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Abstract

We present nQUIC, a variant of QUIC-TLS that uses
the Noise protocol framework for its key exchange and
basis of its packet protector with no semantic transport
changes. nQUIC is designed for deployment in systems
and for applications that assert trust in raw public keys
rather than PKI-based certificate chains. It uses a fixed
key exchange algorithm, compromising agility for im-
plementation and verification ease. nQUIC provides
mandatory server and optional client authentication,
resistance to Key Compromise Impersonation attacks,
and forward and future secrecy of traffic key derivation,
which makes it favorable to QUIC-TLS for long-lived
QUIC connections in comparable applications. We de-
veloped two interoperable prototype implementations
written in Go and Rust. Experimental results show
that nQUIC finishes its handshake in a comparable
amount of time as QUIC-TLS.

1 Introduction

QUIC is a modern secure transport protocol originally
developed by Google [12, 23] and now under stan-
dardization by the Internet Engineering Task Force
(IETF) [16]. Alongside protocols such as CurveCP [6]
and MinimaLT [27], was borne out of a need to avoid
the difficulties of changing protocols implemented in
kernel space. QUIC is designed to run entirely in user

space, using only UDP for packet transmission. It in-
cludes features such as flow control, congestion control,
reliability, and, importantly, peer authentication and
encryption by default. Originally, Google’s QUIC used
a custom cryptographic handshake protocol [3] to de-
rive shared traffic secrets. The in-progress IETF stan-
dard, henceforth referred to as QUIC-TLS, defines TLS
1.3 [29] as its cryptographic handshake protocol [33].
Although TLS 1.3 is greatly simplified in comparison
to prior versions, and also has some amount of formal
proofs of security [8], it is an intrinsically complex pro-
tocol due to legacy compatibility demands and non-
trivial negotiation logic.

In this paper, we propose yet another cryptographic
handshake protocol for QUIC. It is based on the Noise
Protocol Framework [26], a specification for design-
ing cryptographic handshake protocols used by popular
applications such as WhatsApp [5], protocols such as
WireGuard [10], and technologies such as the Bitcoin
Lightning Network [4] use Noise for this purpose.

We present QUIC-Noise – henceforth referred to
nQUIC – an instantiation of QUIC with Noise as the
handshake protocol. We present experimental results
via two implementations of the protocol: one in Rust
and one in Golang. Our results suggest that nQUIC
offers performance improvements over QUIC-TLS with
significantly less cryptographic code necessary for the
key exchange. We emphasize that nQUIC is not a
wholesale replacement for QUIC-TLS. In particular
nQUIC is not intended for the traditional Web setting
where interoperability and cryptographic agility is es-
sential. It aims to be a viable replacement in cases
where QUIC-TLS is either excessive or ill-suited.

In section 2, we compare nQUIC’s handshake to that
of QUIC-TLS with respect to design, trust and im-
plementation. In section 3, we document the nQUIC
protocol and justify the rationale behind our design
choices. In section 4, we give abstract details on
the number of cryptographic operations dominating
an nQUIC handshake as opposed to different types of
QUIC-TLS handshakes. In section 5, we give concrete
figures on the performance of nQUIC as opposed to
QUIC-TLS. In section 6, we conclude with our contri-
bution’s results and future work.
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2 QUIC Security Layer

In this section we first introduce the Noise protocol
framework and then compare its potential as a can-
didate for QUIC’s cryptographic handshake instead of
the current TLS 1.3-based design of QUIC-TLS.

2.1 The Noise Protocol Framework

Noise [26] is a framework for specifying and instantiat-
ing protocols based on the Elliptic Curve Diffie-Hellman
key exchange. Briefly, it offers a vast choice of flexible
handshake protocols, all specified according to a simple
language. For example, consider an unauthenticated
Diffie-Hellman key exchange, wherein Alice (client, or
initiator in Noise terms) and Bob (server, or responder
in Noise terms) derive fresh keys x and y, respectively,
exchange gx and gy (in multiplicative notation), and
derive a shared secret gxy. In Noise, this pattern is
described with the following transcript:

-> e

<- e, ee

This transcript means that Alice sends Bob her pub-
lic ephemeral share gx (e), and Bob replies with his
public ephemeral share gy (e). Then, both perform a
Diffie-Hellman key exchange using the keys (ee). The
Noise specification identifies several useful handshake
patterns which all have different names.

2.2 Protocol and Implementation Com-
plexity

TLS 1.3 [29] is significantly improved over prior ver-
sions, influenced by academic work such as OPTLS [19],
and by industry’s contributions like Google’s QUIC-
crypto [3] and Facebook’s Zero Protocol [20]. While
it is substantially less complex than prior versions, it
is still 160-pages long and mentions 44 other RFCs in
its specification. Its design has also been influenced by
middleboxes that were refusing to acknowledge pack-
ets that would look too different from older versions of
the protocols [32]. Because of this, half of the fields
contained in the first messages of a TLS handshake
(client hello and server hello) are of no use, messages
are also advertised with the versions TLS 1.2. Fur-
thermore, most TLS libraries used for QUIC-TLS carry

legacy support from older versions and provides ex-
tended cryptographic agility [21] to support a multitude
of endpoints. As of this writing, the most popular TLS
library OpenSSL [1] is around 703,173 lines of code and
lists 165 Common Vulnerabilities and Exposures (CVE)
on its page [2]. Conversely, most of the complexity of
the Noise protocol framework is only present at design
time. After that, the designed protocol is set in stone
and has a very simple run-time behavior with a linear
state machine and no cryptographic agility. Most of
its implementations (without the cryptographic primi-
tives) are under a thousand lines of code.

2.3 Integration Complexity

In the current design of QUIC-TLS, the bootstrapping
of the session’s cryptographic protection is delegated to
TLS 1.3. Specifically, TLS is used to build handshake
messages that are re-framed by QUIC (in CRYPTO
frames carried in initial and handshake packets) and
exchanged on top of it. (QUIC effectively implements
the TLS 1.3 record layer.) Once the handshake is com-
plete, the exporter functionality of TLS is used to ex-
port session keys, which are then used by QUIC itself
to protect its packets.

Because of this particular use of the TLS protocol,
a TLS implementation cannot be used as is. It needs
to be heavily modified in order to extract its relevant
parts. Moreover, many of the popular TLS implemen-
tations support multiple versions of TLS which makes
it cumbersome to integrate with QUIC as QUIC only
needs the latest version, TLS 1.3.

On the other hand, the Noise protocol framework
is often implemented as a ”build your own protocol”
library. As a result, developers can directly leverage
Noise libraries to cleanly embed the protocol within
QUIC. From there, an nQUIC implementation will re-
quire no further cryptographic-related configuration be-
sides the actual keys, unlike QUIC-TLS which still
needs to be configured in order to set the supported
key exchange algorithms, cipher suites, pre-shared key
modes, etc.

2.4 Peer Authentication and Pinning

Authentication of at least one peer – commonly, the
server – is necessary for an authenticated key exchange
protocol. TLS typically use public key infrastructures
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(PKI-based) authentication, wherein servers use public
keys certified by one or more trusted Certificate Au-
thorities (CA). This is an error-prone process as his-
tory has shown [13, 34, 22]. Moreover, trusting a large
number of CAs means that a single CA compromise [28]
can compromise the entire system. Such a large system,
with multiple points of authority led to the establish-
ment of transparency systems (i.e. Certificate Trans-
parency [24]) to add verifiability and accountability to
the web PKI ecosystem, although the use of PKI is still
controversial in a lot of different settings (e.g. mobile
applications). In cases where the complexity of the web
PKI is unnecessary, one approach has been to “pin” cer-
tificates in a certificate chain. Pinning is the process of
expecting a specific certificate (or public key) in a chain
when connecting to a specific host. Conceptually, this
restricts the set of candidate certificates offered up by
a specific host, reducing the surface area of CA com-
promise. Pinning can be applied to a number of levels
in a certificate chain, each varying in flexibility and ef-
fectiveness [31].

When pinning an end-entity certificate, there is no
reason to also include a certificate chain. Clients ex-
pect exactly one unique key when establishing a session.
Failure to produce this key (with a valid signature cov-
ering a client-originated nonce) results in a handshake
failure.1 In many deployment scenarios, the client may
be difficult to update, so to retain functionality in the
event of a key compromise, the client may support a
backup key pin in the case the primary key is revoked.
In such cases, intermediate certificate pinning may of-
fer more flexibility. This variant requires the complete
certificate chain to be presented during a handshake,
thereby increasing complexity.

In some deployment scenarios, both the client and
the server have access to a system to quickly and se-
curely modify pinned values in response to key rotation
or compromise. In such cases, using certificates to pack-
age and transfer public keys is unnecessary. This may
be applicable in the following cases:

1. Public keys are obtained out-of-band, e.g., via a
DNSSEC-secured resource using DNS-Based Au-
thentication of Named Entities (DANE) [14].

2. Public keys are obtained from a valid certificate
chain obtained through some other out-of-band

1Note that there are no signatures computed in Noise or
nQUIC.

mechanism, e.g., via an LDAP server or web page.

3. Public keys are provisioned to peers via some boot-
strapping or initialization step, e.g., when devices
are fabricated.

4. Public keys are managed (and rotated accordingly)
using a trusted key management service.

nQUIC is explicitly designed for applications sup-
porting public key pinning. Note that infrastructure
necessary to support public key pinning is not sub-
stantially different than that used to distribute pre-
shared symmetric keys (PSKs). However, as PSKs
must be unique per pair of endpoints, using PSKs in
lieu of pinned public keys leads to substantially more
keys distributed and managed. Specifically, for n peers,(
2
n

)
= n!

2·(n−2)! PSKs would be needed, instead of n pub-

lic keys.

2.5 Default Security

TLS 1.3 comes with controversial traits that were in-
troduced to speed up the protocol. For example, ses-
sion resumption does not enforce forward secrecy by
default and this choice is left to the user. Another ex-
ample is the optional zero round-trip time mode (0-
RTT) that clients can use on top of session resumption
to encrypt application data in their very first flight of
messages. This new feature is unfortunately removing
forward secrecy from 0-RTT messages and rendering
them replayable. Another example is session resump-
tion without an additional ephemeral key exchange.
Noise has none of these features and, currently, does
not support session resumption with pre-shared keys.
Moreover, Noise allows the client options and trans-
port parameters to be encrypted during the handshake.
This makes successful passive eavesdropping and ossi-
fication [32] less likely.

2.6 Design Complexity and Formal
Analysis

As was previously said, the latest version of TLS builds
on decades of bad legacy decisions and extensions to
support, making it a dense specification which involves
many other dense specifications. This makes it ex-
tremely hard to formally analyze the protocol as was
shown by the partial symbolic analysis done by Cremers
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et al. [9]. Conversely, the Noise protocol framework has
been fully analyzed via different symbolic proofs done
with Tamarin [11], ProVerif [17] and CryptoVerif [25].

3 nQUIC Design

nQUIC is based on the principle that cryptographic op-
erations should be kept as simple as possible to achieve
the desired effect. Per [16], the cryptographic hand-
shake should satisfy or provide the following features:

1. Authenticated key exchange, where:

(a) The server is always authenticated.

(b) The client is optionally authenticated.

(c) Every connection produces distinct and unre-
lated keys, providing strong forward secrecy
for application data, suitable for both 0-RTT
and 1-RTT packets.

2. Authentication of client/server transport parame-
ters.

3. Authenticated version negotiation.

4. Authenticated negotiation of an application proto-
col.

5. For the server, the ability to carry data that pro-
vides assurance that the client can receive packets
that are addressed with the transport address that
is claimed by the client.

By design, Noise satisfies feature requirement 1.
Also, by using the payload feature of handshake mes-
sages, Noise can transport, encrypt and authenticate
any application information. This includes transport
parameters and, with version negotiation information
inside the parameters, version negotiation. In this way,
nQUIC satisfies requirements 2 and 3. Currently, Noise
does not provide any cookie-based retry mechanism
for requirement 5. However, this functionality is sup-
ported with address validation tokens in QUIC. There-
fore, it is not essential for Noise to support. Lastly,
with respect to requirement 4, nQUIC addresses this
by putting ALPN data into the transport parameters
for authenticated negotiation. Thus, in total, with only
a minor change to support application protocol nego-
tiation, nQUIC satisfies the cryptographic handshake
requirements defined by the IETF for QUIC.

In the rest of this section, we describe the nQUIC
handshake and show how it satisfies these features.

3.1 Noise Pattern

To accommodate optional client authentication and en-
cryption of transport parameter data, nQUIC uses the
IK handshake pattern, described as follows:

<- s

...

-> e, es, s, ss

<- e, ee, se

Where the server’s static public key s is already
known in advance. The first message consists of the
client’s ephemeral public key e; a Diffie-Hellman key ex-
change between that key and the server’s static key; the
client’s static public key; a Diffie-Hellman key exchange
between the client and the server static keys. The sec-
ond and last message consists of the server’s ephemeral
public key; a Diffie-Hellman key exchange between that
key and the client’s ephemeral key; a Diffie-Hellman key
exchange between the client’s static key and the server’s
ephemeral key.

By design there are no branches in the hand-
shake state machine, except handshake failure, which
always causes the immediate transmission of a
CONNECTION_CLOSE frame and termination of the con-
nection. Both participants therefore expect to receive
exactly one type of message at any time.

3.2 Justification and Limitations of IK

In this section we document our reasoning behind the
choice of the IK handshake pattern. We also note
the different trade-offs we had to make. The security
properties mentioned in this section come from the
manual analysis written in the Noise specification as
well as the proofs computed by the Noise Explorer
symbolic analysis2.

Unknown Server. Unlike the IX or XX handshake
patterns (the second letter X indicates that the server’s
static key is sent as part of the handshake), IK does
not have the server communicate its long-term key as

2Handshake Pattern Analysis of IK https://noiseexplorer.

com/patterns/IK/
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part of the handshake. This limits how nQUIC can
be used: the client must know the server’s long-term
key in advance, and this even after the server has, for
example, rotated its long-term keys. This requirement
lets nQUIC avoid using a PKI to authenticate peers
and avoids computationally heavy signatures as part
of the handshake. In addition to IX and XX, we also
compared IK to XK:

<- s

...

-> e, es

<- e, ee

-> s, se

The XK handshake pattern introduces forward se-
crecy before communicating the client’s long-term key
to the server. However, it also requires three message
patterns as opposed to two with IK. As this complicates
the handshake, we opted against this pattern, though
we note that changing to support this variant is trivial.

Computational Cost. As opposed to the same hand-
shake patterns IX and XX, the IK handshake pattern
needs to process one more Diffie-Hellman key exchange,
this in turns invokes more calls to other symmetric
primitives needed for processing. However, connection
establishment time remains dominated by network la-
tency. Since IK is part of the subset of the simplest
two-way handshakes with only 1 round-trip, it is sub-
sequently faster and easier to implement. This is es-
pecially important as we are working on top of a lossy
protocol (UDP). After the first server to client message,
all subsequent packets can be delivered out-of-order.

Forward secrecy of the first packet. Inclusion of
the client identity in the first message introduces a few
limitations. Compared to the XK handshake pattern,
client identities and QUIC transport parameters are not
protected if the server’s long-term secret key is com-
promised. Since this message is also subject to replay,
adversaries are able to check if the client still has access
to the service by replaying the message and observing
the server’s response. However, we have concluded that
this downside is of negligible importance compared to
the benefits of this handshake pattern.

Key Compromise Impersonation. If the server’s
long-term key is compromised, an attacker can decrypt
any client initial packet and obtain the underlying iden-
tity and the client’s transport parameters. Moreover,

as client static keys are assumed to be public, an at-
tacker with knowledge of a specific client’s static key
can pretend to be said client during the first handshake
message without knowledge of corresponding long-term
private key. However, without this client’s private key,
the attacker cannot complete the handshake because it
cannot encrypt and authenticate a short header packet
after the two handshake messages.

3.3 Handshake Messages

The cryptographic handshake takes one round trip and
consists of two message types, a handshake request and
handshake response. All handshake messages contain
only fixed sized fields, followed by a single variable
length payload. This allows implementation with very
minimal parsing, e.g., by casting the first part of the
message into a packed struct in C. The contents of
each message are as follows:

Handshake Request message. The Handshake Re-
quest message (see Figure 1) serves to:

• Indicate the start of the cryptographic handshake.

• Transmit encrypted client transport parameters.

• Optionally present the client’s identity.

The fields are processed sequentially according to the
Noise protocol specification. The payload contains the
encrypted and authenticated client transport parame-
ters. Note that these transport parameters are encoded
according to the QUIC-TLS specification, allowing us
to re-use QUIC implementations’ already existing code
to create and parse them.

Figure 1: Handshake Request

Handshake Response message. The Handshake
Response message (see Figure 2) serves the following
purposes:

• Complete negotiation of transport keys.
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• Transmit encrypted server transport parameters.

• Prove the server’s identity.

The fields are processed sequentially according to the
Noise protocol specification. The payload contains the
encrypted and authenticated server transport param-
eters. After reception of this message, final keys are
derived and passed to QUIC’s packet protector (see 3.7)

Figure 2: Handshake Response

Implicit Acknowledgement. After processing
the Handshake Response message, the client must
immediately transmit at least one packet encrypted
under the sending key derived from the handshake.
If no application data is available, PADDING or PING

frames must be used to construct a probing packet.
The server does not consider the handshake complete
until it has received and successfuly decrypted a
packet protected under the derived (1-RTT) transport
keys. This mechanism serves to protect against replay
and Key Compromise Attacks where a server would
acknowledge a client’s connection without verifying
that the client can indeed process the last handshake
message addressed to its public key. Note that ACK

frames sent by the client in response to the server’s
last handshake message are not enough, as they must
use the same level of encryption.

3.4 Authentication Modes

Static key validation is delegated to applications as de-
scribed above. This allows multiple different authenti-
cation schemes to be constructed on top of nQUIC:

• Mutual authentication.

• Unauthenticated client, authenticated server.

• Server allowing both authenticated and unauthen-
ticated clients.

To enable these different modes of authentication
without introducing additional branches in the state

machine nQUIC uses a Noise feature called ”dummy
keys” [26, Section 11.1, Dummy Keys], where a suit-
able constant is used as the client’s public key (e.g. a
0 key) whenever client authentication is not desired.

3.5 Hostname Selection

In this document we do not specify a mechanism for
routing nQUIC connections. Indeed, when multiple
nQUIC endpoints are being hosted on the same ma-
chine or when a load balancer sits in front of the
destination endpoint, a mechanism needs to be em-
ployed in order to forward the initial QUIC packets to
the requested machine. This is usually referred to as
Server Name Indication or SNI in TLS3. To implement
this mechanism in nQUIC, we can simply advertise a
server’s identification string in the first CRYPTO frame
and postpone the actual Noise messages to the second
CRYPTO frame. This indication can then be included
as ”prologue” data in the subsequent Noise handshake
(as described in the Noise specification [26, 6. Pro-
logue]), authenticating the client’s intent to both peers
and preventing the tampering of this value to lead to a
successful handshake.

In cases where secrecy of this value matters, the client
could use the static public key of the forwarding server
to perform an N Noise handshake pattern and encrypt
this value to the forwarding server. In order for this
to work, the client must already know the forwarding
server’s public key. The concatenation of the client’s
ephemeral key and the encrypted value can then be
used as ”prologue” to the nQUIC handshake as is done
in the previously proposed scheme. Note that this fea-
ture is non-existent in TLS at the moment, although
efforts [15, 30] exist to encrypt the SNI extension as
well.

3.6 Message Framing

Noise messages are encapsulated directly in CRYPTO

frames, with the encrypted payload of the handshake
messages containing the client or server transport pa-
rameters respectively. Figure 3 illustrates how the full
handshake is encapsulated at the different layers.

3SNI is also used to figure out what certificate to present to
the client
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Figure 3: Cryptographic handshake framing

The first short header packet is included in Figure
3 to emphasize that it serves to confirm the hand-
shake and that the server is prohibited from sending
any further data before receiving and authenticating
at least one packet from the client encrypted under
1-RTT keys. Note that both Noise messages are en-
crypted twice: once at the Noise layer and once by
the packet protector at the QUIC packet layer. This
is to simplify implementations of nQUIC and to di-
rectly leverage implementations of Noise without re-
quiring additional modifications. The packet protec-
tor initially uses CID-derived keys until the handshake
completes. This obfuscates the prologue from content-
aware middle boxes. Noise encryption provides privacy
for peer identities and transport parameters.

3.7 Ratcheting in nQUIC

After sending and processing the handshake response
message, the nQUIC ratchet is initialized by using the
Noise chaining key (ck) and handshake hash (hs) as the
Input Key Material (IKM) and Salt respectively with
HKDF [18] to derive three 256-bit outputs:

1. The initial chain state.

2. The first Server → Client transport key.

3. The first Client → Server transport key.

Each pair of transport keys have an associated key
phase bit, the initial pair of transport keys have phase
0. Every subsequent pair of transport keys have the
negated phase of the previous. The KEY PHASE field
of short headers are set equal to the phase of the trans-
port key encrypting the packet. When receiving a
packet the KEY PHASE field is examined to determine
which of (at most) two possible transport key pairs
should be used for decryption.

Figure 4: nQUIC double ratchet

To enable future secrecy, or post-compromise secu-
rity [7], nQUIC periodically exchanges Diffie-Hellman
shares to compute shared secrets after the handshake.
When a shared secret (SS) has been computed the
ratchet is updated by using SS and the chain state as
IKM and Salt respectively with HKDF, as illustrated
in Figure 4 (client side). New Diffie-Hellman shares
are only sent after the endpoint successfully authenti-
cates and decrypts a packet with a KEY PHASE field
equal to the key phase of the latest transport keys:
encrypted packets serve to confirm the key exchange.
The derivation of new input keying material and the
one-way property of the KDF combined, provides both
future and forward secrecy in nQUIC.

3.8 Versioning of nQUIC

nQUIC is designed as a minimal update to existing
QUIC-TLS implementations. It could be specified as a
new QUIC version compatible with the already existing
QUIC RFCs. Thus, endpoints could support both TLS
and Noise as possible handshakes without conflict. For
now, we propose setting the first version of nQUIC to
0xff00000b. This is because the QUIC transport docu-
ment states that ”[QUIC] versions with the most signif-
icant 16 bits of the version number cleared are reserved
for use in future IETF consensus”.
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4 Cost Analysis

nQUIC’s handshake costs may be estimated in terms of
its constituent cryptographic operations. Furthermore,
we will ignore symmetric cryptographic operations like
key schedule, encryption, integrity protection, etc. as
they are dominated by the cost of the public-key cryp-
tography operations.

Let:

Ckey be the cost of a key generation operation

Cdh be the cost of a key exchange operation

Csign be the cost of a signing operation

Cverif be the cost of a signature verification oper-
ation

Table 5 and 6 compare the cryptographic costs of
each QUIC protocols and their different key exchange
variants.

Figure 5: nQUIC Key Exchange Cost Comparison
Authentication Client Cost Server Cost

server 1Ckey + 4Cdh 1Ckey + 4Cdh

mutual 1Ckey + 4Cdh 1Ckey + 4Cdh

Figure 6: QUIC-TLS Key Exchange Cost Comparison
Authentication Client Cost Server Cost

server 1Ckey + 1Cdh +
XCverif

1Ckey + 1Cdh +
1Csign

mutual 1Ckey + 1Cdh +
XCverif +
1Csign

1Ckey + 1Cdh +
Y Cverif+1Csign

psk None None
psk dhe 1Ckey + 2Cdh 1Ckey + 2Cdh

Here X (resp. Y ) refers to the number of certificates
in the certificate chain presented by the server (resp.
the client).

Notice that client and server costs are nearly sym-
metrical: for nQUIC, they include four Diffie-Hellman
key exchanges and one ephemeral key generation. For
QUIC-TLS, they include one ephemeral key generation,
one Diffie-Hellman operation and at least one signature
verification.

5 Experimental Results

To assess nQUIC performance, we implemented and
compared it against a similar QUIC-TLS implemen-
tations. In our analysis, we focus primarily on ses-
sion establishment performance, specifically: we mea-
sure handshake performance and memory consumption.
In practice the post-handshake phase of nQUIC has
no difference compared to the one of QUIC-TLS. To
make for a fair comparison, QUIC-TLS instances need
to be configured with single-node certificate chains or
PSKs. This is because nQUIC does not support stan-
dard PKI-based authentication. As discussed in Sec-
tion 3, nQUIC assumes the equivalent of leaf public
key pinning.

5.1 Implementations

We have created a proof of concept implementation
(Ninn) of nQUIC based on a rust library (Quinn) which
targets the IETF draft-11 version of the QUIC speci-
fication. The implementation (including both hand-
shake and ratchet), consists of ≤ 6000 lines of Rust
code counting the Noise library, of which the majority
is not related to nQUIC specifically, but implements an
extended version of the IETF transport-draft-11 which
includes CRYPTO frames. Complexity can be further
decreased by only implementing the particular hand-
shake pattern used by nQUIC. Similarly, we have a Go
implementation (nquic-go), based on (quic-go) which
has an experimental library targeting IETF draft-11 as
well. Reworking the extended draft-11 version of quic-
go to support nQUIC required the addition of under
1000 lines of code.

5.2 Performance

Below we compare the connection establishment time
between the original libraries (’Quinn‘, ’quic-go‘) based
on ’Rustls‘ or ’Mint‘ respectively and the nQUIC
handshake (’Ninn‘, ’nquic-go‘) based on the ‘Snow’ or
’Flynn/Noise‘ Noise libraries respectively. All tests are
conducted over localhost on a Ubuntu 16.04.5 (Linux
4.4.0-131) machine with a Intel Xeon E5-2697A v4 CPU
@ 2.60GHz and use x25519 for key exchange.
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Encryption Hash
Handshake
Time

Handshake
Bandwidth

ninn
(nQUIC)

AES-GCM-256 SHA-256 0.00135 1496

quinn
(QUIC-TLS)

AES-GCM-256 SHA-384 0.00193 3426

quic-go
(QUIC-TLS)

AES-GCM-256 SHA-384 0.02949 3230

quic-go
(QUIC-TLS
PSK)

AES-GCM-256 SHA-384 0.02689 2036

nquic-go
(nQUIC)

AES-GCM-256 SHA-256 0.01023 1463

6 Conclusion and Future Work

We presented nQUIC, a variant of QUIC-TLS that uses
Noise for its key exchange algorithm and employs a DH-
ratchet to provide post-compromise security. nQUIC
offers improved performance, ease of implementation,
drastically reduced code size, clear security properties
and better protection in case of endpoint compromise.
nQUIC does not work with standard PKI-based certifi-
cate authentication – it requires trust in static public
keys – getting rid of an entire class of vulnerabilities.
nQUIC may serve as a second standardized version of
the QUIC protocol, which may help prevent network os-
sification around QUIC-TLS when deployed. For future
work, we plan to bring nQUIC to the QUIC Working
Group for discussion.
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