hypotheses separation. They behave
like adaptative filters. But they cannot be reproduced as preprocessing because
they do not look like the operations usually conducted by alignment methods.

7 Conclusions

The advent of DL techniques in the scope of side-channel attacks does not really
appear as a major breakthrough that would severely jeopardize every existing
implementations. But it is an opportunity to reconsider classical learning in a
different way. Comparable performances can be achieved with TA improved by
well-known preprocessing such as PCA and normalization. Similar failures are
also observed with both approaches in front of difficult use cases. This com-
parative study explains why some protections such as masking can be defeated
whereas DL algorithms are often seen as mysterious black boxes.

Without speaking of a new momentum, DL methods (beyond their friendly-
ness, public availability) are worth being further challenged in front of tougher
targets since they provide with special capabilities of thwarting some protec-
tions like desynchronization. As the computational power is getting less and
less costly an interesting axis regards the capability of treating the reverse en-
gineering and signal preprocessing steps which require a lot of memory and
calculations (CNN). The special hard point of working on different devices be-
tween learning and testing phases remains to be addressed. Let’s notice at last
that this conclusion is somewhat different when considering PK cryptographic
implementations which are always special: DL methods turn out to be very
helpful for reverse engineering purpose.
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second order differential power analysis. In Journal IEEE Trans. Comput-
ers, volume 58, pages 799–811. IEEE, 2009.

[12] Fahn and Pearson. Inferential power analysis (ipa): a new class of power
attacks. In International Workshop on Cryptographic Hardware and Em-
bedded Systems, pages 173–186. Springer, 1999.

[13] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual in-
formation analysis. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 426–442. Springer, 2008.

29



[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[15] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Ver-
bauwhede, and Joos Vandewalle. Machine learning in side-channel analysis:
a first study. Journal of Cryptographic Engineering, 1(4):293, 2011.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[17] Ian T Jolliffe. Principal component analysis and factor analysis. In Prin-
cipal component analysis, pages 115–128. Springer, 1986.

[18] Marc Joye and Francis Olivier. Side-Channel Analysis, pages 571–571.
Springer US, Boston, MA, 2005.

[19] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Annual International Cryptology Conference, pages 388–397. Springer,
1999.
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A Formulation used for template attacks

A binary variableK takes 2|K| possible integer values denoted k. The time signal
associated to each experiment i handling a value of K is noticed Xi ∈ RN .
This vector of N time samples contains the leakage L(f(K)), f(K) being a
known cryptographic primitive referred to as selection function. Partitioning
the signal vectors according to the values taken by K allows the definition of
statistical moments in each class k with population nk: the average Tk (the
template) and the symmetric covariance matrix Rk = E[(X − Tk)(X − Tk)T ].
This matrix contains the variance of noise σ2

k on its diagonal: it represents within
each class the random share that does not depend on k (measurement noise,
misalignement effects, leakage of other manipulated data). The non diagonal
elements represent the potential interdependences between the time samples
taken at different instants.

Overall statistics are defined as the global average T = E[X] and the sym-
metric covariance matrix R = E[(X − T )(X − T )t] which diagnonal elements
embed the variance signal σ2. All these quantities butK are timeN -dimensional
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vectors or N × N matrices. They comply with the multivariate Gaussian for-
mulation which is convenient (but rather coarse?) for resuming the probability
densities with 1st and 2nd order moments.

The paradigm of template attacks is based upon the Bayesian inference
where the probability for K to take value k while observing Xi (matching/test
phase) is considered through Bayes theorem as proportional to the probability
density of Xi when K = k (profiling phase).

p(K = k|Xi) =
p(K = k)p(Xi|K = k)

p(Xi)

Assuming K as uniformly distributed p(K = k) = 2−|K| the a priori prob-
abilities are not discriminating. In the Gaussian multivariate assumption this
leads to the famous basic formula for the likelihood of hypothesis k which is
proportional and thus assimilated to the conditional probability:

p(Xi|K = k) ≡ 1√
(2π)Ndet(Rk)

exp(−1

2
(Xi − Tk)tR−1k (Xi − Tk))

In practice the formula is not used as such but rather through its logarithm
which is named log-likelihood. This is better numerically conditioned and more
convenient to aggregate the results when going from single trace matching to
multiple traces matching in test phase, when several challenges Xi are sub-
mitted. The hypothesis testing procedure just has to add them and look for
ArgmaxK(

∑
i log(p(Xi|K = k))) over all hypotheses of K.

The purpose of the profiling phase is twofold. First it has to compute the set
(dictionary) of statistical templates Tk and Rk for all values k and additionally
the global ones T and R. But this has poor chances of effectiveness if a prealable
dimensionality reduction is not performed. It is based on the research of Points
Of Interest (POI) within the signal that are supposed to maximize (generate
peaks) on the following quadratic indicators called SNR (a leakage to noise more
than signal to noise) and SOST (pairwise sum of square T-differences):

SNR =
Σnk(Tk − T )2

Σnkσ2
k

SOST = ΣkΣl>k
(Tk − Tl)2

σ2
k + σ2

l

There are several issues encountered at profiling. It has to be done in two
steps : one for POI indentification and one for computing the covariance ma-
trices reduced to these POI. The task assumes randomly and uniformly chosen
data K for partitioning the traces. These traces must be numerous for allowing
good statistical estimation. Last but not least : the traces must be aligned! For
convenience let’s introduce the scatter square matrix:

S = Ek[(Tk − T )(Tk − T )t]
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where the expectation are taken over the classes k (variance of the templates).
S is related to the global covariance matrices by

R = Ek[Rk] + S

S represents the inter-classes scattering, that is the share of (co)variance which
is related to the selected data (the rest being noise). In case of masking, this
matrix tends to 0 just like the scalars SNR and SOST, since all averages should
converge towards the same value. They all loose their efficiency. Let’s remark
by the way that they disregard the non-diagonal elements of the covariance
matrices.

The covariance matrices must also be inverted and their determinant cal-
culated. The computational complexity is O(N3), which can quickly become
unfeasible in high dimensional spaces. Sometimes they can even become sin-
gular. These are good motivations for dimensionality reductions. Choudary
et. Kuhn [10] in their 2018 publication propose a solution to matrix inversion,
based on the pooled covariance matrix which gives the better estimates of the
true covariance matrix.

For matching the challenge traces have to be captured in compatible condi-
tions (the portability issue) and mapped over the same POI to keep the compa-
rability. Let’s notice a commonly used approximation in test phase: the classes
covariances Rk are merely replaced by the global one R. Well R is sometimes
better conditioned for inversion in case of large vectors (without dimensionality
reduction) or heterogeneous classes (not equipopulated). But the experience
shows that class covariances provide with better discrimination results [3].

B Principal components analysis

Principal components analysis (PCA) can be used as a preprocessing tool for
optimal dimensionality reduction and automatic selection of POIs. Under the
condition that all the signals are aligned, PCA implements a linear projection
matrix P applied to vectors and covariance matrices onto the subspace of princi-
pal axes which result from solving an Eigen problem. The basic question regards
on which matrix this underlying Eigen problem must be applied. Basically the
first target is the covariance R but the authors [2] introduced the scatter square
matrix S in order to optimize inter-classes scattering. Furthermore it may also
apply to R−1S as a kind of SNR criterion maximizing inter-classes scattering
over global scattering and noise (a.k.a Linear Discriminant Analysis LDA).

Without loss of generality let’s work on S for instance and solve the Eigen
problem SV = V Λ, where Λ is the diagonal matrix of Eigen values λi, and
V the Eigen vectors that make an orthonormal basis. Λ is to be truncated
along its diagonal into Λ′, in order to reduce the dimensionality. The projection
matrix is defined as P = V Λ′V t. The projective form of the likelihood formula
just consists in replacing the covariance by (P tRkP )−1 and the signal/template
vectors by P t(Xi − Tk) in the likelihood formula. (Another possibility consists
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in projecting the raw traces PTXi and replaying the whole profiling procedure:
the new SNR/SOST will provide with relevant truncation parameter).

Experience shows that the truncation decision to main Eigen vectors as
required by PCA is a fuzzy issue and criteria based on relative sums of Eigen
values is not really effective. A rule of the thumb can be: N ′ < N is chosen so
that ΣN ′

λi/Σ
Nλi ≈ 0.8. In classical cases a dozen components are sufficient.

Eventually in classical unmasked cases PCA brings poor benefit when compared
with classical methods such as SNR or SOST used for POIs identification.

C Deep learning in a nutshell

The reader is referred to reference papers [23, 4] for fundamental definitions of
DL applied to side-channel analysis. A few basic ones are just reminded here-
after. The DL approach is based upon the definition of neural network archi-
tectures such as the Multi Layer Perceptron and Convolutional Neural Network
designed to solve prediction and classification problems. They are built upon
the same basic cell called neuron whose output result is a multilinear weighted
sum of the N input samples followed by a non-linear activation function.

These architectures contain several layers of neurons each applying a linear
combination function to the input vectors (∈ RN ), with its specific weights. For
classification problems the output layers takes the form of probability vectors
p(K = k|X) (softmax function), typically 256 for 8 bit value inference.

The Multi Layer Perceptron (MLP) is one the oldest network used: it is
fully connected in the sense that each layer cell is connected to all the cells of
the next layer. The CNN architecture is not fully connected: each neuron is
connected to a limited number of other local neurons allowing a convolution
integration.

During the learning phase a gradient descent algorithm is used to set the
neurons with optimal weights. The minimization criterion is the loss function
defined as the distance between the expected known values and the predicted
outputs.

A network is not only characterized by its connectivity but also by several
dimensional hyperparameters including the learning algoritm settings:

• Number of layers

• Number of neurons per layer

• Size of the batches, that is the number of traces per minimization iteration

• Number of epochs, an epoch being the number of passes over the whole
training set

• The learning rate is the step of the gradient descent algorithm which can
be adjusted dynamically during the minimization process
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The number of neurons and the amount of layers can be increased to solve
more and more complex problems. This is the meaning of the term deep learn-
ing.

In addition to the loss function, the accuracy is used to assess the effective-
ness of the network model. The accuracy is defined as the success rate of the
prediction. Both the loss and accuracy are computed along during the learning
algorithm. But they are to be calibrated over a validation dataset different from
the learning dataset. An important challenge regards the so-called overfitting
encountered when the network perfectly fits the learning set (learned by heart)
but predicts or classifies any new trace very badly. It is assessed by observing
a large difference between the loss function and the accuracy evaluated on the
validation set. To fix this overfitting issue there exist a variety of techniques:

• Data augmentation consists in artificially increasing the number of input
traces during the training.

• Regularization (L1 or L2) constrains the neurons weights within bound-
aries in order to avoid algorithmic divergence.

• Drop out consists in removing some neurons at random during the mini-
mization in order to increase the variance.

Sometimes underfitting is also observed, meaning that the network is unable
to learn. A symptom is neuron output divergence. Batch normalization is used
against it.
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