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Abstract

Fuchsbauer, Kiltz, and Loss (Crypto’18) gave a simple and clean definition of an alge-
braic group model (AGM) that lies in between the standard model and the generic group
model (GGM). Specifically, an algebraic adversary is able to exploit group-specific structures
as the standard model while the AGM successfully provides meaningful hardness results as the
GGM. As an application of the AGM, they showed a tight computational equivalence between
the computing Diffie-Hellman (CDH) assumption and the discrete logarithm (DL) assumption.
For the purpose, they used the square Diffie-Hellman assumption as a bridge, i.e., they first
proved the equivalence between the DL assumption and the square Diffie-Hellman assumption
in the AGM, then used the known equivalence between the square Diffie-Hellman assumption
and the CDH assumption in the standard model. In this paper, we provide an alternative proof
that directly shows the tight equivalence between the DL assumption and the CDH assumption.
The crucial benefit of the direct reduction is that we can easily extend the approach to several
variants of the CDH assumption, e.g., the bilinear Diffie-Hellman assumption. Indeed, we show
several tight computational equivalences and discuss applicabilities of our techniques. In this
full version, we provide further applications (including the matrix computational Diffie-Hellman
assumption and the kernel matrix Diffie-Hellman assumption) and a detailed overview of our
techniques.
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1 Introduction

1.1 Background

Diffie-Hellman Problem in the Generic Group Model. The discrete logarithm (DL) as-
sumption and the computational Diffie-Hellman (CDH) assumption including its variants have been
devoted to constructing numerous cryptographic protocols. Hence, estimating the computational
hardness of solving the problems is a fundamental research topic in cryptography. For the pur-
pose, the generic group model (GGM) [Nec94, BL96, Sho97, MW98, Mau05] over cyclic groups is
a wonderful tool and has successfully provided several fantastic results in the context. Generic al-
gorithms are not able to exploit specific structures of cyclic groups in the sense that the algorithms
are given group elements only via abstract handles. Then, the algorithms are able to output only
group elements which are computed by interacting with an oracle and applying group operations
to given elements. Therefore, generic algorithms such as a baby-step giant-step algorithm, the
Pohlig-Hellman algorithm [PH78] (in composite-order groups), and Pollard’s rho algorithm [Pol78]
work in any cyclic groups.

Furthermore, the most substantial benefit of the GGM is that we are able to derive information
theoretic lower bounds of computational problems, where analogous analyses seem infeasible in the
standard model. For example, any generic algorithms require at least O(

√
p) group operations to

solve the DL problem in cyclic groups of a prime-order p. Analogous analyses have also been made
for the CDH problem and its variants in an ad-hoc manner. Thus far, the GGM has been extended
and used for studying computational problems in bilinear (and multilinear) groups [BB08, Boy08,
KSW13, MRV16, EHK+17].

One main criticism of the GGM is that computational problems that are generically hard may
not be hard when instantiated in concrete groups. Jager and Schwenk [JS13] proved that computing
a Jacobi symbol of an integer modulo a composite n generically is equivalent to factorization;
however, the computation is easy when given an actual representation of Zn. Similarly, the number
field sieves [Gor93] in specific groups are able to solve the DL problem in subexponential time
in log p, i.e., faster than the generic algorithms. Hence, the GGM gives us certain confidence of
computational hardness while we want to obtain analogous results in the standard model or less
restricted models than the GGM.

Algebraic Group Model. In Crypto’18, Fuchsbauer, Kiltz, and Loss [FKL18] introduced an
algebraic group model (AGM). The definition of the AGM lies in between the standard model and
the GGM. Like the standard model and unlike the GGM, an algebraic algorithm is given an actual
representation of cyclic groups. On the other hand, like the GGM and unlike the standard model,
an algebraic algorithm is able to output only group elements by applying group operations to given
elements. Although the algebraic algorithm is not required to interact with an oracle for the compu-
tation, it should output a record of a group operation which Fuchsbauer et al. called a representa-
tion. Let G := (G, G, p) be a group description, where G is an additive cyclic group of a prime-order

p and G is a generator. When an algebraic algorithm is given
(
G, X⃗ := (X1, . . . , Xℓ) ∈ Gℓ

)
and

outputs Z ∈ G, it has to also output a vector z⃗ := (z0, z1, . . . , zℓ) ∈ Zℓ+1
p as a representation of Z

with respect to X⃗ such that Z =
∑ℓ

i=0 ziXi, where X0 := G. Similar definitions of an algebraic
algorithm are already known in [BV98, PV05]; however, Fuchsbauer et al.’s definition is simpler
and clearer.

The AGM is not allowed to derive computational lower bounds as the standard model. In turn,
as opposed to the standard model, Fuchsbauer et al. showed that the AGM is able to make a
tight reduction from the DL to the CDH. To be precise, they used the square Diffie-Hellman (DH)
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problem [MW96, BDS98] as an intermediate step. They first proved a tight reduction from the DL
to the square DH in the AGM. Let (G, X) be a DL instance such that X := xG. The reduction
algorithm gives (G, X) to a square DH algorithm and receives an answer Z = x2G along with a
representation vector z⃗. Fuchsbauer et al. showed that the vector z⃗ and the relation

z0G+ z1X = Z

are sufficient to recover the DL solution x by solving an equation modulo a prime p. Then, thanks to
the known computational equivalence between the square DH and the CDH [MW99, BDZ03], their
reduction implies a tight reduction from the DL to the CDH in the AGM. Furthermore, a valuable
feature of the result is that the reduction algorithm is generic. Due to the fact, an existence of the
tight reduction implies an information theoretic lower bounds of the CDH as O(

√
p) in the GGM.

Fuchsbauer et al. claimed that a benefit of the AGM is that we are able to derive information
theoretic lower bounds of the CDH in the GGM via quite simple arguments. Indeed, Fuchsbauer
et al.’s reduction in the AGM is much simpler than the analogous analysis in the GGM. Therefore,
providing generic reductions from the DL to other computational problems of the CDH family in
the AGM has to be an interesting open problem.

1.2 Our Contributions

In this paper, we provide generic and tight reductions from the DL to several computational prob-
lems of the CDH family in the AGM. A starting point of our technique is a direct reduction from
the DL to the CDH without using the square DH as the intermediate step. Given the DL in-
stance (G, X), our reduction algorithm randomly samples r ∈ Zp and gives (G, (X1, X2)) to a CDH
algorithm, where

X1 := X = xG and X2 := X + rG = (x+ r)G.

Here, (G, (X1, X2)) is a properly distributed CDH instance in the sense that x and x + r are
independently distributed to uniform in Zp from the CDH algorithm’s view. Then, the reduction
algorithm receives a solution of the CDH Z = x(x+ r)G along with a representation vector z⃗. We
show that the vector z⃗ and the relation

z0G+ z1X1 + z2X2 = Z

are sufficient to recover x by solving an equation modulo a prime p. The approach is very simple
as Fuchsbauer et al.’s one and easily applicable to several CDH variants which are not studied
in [FKL18]. We believe that the simplicity is a main benefit of our result. To explain our technique
as simple as possible, we consider only tight reductions in the sense that the reduction algorithm
uses an algorithm for CDH variants only once.

Furthermore, we extend the AGM to an algebraic bilinear group model (ABGM) for studying
computational problems in symmetric bilinear groups equipped with a map e : G × G → GT . We
define an algebraic bilinear algorithm so that it is given

(
G := (G,GT , G, e, p), X⃗ := (X1, . . . , Xk) ∈

Gk, Y⃗ := (Y1, . . . , Yℓ) ∈ Gℓ
T

)
and outputs Z ∈ GT along with a representation vector z⃗ that indicates

how Z is computed by the given elements. Then, we extend the approach used in cyclic groups and
provide generic and tight reductions from the DL to several computational problems of the CDH
family including the computational bilinear Diffie-Hellman problem.

Finally, we provide our master theorems that indicate what kind of computational assumptions
can be reduced to from the DL assumption both in cyclic groups and bilinear groups of a prime-
order.
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In the preliminary version [MTT19], our master theorem in cyclic groups does not capture the
computational k-linear problem. Thus, we gave a tailor-made reduction for the problem. In this
full version, we provide a new master theorem for the matrix computational Diffie-Hellman problem
that includes the computational k-linear problem as a special case. Furthermore, we show a new
application called the kernel matrix Diffie-Hellman problem in this full version.

1.3 Technical Overview

In this subsection, we provide more detailed explanation of our technique, where the discussion did
not appear in the preliminary version [MTT19].

In [FKL18], the reduction algorithm of Fuchsbauer et al. gives (G, X), which is exactly the DL
instance, to a square DH algorithm. We call the reduction approach an identity embedding since
the DL solution x is used only by xG = X as a group element. In other words, even if we want
to use an algorithm which takes multiple group elements (X1, X2, . . .) as the input, the identity
embedding can embed the DL solution x into only one group element. Since the square DH is
computationally equivalent to the CDH in the standard model, the identity embedding is enable
to show a computational equivalence between the DL and the CDH by using the square DH as the
intermediate bridge.

However, the identity embedding looks insufficient for providing a direct reduction from the DL
to the CDH. The limitation of the identity embedding is that the DL solution is used only for one
group element. When we try to use the identity embedding to provide a reduction for the CDH,
the reduction algorithm randomly samples r ∈ Zp and sets

X1 := X = xG and X2 := rG.

However, in this case the relation

z0G+ z1X1 + z2X2 = Z

obtained by the output of the CDH algorithm is insufficient for recovering the DL solution x.
Intuitively, the output of the CDH algorithm xrG does not give the reduction algorithm any
additional information, since the reduction algorithm is able to compute Z = xrG = rX by itself.

To this end, we introduce a new embedding which we call an affine embedding. As claimed above,
when we provide a reduction for the CDH problem, the reduction algorithm gives (G, (X1, X2)) to
a CDH algorithm, where

X1 := X = xG and X2 := X + rG = (x+ r)G

by picking a random r ∈ Zp. The affine embedding embeds the DL solution x into two group
elements (X1, X2), where x + r that is an exponent of X2 has an affine relation of x. Then,
the reduction algorithm is able to obtain non-trivial information since it is not able to compute
Z = x(x+ r)G (or x2G) by itself. Similarly, the affine embedding is able to embed the DL solution
x into multiple group elements ((x + r1)G, . . . , (x + rℓ)G) by picking random (r1, . . . , rℓ) ∈ Zℓ

p.

Note that the discrete logarithm of group elements (x, x+ r1, . . . , x+ rℓ) look random in Zℓ+1
p from

Diffie-Hellman algorithm’s view.
The affine embedding is still insufficient for the computational k-linear problem, i.e., given

(G, X1 := x1G, . . . ,Xk := xkG,Y1 := x1y1, . . . , Yk := xkykG) for random (x1, . . . , xk, y1, . . . , yk)
and compute (y1 + · · · + yk)G. Specifically, by embedding an affine relation of the DL solution
x into some (x1, . . . , xk, y1, . . . , yk), then a relation obtained by the k-linear algorithm’s output

5



may result in a zero polynomial. To avoid the obstacle, we sample a random x1 by ourselves and
implicitly embed the DL solution x into x1y1. We call the embedding implicit embedding since we
do not know a value of y1. In other words, a k-linear algorithm enables us to obtain a non-trivial
value y1 = x1/x that enables us to provide a reduction from the DL to the k-linear problem.

1.4 Organization

In Section 2, we review several computational problems which we study in this paper. In Section 3,
we review a definition of the algebraic group model (AGM) defined by Fuchsbauer et al. [FKL18].
In Sections 4 and 5, we show our technique to provide generic and tight reductions from the DL
to the CDH family in cyclic groups and symmetric bilinear groups along with master theorems,
respectively. In Sections 6 and 7, we show new applications of this full version, i.e., generic and
tight reductions from the DL problem to the matrix computational Diffie-Hellman problem and the
matrix kernel Diffie-Hellman problem, respectively.

Notations. We use x
$← Zp to denote a uniformly random sampling from Zp and (x1, . . . , xℓ)

$← Zℓ
p

to denote every element is sampled by xi
$← Zp independently. Let a capital case bold letter A

and a lower case bold letter a denote a matrix and a column vector, respectively. Let 0k denote a
k-dimensional zero vector. For an (m+n)-variate polynomial f(x1, . . . , xm, y1, . . . , yn), we use deg f
to denote a degree of the polynomial and degx1,...,xm

f to denote a degree of the polynomial only
with respect to variables x1, . . . , xm. As an example for f(x, y, z) := x2yz, we use the notations
deg f = 4, degx f = 2, and degx,y = 3. As a notational convenience, we use deg f = 1/k for

f = x1/k and deg f = −k for f = x−k.

2 Computational Problems

In this section, we review several computational problems that we study in this paper. Specifically,
in Sections 2.1, 2.2, and 2.3, we review Diffie-Hellman variants in cyclic groups, symmetric bilin-
ear groups, and matrix Diffie-Hellman problems in asymmetric bilinear groups, respectively. The
contents of this section refer to [Boy08, KSW13, MRV16, EHK+17].

2.1 Diffie-Hellman Variants in Cyclic Groups

We review computational problems in cyclic groups. Let G := (G, G, p) be a group description,
where G is an additive group generated by G and has a prime-order p.1 For simplicity, when given
G we use the notation [a] := aG for a ∈ Zp.

We first define a discrete logarithm problem to which other problems will be reduced.

Definition 1 (Discrete Logarithm (DL) Problem). Given a group description G := (G, G, p) and

a group element X := [x] ∈ G;x
$← Zp, compute x ∈ Zp.

Then, we summarize the CDH problem and its variants which we study in this paper.

Definition 2 (Computational Diffie-Hellman (CDH) Problem [DH76]). Given a group description

G := (G, G, p) and group elements (X1 := [x1], X2 := [x2]) ∈ G2; (x1, x2)
$← Z2

p, compute Z :=
[x1x2] ∈ G.

1 To construct a reduction, we solve an equation modulo an order of G. Hence, if the order is composite, we do
not know how to solve it in general. Hence, we study only a prime-order group in this paper as [FKL18].
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Definition 3 (k-party Diffie-Hellman (k-PDH) Problem [Bis08]). Given a group description G :=

(G, G, p) and group elements (X1 := [x1], . . . , Xk := [xk]) ∈ Gk; (x1, . . . , xk)
$← Zk

p, compute Z :=
[x1 · · ·xk] ∈ G.

The following k-exponent Diffie-Hellman assumption for k = 2 called the square Diffie-Hellman
assumption was used in [MW96, BDS98].

Definition 4 (k-exponent Diffie-Hellman (k-EDH) Problem). Given a group description G :=

(G, G, p) and a group element X := [x] ∈ G;x
$← Zp, compute Z := [xk] ∈ G.

The following k-th root Diffie-Hellman problem for k = 2 called the square root Diffie-Hellman
problem was used in [KMS04].

Definition 5 (k-th Root Diffie-Hellman (k-RDH) Problem). Given a group description G :=

(G, G, p) and a group element X := [x] ∈ G;x
$← Zp, compute Z := [x1/k] ∈ G.

The following k-Inverse Diffie-Hellman problem for k = 1 called the inverse computational
Diffie-Hellman problem was used in [BDZ03].

Definition 6 (k-Inverse Diffie-Hellman (k-IDH) Problem). Given a group description G :=

(G, G, p) and a group element X := [x] ∈ G;x
$← Zp, compute Z := [x−k] ∈ G.

To provide our master theorem in cyclic groups, we define a generalized version of the Diffie-
Hellman problem as follows.

Definition 7 (Generalized Diffie-Hellman (GDH) Problem). Let f1(x1, . . . , xm, y1, . . . , yn), . . . ,
fℓ(x1, . . . , xm, y1, . . . , yn), and g(x1, . . . , xm) be known fixed non-zero polynomials. Given a group
description G := (G, G, p) and group elements

(X1 := [f1(x1, . . . , xm, y1, . . . , yn)], . . . , Xℓ := [fℓ(x1, . . . , xm, y1, . . . , yn)]) ∈ Gℓ;

(x1, . . . , xm, y1, . . . , yn)
$← Zm+n

p ,

compute
Z := [g(x1, . . . , xm)] ∈ G.

Note that the GDH problem contains the CDH, the k-PDH, the k-EDH, the k-RDH, and the
k-IDH problem as special cases.

2.2 Diffie-Hellman Variants in Symmetric Bilinear Groups

We review computational problems in bilinear groups. For simplicity, we focus only on symmetric
bilinear maps e : G×G → GT . Let G := (G,GT , G, e, p) be a bilinear group description, where G
is an additive group generated by G and has a prime-order p, and GT is a multiplicative group of
order p associated with a non-degenerate bilinear map e : G×G→ GT , i.e., e(G,G) is a generator
of GT and e(xG, yG) = e(G,G)xy. For simplicity, when given G we use the notations [a] := aG and
[a]T := e(G,G)a for a ∈ Zp.

We will provide a reduction from the DL in source groups G to CDH variants. Hence, we define
a bilinear discrete logarithm problem as follows.

Definition 8 (Bilinear Discrete Logarithm (BDL) Problem). Given a bilinear group description

G := (G,GT , G, e, p) and a group element X := [x] ∈ G;x
$← Zp, compute x ∈ Zp.
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Then, we summarize the CDH variants in symmetric bilinear groups.

Definition 9 (Computational Bilinear Diffie-Hellman (CBDH) Problem [BF03, Jou04]). Given a
bilinear group description G := (G,GT , G, e, p) and group elements (X1 := [x1], X2 := [x2], X3 :=

[x3]) ∈ G3; (x1, x2, x3)
$← Z3

p, compute Z := [x1x2x3]T ∈ GT .

Definition 10 (k-party Bilinear Diffie-Hellman (k-PBDH) Problem). Given a group description

G := (G,GT , G, e, p) and group elements (X1 := [x1], . . . , Xk := [xk]) ∈ Gk; (x1, . . . , xk)
$← Zk

p,
compute Z := [x1 · · ·xk]T ∈ GT .

Definition 11 (k-exponent Bilinear Diffie-Hellman (k-EBDH) Problem). Given a group description

G := (G,GT , G, e, p) and a group element X := [x] ∈ G;x
$← Zp, compute Z := [xk]T ∈ GT .

Definition 12 (k-th Root Bilinear Diffie-Hellman (k-RBDH) Problem). Given a group description

G := (G,GT , G, e, p) and a group element X := [x] ∈ G;x
$← Zp, compute Z := [x1/k]T ∈ GT .

Definition 13 (k-Inverse Bilinear Diffie-Hellman (k-IBDH) Problem). Given a group description

G := (G,GT , G, e, p) and a group element X := [x] ∈ G;x
$← Zp, compute Z := [x−k]T ∈ GT .

To provide our master theorem in bilinear groups, we define a generalized version of the bilinear
Diffie-Hellman problem as follows.

Definition 14 (Generalized Bilinear Diffie-Hellman (GBDH) Problem). Let f1(x1, . . . , xm, y1,
. . . , yn), . . . , fk(x1, . . . , xm, y1, . . . , yn), g1(x1, . . . , xm, y1, . . . , yn), . . . , gℓ(x1, . . . , xm, y1, . . . , yn), and
h(x1, . . . , xm) be known fixed non-zero polynomials. Given a bilinear group description G :=
(G,GT , G, e, p) and group elements(

X1 := [f1(x1, . . . , xm, y1, . . . , yn)], . . . , Xk := [fk(x1, . . . , xm, y1, . . . , yn)],
Y1 := [g1(x1, . . . , xm, y1, . . . , yn)]T , . . . , Yℓ := [gℓ(x1, . . . , xm, y1, . . . , yn)]T

)
∈ Gk ×Gℓ

T ;

(x1, . . . , xm, y1, . . . , yn)
$← Zm+n

p ,

compute
Z := [h(x1, . . . , xm)]T ∈ GT .

Note that the GBDH problem contains the CBDH, the k-PBDH, the k-EBDH, the k-RBDH,
and the k-IBDH problem as special cases.

2.3 Matrix Diffie-Hellman Problem

We review matrix Diffie-Hellman problems in asymmetric bilinear groups2. Let G := (G,GT ,
G1, G2, e, p) be an asymmetric bilinear group description, where G1 and G2 are additive groups
generated by G1 and G2 respectively, and has a prime-order p, and GT is a multiplicative group
of order p associated with a non-degenerate bilinear map e : G1 × G2 → GT , i.e., e(G1, G2) is a
generator of GT and e(xG1, yG2) = e(G1, G2)

xy. For simplicity, when given G we use the notations
[a]1 := aG1, [a]2 := aG2, and [a]T := e(G1, G2)

a for a ∈ Zp. Furthermore, for a matrix A = (ai,j)
we use the notation [A]1 to denote a matrix whose every (i, j) element is [ai,j ]1. We use analogous
notations to denote [A]2 and [A]T .

Matrix Distribution. Let Dk be a matrix distribution to sample a matrix A ∈ Z(k+1)×k
p . Let

Ā and a⊤ denote a top k × k submatrix and a bottom row vector of A, respectively. Escala
2The problem did not appear in the preliminary version [MTT19].
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et al. [EHK+17] introduced a matrix decisional Diffie-Hellman (matrix DDH) problem. Roughly

speaking, the matrix DDH problem states that ([A]1, [As]1) and ([A]1, [u]1) in G(k+1)×k
1 × Gk+1

1

are computationally indistinguishable, where A ← Dk, s
$← Zk

p, and u
$← Zk+1

p . The matrix DDH
contains several decisional problems as special cases. For example, we show examples of matrix
distributions Dk for the Symmetric k-Cascade assumption (SCk), the k-Cascade assumption (Ck),
the decisional k-linear assumption (Lk), the incremental k-linear assumption (ILk) that were
introduced in [EHK+17], and the randomized k-linear assumption (RLk) that were introduced
in [JR14] (they called the assumption k-lifted assumption and the randomized k-linear assumption
was named in [MRV16]) as follows:

Lk : A =


a1 0

. . .

0 ak
1 · · · 1

 , SCk : A =


a 0

1
. . .
. . . a

0 1

 , Ck : A =


a1 0

1
. . .
. . . ak

0 1

 ,

ILk : A =


a 0

a+ 1
. . .

0 a+ k − 1
1 · · · 1

 , RLk : A =


a1 0

. . .

0 ak
ak+1 · · · a2k

 .

We define a generalized matrix distribution to provide our master theorems as follows:

Definition 15 (Generalized Matrix Distribution GMk). Let fi,j(x1, . . . , xm) be known fixed poly-
nomials (which may include zero polynomials) for (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k}. The

generalized matrix distribution GMk is defined by A = (ai,j) ∈ Z(k+1)×k
p for

ai,j = fi,j(x1, . . . , xm); (x1, . . . , xm)
$← Zm

p ,

where

• Ā is full rank with overwhelming probability.

• There is at least one index j ∈ {1, 2, . . . , k} such that fk+1,j(x1, . . . , xm) are non-zero polyno-
mials.

We use the notation Xi,j to denote [ai,j ]1.

We will provide generic and tight reductions for computational counter parts of matrix Diffie-
Hellaman problems based on the following bilinear discrete logarithm problem in a group G1.

Definition 16 (Bilinear Discrete Logarithm (BDL) Problem in G1). Given a bilinear group de-

scription G := (G1,G2,GT , G1, G2, e, p) and a group element X := [x]1 ∈ G1;x
$← Zp, compute

x ∈ Zp.

In this paper, we study computational counterparts of the matrix DDH assumption in the
following two ways as [MRV16].

Matrix Computational Diffie-Hellman Problem. The first computational counterpart is the
matrix computational Diffie-Hellman (MCDH) problem. Roughly speaking, the MCDH problem

states that given ([A]1, [Ās]1) ∈ G(k+1)×k
1 × Gk+1

1 then computing [a⊤s]1 ∈ G1 is computationally

hard, where A← Dk and s
$← Zk

p.
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Definition 17 (Computational k-Linear (k-Lin) Problem). Given a group description G :=
(G,GT , G1, G2, e, p) and group elements (X1 := [x1]1, . . . , Xk := [xk]1, Y1 := [x1y1]1, . . . , Yk :=

[xkyk]1) ∈ G2k+1
1 ; (x1, . . . , xk, y1, . . . , yk)

$← Z2k
p , compute Z := [y1 + · · ·+ yk]1 ∈ G1.

Definition 18 (Computational Symmetric k-Cascade (k-SCasc) Problem). Given a group de-
scription G := (G,GT , G1, G2, e, p) and group elements (X := [x]1, Y1 := [xy1]1, Y2 := [y1 +

xy2]1, . . . , Yk := [yk−1 + xyk]1) ∈ Gk+1
1 ; (x, y1, . . . , yk)

$← Zk+1
p , compute Z := [yk]1 ∈ G1.

Definition 19 (Computational k-Cascade (k-Casc) Problem). Given a group description G :=
(G,GT , G1, G2, e, p) and group elements (X1 := [x1]1, . . . , Xk := [xk]1, Y1 := [x1y1]1, Y2 := [y1 +

x2y2]1, . . . , Yk := [yk−1 + xkyk]1) ∈ G2k
1 ; (x1, . . . , xk, y1, . . . , yk)

$← Z2k
p , compute Z := [yk]1 ∈ G1.

Definition 20 (Computational Incremental k-Linear (k-IL) Problem). Given a group description
G := (G,GT , G1, G2, e, p) and group elements (X := [x]1, Y1 := [x1y1]1, Y2 := [(x+1)y2]1, . . . , Yk :=

[(x+ k − 1)yk]1) ∈ Gk+1
1 ; (x, y1, . . . , yk)

$← Zk+1
p , compute Z := [y1 + · · ·+ yk]1 ∈ G1.

Definition 21 (Computational Radnomized k-Linear (k-RL) Problem). Given a group descrip-
tion G := (G,GT , G1, G2, e, p) and group elements (X1 := [x1]1, . . . , X2k := [x2k]1, Y1 :=

[x1y1]1, . . . , Yk := [xkyk]1) ∈ G3k
1 ; (x1, . . . , x2k, y1, . . . , yk)

$← Z3k
p , compute Z := [xk+1y1 + · · · +

x2kyk]1 ∈ G1.

When the matrix distribution follows a generalized matrix distribution GMk in Definition 15,
we call the computational problem a generalized matrix computational Diffie-Hellman problem. We
formally define it as follows.

Definition 22 (Generalized Matrix Computational Diffie-Hellman (GMCDH) Problem). Let
fi,j(x1, . . . , xm) for (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k} be polynomials in Definition 15. Given
a group description G := (G,GT , G1, G2, e, p) and group elements

((Xi,j := [fi,j(x1, . . . , xm)]1)(i,j)∈{1,2,...,k+1}×{1,2,...,k}, (Yi := [
k∑

j=1

fi,j(x1, . . . , xm)yj ]1)j∈{1,2,...,k}) ∈ Gk(k+2)
1 ;

(x1, . . . , xm, y1, . . . , yk)
$← Zm+k

p ,

compute

Z := [

k∑
j=1

fk+1,j(x1, . . . , xm)yj ]1 ∈ G1.

Note that the GMCDH problem contains computational variants of the k-SCasc, the k-Casc,
the k-Lin, k-IL, and the k-RL problems as special cases.

Matrix Kernel Diffie-Hellman Problem. The other computational counterpart is the matrix
kernel Diffie-Hellman (MKDH) problem. Roughly speaking, the MKDH problem states that given

[A]1 ∈ G(k+1)×k
1 then computing [v]2 ∈ Zk+1

p \ {0k+1} such that A⊤v = 0k is computationally
hard, where A← Dk.

Definition 23 (Kernel k-Linear (k-Lin) Problem). Given a group description G :=

(G,GT , G1, G2, e, p) and group elements (X1 := [x1]1, . . . , Xk := [xk]1) ∈ Gk; (x1, . . . , xk)
$← Zk

p,

compute (Z1 := [z1]2, . . . , Zk+1 := [zk+1]2) ∈ Gk+1
2 such that x1z1 + zk+1 = · · · = xkzk + zk+1 = 0

and (z1, . . . , zk+1) ̸= 0k+1.
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Definition 24 (Kernel Symmetric k-Cascade (k-SCasc) Problem). Given a group description

G := (G,GT , G1, G2, e, p) and a group element X := [x]1 ∈ G1;x
$← Zp, compute (Z1 :=

[z1]2, . . . , Zk+1 := [zk+1]2) ∈ Gk+1
2 such that xz1 + z2 = · · · = xzk + zk+1 = 0 and (z1, . . . , zk+1) ̸=

0k+1.

Definition 25 (Kernel k-Cascade (k-Casc) Problem). Given a group description G :=

(G,GT , G1, G2, e, p) and group elements (X1 := [x1]1, . . . , Xk := [xk]1) ∈ Gk; (x1, . . . , xk)
$← Zk

p,

compute (Z1 := [z1]2, . . . , Zk+1 := [zk+1]2) ∈ Gk+1
2 such that x1z1 + z2 = · · · = xkzk + zk+1 = 0 and

(z1, . . . , zk+1) ̸= 0k+1.

Definition 26 (Kernel Incremental k-Linear (k-IL) Problem). Given a group description

G := (G,GT , G1, G2, e, p) and a group element X := [x]1 ∈ G1;x
$← Zp, compute (Z1 :=

[z1]2, . . . , Zk+1 := [zk+1]2) ∈ Gk+1
2 such that xz1 + zk+1 = (x + 1)z2 + zk+1 = · · · = (x + k −

1)zk + zk+1 = 0 and (z1, . . . , zk+1) ̸= 0k+1.

Definition 27 (Kernel Radnomized k-Linear (k-RL) Problem). Given a group description G :=

(G,GT , G1, G2, e, p) and group elements (X1 := [x1]1, . . . , X2k := [x2k]1) ∈ G2k
1 ; (x1, . . . , x2k)

$←
Z2k
p , compute (Z1 := [z1]2, . . . , Zk+1 := [zk+1]2) ∈ Gk+1

2 such that x1z1 + xk+1zk+1 = · · · = xkzk +
x2kzk+1 = 0 and (z1, . . . , zk+1) ̸= 0k+1.

When the matrix distribution follows a generalized matrix distribution GMk in Definition 15,
we call the kernel problem a generalized matrix kernel Diffie-Hellman problem.

Definition 28 (Generalized Matrix Kernel Diffie-Hellman (GMKDH) Problem). Let
fi,j(x1, . . . , xm) for (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k} be polynomials in Definition 15. Given
a group description G := (G,GT , G1, G2, e, p) and group elements

(Xi,j := [fi,j(x1, . . . , xm)]1)(i,j)∈{1,2,...,k+1}×{1,2,...,k} ∈ Gk(k+1)
1 ; (x1, . . . , xm)

$← Zm
p ,

compute (Z1 := [z1]2, . . . , Zk+1 := [zk+1]2) ∈ Gk+1
2 such that

f1,j(x1, . . . , xm)z1 + · · ·+ fk+1,j(x1, . . . , xm)zk+1 = 0

for all j ∈ {1, 2, . . . , k} and (z1, . . . , zk+1) ̸= 0k+1.

Note that the GMKDH problem contains kernel variants of the k-SCasc, the k-Casc, the k-Lin,
k-IL, and the k-RL problems as special cases.

3 Algebraic Group Model

In this section, we review basic notions of security games, the generic group model, and the algebraic
group model. The contents of this section heavily refer to [FKL18].

Algebraic Security Game. Let GG be an algebraic security game relative to a group description
G := (G, G, p); an adversary A receives G and an instance of the problem X⃗ from a challenger, then
returns an output. For example, we use CDHG to denote security games of the CDH problem
relative to G; an adversary A receives G and (X1, X2) from a challenger, then returns an output Z.
We use GA

G to denote an output of a game GG between a challenger and an adversary A. A is said

to win if GA
G = 1; CDHA

G = 1 when Z = [x1x2]. We define an advantage and a running time of an

adversary A in GG as AdvGG,A := Pr[GA
G = 1] and TimeGG,A, respectively.
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Generic Group Model (GGM). In the GGM, an adversary Agen is not given actual represen-
tations of group elements but the elements via abstract handles. For example, an adversary Agen in
a security game CDHG receives a group description G := (G, 00, p) and (01, 02) from a challenger.
Here, G only contains an information of an additive cyclic group of a prime-order p. The adversary
Agen is able to perform group operations only via oracle queries, e.g., a generic adversary Agen

queries (01, 02,+) to an oracle and obtains 03, where 01 = X1, 02 = X2, and 03 = X1 +X2. Since
a behavior of the generic adversary Agen is independent of actual group representations, it works
in any groups.

Some computational problems that are hard in the GGM may not be hard when instantiated
in concrete groups. However, the GGM is still useful since it enables us to obtain information
theoretic lower bounds. We use a notion of (ε, t)-hard if for all generic algorithms Agen in a game
GG

TimeGG,Agen
≤ t ⇒ AdvGG,Agen

≤ ε

holds. The following fact is known for the discrete logarithm problem.

Lemma 1 (Generic Hardness of DL [Sho97, Mau05]). The discrete logarithm problem is (t2/p, t)-
hard in the GGM.

Algebraic Algorithm. Now, we review a notion of an algebraic algorithm defined by Fuchsbauer
et al. [FKL18]. An algebraic algorithm is able to output group elements only via group additions
of given elements. Furthermore, the algebraic algorithm should also output a representation which
indicates how output group elements are calculated with respect to given elements.

Definition 29 (Algebraic Algorithm, Definition 2.1 of [FKL18]). An algorithm Aalg executed in
an algebraic security game GG in a cyclic group G := (G, G, p) is called algebraic if for all group
elements Z ∈ G that Aalg outputs, it additionally returns the representation of Z with respect to

given group elements. Specifically, if X⃗ := (X0, . . . , Xℓ) ∈ Gℓ+1, where X0 := G, is the list of group
elements that Aalg has received so far, then Aalg must also return a vector z⃗ := (zi)0≤i≤ℓ ∈ Zℓ+1

p

such that Z =
∑ℓ

i=0 ziXi. We use [Z]z⃗ to denote such an output.

We remark that every generic algorithm Agen can be modeled as an algebraic one. A generic
algorithm Agen is able to output only group elements which are derived from group additions of
given elements as an algebraic algorithm. Furthermore, by keeping a record of all oracle queries, a
generic algorithm Agen is able to output a group element Z along with its representation z⃗. Hence,
a generic algorithm Agen is able to behave as an algebraic algorithm. Moreover, let Aalg and Bgen

be an algebraic and a generic algorithm, respectively. Then, Balg := B
Aalg
gen is also an algebraic

algorithm.

Reduction between Algebraic Security Games. Let GG and HG be two algebraic security
games. Please keep in mind that GG and HG will be the game for the CDH variants and the (B)DL,
respectively. We use HG ⇒alg GG to denote an existence of a generic and tight reduction algorithm
Rgen such that for every algorithm A, an algorithm B := RA

gen satisfies

AdvHG,B = AdvGG,A and TimeHG,B = TimeGG,A.

The crucial point of the definition is that a reduction algorithm Rgen is generic. Hence, if A = Aalg

is algebraic, B = Balg is also algebraic. Furthermore, if A = Agen is generic, B = Bgen is also generic.
Thanks to the generic reduction algorithm Rgen, we are able to obtain information theoretic lower
bounds of CDH variants as follows by combining with Lemma 1.
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Lemma 2 (Lemma 2.2 of [FKL18]). Let GG and HG be algebraic security games such that HG ⇒alg

GG and winning HG is (ε, t)-hard in the GGM. Then, GG is (ε, t)-hard in the GGM.

4 Reductions for Diffie-Hellman Variants in Cyclic Groups

In this section, we show generic and tight reductions from the discrete logarithm (DL) problem to
the computational Diffie-Hellman (CDH) problem and its variants in the algebraic group model.
We first provide a direct reduction to the CDH in Section 4.1. Then, we provide our master theorem
in Section 4.2.

4.1 DL to CDH Reduction via Affine Embedding

In this section, we show a basic approach of this paper by providing a generic and tight reduction
from the DL to the CDH in the AGM via the affine embedding.

Theorem 1. DLG ⇒alg CDHG.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction al-
gorithm Rgen uses an algebraic adversary Aalg on the CDHG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the DLG .

The reduction algorithm Rgen is given a group description G := (G, G, p) and an instance of the
DLG , i.e., X := [x] ∈ G for an unknown x ∈ Zp. Then, the reduction algorithm Rgen creates an

instance of the CDHG as follows: Pick a random r
$← Zp and compute

X2 = X + rG = [x+ r] ∈ G,

then set
(X1 = X,X2) ∈ G2.

The reduction algorithm Rgen gives a group description G := (G, G, p) and group elements
(X1, X2) ∈ G2 to Aalg. Observe that (X1, X2) is a valid CDH instance by implicitly setting

(x1, x2) = (x, x+ r)

since x2 is independently distributed of x1 to uniform in Zp from Aalg’s view. Hence, an algebraic
adversary Aalg outputs a correct solution [Z]z⃗ with an advantage AdvCDH

G,Aalg
and a running time

TimeCDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ output by an algebraic adversary Aalg on the
CDHG and computes a solution of the DLG . Assume the output is a correct solution of the CDH,
i.e., Z = [x1x2]. It holds with probability AdvCDH

G,Aalg
. Then, the representation vector z⃗ := (z0, z1, z2)

satisfies

[x1x2] = [x(x+ r)] = z0G+ z1X + z2Y

= [z0 + z1x+ z2(x+ r)].

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

x(x+ r) = z0 + z1x+ z2(x+ r) mod p

⇔ x2 + (r − z1 − z2)x− z0 − z2r = 0 mod p.
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Table 1: Applicability of our technique in cyclic groups

problem (fi)i∈[ℓ] g maxdeg fi deg g reduction?

CDH (x1, x2) x1x2 1 2 Yes

k-PDH (xi)i∈{1,2,...,k} x1 · · ·xk 1 k k ≥ 2

k-EDH x xk 1 k k ≥ 2

k-RDH x x1/k 1 1/k k ≥ 2

k-IDH x x−k 1 −k k ≥ 1

Observe that the left hand side is a degree 2 monic polynomial; hence, a non-zero polynomial. Since
the reduction algorithm Rgen knows a value of r, it is able to find all solutions for x in polynomial
time. By checking [x] = X, the reduction algorithm Rgen successfully finds a correct solution of the
DLG .

By combining with Lemmas 1, 2, and Theorem 1, we are able to obtain an information theoretic
lower bound for the CDH.

Theorem 2 (Generic Hardness of CDH). The computational Diffie-Hellman problem in Defini-
tion 2 is (t2/p, t)-hard in the generic group model.

4.2 Master Theorem in Cyclic Groups

In this subsection, we provide the following master theorem in cyclic groups to indicate the power
of our technique.

Theorem 3 (Master Theorem in Cyclic Groups). DLG ⇒alg GDHG holds when the following
conditions hold:

(1) degx1,...,xm
fi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1} for all i ∈ {1, 2, . . . , ℓ},

(2) deg g(x1, . . . , xm) /∈ {0, 1}.

Before providing a proof, we summarize the CDH variants which we summarized in Section 2.1
and the conditions of Theorem 3 in Table 1. As the table shows, CDH, k-PDH, k-EDH, k-RDH,
and k-IDH simultaneously satisfy the conditions (1) and (2) in Theorem 3 (although there are
restrictions of k). Hence, as immediate corollary of the master theorem, we are able to provide
generic and tight reductions from the DL to the k-PDH, k-EDH, k-RDH, and k-IDH.

Then, we show a proof of Theorem 3. In advance, we claim that the condition (1) will be used
to ensure that the reduction algorithm is able to produce all group elements of the GDH during a
reduction, while both the conditions (1) and (2) will be used to ensure that the modular equation
never becomes a zero polynomial.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction algo-
rithm Rgen uses an algebraic adversary Aalg on the GDHG only once and constructs an algebraic

adversary Balg := R
Aalg
gen on the DLG .
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The reduction algorithm Rgen is given a group description G := (G, G, p) and an instance of the
DLG , i.e., X := [x] ∈ G for an unknown x ∈ Zp. Thanks to the condition (1), we use the notation

fi(x1, . . . , xm, y1, . . . , yn) = fL
i (y1, . . . , yn)xî + fR

i (y1, . . . , yn)

with some î ∈ {1, 2, . . . ,m} for all i ∈ {1, 2, . . . , ℓ}. Then, the reduction algorithm Rgen creates an

instance of the GDHG as follows: Pick random (r2, . . . , rm, s1, . . . , sn)
$← Zm+n−1

p and compute

Xi = fL
i (s1, . . . , sn) · (X + rîG) + fR

i (s1, . . . , sn) ·G
= [fL

i (s1, . . . , sn) · x+ fL
i (s1, . . . , sn) · rî + fR

i (s1, . . . , sn)] ∈ G

for all i ∈ {1, 2, . . . , ℓ} by implicitly setting

(x1, x2, . . . , xm, y1, . . . , yn) = (x, x+ r2, . . . , x+ rm, s1, . . . , sn).

Here, we use the notation r1 = 0 for simplicity. Then, the reduction algorithm Rgen gives a
group description G := (G, G, p) and group elements (X1, . . . , Xℓ) ∈ Gℓ to Aalg. Observe that
(X1, . . . , Xℓ) is a valid GDH instance since (x2, . . . , xm) is independently distributed of x1 to uniform
in Zm−1

p from Aalg’s view. Hence, an algebraic adversary Aalg outputs a correct solution [Z]z⃗ with

an advantage AdvGDH
G,Aalg

and a running time TimeGDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ output by an algebraic adversary Aalg on the
GDHG and computes a solution of the DLG . Assume the output is a correct solution of the GDH,
i.e., Z = [g(x1, . . . , xm)]. It holds with probability AdvGDH

G,Aalg
. Then, the representation vector

z⃗ := (z0, z1, . . . , zℓ) satisfies

[g(x1, . . . , xm)]

= z0G+ z1X1 + · · ·+ zℓXℓ

= [z0 +

ℓ∑
i=1

zifi(x1, . . . , xm, y1, . . . , yn)]

= [z0 +
ℓ∑

i=1

zi

(
fL
i (s1, . . . , sn) · x+ fL

i (s1, . . . , sn) · rî + fR
i (s1, . . . , sn)

)
]

= [

(
ℓ∑

i=1

zif
L
i (s1, . . . , sn)

)
x+ z0 +

ℓ∑
i=1

zi

(
fL
i (s1, . . . , sn) · rî + fR

i (s1, . . . , sn)
)
].

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

g(x, x+ r2, . . . , x+ rm)

=

(
ℓ∑

i=1

zif
L
i (s1, . . . , sn)

)
x+ z0 +

ℓ∑
i=1

zi

(
fL
i (s1, . . . , sn) · rî + fR

i (s1, . . . , sn)
)

mod p.

Observe that a degree of the left hand side with respect to a variable x is not in {0, 1} thanks
to the condition (2). Hence, the modular equation never becomes a zero polynomial. Since the
reduction algorithm Rgen knows values of (r2, . . . , rm, s1, . . . , sn), it is able to find all solutions for x
in polynomial time. By checking [x] = X, the reduction algorithm Rgen successfully finds a correct
solution of the DLG .
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By combining with Lemmas 1, 2, and Theorem 3, we are able to obtain an information theoretic
lower bound for the GDH as follows.

Theorem 4 (Generic Hardness of GDH). The generalized Diffie-Hellman problem in Definition 7 is
(t2/p, t)-hard in the generic group model if the conditions (1) and (2) of Theorem 3 simultaneously
hold.

5 Reductions for Diffie-Hellman Variants in Symmetric Bilinear
Groups

In this section, we show generic and tight reductions from the bilinear discrete logarithm (BDL)
problem to the computational bilinear Diffie-Hellman (CBDH) problem and its variants in an
algebraic bilinear group model which we define in Section 5.1. In Section 5.2, we provide a reduction
from the BDL to the CBDH. Finally, we provide our master theorem in Section 5.3.

5.1 Algebraic Symmetric Bilinear Group Model

In advance of the reduction, we define an algebraic symmetric bilinear algorithm. The definition
is analogous to Definition 29 in the sense that the algebraic symmetric bilinear algorithm is able
to output only group elements which are derived from group additions in G, group multiplications
in GT , and pairing e of given elements. Furthermore, the algebraic symmetric bilinear algorithm
should also output a representation which indicates how output group elements are calculated. In
this paper, we study computational problems in bilinear groups whose solutions Z are elements in
GT . Hence, we define a representation so that it records how Z is computed by group multiplications
of given elements in GT and pairing of given elements in G. We formally provide a definition as
follows.

Definition 30 (Algebraic Symmetric Bilinear Algorithm). An algorithm Aalg executed in an alge-
braic security game GG for G := (G,GT , G, e, p) is called algebraic if for all group elements Z ∈ GT

that Aalg outputs, it additionally return the representation of Z with respect to given group ele-

ments. Specifically, if X⃗ := (X0, . . . , Xk) ∈ Gk+1, where X0 := G, and Y⃗ := (Y1, . . . , Yℓ) ∈ Gℓ
T

are the list of group elements that Aalg has received so far, then Aalg must also return a vector

z⃗ := ((zi,j)0≤i≤j≤k, (z
′
i)1≤i≤ℓ) ∈ Z

(k+1)(k+2)
2

+ℓ
p such that Z =

(∏
0≤i≤j≤k e(Xi, Xj)

zi,j
)
·
(∏ℓ

i=1 Y
z′i
i

)
.

We denote such an output as [Z]z⃗.

We note that the CBDH, k-PBDH, k-EBDH, k-RBDH, and k-IBDH do not take elements in

GT as the input. Therefore, the algorithm outputs Z along with a vector z⃗ ∈ Z
(k+1)(k+2)

2
p .

5.2 BDL to CBDH Reduction via Affine Embedding

In this subsection, we extend the approach in Section 4 and prove the following reduction via the
affine embedding.

Theorem 5. BDLG ⇒alg BDHG.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction al-
gorithm Rgen uses an algebraic adversary Aalg on the BDHG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the BDLG .

16



The reduction algorithm Rgen is given a bilinear group description G := (G,GT , G, e, p) and an
instance of the BDLG , i.e., X := [x] ∈ G for an unknown x ∈ Zp. Then, the reduction algorithm

Rgen creates an instance of the BDHG as follows: Pick a random (r, s)
$← Z2

p and compute

(X2 = X + rG = [x+ r], X3 = X + sG = [x+ s]) ∈ G2,

then set
(X1 = X,X2, X3) ∈ G3.

The reduction algorithm Rgen gives a bilinear group description G := (G,GT , G, e, p) and group
elements (X1, X2, X3) ∈ G3 to Aalg. Observe that (X1, X2, X3) is a valid CBDH instance since
(x2, x3) is independently distributed of x to uniform in Z2

p from Aalg’s view. Hence, an algebraic

adversary Aalg outputs a correct solution [Z]z⃗ with an advantage AdvBDH
G,Aalg

and a running time

TimeBDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ output by an algebraic adversary Aalg on the
BDHG and computes a solution of the BDLG . Assume the output is a correct solution of the
CBDH, i.e., Z = e(G,G)x1x2x3 . It holds with probability AdvBDH

G,Aalg
. Then, we use X0 := [1] for

notational convenience and the representation vector z⃗ := (zi,j)0≤i≤j≤3 satisfies

[x1x2x3]T = [x(x+ r)(x+ s)]T

=
∏

0≤i≤j≤3

e(Xi, Xj)
zi,j

= [z0,0 + z0,1x+ z0,2(x+ r) + z0,3(x+ s) + z1,1x
2 + z1,2x(x+ r) + z1,3x(x+ s)

+ z2,2(x+ r)2 + z2,3(x+ r)(x+ s) + z3,3(x+ s)2]T .

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

x(x+ r)(x+ s)

= z0,0 + z0,1x+ z0,2(x+ r) + z0,3(x+ s) + z1,1x
2 + z1,2x(x+ r)

+ z1,3x(x+ s) + z2,2(x+ r)2 + z2,3(x+ r)(x+ s) + z3,3(x+ s)2 mod p

⇔ x3 + (r + s− z1,1 − z1,2 − z1,3 − z2,2 − z2,3 − z3,3)x
2

+ (rs− z0,1 − z0,2 − z0,3 − rz1,2 − sz1,3 − 2rz2,2 − (r + s)z2,3 − 2sz3,3)x

− z0,0 − rz0,2 − sz0,3 − r2z2,2 − rsz2,3 − s2z3,3 = 0 mod p.

Observe that the left hand side is a degree 3 monic polynomial; hence, a non-zero polynomial.
Since the reduction algorithm Rgen knows values of r and s, it is able to find all solutions for x in
polynomial time. By checking [x] = X, the reduction algorithm Rgen successfully finds a correct
solution of the BDLG .

By combining with Lemmas 1, 2, and Theorem 5, we are able to obtain an information theoretic
lower bound for the CBDH.

Theorem 6 (Generic Hardness of CBDH). The computational bilinear Diffie-Hellman problem in
Definition 9 is (t2/p, t)-hard in the generic group model.
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Table 2: Applicability of our technique in symmetric bilinear groups

problem (fi)i∈{1,2,...,k} h maxdeg fi deg h reduction?

CBDH (xi)i∈[3] x1x2x3 1 3 Yes

k-PBDH (xi)i∈{1,2,...,k} x1 · · ·xk 1 k k ≥ 3

k-EBDH x xk 1 k k ≥ 3

k-RBDH x x1/k 1 1/k k ≥ 2

k-IBDH x x−k 1 −k k ≥ 1

5.3 Master Theorem in Symmetric Bilinear Groups

In this subsection, we provide the following master theorem in bilinear groups to indicate the power
of our technique.

Theorem 7 (Master Theorem in Bilinear Groups). BDLG ⇒alg GBDHG holds when the following
conditions hold:

(1) degx1,...,xm
fi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1} for all i ∈ {1, 2, . . . , k},

(2) degx1,...,xm
gi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1, 2} for all i ∈ {1, 2, . . . , ℓ},

(3) deg h(x1, . . . , xm) /∈ {0, 1, 2}.

Before providing a proof, we summarize the CBDH variants which we summarized in Section 2.2
and the conditions of Theorem 7 in Table 2. Since these problems do not take group elements in
GT as the input, we omit the condition (2) in the table. As the table shows, CBDH, k-PBDH,
k-EBDH, k-RBDH, and k-IBDH simultaneously satisfy the conditions (1) and (3) in Theorem 7
(although there are restrictions of k). Hence, as immediate corollary of the master theorem, we are
able to provide generic and tight reductions from the BDL to the k-PBDH, k-EBDH, k-RBDH,
and k-IBDH.

Then, we show a proof of Theorem 7. In advance, we claim that the conditions (1) and (2)
will be used to ensure that the reduction algorithm is able to produce all group elements of the
GBDH during a reduction, while all the conditions (1), (2), and (3) will be used to ensure that the
modular equation never becomes a zero polynomial.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction algo-
rithm Rgen uses an algebraic adversary Aalg on the GBDHG only once and constructs an algebraic

adversary Balg := R
Aalg
gen on the BDLG .

The reduction algorithm Rgen is given a bilinear group description G := (G,GT , G, e, p) and an
instance of the BDLG , i.e., X := [x] ∈ G for an unknown x ∈ Zp. Thanks to the condition (1), we
use the notation

fi(x1, . . . , xm, y1, . . . , yn) = fL
i (y1, . . . , yn)xî + fR

i (y1, . . . , yn)

with some î ∈ {1, 2, . . . ,m} for all i ∈ {1, 2, . . . , k}. Thanks to the condition (2), we use the
notation

gi(x1, . . . , xm, y1, . . . , yn) = gLi (y1, . . . , yn)xî1xî2 + gMi (y1, . . . , yn)xî3 + gRi (y1, . . . , yn)
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with some î1, î2, î3 ∈ {1, 2, . . . ,m} for all i ∈ {1, 2, . . . , ℓ}. Then, the reduction algorithm Rgen

creates an instance of the GBDHG as follows: Pick random (r2, . . . , rm, s1, . . . , sn)
$← Zm+n−1

p and
compute

Xi = fL
i (s1, . . . , sn) · (X + rîG) + fR

i (s1, . . . , sn) ·G
= [fL

i (s1, . . . , sn) · (x+ rî) + fR
i (s1, . . . , sn)] ∈ G

for all i ∈ {1, 2, . . . , k} and

Yi = e(X + rî1G,X + rî2G)g
L
i (s1,...,sn) · e(G,X + rî3G)g

M
i (s1,...,sn) · e(G,G)g

R
i (s1,...,sn)

= [gLi (s1, . . . , sn) · (x+ rî1)(x+ rî2) + gMi (s1, . . . , sn) · (x+ rî3) + gRi (s1, . . . , sn)]T ∈ GT

for all i ∈ {1, 2, . . . , ℓ} by implicitly setting

(x1, x2, . . . , xm, y1, . . . , yn) = (x, x+ r2, . . . , x+ rm, s1, . . . , sn).

Here, we use the notation r1 = 0 for simplicity. Then, the reduction algorithm Rgen gives a
bilinear group description G := (G,GT , G, e, p) and group elements (X1, . . . , Xk, Y1, . . . , Yℓ) ∈ Gk×
Gℓ

T to Aalg. Observe that (X1, . . . , Xk, Y1, . . . , Yℓ) is a valid GBDH instance since (x2, . . . , xm) is
independently distributed of x1 to uniform in Zm−1

p from Aalg’s view. Hence, an algebraic adversary

Aalg outputs a correct solution [Z]z⃗ with an advantage AdvGBDH
G,Aalg

and a running time TimeGBDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ output by an algebraic adversary Aalg on the
GBDHG and computes a solution of the BDLG . Assume the output is a correct solution of the
GBDH, i.e., Z = [h(x1, . . . , xm)]T . It holds with probability AdvGBDH

G,Aalg
. Then, the representation

vector z⃗ := ((zi,j)0≤i≤j≤k, (z
′
i)1≤i≤ℓ) satisfies

[h(x1, . . . , xm)]T

=

 ∏
0≤i≤j≤k

e(Xi, Xj)
zi,j

 ·
 ∏

1≤i≤ℓ

Y
z′i
i


= [

∑
0≤i≤j≤k

zi,jfi(x1, . . . , xm, y1, . . . , yn) · fj(x1, . . . , xm, y1, . . . , yn) +
ℓ∑

i=1

z′igi(x1, . . . , xm, y1, . . . , yn)]T

= [
∑

0≤i≤j≤k

zi,j

(
fL
i (s1, . . . , sn) · (x+ rî) + fR

i (s1, . . . , sn)
)(

fL
j (s1, . . . , sn) · (x+ rĵ) + fR

j (s1, . . . , sn)
)

+
ℓ∑

i=1

z′i

(
gLi (s1, . . . , sn) · (x+ rî1)(x+ rî2) + gMi (s1, . . . , sn) · (x+ rî3) + gRi (s1, . . . , sn)

)
]T

= [

 ∑
0≤i≤j≤k

zi,jf
L
i (s1, . . . , sn)f

L
j (s1, . . . , sn) +

ℓ∑
i=1

z′ig
L
i (s1, . . . , sn)

x2

+

 ∑
0≤i≤j≤k

zi,j

(
fL
i (s1, . . . , sn)(f

L
j (s1, . . . , sn) · rĵ + fR

j (s1, . . . , sn))

+fL
j (s1, . . . , sn)(f

L
i (s1, . . . , sn) · rî + fR

i (s1, . . . , sn))
)

+
ℓ∑

i=1

z′i

(
gLi (s1, . . . , sn) · (rî1 + rî2) + gMi (s1, . . . , sn)

))
x
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+
∑

0≤i≤j≤k

zi,j

(
fL
i (s1, . . . , sn) · rî + fR

i (s1, . . . , sn)
)(

fL
j (s1, . . . , sn) · rĵ + fR

j (s1, . . . , sn)
)

+
ℓ∑

i=1

z′i

(
gLi (s1, . . . , sn) · rî1rî2 + gMi (s1, . . . , sn) · rî3 + gRi (s1, . . . , sn)

)
]T .

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

h(x, x+ r2, . . . , x+ rm)

=

 ∑
0≤i≤j≤k

zi,jf
L
i (s1, . . . , sn)f

L
j (s1, . . . , sn) +

ℓ∑
i=1

z′ig
L
i (s1, . . . , sn)

x2

+

 ∑
0≤i≤j≤k

zi,j

(
fL
i (s1, . . . , sn)(f

L
j (s1, . . . , sn) · rĵ + fR

j (s1, . . . , sn))

+fL
j (s1, . . . , sn)(f

L
i (s1, . . . , sn) · rî + fR

i (s1, . . . , sn))
)

+

ℓ∑
i=1

z′i

(
gLi (s1, . . . , sn) · (rî1 + rî2) + gMi (s1, . . . , sn)

))
x

+
∑

0≤i≤j≤k

zi,j

(
fL
i (s1, . . . , sn) · rî + fR

i (s1, . . . , sn)
)(

fL
j (s1, . . . , sn) · rĵ + fR

j (s1, . . . , sn)
)

+
ℓ∑

i=1

z′i

(
gLi (s1, . . . , sn) · rî1rî2 + gMi (s1, . . . , sn) · rî3 + gRi (s1, . . . , sn)

)
mod p.

Observe that a degree of the left hand side with respect to a variable x is not in {0, 1, 2} thanks
to the condition (3). Hence, the modular equation never becomes a zero polynomial. Since the
reduction algorithm Rgen knows values of (r2, . . . , rm, s1, . . . , sn), it is able to find all solutions for x
in polynomial time. By checking [x] = X, the reduction algorithm Rgen successfully finds a correct
solution of the BDLG .

By combining with Lemmas 1, 2, and Theorem 7, we are able to obtain an information theoretic
lower bound for the GBDH as follows.

Theorem 8 (Generic Hardness of GBDH). The generalized bilinear Diffie-Hellman problem in
Definition 14 is (t2/p, t)-hard in the generic group model if the conditions (1)–(3) of Theorem 7
simultaneously hold.

6 Reduction for Matrix Computational Diffie-Hellman Problem

In this section, we show generic and tight reductions from the bilinear discrete logarithm (BDL)
problem in G1 to the matrix computational Diffie-Hellman (MCDH) problem in an algebraic bilinear
group model specific to the MCDH which we define in Section 6.1. In Section 6.2, we provide a
reduction from the BDL in G1 to the computational k-linear problem which is a special case of
the MCDH via the implicit embedding. Finally, we provide our master theorem for the MCDH in
Section 6.3.
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6.1 Algebraic Group Model for Matrix Computational Diffie-Hellman Problem

In advance of the reduction, we define an algebraic algorithm for the MCDH problem. We define the
notion to be compatible with the MCDH problem so that both inputs and outputs of the problems
are group elements in G1. The definition is almost the same as Definition 29 in the sense that the
algebraic algorithm is able to output only group elements which are derived from group additions
in G1 of given elements. Furthermore, the algebraic algorithm should also output a representation
which indicates how output group elements are calculated. We formally provide a definition as
follows.

Definition 31 (Algebraic Algorithm for MCDH). An algorithm Aalg executed in an algebraic se-
curity game GG in an asymmetric bilinear group G := (G,GT , G1, G2, e, p) is called algebraic if
for all group elements Z ∈ G1 that Aalg outputs, it additionally returns the representation of Z

with respect to given group elements. Specifically, if X⃗ := (X0, . . . , Xℓ) ∈ Gℓ+1
1 , where X0 := G1,

is the list of group elements that Aalg has received so far, then Aalg must also return a vector

z⃗ := (zi)0≤i≤ℓ ∈ Zℓ+1
p such that Z =

∑ℓ
i=0 ziXi. We use [Z]z⃗ to denote such an output.

To be precise, the definition captures not only the MCDH problem but also any computational
problem all of whose inputs and outputs are in G1.

6.2 BDL to Computational k-Lin Reduction via Implicit Embedding

Theorem 9. BDLG ⇒alg k-LinG.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction al-
gorithm Rgen uses an algebraic adversary Aalg on the k-LinG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the BDLG in G1.

The reduction algorithm Rgen is given a group description G := (G1,G2,GT , G1, G2, e, p) and an
instance of the BDLG in G1, i.e., X := [x]1 ∈ G for an unknown x ∈ Zp. Then, the reduction algo-

rithm Rgen creates an instance of the k-LinG as follows: Pick random (c, x2, . . . , xk, y2, . . . , yk)
$←

Z2k+1
p . If c = 0, then resample the value. Otherwise, compute

Y1 := cG1 ∈ G1,

and

Xi := [xi]1, Yi := [xiyi]1

for all i ∈ {2, k}, then set

(X1 = X,X2, . . . , Xk, Y1, . . . , Yk) ∈ G2k
1

by implicitly setting

(x1, x2, . . . , xk, y1, y2, . . . , yk) = (x, x2, . . . , xk, c/x, y2, . . . , yk).

Then, the reduction algorithm Rgen gives a bilinear group description G := (G1,G2,GT , G1, G2, e, p)
and group elements (X1, . . . , Xk, Y1, . . . , Yk) ∈ G2k

1 to Aalg. Observe that (X1, . . . , Xk, Y1, . . . , Yk) is
a valid k-Lin instance since y1 is independently distributed of x1 to uniform in Zp from Aalg’s view.
Hence, an algebraic adversary Aalg outputs a correct solution [Z]z⃗ with an advantage Advk-LinG,Aalg

and

a running time Timek-LinG,Aalg
.
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Next, the reduction algorithm Rgen uses [Z]z⃗ output by an algebraic adversary Aalg on the
k-LinG and computes a solution of the BDLG in G1. Assume the output is a correct solution of
the k-Lin, i.e., Z = [y1 + · · · + yk]1. It holds with probability Advk-LinG,Aalg

. Then, the representation

vector z⃗ := (z0, z1, . . . , z2k) satisfies

[y1 + · · ·+ yk]1 = [c/x+ y2 + · · ·+ yk]1

= z0G1 + z1X1 + · · ·+ zkXk + zk+1Y1 + · · ·+ z2kYk

= [z0 + z1x+ z2x2 + · · ·+ zkxk + zk+1c+ zk+2y2 + · · ·+ z2ky2k]1

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

c/x+ y2 + · · ·+ yk = z0 + z1x+ z2x2 + · · ·+ zkxk + zk+1c+ zk+2y2 + · · ·+ z2ky2k mod p

⇔ z1x
2 + (z0 + z2x2 + · · ·+ zkxk + zk+1c+ (zk+2 − 1)y2 + · · ·+ (z2k − 1)y2k)x− c = 0 mod p.

Observe that the polynomial has to be a non-zero polynomial due to the non-zero constant term
c. Since the reduction algorithm Rgen knows values of (c, x2, . . . , xk, y2, . . . , yk), it is able to find all
solutions for x in polynomial time. By checking [x]1 = X, the reduction algorithm Rgen successfully
finds a correct solution of the BDLG in G1.

By combining with Lemmas 1, 2, and Theorem 9, we are able to obtain an information theoretic
lower bound for the k-Lin.

Theorem 10 (Generic Hardness of k-Lin). The computational k-linear problem in Definition 17
is (t2/p, t)-hard in the generic group model.

6.3 Master Theorem for Matrix Computational Diffie-Hellman Problem

In this subsection, we provide the following master theorem for MCDH problems to indicate the
power of our technique.

Theorem 11 (Master Theorem for the MCDH Problem). DLG ⇒alg GMCDHG holds when the

following conditions are simultaneously satisfied: There is at least one tuple of indices (̂i, ĵ, ℓ̂) ∈
{1, 2, . . . , k} × {1, 2, . . . , k} × {1, 2, . . . ,m} such that

(1) degxℓ̂
fi,j(x1, . . . , xm) ∈ {0, 1} for all (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k},

(2) degxℓ̂
fî,ĵ(x1, . . . , xm) = 1,

(3) All monomials of non-zero polynomial fi,ĵ(x1, . . . , xm) have a variable xℓ̂ for all i ∈
{1, 2, . . . , k},

(4) fk+1,ĵ(x1, . . . , xm) has a non-zero monomial that does not have xℓ̂.

Before providing a proof, we summarize the MCDH variants which we summarized in Section 2.3
and the conditions of Theorem 11 in Table 3. As the table shows, k-Lin, k-SCasc, k-Casc, k-IL, and
k-RL simultaneously satisfy the conditions (1)–(4) in Theorem 11. Hence, as immediate corollary
of the master theorem, we are able to provide generic and tight reductions from the BDL to the
k-SCasc, k-Casc, k-IL, and k-RL.

Then, we show a proof of Theorem 11. In advance, we claim that the conditions (1)–(3) will be
used to ensure that the reduction algorithm is able to produce all group elements of the GMCDH
during a reduction, while all the conditions (1)–(4) will be used to ensure that the modular equation
never becomes a zero polynomial.

22



Table 3: Applicability of our technique in cyclic groups

problem î ĵ xℓ̂ reduction?

k-Lin {1, 2, . . . , k} î aî Yes

k-SCasc {1, 2, . . . , k} î a Yes

k-Casc {1, 2, . . . , k} î aî Yes

k-IL {1, 2, . . . , k} î a+ î− 1 Yes

k-RL {1, 2, . . . , k} î aî Yes

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction al-
gorithm Rgen uses an algebraic adversary Aalg on the GMCDHG only once and constructs an

algebraic adversary Balg := R
Aalg
gen on the BDLG in G1.

The reduction algorithm Rgen is given a bilinear group description G := (G1,G2,GT , G1, G2, e, p)
and an instance of the BDLG in G1, i.e., X := [x]1 ∈ G for an unknown x ∈ Zp. Thanks to the
condition (1), we use the notation

fi,j(x1, . . . , xm) = fL
i,j(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm)xℓ̂ + fR

i,j(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm)

for all (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k}. Thanks to the condition (2),

fL
î,ĵ
(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm) ̸= 0

holds. Thanks to the condition (3),

fR
i,ĵ
(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm) = 0

holds for all i ∈ {1, 2, . . . , k}. Thanks to the condition (4),

fR
k+1,ĵ

(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm) ̸= 0

holds. Then, the reduction algorithm Rgen creates an instance of the GMCDHG as follows:

Pick random (c, r1, . . . , rℓ̂−1, rℓ̂+1, · · · , rm, s1, . . . , sĵ−1, sĵ+1, · · · , sk)
$← Zm+k−1

p . If c = 0 or

fR
k+1,ĵ

(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) = 0, then resample the values. Otherwise, compute

Xi = fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·X + fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·G1

= [fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) · x+ fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)]1 ∈ G1

for all (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k},

Yj =

ĵ−1∑
j=1

(
fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·X + fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·G1

)
sj

+ fL
i,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) · cG1

+
k∑

j=ĵ+1

(
fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·X + fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·G1

)
sj
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= [

k∑
j=1

(
fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) · x+ fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)
)
sj ]1 ∈ G1

for all i ∈ {1, 2, . . . , k} by implicitly setting

(x1, . . . , xℓ̂−1, xℓ̂, xℓ̂+1, · · · , xm, y1, . . . , yĵ−1, yĵ , yĵ+1, · · · , yk)

= (r1, . . . , rℓ̂−1, x, rℓ̂+1, · · · , rm, s1, . . . , sĵ−1, c/x, sĵ+1, · · · , sk).

Then, the reduction algorithm Rgen gives a bilinear group description G := (G1,G2,GT , G1, G2, e, p)

and group elements ((Xi,j)(i,j)∈{1,2,...,k+1}×{1,2,...,k}, (Yi)i∈{1,2,...,k}) ∈ Gk(k+2)
1 to Aalg. Observe that

a set of group elements is a valid GMCDH instance since yĵ is independently distributed of x to
uniform in Zp from Aalg’s view. Hence, an algebraic adversary Aalg outputs a correct solution [Z]z⃗
with an advantage AdvGMCDH

G,Aalg
and a running time TimeGMCDH

G,Aalg
.

Next, the reduction algorithm Rgen uses [Z]z⃗ output by an algebraic adversary Aalg on the
GMCDHG and computes a solution of the BDLG in G1. Assume the output is a correct solution

of the GMCDH, i.e., Z = [
∑k

j=1 fk+1,j(x1, . . . , xm)yj ]1. It holds with probability Adv
GMCDHG
G,Aalg

.

Then, the representation vector z⃗ := (z0, (zi,j)(i,j)∈{1,2,...,k+1}×{1,2,...,k}, (z
′
i)i∈{1,2,...,k}) satisfies

[
k∑

j=1

fk+1,j(x1, . . . , xm)yj ]1

= z0G1 +
k∑

j=1

k+1∑
i=1

zi,jXi,j +
k∑

i=1

z′iYi

= [z0 +
k∑

j=1

k+1∑
i=1

zi,j

(
fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)x+ fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)
)

+

k∑
i=1

z′i ·
ĵ−1∑
j=1

(
fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)x+ fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)
)
sj

+

k∑
i=1

z′if
L
i,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c

+
k∑

i=1

z′i ·
k∑

j=ĵ+1

(
fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)x+ fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)
)
sj ]1

= [

 k∑
j=1

k+1∑
i=1

zi,jf
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) +

k∑
j=1

î−1∑
i=1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

+
k∑

j=1

k∑
i=î+1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

x

+ z0 +
k∑

j=1

k+1∑
i=1

zi,jf
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) +

k∑
i=1

ĵ−1∑
j=1

z′if
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

+
k∑

i=1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c+

k∑
i=1

k∑
j=ĵ+1

z′if
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj ]1.
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Furthermore,

k∑
j=1

fk+1,j(x1, . . . , xm)yj

=

ĵ−1∑
j=1

(
fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)x+ fR

k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)
)
sj

+ fR
k+1,ĵ

(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c+ fR
k+1,ĵ

(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)(c/x)

+
k∑

j=ĵ+1

(
fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)x+ fR

k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)
)
sj

=

 ĵ−1∑
j=1

fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj +

k∑
j=ĵ+1

fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

x

+

ĵ−1∑
j=1

fR
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj + fR

k+1,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c

+
k∑

j=ĵ+1

fR
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

+ fR
k+1,ĵ

(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)(c/x)

holds. Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a
prime p: ĵ−1∑

j=1

fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj +

k∑
j=ĵ+1

fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

x

+

ĵ−1∑
j=1

fR
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj + fR

k+1,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c

+
k∑

j=ĵ+1

fR
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

+ fR
k+1,ĵ

(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)(c/x)

=

 k∑
j=1

k+1∑
i=1

zi,jf
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) +

k∑
j=1

î−1∑
i=1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

+

k∑
j=1

k∑
i=î+1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

x

+ z0 +

k∑
j=1

k+1∑
i=1

zi,jf
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) +

k∑
i=1

ĵ−1∑
j=1

z′if
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj
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+

k∑
i=1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c+

k∑
i=1

k∑
j=ĵ+1

z′if
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj mod p

⇔

 ĵ−1∑
j=1

fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj +

k∑
j=ĵ+1

fL
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

−
k∑

j=1

k+1∑
i=1

zi,jf
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)−

k∑
j=1

î−1∑
i=1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

−
k∑

j=1

k∑
i=î+1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

x2

+

 ĵ−1∑
j=1

fR
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj + fR

k+1,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c

+

k∑
j=ĵ+1

fR
k+1,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj − z0

+
k∑

j=1

k+1∑
i=1

zi,jf
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) +

k∑
i=1

ĵ−1∑
j=1

z′if
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

+
k∑

i=1

z′if
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)c+

k∑
i=1

k∑
j=ĵ+1

z′if
R
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)sj

x

+ cfR
k+1,ĵ

(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) = 0 mod p.

Observe that the polynomial has to be a non-zero polynomial due to the non-zero constant term
c and non-zero hi,ĵ(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm). Since the reduction algorithm Rgen knows values
of (c, x1, . . . , xℓ̂−1, xℓ̂+1, · · · , xm, y1, . . . , yĵ−1, yĵ+1, · · · , yk), it is able to find all solutions for x in
polynomial time. By checking [x]1 = X, the reduction algorithm Rgen successfully finds a correct
solution of the BDLG in G1.

By combining with Lemmas 1, 2, and Theorem 11, we are able to obtain an information theoretic
lower bound for the GMCDH as follows.

Theorem 12 (Generic Hardness of GMCDH). The generalized matrix computational Diffie-
Hellman problem in Definition 22 is (t2/p, t)-hard in the generic group model if the conditions
(1)–(4) of Theorem 11 simultaneously hold.

7 Reduction for Matrix Kernel Diffie-Hellman Problem

In this section, we show generic and tight reductions from the bilinear discrete logarithm (BDL)
problem in G1 to the matrix kernel Diffie-Hellman (MKDH) problem in an algebraic bilinear group
model specific to the MKDH which we define in Section 7.1. In this section, we only provide a master
theorem in Section 7.2 since it is much simpler than other reductions in previous sections. The
simplicity stems from the fact that G2 is the only group element in G2 that an MKDH adversary
receives.
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7.1 Algebraic Group Model for Matrix Kernel Diffie-Hellman Problem

In advance of the reduction, we define an algebraic algorithm for MKDH problems. We define
the notion to be compatible with MKDH problems so that the only group element in G2 that
the algorithm receives is a generator G2 and the outputs are in G2. The definition is almost
the same as Definition 29 in the sense that the algebraic algorithm is able to output only group
elements which are derived from group additions in G2 of the only given element G2. Furthermore,
the algebraic algorithm should also output a representation which indicates how output group
elements are calculated. Here, the algebraic algorithm outputs a discrete logarithm of the output
as a representation. We formally provide a definition as follows.

Definition 32 (Algebraic Algorithm for Matrix CDH). An algorithm Aalg executed in an algebraic
security game GG in an asymmetric bilinear group G := (G,GT , G1, G2, e, p) is called algebraic if
for all group elements Z ∈ G2 that Aalg outputs, it additionally returns the representation of Z with
respect to given group elements. Specifically, Aalg must also return z ∈ Zp such that Z = zG2. We
use [Z]z to denote such an output.

To be precise, the definition captures not only the MKDH problem but also any computational
problem all of whose inputs and outputs are in G1 and G2, respectively.

7.2 Master Theorem for Matrix Kernel Diffie-Hellman Problem

In this subsection, we provide the following master theorem for the GMKDH problem.

Theorem 13 (Master Theorem for the MKDH Problem). BDLG ⇒alg GMKDHG holds when

the following conditions are simultaneouslyl satisfied: There is at least one index ℓ̂ ∈ {1, 2, . . . ,m}
such that

• degxℓ̂
fi,j(x1, . . . , xm) ∈ {0, 1} for all (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k}.

• There are no integer vectors v = (v1, . . . , vk+1) ∈ Zk+1
p \ {0k+1} that satisfy∑k+1

i=1 vifi,j(x1, . . . , xm) = 0 mod p for all j ∈ {1, 2, . . . , k}.

Then, we show a proof of Theorem 13. In advance, we claim that the condition (1) will be
used to ensure that the reduction algorithm is able to produce all group elements of the GMKDH
during a reduction, while both the conditions (1) and (2) will be used to ensure that the modular
equation never becomes a zero polynomial.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction algo-
rithm Rgen uses an algebraic adversary Aalg on the GMKDHG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the BDLG in G1.

The reduction algorithm Rgen is given a group description G := (G1,G2,GT , G1, G2, e, p) and an
instance of the BDLG in G1, i.e., X := [x]1 ∈ G for an unknown x ∈ Zp. Thanks to the condition
(1), we use the notation

fi,j(x1, . . . , xm) = fL
i,j(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm)xℓ̂ + fR

i,j(x1, . . . , xℓ̂−1, xℓ̂+1, . . . , xm)

for all (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k}. Then, the reduction algorithm Rgen creates an

instance of the GMKDHG as follows: Pick random (r1, . . . , rℓ̂−1, rℓ̂+1, · · · , rm)
$← Zm−1

p . If there

are integer vectors z = (z1, . . . , zk+1) ∈ Zk+1
p that satisfy

∑k+1
i=1 zif

L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) =
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∑k+1
i=1 zif

L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) = 0 mod p for all j ∈ {1, 2, . . . , k}, then resample the values.

Otherwise, compute

Xi = fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·X + fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ·G1

= [fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) · x+ fR

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)]1 ∈ G1

for all (i, j) ∈ {1, 2, . . . , k + 1} × {1, 2, . . . , k} by implicitly setting

(x1, . . . , xℓ̂−1, xℓ̂, xℓ̂+1, · · · , xm) = (r1, . . . , rℓ̂−1, x, rℓ̂+1, · · · , rm).

Then, the reduction algorithm Rgen gives a bilinear group description G := (G1,G2,GT , G1, G2, e, p)

and group elements (Xi,j)(i,j)∈{1,2,...,k+1}×{1,2,...,k} ∈ Gk(k+1)
1 to Aalg. Observe that a set of group

elements is a valid GMKDH instance from Aalg’s view. Hence, an algebraic adversary Aalg outputs
a correct solution [Z]z⃗ with an advantage AdvGMKDH

G,Aalg
and a running time TimeGMKDH

G,Aalg
.

The reduction algorithm Rgen gives a group description G := (G1,G2,GT , G1, G2, e, p) and group

elements (Xi,j := [fi,j(x1, . . . , xm)]1)(i,j)∈{1,2,...,k+1}×{1,2,...,k} ∈ Gk(k+1)
1 to Aalg. The set of group

elements is a valid GMKDH instance as observed above. Hence, an algebraic adversary Aalg outputs

a correct solution [Z⃗]z⃗ with an advantage AdvGMKDH
G,Aalg

and a running time TimeGMKDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z1]z1 , . . . , [Zk+1]zk+1
output by an algebraic adversary

Aalg on the GMKDHG and computes a solution of the BDLG in G1. Assume the output is a
correct solution of the GMKDH, i.e.,

k+1∑
i=1

zi

(
fL
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)x+ fL

i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)
)
= 0 mod p.

It holds with probability Adv
GMKDHG
G,Aalg

. Then, the reduction algorithm Rgen finds an index ĵ

such that
∑k+1

i=1 zif
L
i,j(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ̸= 0 mod p and obtains the following univariate

equation modulo a prime p:

k+1∑
i=1

zi

(
fL
i,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)x+ fL

i,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)

)
=

(
k+1∑
i=1

zif
L
i,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)

)
x+

(
k+1∑
i=1

zif
R
i,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm)

)
= 0 mod p.

Thanks to the above check,
∑k+1

i=1 zif
L
i,ĵ
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm) ̸= 0 holds and

the polynomial is non-zero. Since the reduction algorithm Rgen knows values of
(r1, . . . , rℓ̂−1, rℓ̂+1, . . . , rm, z1, . . . , zk+1), it is able to find all solutions for x in polynomial
time. By checking [x]1 = X, the reduction algorithm Rgen successfully finds a correct solution of
the BDLG in G1.

By combining with Lemmas 1, 2, and Theorem 13, we are able to obtain an information theoretic
lower bound for the GMKDH as follows.

Theorem 14 (Generic Hardness of GMKDH). The generalized matrix kernel Diffie-Hellman prob-
lem in Definition 28 is (t2/p, t)-hard in the generic group model if the conditions of Theorem 13
simultaneously hold.
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8 Conclusion

In this paper, we revisited the AGM which Fuchsbauer, Kiltz, and Loss [FKL18] gave a simple
and clean definition to study the computational hardness of the CDH family. The AGM allows us
to study the problem based on very simple arguments. Among their several results, we focused
on the generic and tight reduction from the DL to the CDH. For the purpose, they used the
square DH as the intermediate step. On the other hand, we provided the direct reduction from
the DL to the CDH. We extended the approach and provided several reductions from the DL to
the CDH variants in cyclic groups. By extending the definition of the AGM, we also studied the
computational hardness of the CBDH in the same way. Our approach was able to provide these
reduction based on as simple arguments as Fuchsbauer et al.’s one. What is more, we formalized
master theorems to indicate that to what kinds of computational problems can be reduced from the
(B)DL by following our approach. Furthermore, we also provide analogous results for the MCDH
and MKDH problems.

Studying the CDH variants that were not studied in this paper is an arguably interesting topic
(possibly variants which are not captured by our master theorems). Throughout this paper, we
focused only on tight reductions so that the approach becomes as simple as possible. As opposed to
our work, studying the computational hardness of CDH variants by allowing reasonable reduction
loss should also be an interesting approach. The most important future directions of this work are
extending the technique to composite-order groups and/or decisional problems.
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