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Abstract

Group signature scheme provides group members a way to sign messages without revealing their identities.

Anonymity and traceability are two essential properties in a group signature system. However, these two

security properties hold based on the assumption that all the signing keys are perfectly secret and leakage-

free. On the another hand, on account of the physical imperfection of cryptosystems in practice, malicious

attackers can learn fraction of secret state (including secret keys and intermediate randomness) of the

cryptosystem via side-channel attacks, and thus breaking the security of whole system.

To address this issue, Ono et al. introduced a new security model of group signature, which captures

randomness exposure attacks. They proved that their proposed construction satisfies the security require-

ments of group signature scheme. Nevertheless, their scheme is only provably secure against randomness

exposure and supposes the secret keys remains leakage-free. In this work, we focus on the security mod-

el of leakage-resilient group signature based on bounded leakage setting and propose three new black-box

constructions of leakage-resilient group signature secure under the proposed security models.

Key words: group signature, full anonymity, full traceability, black-box construction, leakage resilience

1. Introduction

Group Signature. Group signature, introduced in the seminal work of Chaum and Heyst [16], provides group

members with anonymity while signing messages. That is, every group members is able to anonymously sign

messages on behalf of their group. For example, Alice is an employee (group member) of a large company.

She is able to submit an anonymous tip and convinces all verifiers that it is signed by one of employees in

Alice’s company without revealing her identity. On the other hand, if Alice abuses her anonymity power

to sign bogus messages, her identity can be traced by her employer Bob (group manager). Briefly, a group

signature scheme must satisfy the following basic security requirements [3].

Correctness. Signatures honestly generated by group members can always be verified while invalid signa-

tures always failing verification process.
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Unforgeability. Only group members can sign messages on behalf of their group. In other word, non-

members cannot efficiently forge valid group signatures.

Anonymity. Given any message/signature pair, the identity of the real signer cannot be revealed without

group manager’s help.

Traceability. Given any valid message/signature pair, the group manager is able to trace the real signer’s

identity.

Unlinkability. Given any two message/signature pairs, no probabilistic polynomial-time distinguisher can

decide if the signatures are both from the same signer or not.

Exculpability. Even if all other group members and the managers collude, they cannot forge a signature

for an honest group member.

Coalition Resistance. A colluding subset of group members cannot generate a valid signature that is

traced to other non-participants.

A formal definition was proposed by Bellare, Micciancio and Warinschi [8]. In their work, they proposed

three security properties Correctness, Full-Anonymity and Full-Traceability. They showed that a group

signature fulfilling these three properties implies the satisfaction of all the security requirements described

above. More details are presented in Sect. 3.3.

Side-Channel Attacks and Leakage Models. Unfortunately, when we consider physical attacks (e.g. side-

channel attack) in practice, most existing group signature schemes does not satisfy the aforementioned

security requirements any more. For instance, Alice’s co-worker, say Eve, measures the power consumption

of her computer while Alice is sending an anonymous tip and signing it with her secret key. Then the

resulting power traces may subsequently lead to the recovery of Alice’s secret key.

Over the last twenty years, researchers have discovered a wide range of side channel attacks, including

running-time attacks [34], fault detection [11], differential power analysis (DPA) [33, 18], electromagnetic

radiation analysis [23, 39], and etc. In 2009, Halderman et al. [25] proposed the well-known cold-boot

attack on private keys stored in the memory of devices. Such memory leakage showed that obtaining secret

information (even not being used) is possible. In 2017, Craig Ramsay [40] proposed an efficient tempest

attack against AES encryption algorithms. Ramsay showed how to recover the encryption keys from two

realistic AES-256 implementations within one meter attack distance and few minutes. Furthermore, their

equipment is only pocket-size and low-cost. Nowadays, it is feasible to obtain secret keys (or other sensitive

information like intermediate randomness) from the cryptosystem via such physical attacks. On the other

hand, traditional cryptography does not capture the side channel attacks that focus the weakness of devices

themselves and steer clear of the intractability of mathematical hard problems. Therefore, it is a great

threat for many cryptographic systems and countermeasures for protecting cryptographic systems from

such physical attacks are imperative.
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For this purpose, in 2008, Dziembowski et al. first introduced the notion of leakage-resilient cryptography

(LRC) [21]. Micali and Reyzin [37] proposed the well-known atom, Only Computation Leaks Information.

They assumed that only the part of secret information that is being operated will be possibly leaked to

attackers. It is not trivial, however, providing a heuristic solution to formalize the leakage in practice.

Inspired by Akavia, Goldwasser and Vaikuntanathan’s work [1], leakage is defined as an adversarially chosen

function of private state. The adversary is given an additional leakage oracle, which on input an adversarially

chosen function and return the leakage (function value) of private state of cryptographic system. In terms

of the restriction of adversaries’ power, there are different leakage models. For example, in bounded leakage

model [2, 1], there must be sufficient entropy left ensuring the system is not fully ruined. That is, the leakage

amount is bounded. In noisy leakage model [20, 21], instead of restricting the amount of leakage to a concrete

bound, arbitrarily large leakage is allowed as long as the secret information remains sufficient min-entropy.

It is more accurate to model leakage in the reality, and thus can capture more practice attacks comparing

with bounded leakage model. In continual leakage model [13, 30], the secret keys should be periodically

updated without modifying the corresponding public keys, which allows the adversary to obtain in total

arbitrarily many bits of the cryptosystem’s private state as long as the leakage between two invocations of

the secret key refreshing algorithms is bounded. Namely, the leakage rate is bounded.

1.1. Related Works

Group Signature. Subsequent to the introduction of Chaum and Heysts seminal work [16], many proposed

schemes, including [7, 15, 10], focused on improving the performance of Chaum-Heysts seminal construc-

tion. [4, 14, 6] investigated the dynamics property to support the member revocation. [14, 6] studied the

independent-generation of group member keys with member revocation to support large group. [9] consid-

ered the forward security of group signatures. Chen and Pedersen [17] proposed the first group signature

scheme with dynamical group size. Camenisch and Stadler [15] presented the first group signature scheme

for large groups, in which the size of group public key and signatures is independent of the group size. To

support efficient member revocation, Kim et al. [32] constructed a group signature scheme from traitor

tracing schemes. In 2003, Ateniese and de Medeiros [5] proposed another group scheme supporting trapdoor

privacy. That is, no third party knows any trapdoor secret, and therefore a same cryptographic domain

can be shared in different groups without security loss. It is a great advantage over other group signature

schemes.

Leakage-Resilient Signature Primitives. There has been impressive progress in leakage-resilient cryptogra-

phy. In 2009, Katz and Vaikuntanathan [31] proposed a secure black-box construction of signature scheme

in the bounded leakage model. Boyle et al. [12] and Yuen et al. [45] considered the fully leakage-resilient

unforgeability, which takes account of leakage on both signing keys and private randomness. Wang et al.
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[43, 44] and Huang et al. [27, 28] studied the signature schemes with strong unforgeability in different

leakage settings. Huang et al. [26] proposed black-box constructions of identity-based signature scheme

and certificateless signature scheme. [29] proposed another efficient method to construct a leakage-resilient

signature via introducing the notation of leakage-resilient dual form signature. Many other leakage-resilient

models are studied in literatures, for example, [36, 22].

Leakage-Resilient Group Signature. To the best of our knowledge, however, there are seldom works on

leakage-resilient group signature. Ono et al. [38] proposed a new security model of group signature for

capturing full randomness exposure and proved their proposed scheme satisfies the security requirements.

Nevertheless, their scheme is only provably secure against randomness exposure and the secret keys is still

assumed to be leakage-free. How to construct a (fully) leakage-resilient group signature scheme remains an

open problem.

1.2. Our Contributions

In this work, we propose three black-box constructions of group signature scheme that satisfies correct-

ness, full anonymity, full traceability and leakage resilience at the same time. To be more concrete, we make

the following contributions in this paper.

1. First of all, we revisit the security models of group signature and give a formal definition of leakage-

resilient group signature scheme.

2. Second, we present a new construction of group signature scheme via black-box method, constructing

from a leakage-resilient identity-based signature scheme and a CCA-secure leakage-resilient encryption

scheme. We further prove that the leakage bound of resulting construction is the same as the lower-

bound of the IBS scheme and the encryption scheme.

3. Third, we show how to construct a group signature scheme with leakage resilience from a leakage-

resilient signature scheme and a CCA-secure leakage-resilient encryption scheme. The leakage bound

of resulting construction is the same as the lower-bound of the underlying signature scheme and

encryption scheme.

4. Forth, we further propose a black-box construction of group signature scheme from a leakage-resilient

signature scheme and a CPA-secure leakage-resilient scheme. The leakage bound of resulting construc-

tion is the same as the lower-bound of the underlying signature scheme and encryption scheme.

2. Preliminaries and Definitions

2.1. Notations and Abbreviations

Definition 1 (Negligible Function [35]) We say a function µ(x) : N→ R is negligible if for every positive

polynomial poly(·) there exists a positive integer K ∈ N s.t. ∀k > K, |µ(k)| < 1
poly(k) holds.
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Let k ∈ N be the security parameter and 1k be its unary representation. We assume that all the

algorithms are given the unary coding of the security parameter k as input, which will not be explicitly

involved as input of the algorithms when it is clear from the context. Let negl(k) denotes a negligible

function of security parameter k. Denote B(x1, x2, · · · , xn; r) by the output of evaluating PPT algorithm

B on input x1, x2, · · · , xn with randomness r. For any finite set S, we denote α
$←− S by the operation of

uniformly sampling a random element α from S. Let ∥α∥ be the size of element α. We write [n] to denote

the set of positive integers from 1 to n, i.e. {1, 2, · · · , n}. We use the abbreviation PPT to mean probabilistic

polynomial-time. The abbreviation KGC signifies key generation center.

2.2. Unbounded Simulation-Sound Non-Interactive Zero Knowledge

Definition 2 (Unbounded Simulation-Sound NIZK [41, 19]) An unbounded simulation-sound NIZK

proof system Π = (l := l(k),P,V,S = (S1,S2)) for a NP-language L with relation R involves four PPT

algorithms P,V,S1,S2 that satisfy the following properties.

Completeness. It holds that Pr[V(x,P(x, w, r), r) = 1 : (x, w) ∈ {(x, w)|R(x, w) = 1} ∧ r ∈ {0, 1}l] = 1.

Simulation Soundness. Let T be the transcripts generated by the simulation algorithm S2 and Succ be

the event (x, π) < T ∧ x < L ∧ V(x, π, r) = 1. Then we call Π satisfies simulation-soundness if the advance

of any PPT adversary A succeeding in generating a valid proof on a false statement x is negligible, i.e.

Pr[Succ : (r, ρ)← S1(1k), (x, π)← AS2(·,r,ρ)(r)] ≤ negl(k).

Unbounded Zero Knowledge. We call Π satisfies unbounded zero knowledge if for all PPT adversaries

A,

|Pr[ExptA
0 (k) = 1]− Pr[ExptA

1 (k) = 1]| ≤ negl(k)

always holds, where Expt0(k) and Expt1(k) is defined as below.

Expt0(k)

r
$←− {0, 1}l

S ′
r(x, w) := P(x, w, r)

Return AS′
r(·,·)(r).

Expt1(k)

(r, ρ) $←− S1(1k)

S ′
r,ρ(x, w) := S2(x, r, ρ)

Return AS′
r,ρ(·,·)(r).

3. Definitions and Security Models of Signature Schemes

3.1. Digital Signature

Definition 3 (Digital Signature [24]) A digital signature scheme Σ consists of the following three poly-

nomial time algorithms.

Key Generation Algorithm. On input a security parameter k represented in unary, the key generation

algorithm produces a verification/signing key pair (vk, sk)← Kg(1k).
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Signing Algorithm. On input a signing key sk and a message m, the algorithm returns a valid signature

σ ← Sig(sk, m).

Verication Algorithm. On input a verication key vk, a message m and a signature σ, the algorithm

returns 1/0 (acceptance/rejection)← Ver(vk, m, σ).

Security Model. The standard security notation of digital signature is existential unforgeability under

adaptive chosen-message attack (UF-CMA, for short). Consider the following unforgeability experiment for

a signature scheme Σ = (Kg, Sig, Ver), where C is a challenger and F is a PPT forger who tries to produce

a valid signature on a new message.

UF-CMA Experiment UF-CMAF,Σ(k):

1. C invokes (vk, sk)← Kg(1k) and gives the verification key vk to F while keeping the signing key

sk secret. C maintains an initially empty query list Ls.

2. F adaptively accesses to a signing oracle Os(·) for polynomially many times. Given a message m,

the signing oracle returns a valid signature σ on m. Update the signing query list Ls = Ls∪{m}.

3. Finally, F outputs a forgery (m̂, σ̂) and wins iff. (a) Ver(m̂, σ̂) = 1 and (b) m̂ < Ls.

Definition 4 (Unforgeability under Adaptive Chosen-Message Attack, UF-CMA [24]) A signa-

ture scheme Σ is existentially unforgeable under adaptive chosen-message attack (or is UF-CMA secure) if

the advantage of any PPT forger F in the experiment UF-CMAF,Σ(k) is negligible, i.e. for all PPT forger

F ,

Pr
[
Ver(vk, m̂, σ̂) = 1 ∧ m̂ < Ls : (m̂, σ̂)← FOs(·)(vk)

]
≤ negl(k).

Leakage-Resilient Unforgeability. To model a forger F who is allowed to launch side-channel attacks

against signature scheme Σ and obtain a fraction of signing sk, F is given a leakage oracle OL(·). On

input the ith adversarially chosen leakage function fi, the leakage oracle OL(fi) returns Λi := fi(sk) where

∥Λi∥ ≤ λi. Without loss of generality, we suppose that the F makes leakage queries at most qL times. We

have following definition.

Definition 5 (Leakage-Resilient Unforgeability [27, 29]) A signature scheme Σ is λ-leakage-resilient

and existentially unforgeable under adaptive chosen-message attacks (or is λ-LR-UF-CMA secure) if no PPT

forger F has non-negligible advantage in the modified experiment, i.e. for all PPT forger F ,

Pr

[
Ver(vk, m̂, σ̂) = 1 ∧ m̂ < Ls ∧

qL∑
i=1

λi ≤ λ : (m̂, σ̂)← FOs(·),OL(·)(vk)

]
≤ negl(k).

3.2. ID-based Signature

Definition 6 (Identity-Based Signature, IBS [42]) An identity-based signature scheme IBS consists

of four PPT algorithms Setup, Extract, IB-Sig, IB-Ver, respectively called setup algorithm, key extraction

algorithm, signing algorithm and verification algorithm.
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Setup Algorithm. On input a security parameter k represented in unary, KGC invokes setup algorithm

Setup to generate a master public/secret key pair (mpk, msk)← Setup(1k).

Extraction Algorithm. On input a master key msk and a user identify id, KGC invokes extraction

algorithm Extract to generate a signing key for user id, i.e. skid ← Extract(msk, id).

Signing Algorithm. On input a user signing key skid and a message m, the user invokes signing algorithm

IB-Sig to produce a signature σ ← IB-Sig(skid, m).

Verification Algorithm. On input a user identity id, a message m and a signature σ, the verifier invokes

verification algorithm IB-Ver to test the validity the purported signature, i.e. 1/0 (acceptance/rejection)←

IB-Ver(id, m, σ).

Remark 1 The master public key mpk is implicitly involved in extraction algorithm, signing algorithm and

verification algorithm and therefore it is omitted in this paper for simplicity.

Security Model. The standard security notion of IBS scheme is existential unforgeability under adaptive

chosen-message and chosen-identity attack. Let IBS = (Setup, Extract, IB-Sig, IB-Ver) be an IBS scheme.

Consider the following unforgeability experiment where C is challenger and F is a PPT forger.

UF-CMIA Experiment CMIA-IDAF,IBS(k):

1. C generates master public/secret keys by invoking (mpk, msk) ← Setup(k). Extraction query

list Le and signing query list Ls are initialized to be empty. Initially set system state State =

{(KGC, msk)} and leakage amount L = 0.

2. Invoke F(mpk) and answer queries from F as follows.

CreateUser Oracle CO. Given a user identity id, if (id, ∗) ∈ State, none of the process takes

place. Otherwise, generate user signing key by invoking skid ← Extract(msk, id). Update the

system state State = State ∪ {(id, skid)}.

Extraction Oracle EO. Given a user identity id, retrieve the corresponding skid s.t. (id, skid) ∈

State and return skid. Update the extraction query list Le = Le ∪ {id}.

Signing Oracle SO. Given a user identity id and a message m, retrieve the corresponding skid

from State and return σ ← IB-Sig(skid, m). Update signing query list Ls = Ls ∪ {(id, m)}.

Leakage Oracle LO. Given a function f , compute Λ := f(State). If L + ∥Λ∥ > λ, abort.

Otherwise, return Λ and update the leakage amount L = L + ∥Λ∥.

3. Finally, F outputs a forgery (îd, m̂, σ̂). Denote by Forge the event: (a) IB-Ver(îd, m̂, σ̂) = 1, (b)

îd < Le and (c) (îd, m̂) < Ls.

Remark 2 Without loss of generality, suppose that each id used in other oracle queries has already been

created by CO(id).
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Definition 7 (Leakage-Resilient Identity-Based Signature, LR-IBS [26] ) An IBS scheme IBS is

λ-leakage-resilient and existentially unforgeable under adaptive chosen-message and chosen-ID attack (or is

λ-LR-UF-CMIA secure) if no probabilistic polynomial-timeforger F has a non-negligible advantage in the

Experiment CMIA-IDAF,IBS(k), i.e.

Pr


IB-Ver(îd, m̂, σ̂) = 1

îd < Le, (îd, m̂) < Ls

L ≤ λ

: (îd, m̂, σ̂)← FCO(·),EO(·),SO(·),LO(·)(vk)

 ≤ negl(k).

3.3. Group Signature

Definition 8 (Group Signature [16]) A group signature scheme GS consists of the following four polynomial-

time algorithms.

Setup(1k) → (PP, msk, tsk). The setup algorithm takes as input the security parameter k (in unary repre-

sentation) and outputs a group parameter PP, a master key msk for member authorization and a tracing

key tsk for identifying signers.

Join(PP, msk, id) → skid. The join algorithm takes as input the group parameter PP, the master key msk

and an identity id, output signing key skid, which is sent to user via a secure channel.

GSig(PP, skid, m)→ σ. On input public parameter PP, a signing key skid of user id and a message m, the

signing algorithm outputs a valid group signature σ.

GVer(PP, m, σ) → 0/1. On input the public parameter PP, a message m and a signature σ, if σ is a valid

signature on m signed by one of the group members, the verification algorithm outputs 1 and 0 otherwise.

Trace(PP, tsk, m, σ)→ id/ ⊥. The trace algorithm takes as input the public parameter PP, a tracing key tsk

and the message/signature pair (m, σ), output the real signer id who produces the signature σ on message

m. If id is not a group member, output ⊥.

We follow the security definition presented in Bellare, Micciancio and Warinschis work [8]. That is, a

group signature must satisfy three properties: correctness, full anonymity and full traceability. Details are

as follows.

Correctness. Generally, we say that a group signature scheme satisfies correctness if any honestly generated

signature is always verified. I.e.

Pr

GVer(PP, m, GSig(PP, skid, m)) = 1 :

(PP, msk, tsk)← Setup(1k)

(m, id) $←− {0, 1}∗

skid ← Join(PP, msk, id)

 = 1.

Security Model. Let EList, SList, CList, TList be lists of enrollment queries, signing queries, corrupt queries

and tracing queries respectively and L be the leakage amount. Initially set EList = SList = CList = TList =

State = ϕ and L = 0. Consider the following oracles.
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OEnroll(·) The enrollment oracle takes as input an index of specific user identity id and runs skid ←

Join(PP, msk, id). Notice that if (id, ∗) ∈ EList, none of the process takes place. Update the enrollmen-

t query list EList = EList ∪ {(id, skid)} and system state State = State ∪ {(id, skid)}

OSig(·, ·) The signing oracle takes as input an index of specific user identity id and a message m, returns

the corresponding signature σ. Update the signing query list SList = SList ∪ {(id, m, σ)}.

OCorrupt(·) The corruption oracle takes as input a specific user identity id and retrieve the users signing

key skid s.t. (id, skid) ∈ EList. Return skid and update the corruption query list CList = CList ∪ {id}.

OTrace(·, ·) The tracing oracle takes as input a valid message/signature pair (m, σ), return the identity id

of the real signer. Update the tracing query list TList = TList ∪ {(m, σ)}.

OLeak(·) The leakage oracle takes as input a leakage function f(·) and computes Λ := f(State) where State

contains the master signing key and all signing keys of group members. If L+∥Λ∥ ≤ λ, return Λ and update

L = L + ∥Λ∥. Otherwise, return abort symbol ⊥ and aborts.

Remark 3 We assume all the identities submitted to signing oracle and corruption oracle have been enrolled

in enrollment oracle and therefore their signing is already stored in enrollment list EList.

Full Anonymity. We say a group signature satisfies full anonymity if any PPT verifier learns nothing

about the information of the actual signers identity from a given group signature. That is, even t group

members collude together, they cannot correctly identify the authentic signer with probability better than
1

n−t , where n is the group size. Formally, let D be a distinguisher who tries to break the anonymity of GS.

Consider the following full anonymity experiment.

Full Anonymity Experiment FA-ExptD,GS :

Setup. The challenger C initiates the system by running (PP, msk, tsk) ← Setup(1k). Public

parameter PP is given to D.

Query 1. D adaptively accesses to oracles OEnroll, OSig, OCorrupt, OTrace and OLeak for poly-

nomially many times.

Challenge. D outputs a challenge message m∗ and two distinct challenge identifies id0, id1. C

tosses a random coin b
$←− {0, 1} and returns a challenge signature σ∗ ← GSig(PP, skidb

, m) to D.

Query 2. D is allowed to adaptively access to oracles OEnroll, OSig, OCorrupt, OTrace and OLeak

for polynomially many times with restriction that (m∗, σ∗) < TList must hold.

Guess. Finally, D outputs a bit b′ and wins iff. b′ = b.

Anonymity with Bounded Leakage Resilience. We call a group signature scheme IBS achieves λ-

leakage resilience and full anonymity if the probability that any PPT distinguisher D wins in the Full

Anonymity Experiment FA-ExptD,IBS is

Pr
[
b′ = b : b′ ← DOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)

]
≤ 1

2
+ negl(k).
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Full Traceability. We say a group signature satisfies full traceability if no one, even collusive/compromised

users and group manager, can forge a signature that is traced to any honest group members. That is, it

requires that it is computationally difficult for any PPT forger to produce a valid signature on a new message

on behalf of an honest group member. It is formally described in the experiment as follows.

Full Traceability Experiment FT-ExptF,GS :

Setup. The challenger C initiates the system by running (PP, msk, tsk) ← Setup(1k). Public

parameter PP is given to F .

Query F adaptively accesses to oracles OEnroll, OSig, OCorrupt, OTrace and OLeak for polynomi-

ally many times.

Challenge. Finally, F outputs a forgery (m̂, σ̂), which is traced to identity îd← Trace(tsk, m̂, σ̂).

F wins iff. (a) GVer(PP, m̂, σ̂) = 1, (b) (îd, m̂, σ̂) < SList, and (c) îd < CList.

GS achieves λ-leakage-resilient full anonymity if for any PPT forger F , the probability that F wins in the

Full Traceability Experiment FT-ExptF,GS , i.e.

Pr


GVer(PP, m̂, σ̂) = 1

(îd, m̂, ∗) < SList

îd < CList

: (îd, m̂, σ̂)← FOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)

 ≤ negl(k).

Full Leakage Resilience. In the aforementioned full anonymity experiment and full traceability experi-

ment, If the system state involves all signing keys of the group members as well as all randomness used in

the signing process we say group signature scheme GS satisfies full leakage resilience.

4. Generic Constructions of Leakage-Resilient Group Signature

4.1. Construction 1: From Leakage-Resilient IBS and CCA-secure Encryption

Intuition. In this subsection, we present a black-box construction of leakage-resilient group signature

scheme from a leakage-resilient public-key encryption scheme and a leakage-resilient IBS scheme. Let Π =

(EKg, Enc, Dec) be a public-key encryption scheme, IBS = (Setup, Extract, IB-Sig, IB-Ver) be an identity-

based signature scheme, and NIZK := (l,P,V,S = (S1,S2)) be an unbounded simulation-sound NIZK

proof argument for NP-language

L := {(mpk, m, ek, C) : ∃(id, σ), s.t.IB-Ver(mpk, id, m, σ) = 1 ∧ C = Π.Enc(ek, id∥σ)} .

Put things differently, an authenticated signer possesses a valid signing key to sign any messages. There-

fore, the signer is able to generate a witness (valid signature) σ on message m and a ciphertext C of the

combination of his/her identity id and the signature σ. Consider the following group signature scheme

σG = (Setup, Join, GSig, GVer, Trace).
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Construction 1

Setup(1k). Given the security parameter 1k, the system is initialized as follows.

1. Invoke (mpk, msk)← IBS.Setup(1k) and (ek, dk)← Π.EKg(1k).

2. Randomly pick a random string r
$←− {0, 1}l(k).

3. Output the public parameter PP := (mpk, ek, r), the master key msk := msk and the tracing

key tsk := dk.

Join(PP, msk, id). Given the public parameter PP, the master key msk and a user identity id, return

the corresponding user signing key skid ← IBS.Extract(msk, id) via secure channel.

GSig(PP, skid, m). Given a public parameter PP, a signing key skid and a message m, compute a group

signature as follows.

1. Sign message m by invoking σ ← IBS.Sig(skid, m).

2. Encrypt identity id and signature σ, i.e. C := π.Enc(ek, id∥σ).

3. Generate the proof π ← P((mpk, m, ek, C), (id, σ); r).

4. Output the signature σG := (C, π).

GVer(PP, m, σG). Given the public parameter PP, a message m and a purported group signature

σG := (C, π), the verification algorithm outputs V((mpk, m, ek, C), π; r).

Trace(PP, tsk, m, σ). Given the public parameter PP, a tracing key tsk, message m and signature

σG, if GVer(PP, m, σG) = 0, return ⊥. Otherwise, compute (id∥σ) := Π.Dec(tsk, C). Return the

corresponding binding identity id.

Security Analysis..

Theorem 1 If Π is CCA-secure and λ1-leakage-resilient, IBS is UF-CMA secure with λ2-bounded leakage

resilience, and NIZK is an unbounded simulation-sound NIZK proof argument as described above, then

group signature scheme ΣG satisfies full anonymity and full traceability with λ-bounded leakage resilience

where λ = min(λ1, λ2).

Proof (of Theorem 1). First we prove the full anonymity of ΣG. Consider the following hopping exper-

iments and denote the probability that D outputs 0 in Full Anonymity Experiment i by pi.

FA-Expt0. It is exactly the same as the full anonymity experiment in Sect. 3.3 with b = 0. C ←

Π.Enc(ek, id0∥σ0) where σ0 ← Σ.Sig(skid0 , m∗). Then we have

p0 = Pr[0← DOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)|b = 0]. (1)

FA-Expt1. It is the same as Experiment 0 except that the common reference string r of the NIZK is

generated by running (r, τ) ← S1(1k). Furthermore, to sign message m, the proof π is now generated as
11



π ← S2((mpk, m, ek, C), τ). Following the (unbounded) zero-knowledge property of NIZK, we have

|p1 − p0| ≤ negl(k). (2)

FA-Expt2. It is the same as Experiment 1 except that in the challenge phase, to generate the challenge signa-

ture, compute C ← Π.Enc(ek, id1∥σ1) and σ1 ← Σ.Sig(skid1 , m∗). Then compute π same as in Experiment

1. CCA-security of the encryption scheme implies that

|p2 − p1| ≤ negl(k). (3)

FA-Expt3. It is the same as Experiment 2 except that in the challenge phase, we sample the random common

string r
$←− {0, 1}l instead of invoking simulation algorithm S. Then, to sign a quired message m, generate C

same as in Experiment 2, but compute π by running P((vk, m, ek, C), (id1, σ1); r). From the zero-knowledge

property of NIZK, we have

|p3 − p2| ≤ negl(k). (4)

Furthermore, this experiment is exactly the same as full anonymity experiment in Sect. 3.3 with b = 1.

That is,

p3 = Pr[0← DOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)|b = 1]. (5)

From eqs. (1) to (5), we have

Pr[b′ = b : b′ ← DOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)]

=p0 · Pr[b = 0] + (1− p3) · Pr[b = 1]

=1
2

+ (p0 − p3) · 1
2

≤1
2

+ negl(k).

This shows that ΣG satisfies full anonymity property. Next, we prove the full traceability of ΣG. Assume

that there exists a PPT forger F that breaks the full traceability of ΣG with non-negligible probability,

then we can construct another PPT forger F ′ that breaks the unforgeability of IBS with non-negligible

probability as well. Let ϵ be the probability of F ′ wins in the UF-CMIA Experiment CMIA-IDAF,IBS(k).

Details are as follows.

Algorithm F ′. Given a master public key mpk∗ along with a user creation oracle CO(·), a extraction oracle

EO(·), a signing oracle SO(·, ·) and a leakage oracle LO(·), F ′ does as follows.

Setup. Sample random common reference string r
$←− {0, 1}l(k) and set the leakage amount L = 0. Invoke

(ek, dk) ← Π.EKg(1k). Set the public parameter PP := (mpk∗, ek, r), the master key msk :=⊥ and the

12



tracing key tsk := dk. The public parameter PP is given to F . Initially set EList = SList = CList = ϕ, L = 0

and State := {msk =⊥, tsk = dk}.

Query. Answer queries from F as follows.

OEnroll. On input an index of specific user identity id, generate a user signing key skid ← EO(id). Update

the enrollment query list EList = EList ∪ {(id, skid)} and the system state State := State ∪ {skid}.

OSig. On input a specific user identity id and a message m, retrieve the enrollment list to obtain the

user signing key skid s.t. (id, skid) ∈ EList. Compute σ ← Sig(skid, m), C := Π.Enc(ek, id∥σ) and π ←

P((mpk∗, m, ek, C), (id, σ); r). Update the signing query list SList = SList ∪ {(id, m, σ)}.

OCorrupt. On input a user identity id, return skid and update the corruption query list CList = CList∪{id}.

OTrace. On input a valid message/signature pair (m, (C, π)), if GVer(m, (C, π)) = 0, output ⊥. Otherwise,

obtain id∥σ ← Π.Dec(tsk, C) and return id. Update the tracing query list TList = TList ∪ {(id, m, (C, π))}.

OLeak. On input a leakage function f(·), construct another equivalent leakage function f ′ that embeds all

terms of State \ {msk} and issues a query f ′ to LO(·). Return Λ← LO(f ′) and update L = L + Λ.

Challenge. Finally, F outputs a forgery (m̂, (Ĉ, π̂)). F ′ opens Ĉ by running (îd, σ̂) ← Π.Dec(dk, Ĉ), and

outputs (îd, m̂, σ̂).

Let Succ be the event that the forgery (Ĉ, π̂) is a valid signature of message m̂. This implies that (a)

(îd, m̂, ∗) < SList, (b) V((mpk∗, m̂, ek, Ĉ), π̂; r)) = 1, and (c) îd < CList. Let Ext be the event that Succ

occurs and furthermore, GVer(mpk∗, îd, m̂, σ̂) = 1 hold. Unbounded simulation soundness of the NIZK

proof system implies that |Pr[Succ]− Pr[Ext]| ≤ negl(k). Then we have

Pr[Succ] = (1− negl(k)) · Pr[Ext]

= (1− negl(k)) · Pr[GVer(mpk∗, îd, m̂, σ̂) = 1 ∧ O(îd, m̂) is not quired ∧ L(îd) is not quired]

= (1− negl(k))ϵ

= negl′(k)

which results from the fact that IBS is λ2-leakage-resilient. �

4.2. Construction 2: From Leakage-Resilient Signature and CCA-secure Encryption

Let Π = (EKg, Enc, Dec) be a public-key encryption scheme, Σ = (Kg, Sig, Ver) be a standard existentially

unforgeable signature scheme, and NIZK := (l,P,V,S = (S1,S2)) be an unbounded simulation-sound

NIZK proof argument for NP-language

L :=

(vk, m, ek, C) : ∃(uvk, Cert, σ), s.t.
Ver(vk, uvk, Cert) = 1 ∧ Ver(uvk, m, σ) = 1

∧C = Π.Enc(ek, uvk∥Cert∥m∥σ)

 .

Consider the following group signature scheme σG = (Setup, Join, GSig, GVer, Trace).

13



Construction 2

Setup(1k). Given the security parameter 1k, the system is initialized as follows.

1. Invoke (vk, sk)← Σ.Kg(1k).

2. (ek, dk)← Π.EKg(1k).

3. Randomly pick a random string r
$←− {0, 1}l(k).

4. Output the public parameter PP := (vk, ek, r), the master key msk := sk and the tracing key

tsk := dk.

Join(PP, msk, id).

1. User with identity uid generates a verification/signing key pair by invoking (uvk, usk) ←

Σ.Kg(1k) and submit id = (uid, uvk) to group manager.

2. Group manager signs uid∥uvk with its master key msk, i.e. Cert← Σ.Sig(msk, uid∥uvk).

3. Return Cert to user via public channel.

4. User sets the signing key skid := usk along with the group certificate signed by group manager.

GSig(PP, skid, m). Given a public parameter PP, a signing key skid along with a group certificate Cert

and a message m, compute a group signature as follows.

1. Compute σ ← Σ.Sig(skid, m).

2. Compute C := π.Enc(ek, uvk∥Cert∥m∥σ).

3. Generate the proof π ← P((vk, m, ek, C), (uvk, Cert, σ); r).

4. Output the signature σG := (C, π).

GVer(PP, m, σG). Given a public parameter PP, a message m and a purported group signature σG :=

(C, π), the verification algorithm outputs V((vk, m, ek, C), π; r).

Trace(PP, tsk, m, σ). Given the public parameter PP, a tracing key tsk, message m and signature σG,

if GVer(PP, m, σG) = 0, return ⊥. Otherwise, compute (uvk∥Cert∥m∥σ)← Π.Dec(tsk, C). Return the

corresponding binding identity id.

Theorem 2 If Π is CCA-secure and λ1-leakage-resilient, Σ is UF-CMA secure with λ2-bounded leakage

resilience, and NIZK is an unbounded simulation-sound NIZK proof argument as described above, then

group signature scheme ΣG satisfies full anonymity and full traceability with λ-bounded leakage resilience

where λ = min(λ1, λ2).

Proof (of Theorem 2). First we prove the full anonymity of ΣG. Consider the following hopping exper-

iments and denote the probability that D outputs 0 in Full Anonymity Experiment i by pi.

FA-Expt0. It is exactly the same as the full anonymity experiment in Sect. 3.3 with b = 0. That is,
14



C ← Π.Enc(ek, uvk0∥Cert0∥m∗∥σ0) where Cert0 ← Σ.Kg(msk, id0) and σ0 ← Σ.Sig(usk0, m∗). Then we

have

p0 = Pr[0← DOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)|b = 0]. (6)

FA-Expt1. It is the same as Experiment 0 except that the common reference string r of the NIZK is

generated by running (r, τ) ← S1(1k). Furthermore, to sign message m∗, the proof π is now generated as

π ← S2((vk, m∗, ek, C), τ). Following the (unbounded) zero-knowledge property of NIZK, we have

|p1 − p0| ≤ negl(k). (7)

FA-Expt2. It is the same as Experiment 1 except that in the challenge phase, to generate the chal-

lenge signature, compute C ← Π.Enc(ek, uvk1∥Cert1∥m∗∥σ1) where Cert1 ← Σ.Kg(msk, id1) and σ1 ←

Σ.Sig(usk1, m∗). Then compute π same as in Experiment 1. CCA-security of the encryption scheme implies

that

|p2 − p1| ≤ negl(k). (8)

FA-Expt3. It is the same as Experiment 2 except that in the challenge phase, we sample the random

common string r
$←− {0, 1}l instead of invoking simulation algorithm S. Then, to sign a quired message m,

generate C same as in Experiment 2, but compute π by running P((vk, m, ek, C), (uvk, Cert, σ); r). From

the zero-knowledge property of NIZK, we have

|p3 − p2| ≤ negl(k). (9)

Furthermore, this experiment is exactly the same as full anonymity experiment in Sect. 3.3 with b = 1.

That is,

p3 = Pr[0← DOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)|b = 1]. (10)

From eqs. (6) to (10), we have

Pr[b′ = b : b′ ← DOEnroll,OSig,OCorrupt,OTrace,OLeak(PP)]

=p0 · Pr[b = 0] + (1− p3) · Pr[b = 1]

=1
2

+ (p0 − p3) · 1
2

≤1
2

+ negl(k).

Therefore, ΣG satisfies full anonymity property. Next, we prove the full traceability of ΣG. Assume that

there exists a PPT forger F that breaks the full traceability of ΣG with non-negligible probability, then we

can construct another PPT forger F ′ that breaks the unforgeability of Σ with non-negligible probability as
15



well. We consider following two types of forgers, Type-I forger F ′
I and Type-II forger F ′

II who succeed in

forging a group signature.

Type-I. The valid signature is traced to a signer id∗ who is not a group member. That is, (id∗, ∗) < EList,

which implies that F ′
I succeeds in forging a new group certificate (signature) on id∗, which breaks the

unforgeability of Σ on master signing key msk.

Type-II. The valid signature is traced to an honest signer id∗. In other words, the signing key OCorrupt(id∗)

is not quired before and F ′
II succeeds in forging a signature σ∗ on new message m∗, which breaks the

unforgeability of Σ on user signing key usk.

Let ϵ1, ϵ2 respectively be the probabilities of F ′
I and F ′

II wins in the UF-CMIA Experiment. Details are

as follows.

Algorithm F ′
I. Given a verification key vk∗ along with a signing oracle Os(·) and a leakage oracle OL(·),

F ′
I does as follows.

Setup. Sample random common reference string r
$←− {0, 1}l(k) and set the leakage amount L = 0. Invoke

(ek, dk)← Π.EKg(1k). Set the public parameter PP := (vk∗, ek, r), the master key msk :=⊥ and the tracing

key tsk := dk. The public parameter PP is given to F . Initially set EList = SList = CList = ϕ, L = 0 and

State := {msk =⊥, tsk = dk}.

Query. Answer queries from F as follows.

OEnroll. On input an index of specific user identity uid, generate a user signing key by running (usk, uvk)←

Σ.Kg(1k) and obtain Cert← Os(uid∥uvk). Update the enrollment query list EList = EList∪{(uid, uvk, usk, Cert)}

and the system state State := State ∪ {usk}.

OSig. On input a specific user identity id := (uid, uvk) and a message m, retrieve the enrollment list to

obtain the user signing key skid := (usk, Cert) s.t. (uid, uvk, usk, Cert) ∈ EList. Compute σ ← Sig(usk, m),

C := Π.Enc(ek, uvk∥Cert∥m∥σ) and π ← P((vk∗, m, ek, C), (uvk, Cert, σ); r). Update the signing query list

SList = SList ∪ {(id := (uid, uvk), m, σ)}.

OCorrupt. On input a user identity id, return skid and update the corruption query list CList = CList∪{id}.

OTrace. On input a valid message/signature pair (m, (C, π)), if GVer(m, (C, π)) = 0, output ⊥. Otherwise,

obtain uvk∥Cert∥m∥σ ← Π.Dec(tsk, C), retrieve enrollment list to find uid s.t. (uid, usk, ∗, ∗) ∈ EList and

return uid. Update the tracing query list TList = TList ∪ {(id, m, (C, π))}.

OLeak. On input a leakage function f(·), construct another equivalent leakage function f ′ that embeds all

terms of State \ {msk} and issues a query f ′ to LO(·). Return Λ← LO(f ′) and update L = L + Λ.

Challenge. Finally, F outputs a forgery (m̂, (Ĉ, π̂)). F ′
I opens Ĉ by running (îd, σ̂) ← Π.Dec(dk, Ĉ), and

outputs ( ˆuvk, ˆCert).

Let Succ be the event that the forgery (Ĉ, π̂) is a valid signature of message m̂. Again, forger F is able

to produce a valid signature on a new message that is traced to a non-existent group member. This implies
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that (a) (∗, ˆuvk) < EList, (b) ((∗, ˆuvk), m̂, ∗) < SList, (c) V((vk∗, m̂, ek, Ĉ), π̂; r)) = 1, and (d) ˆuvk < CList.

Let Ext be the event that Succ occurs and furthermore, Ver(vk∗, ˆuvk, m̂, ˆCert) = 1 and Ver( ˆuvk, m̂, Σ̂) = 1

hold. Unbounded simulation soundness of the NIZK proof system implies that |Pr[Succ]−Pr[Ext]| ≤ negl(k).

Then we have

Pr[Succ] = (1− negl(k)) · Pr[Ext]

= (1− negl(k)) · Pr[Ver(vk∗, m̂, ˆCert) = 1 ∧ Os( ˆuvk) is not quired]

= (1− negl(k))ϵ1

= negl′(k)

which results from the fact that Σ is λ2-leakage-resilient. Next, we consider forger F ′
II as follows.

Algorithm F ′
II. Given a verification key vk∗ along with a signing oracle Os(·) and a leakage oracle OL(·),

F ′
II does as follows.

Setup. Sample random common reference string r
$←− {0, 1}l(k) and set the leakage amount L = 0. Invoke

(vk, sk)← Σ.Kg(1k) and (ek, dk)← Π.EKg(1k). Set the public parameter PP := (vk, ek, r), the master key

msk := sk and the tracing key tsk := dk. The public parameter PP is given to F . Randomly pick i∗ ← [n]

where n := n(k) is the group size. Initially set EList = SList = CList = ϕ, L = 0 and State := {msk =

sk, tsk = dk}.

Query. Answer queries from F as follows.

OEnroll. Denote the ith user identity by uidi. Obtain a verification/signing key pair

(uvki, uski) :=

Σ.Kg(1k) i , i∗

(vk∗,⊥) i = i∗

and generate the group certificate by running Cert← Σ.Sig(msk, uidi∥uvki). Update the enrollment query

list EList = EList∪{(uidi, uvki, uski, Certi)} and the system state State := State∪{uski}. Notice that uski∗

is unknown.

OSig. On input a specific user identity id := (uid, uvk) and a message m, retrieve the enrollment list

to obtain the user signing key skid := (usk, Cert) s.t. (uid, uvk, usk, Cert) ∈ EList. Compute C :=

Π.Enc(ek, uvk∥Cert∥m∥σ) and π ← P((vk, m, ek, C), (uvk, Cert, σ); r) where

σ :=

Σ.Sig(usk, m) uvk , vk∗

Os(m) uvk = vk∗

Update the signing query list SList = SList ∪ {(id := (uid, uvk), m, σ)}.

OCorrupt. On input a user identity id := (uid, uvk), if uvk = vk∗, abort. Otherwise, return skid and update

the corruption query list CList = CList ∪ {id}.
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OTrace. On input a valid message/signature pair (m, (C, π)), if GVer(m, (C, π)) = 0, output ⊥. Otherwise,

obtain uvk∥Cert∥m∥σ ← Π.Dec(tsk, C), retrieve enrollment list to find uid s.t. (uid, usk, ∗, ∗) ∈ EList and

return uid. Update the tracing query list TList = TList ∪ {(id, m, (C, π))}.

OLeak. On input a leakage function f(·), construct another equivalent leakage function f ′ that embeds all

terms of State \ {uski∗} and issues a query f ′ to LO(·). Return Λ← LO(f ′) and update L = L + Λ.

Challenge. Finally, F outputs a forgery (m̂, (Ĉ, π̂)). F ′
II opens Ĉ by running ( ˆuvk∥ ˆCert∥m̂∥σ̂) ←

Π.Dec(dk, Ĉ), and outputs (m̂, σ̂).

Let Succ be the event that the forgery (Ĉ, π̂) is a valid signature of message m̂. Again, forger F is able

to produce a valid signature on a new message that is traced to an honest group member. This implies that

(a) (∗, ˆuvk) < EList, (b) ((∗, ˆuvk), m̂, ∗) < SList, (c) V((vk, m̂, ek, Ĉ), π̂; r)) = 1, and (d) ˆuvk < CList. Let

Ext be the event that Succ occurs and furthermore, Ver(vk, ˆuvk, m̂, ˆCert) = 1 and Ver( ˆuvk, m̂, Σ̂) = 1 hold.

Unbounded simulation soundness of the NIZK proof system implies that |Pr[Succ] − Pr[Ext]| ≤ negl(k).

Then we have

Pr[Succ] = (1− negl(k)) · Pr[Ext]

≤ (1− negl(k)) · Pr[Ver( ˆuvk, m̂, ˆCert) = 1 ∧ Os(m̂) is not quired]

≤ (1− negl(k)) · Pr[Ver( ˆvk∗, m̂, ˆCert) = 1 ∧ Os(m̂) is not quired] · Pr[vk∗ = ˆuvk]

= (1− negl(k))ϵ2 ·
1
n

= negl′(k),

which results from the fact that Σ is λ2-leakage-resilient. �

4.3. Construction 3: From Leakage-Resilient Signature and CPA-Secure Encryption

Let Π = (EKg, Enc, Dec) be a public-key encryption scheme, Σ = (Kg, Sig, Ver) be a standard existentially

unforgeable signature scheme, and NIZK := (l,P,V,S = (S1,S2)) be an unbounded simulation-sound

NIZK proof argument for NP-language

L :=

(vk, m, ek1, ek2, C1, C2) : ∃(uvk, Cert, σ, ω1, ω2), s.t.

Ver(vk, uvk, Cert) = 1 ∧ Ver(uvk, m, σ) = 1

∧C1 = Π.Enc(ek1, uvk∥Cert∥m∥σ; ω1)

∧C2 = Π.Enc(ek2, uvk∥Cert∥m∥σ; ω2)

 .

Consider the following group signature scheme σG = (Setup, Join, GSig, GVer, Trace).
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Construction 3

Setup(1k). Given the security parameter 1k, the system is initialized as follows.

1. Invoke (vk, sk)← Σ.Kg(1k).

2. (ek1, dk1)← Π.EKg(1k) and (ek2, dk2)← Π.EKg(1k).

3. Randomly pick a random string r
$←− {0, 1}l(k).

4. Output the public parameter PP := (vk, ek1, ek2, r), the master key msk := sk and the tracing

key tsk := dk1.

Join(PP, msk, id).

1. User with identity uid generates a verification/signing key pair by invoking (uvk, usk) ←

Σ.Kg(1k) and submit id = (uid, uvk) to group manager.

2. Group manager signs uid∥uvk with its master key msk, i.e. Cert← Σ.Sig(msk, uid∥uvk).

3. Return Cert to user via public channel.

4. User sets the signing key skid := usk along with the group certificate signed by group manager.

GSig(PP, skid, m). Given a public parameter PP, a signing key skid along with a group certificate Cert

and a message m, compute a group signature as follows.

1. Compute σ ← Σ.Sig(skid, m).

2. Compute C1 := π.Enc(ek1, uvk∥Cert∥m∥σ; ω1) and C2 := π.Enc(ek2, uvk∥Cert∥m∥σ; ω1).

3. Generate the proof π ← P((vk, m, ek1, ek2, C1, C2), (uvk, Cert, σ, ω1, ω2); r).

4. Output the signature σG := (C, π).

GVer(PP, m, σG). Given a public parameter PP, a message m and a purported group signature σG :=

(C, π), the verification algorithm outputs V((vk, m, ek1, ek2, C), π; r).

Trace(PP, tsk, m, σ). Given the public parameter PP, a tracing key tsk, message m and signature σG,

if GVer(PP, m, σG) = 0, return ⊥. Otherwise, compute (uvk∥Cert∥m∥σ)← Π.Dec(tsk, C). Return the

corresponding binding identity id.

Theorem 3 If Π is CPA-secure and λ1-leakage-resilient, Σ is UF-CMA secure with λ2-bounded leakage

resilience, and NIZK is an unbounded simulation-sound NIZK proof argument as described above, then

group signature scheme ΣG satisfies full anonymity and full traceability with λ-bounded leakage resilience

where λ = min(λ1, λ2).

The proof of theorem 3 is similar to that of theorem 2 and thus we omit it here. The main difference

is that the way to answer tracing queries from the adversary. We are able to correctly simulate the tracing

process if the decryption oracle of CCA-secure encryption scheme is given. For a CPA-secure encryption,
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we generate two uniform key pairs (ek1, dk1) and (ek2, dk2) where dk2 is erased at once in the setup process.

In the simulation, the tracing key dk1 is unknown. To answer tracing query, we do not erase dk2 while the

view of forger being not changed. Therefore, we are able to correctly to simulate the tracing query.

5. Conclusion

In this work we formalize the definition of leakage-resilient group signature scheme. Based on this

model, we present three black-box constructions of group signature scheme. They are constructed from

constructing from the combination of an IBS scheme and a CCA-secure PKE scheme, the combination of a

signature scheme and a CCA-secure PKE scheme, the combination of a signature scheme and a CPA-secure

PKE scheme, respectively. We prove that the leakage bound of resulting construction is the same as the

lowest leakage bound of underlying primitives. Intuitively, the buckets effect is inescapable when the private

state generated from different cryptographic primitives and the weakest part of the system is always more

vulnerable.
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