
Pairing Implementation Revisited

Michael Scott

MIRACL.com

May 15, 2019

Abstract

Pairing-based cryptography is now a mature science. However im-
plementation of a pairing-based protocol can be challenging, as the
efficient computation of a pairing is difficult, and the existing litera-
ture on implementation might not match with the requirements of a
particular application. Furthermore developments in our understand-
ing of the true security of pairings render much of the existing literature
redundant. Here we take a fresh look and develop a simpler three-stage
algorithm for calculating pairings, as they arise in real applications.
Keywords: Pairing-based Cryptography, Implementation

1 Introduction

For practical pairing-based cryptography, so-called type-3 pairings [15] on
a chosen member of a family of small-discriminant parameterised pairing-
friendly curves are the setting of choice [26]. For these curves to be pairing-
friendly, the base field prime modulus p and the group prime order r are
described by particular fixed polynomial formulae in terms of an integer
parameter u [26]. These curves have a fixed “embedding degree” k, such
that their security depends, in part, on the difficulty of a discrete logarithm
problem defined over the extension field Fpk . Therefore a protocol imple-
mentor’s first decision is to (a) choose a suitable family, and then (b) choose
a u of a size and shape that supports efficient and secure implementation.

The apogee of a decade of work by many authors on efficient pairing
implementation is summed up in the 2013 paper by Aranha, Barreto, Longa
and Ricardini, “The Realm of Pairings” [2]. In the abstract pairings are
described as “notoriously hard to implement efficiently”. Nonetheless a
thorough description is provided of a highly optimized algorithm for the
calculation of a pairing on a particular 254-bit BN pairing friendly curve at
what was then considered to be a security level very close to 128-bit AES
symmetric encryption.

1



In that work the BN family [7] with k = 12 is chosen, where

p = 36u4 + 36u3 + 24u2 + 6u+ 1

r = 36u4 + 36u3 + 18u2 + 6u+ 1
(1)

with u = −(262 + 255 + 1), a particularly fortuitous choice, notable for
its extremely small hamming weight of just 3, which facilitates numerous
optimizations.

However as a starting point for the contemporary implementor of a
pairing-based protocol this has several shortcomings:

• The BN curve used is now considered to offer only between 100 and
110 bits of AES equivalent security.

• The choice of a parameter u with extremely small Hamming weight
may not be compatible with other requirements, such as sub-group
security [4], [32].

• In real applications the important primitive is usually not the single
stand-alone pairing, but rather the multi-pairing [29], [18], [31].

Around the time BN curves were introduced, Schirokauer [28] warned
that the special form of p may reduce the difficulty of the extension field
discrete logarithm problem on which the security of these pairings are based.
Eventually this prediction was borne out by a series of papers, see [19, 3, 21,
23]. In response to these developments many researchers have turned instead
to the BLS curves [6], which were actually the first pairing friendly curves
of this type to be discovered. As an added advantage, the BLS curves are in
fact a “family of families”, that support members with embedding degrees
of 12, 24 and 48 (hereafter referred to as BLS12, BLS24 and BLS48 curves
respectively), that are suitable at different security levels.

When choosing the parameter u, it is generally accepted that a lower
signed Hamming weight is preferable. However insistence on an extremely
small Hamming weight greatly restricts the number of suitable curves which
can be found. Unfortunately some pairing-friendly curves have already been
standardised where no attempt was made to reduce the Hamming weight
[13]. And only lately has the requirement for sub-group security been recog-
nised [4], [32], and curves which fulfill this requirement are harder to find,
and hence in general u with larger Hamming weight must suffice. The im-
pact of this is mostly quite manageable, but it does have a major impact on
a particular optimization [20] implemented in [2], in the context of the final
exponentiation part of the pairing calculation. Basically when exponenti-
ating to the power of u, for every set bit in u an expensive decompression
operation is required, which involves a modular inversion. While this is not

2



a major issue for their choice of u, it would rapidly become one as the Ham-
ming weight of u were increased, calling into question the applicability of
this particular optimization. In general optimizations that depend heavily
on very particular features of a particular pairing-friendly curve, cannot be
generalised to other settings.

Papers on pairings often start with a literature review of pairing-based
cryptography applications. However a closer look at that literature reveals
an interesting fact: The primitive of interest is rarely the stand-alone pairing,
but rather the multi-pairing, that is the product of multiple individual pair-
ings. An examination of 16 protocols mentioned in [2] show that the great
majority require a multi-pairing computation, and indeed often the number
of pairings involved is a variable parameter of the scheme. This point is
also made by Fouotsa et al. [14] (who also propose some novel pairing types
that are actually best implemented as pairing products). Adapting a single
pairing implementation to work efficiently in a multi-pairing setting is by no
means a trivial matter, as some important optimizations become available,
so for example the product of two pairings can be calculated jointly much
faster than as the product of two individual pairings [29], [18], [31].

The typical description of a pairing implementation consists of two
phases, the Miller loop followed by the final exponentiation. Here we suggest
further dividing the Miller loop into two distinct phases.

2 Security

There is as yet no apparent consensus on how exactly to hit the standard
security levels of 128, 192 and 256 bits using pairings. As pointed out
by Aranha there are the optimistic and pessimistic schools of thought [1].
However there is general agreement that the 256-bit BN curve no longer
provides 128-bits of security, with estimates of its actual security varying
from 100 to 110-bits. The problem is that the finite extension field of size
3072 = 12× 256 bits is not big enough. Therefore a plausible response is to
move to a family of pairing-friendly curves, which while retaining the same
group size, increase the extension field size. And this is precisely what a
BLS12 curve provides. Furthermore a BLS24 curve has been proposed for
the 192-bit level of security [3], and a BLS48 curve for 256-bits of security
[22]. Despite the lack of consensus and standardisation, some implementors
have already “jumped the gun” by switching from the BN to the BLS12
curve [10].

As a concrete working example we propose a k = 12 BLS pairing-friendly
curve for 128-bit security. For this curve

p = (u− 1)2(u4 − u2 + 1)/3 + u

r = u4 − u2 + 1

3



A BLS curve has a CM discriminant of D = −3, and hence supports
a sextic twist which we will assume to be a D-type twist [30], and has the
defining equation

y2 = x3 + b

where b is small. For this curve the basic ate pairing is also optimal
[33], which somewhat simplifies our task. Extension of our idea to BN
curves and BLS curves of higher embedding degree, and to M-type twists, is
straightforward. We find that u = 1000800000100120016 (65 bits, Hamming
weight of 5) generates a 383-bit prime modulus and 256-bit prime group size,
with an extension field of size 4596 bits, and is GT-Strong [32] as regards
sub-group security, and with b = 15. According to at least some authorities
[23], a curve like this should be sufficient for 128-bits of security.

3 Line functions

The optimal ate pairing calculates w = e(Q,P ), where Q ∈ G2, P ∈ G1

are points in elliptic curve groups of order r, and w ∈ GT is an element
in the k-th degree extension, in this case Fp12 , also of order r. The elliptic
curve groups G1 and G2 must be distinct groups of order r, taken over
the extension Fp12 . However a common optimization is to choose G1 as the
group on the curve E(Fp) taken over the base field Fp, and G2 is represented
on E′(Fp2) as the sextic twist of the trace-zero group, which can be instantly
untwisted when needed to a point on E(Fp12).

Points on the twisted curve E′(Fp2) obey

y2 = x3 + b′

where for a D-type twist b′ = b/ξ and ξ ∈ Fp2 is neither a square or a
cube. Under the not very restrictive condition that p = 3 mod 8, then an
excellent choice is ξ = 1 +

√
−1.

An Fp12 value can be represented as Fp2 [ω]/(ω6 − ξ), that is as an array
of six Fp2 elements A+Cω+Eω2 +Bω3 +Dω4 +Fω5 which can be written
as (A+Bω3)+(C+Dω3)ω+(E+Fω3)ω2 if we consider an Fp12 as a triplet
of Fp4 elements [8]. For convenience we will represent such a value as

[[AB], [CD], [EF ]]

The Miller loop needs to evaluate so-called line functions. These are
elements in Fp12 that arise during the multiplication of Q by u using a
standard double-and-add algorithm, and can be considered as a distance
metric between these multiples of Q and the second stationary point P .

Assume Q is represented using homogeneous projective coordinates, and
that its current multiple has coordinates (X,Y, Z), and assume that the

4



coordinates of the fixed point P are provided in affine form as (xP , yP ).
Then the line function that arises as the result of a point doubling, is given
by

[[AB], [C0], [00]]

for a D-type twist, where A = −2Y ZyP , B = 3b′Z2 − Y 2 and C =
3X2xP . For a point addition of (X2, Y2, Z2) to (X,Y, Z) then A = (X −
ZX2)yP , B = (Y − ZY2)X2 − (X − ZX2)Y2, and C = −(Y − ZY2)xP [2].

Note the sparsity of the Fp12 line function. Exploitation of this sparsity
has been a major target of optimization efforts.

The Miller loop calculates what is essentially the product of many line
function evaluations. Costing an Fp2 multiplication as m it has been ob-
served that the product of two such sparse values costs only 6m using a
standard Karatsuba-like formula. This compares with the product of two
fully dense values which costs 18m, and the product of a dense value by a
sparse value which costs 13m [2].

In fact it is easily confirmed that the product of two sparse values results
in a product which looks like

[[AB], [CD], [E0]]

which still retains some exploitable sparsity (we shall refer to such a value
as “somewhat sparse”). Therefore an important first task for the implemen-
tor is to write a function which can compute the product of two elements
in Fp12 , fully exploiting any sparsity which may exist in either multiplicand.
Note that exploitable sparsity arises in the context in which the multipli-
cation happens, not by on-the-fly examination of individual components –
which might result in unwanted side-channel leakage.

If, as is sometimes suggested, the point Q is instead processed in affine
coordinates as (X,Y ) then the line function is somewhat simpler, with A =
yP , B = λX − Y and C = −λxP , where λ is the line slope calculated in
the standard way for point doubling or addition (and requiring a potentially
expensive and non-constant time inversion in Fp).

In all cases the values for A, B and C can be jointly multiplied at will
by any suitable element in Fp2 , as such a contribution will be wiped out by
the final exponentiation [5]. In the affine case a nice optimization [25] is to
multiply across by 1/yP , in which case A = 1, and since multiplication by 1
has no cost, a dense-sparse multiplication now reduces to 10m.

4 The classic Miller loop

The main for loop in algorithm 1 is here referred to as the Miller loop, and
the last line 8 is called the final exponentiation. The implementation of

5



Algorithm 1: Ate pairing on BLS12 curve

Input: Q ∈ G2, P ∈ G1, curve parameter u
Output: f ∈ Fp12

1 f ← 1
2 T ← Q
3 for i← blog2(u)c − 1 to 0 do
4 f ← f2

5 f ← f.lT,T (P ), T ← 2T
6 if ui = 1 then
7 f ← f.lT,Q(P ), T ← T +Q

8 f ← f (p
6−1)(p2+1)(p4−p2+1)/r

9 return f

the final exponentiation is specific to each different pairing-friendly curve.
For the BLS12 curve a fast algorithm is given in [16]. However the final
exponentiation is not the focus of this work.

In algorithm 1, T represents the multiples of Q that arise, and lT,S
represents the line function that arises when adding point S to point T . It
is coordinates of T and P that are used to calculate these line functions. Now
consider line 6 of the algorithm when the i-th bit of u equals 1, that is ui = 1.
In this loop iteration after squaring f , the value of f is updated as f ←
f.lT,T (P ).l2T,Q(P ). If calculated as described in this standard algorithm
this would cost two dense-sparse multiplications, that is 26m. However
by calculating lT,T (P ).l2T,Q(P ) separately, and only then multiplying f by
this product, the cost will be only 23m, as the sparse-sparse multiplication
costs 6m and the multiplication of the dense f by their “somewhat sparse”
product costs 17m.

This observation will not in most cases lead to significant savings, as u
should have a small Hamming weight, and the case ui = 1 should therefore
be rare. But it does point to an alternate way of structuring the Miller loop,
such that the sparseness of the line functions can be fully exploited in every
case, and not lost by premature multiplication by a fully dense value.

5 An alternate construction

First let us break the classic algorithm for the Miller loop into two parts, the
calculation and storage of the line functions in algorithm 2, and the Miller
loop in algorithm 3.

Note that the Miller loop part in algorithm 3 is now very simple, and is
dependent only on the number of bits in u, and not on its Hamming weight.
Observe that the value of f becomes dense after a couple of iterations of the
loop, due to the iterative squaring action. The complex computation and

6



Algorithm 2: Calculate and store line functions for BLS12 curve

Input: Q ∈ G2, P ∈ G1, curve parameter u
Output: An array g of blog2(u)c line functions ∈ Fp12

1 T ← Q
2 for i← blog2(u)c − 1 to 0 do
3 g[i]← lT,T (P ), T ← 2T
4 if ui = 1 then
5 g[i]← g[i].lT,Q(P ), T ← T +Q

6 return g

Algorithm 3: Miller loop for BLS12 curve

Input: An array g of blog2(u)c line functions ∈ Fp12

Output: f ∈ Fp12

1 f ← 1
2 for i← blog2(u)c − 1 to 0 do
3 f ← f2.g[i]
4 return f

combination of line functions is now handled in the separate line function
algorithm 2, where the sparsity that arises can naturally be exploited to the
full. However it is only when we consider the multi-pairing that we will fully
appreciate the advantage of this approach.

Before proceeding it would be appropriate to stop and consider the
amount of storage required for the array g. For a BLS12 curve with a
384-bit modulus p, then a total of at least 12×384×blog2(u)c bits would be
required. If targetting the 128-bit security level then a typical u might be
65 bits in length, and so the total storage requirement would be about 40k
bytes. We consider this to be quite acceptable for a moderately complex
multi-pairing-based protocol, although it may admittedly cause a problem
for a very small embedded application.

6 Efficient and flexible multi-pairings

A multi-pairing is the product of more than one pairing,
e(Q1, P1).e(Q2, P2)...e(Qn, Pn). It requires just one shared final expo-
nentiation, irrespective of the number of pairings involved. And it also
requires just one invocation of our new simplified Miller loop as described
above. The only modification required is to the line function algorithm,
where now more line functions associated with the other pairings must be
accumulated into the array g. See algorithm 4. A plausible way to proceed
would be to calculate the line functions for the first pairing using algorithm

7



2, and then accumulate the line functions associated with the other n − 1
pairings one at a time, using algorithm 4.

Algorithm 4: Accumulate another set of line functions into g

Input: The array g, Qj ∈ G2, Pj ∈ G1, curve parameter u
Output: Updated array g of blog2(u)c line functions ∈ Fp12

1 T ← Qj

2 for i← blog2(u)c − 1 to 0 do
3 t← lT,T (Pj), T ← 2T
4 if ui = 1 then
5 t← t.lT,Qj (Pj), T ← T +Qj

6 g[i]← g[i].t

7 return g

So to calculate a multi-pairing consisting of the product of n distinct
pairings, proceed as follows

• Execute algorithm 2 for the first pairing

• Call algorithm 4 n− 1 times, for each additional j-th pairing involved
in the multi-pairing.

• Invoke algorithm 3, to trigger the combined Miller loop calculation.

• Carry out the final exponentiation.

In practise it may be appropriate to use a more flexible accumulation
policy, depending on the provenance of the Qj . It may be the case that a
particular Qj is a constant, or it may be an important secret, or it may be
a publicly known value. In the case where it is a constant, the multiples of
Qj can be calculated in affine form, and used to precalculate the affine form
of the line functions from (λX − Y ) and −λ as described above, requiring
only a single Fp2 multiplication per line function. This will be much faster.
See also [12] and [31]. If Qj is an important secret it may be wise to pro-
cess it in constant time using homogeneous projective coordinates using the
exception-free formulae proposed in [27]. If the Qj is publicly known, then
processing them using non-constant time affine coordinates might be more
efficient. Each of these scenarios will require its own variant of algorithm
4. In this way the pairing line functions can be calculated using an optimal
technique for each pairing involved.

For example consider the well-known Boneh-Lynn-Shacham short signa-
ture scheme [9], for which signature verification requires the product of two
pairings. In this case the first Q1 is a constant fixed generator, the second
Q2 is a public key. Therefore is makes sense to process the line functions
that arise for each pairing differently.

8



7 Fully exploiting sparsity

In general sparse elements in Fp12 should be multiplied by other sparse el-
ements where possible, to preserve the benefits of sparsity for as long as
possible. To this end it would be advantageous to accumulate the product
of two pairings at a time, where possible. See algorithm 5, where we add
e(Qj , Pj).e(Qk, Pk) to an existing accumulation of products in g.

Algorithm 5: Accumulate two sets of line functions into g

Input: The array g, Qj , Qk ∈ G2, Pj , Pk ∈ G1, curve parameter u
Output: Updated array g of blog2(u)c line functions ∈ Fp12

1 T ← Qj

2 S ← Qk

3 for i← blog2(u)c − 1 to 0 do
4 t← lT,T (Pj), T ← 2T
5 t← t.lS,S(Pk), S ← 2S
6 if ui = 1 then
7 v ← lT,Qj (Pj), T ← T +Qj

8 v ← v.lS,Qk
(Pk), S ← S +Qk

9 t← t.v

10 g[i]← g[i].t

11 return g

In the case of affine coordinates this would also facilitate Montgomery’s
simultaneous inversion trick [24] which can be used to combine the modular
inverses required when adding or doubling points in affine coordinates.

8 Implementation

The method described has been implemented in the AMCL multi-lingual
crypto library 1. Here we derive indicative costs in terms of Fp2 multiplica-
tions for each stage of a multi-pairing calculation using our 383-bit BLS12
curve as an example.

We start with the final exponentiation, where we will assume the use
of the Granger-Scott Cyclotomic squaring formulae [17] which costs 6m,
rather than the Karabina method [20], which is significantly faster only if u
has an extremely small Hamming weight, and we don’t want to make that
assumption here. Using the formula derived in [16] the cost will be close to
2499m plus one inversion in Fp.

Our simpler Miller loop will iterate 65 times (with the first iteration “for
free”, as f = 1), at a cost of one Fp12 squaring using the Chung-Hasan SQR3

1https://github.com/miracl/amcl

9

https://github.com/miracl/amcl


method [11] (which we cost as 11m) and one multiplication per iteration.
This multiplication can be assumed to be dense-sparse for a single pairing,
and dense-somewhat-sparse for every set bit in u. So for a single pairing the
cost will be 1556m. For a double pairing the multiplication can be assumed
to be dense-somewhat-sparse, and dense-dense for every bit set in u, so in
this case the cost will be 1797m. For the product of more than two pairings,
all multiplications will be dense-dense, and the cost will be 1856m.

The line function calculation is a little more complex, as it depends on
how the line functions are calculated. If precomputation is possible, then
for the first pairing the cost is just 1m per bit of u plus 7m for every set bit
for a total of 100m. For the second pairing the cost will be 540m, and for
the third and subsequent pairings the cost will be 965m. If the optimization
of [25] is used, further savings are possible.

Without precomputation, we must include the cost of the implicit ellip-
tic curve E(Fp2) point multiplication of uQj . This can be done using either
affine or homogenous projective coordinates. Assuming the latter and fol-
lowing [2], the costs rise from 550m for the first pairing, to 995m for the
second, and 1415m for all subsequent pairings (assuming an Fp2 squaring is
roughly equivalent to two-thirds the cost of m).

Finally if two more pairings are to be accumulated together to an ex-
isting product of two or more pairings for example using non-precomputed
projective coordinates, then using algorithm 5 the additional cost will be
2650m, a useful improvement over two single pairing accumulations which
would cost 2× 1415m = 2830m.

9 Higher Security

We briefly consider the attainment of 192 and 256-bits of security. For the
former a BLS24 curve, with a 50-bit u that results in a 480-bit modulus p,
would appear to be a possible candidate. For the latter we suggest a BLS48
curve with a 32-bit u that results in a 560-bit modulus p. Note that rather
counter-intuitively u gets smaller for higher levels of security, which suggests
that the size of g grows only slowly. For these suggested parameters, g would
be approximately 72k bytes and 108k bytes respectively.

10 Conclusion

We suggest a novel approach to the implementation of type-3 multi-pairings,
which acknowledges that the type-3 multi-pairing is in fact the primitive re-
quired by the majority of pairing-based protocols that are of practical inter-
est. In return for a memory resource required to accumulate line functions,
we derive a more flexible three stage algorithm where the contribution of
each pairing in a multi-pairing can be accumulated independently into just

10



the first stage. Furthermore we suggest that this approach allows the sparse-
ness that arises in the representation of the line functions to be exploited to
the maximum.

References

[1] D. Aranha. Pairings are not dead, just resting. ECC 2017, 2017. https:
//ecc2017.cs.ru.nl/slides/ecc2017-aranha.pdf.

[2] D. Aranha, P. Barreto, P. Aranha, and J. Ricardini. The realm of
pairings. In Selected Areas in Cryptography – SAC’2013, volume 8282
of LNCS, pages 3–25. Springer-Verlag, 2013. https://eprint.iacr.

org/2013/722.

[3] Razvan Barbulescu and Sylvain Duquesne. Updating key size estima-
tions for pairings. Journal of Cryptology, Jan 2018. https://doi.org/
10.1007/s00145-018-9280-5, http://eprint.iacr.org/2017/334.

[4] P. Barreto, C. Costello, R. Miscoczki, M. Naehrig, G. Pereira, and
G. Zanon. Subgroup security in pairing-based cryptography. In Lat-
incrypt 2015, volume 9230 of LNCS, pages 245–265. Springer-Verlag,
2015.

[5] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott.
Efficient algorithms for pairing-based cryptosystems. In Ad-
vances in Cryptology – Crypto’2002, volume 2442 of LNCS, pages
354–368. Springer-Verlag, 2002. https://www.iacr.org/archive/

crypto2002/24420355/24420355.pdf, https://eprint.iacr.org/

2002/008.

[6] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic
curves with prescribed embedding degrees. In Security in Communi-
cation Networks – SCN’2002, volume 2576 of LNCS, pages 263–273.
Springer-Verlag, 2002. https://eprint.iacr.org/2002/088.

[7] P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of
prime order. In Selected Areas in Cryptography – SAC’2005, volume
3897 of LNCS, pages 319–331, Kingston, 2006. Springer-Verlag. https:
//eprint.iacr.org/2005/133.

[8] N. Benger and M. Scott. Constructing tower extensions of finite fields
for implementation of pairing-based cryptography. In WAIFI 2010,
volume 6087 of LNCS, pages 180–195. Springer-Verlag, 2010. https:

//eprint.iacr.org/2009/556.

11

https://ecc2017.cs.ru.nl/slides/ecc2017-aranha.pdf
https://ecc2017.cs.ru.nl/slides/ecc2017-aranha.pdf
https://eprint.iacr.org/2013/722
https://eprint.iacr.org/2013/722
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
http://eprint.iacr.org/2017/334
https://www.iacr.org/archive/crypto2002/24420355/24420355.pdf
https://www.iacr.org/archive/crypto2002/24420355/24420355.pdf
https://eprint.iacr.org/2002/008
https://eprint.iacr.org/2002/008
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2009/556
https://eprint.iacr.org/2009/556


[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In Advances in Cryptology – Asiacrypt’2001, volume 2248 of
LNCS, pages 514–532. Springer-Verlag, 2002.

[10] S. Bowe. BLS12-381: New zk-SNARK elliptic curve construction, 2018.
https://z.cash/blog/new-snark-curve/.

[11] J. Chung and M. A. Hasan. Asymmetric squaring formulae, 2006. http:
//www.cacr.math.uwaterloo.ca/.

[12] C. Costello and D. Stebila. Fixed argument pairings. In Latincrypt –
2010, volume 6212 of Lecture Notes in Computer Science, pages 92–108.
Springer-Verlag, 2010.

[13] International Organization for Standardization. Information technol-
ogy - security techniques – cryptographic techniques based on ellip-
tic curves. part 5: Elliptic curve generation. ISO/IEC 15946-5, 2009.
See https://tools.ietf.org/pdf/draft-kasamatsu-bncurves-02.

pdf.

[14] E. Fouotsa, P. Pecha, and N. El Mrabet. Beta weil pairing revisited.
Afrika Mathematika, pages 1–18, 2019.

[15] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156:3113–3121, 2008.

[16] L. Ghamman and E. Fouotsa. On the computation of the optimal ate
pairing at the 192-bit security level. Cryptology ePrint Archive, Report
2004/058, 2016. http://eprint.iacr.org/2016/130/.

[17] R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup
of sixth degree extensions. In PKC 2010, volume 6056 of LNCS, pages
209–223. Springer-Verlag, 2010.

[18] R. Granger and N. P. Smart. On computing products of pairings. Cryp-
tology ePrint Archive, Report 2006/172, 2006. http://eprint.iacr.

org/2006/172.

[19] Antoine Joux and Cécile Pierrot. The special number field sieve in
Fpn - application to pairing-friendly constructions. In Zhenfu Cao and
Fangguo Zhang, editors, Pairing 2013, volume 8365 of LNCS, pages 45–
61, Beijing, China, 2013. Springer. https://eprint.iacr.org/2013/

582.

[20] K. Karabina. Squaring in cyclotomic subgroups. Mathematics of Com-
putation, 82:555–579, 2013.

12

https://z.cash/blog/new-snark-curve/
http://www.cacr.math.uwaterloo.ca/ 
http://www.cacr.math.uwaterloo.ca/ 
https://tools.ietf.org/pdf/draft-kasamatsu-bncurves-02.pdf
https://tools.ietf.org/pdf/draft-kasamatsu-bncurves-02.pdf
http://eprint.iacr.org/2016/130/ 
http://eprint.iacr.org/2006/172
http://eprint.iacr.org/2006/172
https://eprint.iacr.org/2013/582
https://eprint.iacr.org/2013/582


[21] T. Kim and R. Barbulescu. The extended tower number field sieve: A
new complexity for the medium prime case. In Crypto 2016, volume
9814 of LNCS, pages 543–571. Springer-Verlag, 2016. https://eprint.
iacr.org/2015/1027.

[22] Y. Kiyomura, A. Inoue, Y. Kawahara, M. Yasuda, T. Takagi, and
T. Kobayashi. Secure and efficient pairing at 256-bit security level.
In ACNS 2017, volume 10355 of LNCS, pages 59–79. Springer-Verlag,
2017.

[23] A. Menezes, P. Sarkar, and S. Singh. Challenges with assessing the im-
pact of NFS advances on the security of pairing-based cryptography. In
Mycrypt 2016, volume 10311 of LNCS, pages 83–108. Springer-Verlag,
2016. https://eprint.iacr.org/2016/1102.

[24] P. Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48:243–264, 1987.

[25] Y. Mori, S. Akagi, Y. Nogami, and M. Shirase. Pseudo 8-sparse multi-
plication for efficient ate-based pairing on Barreto-Naehrig curve. In
Pairing 2013, volume 8365 of LNCS, pages 78–88. Springer-Verlag,
2013.

[26] N. El Mrabet and M. Joye, editors. Guide to Pairing-Based Cryptog-
raphy. Chapman and Hall/CRC, 2016.

[27] J. Renes, C. Costello, and L. Batina. Complete addition formulas for
prime order elliptic curves. In Eurocrypt – 2016, volume 9665 of Lecture
Notes in Computer Science, pages 403–428. Springer-Verlag, 2016.

[28] Oliver Schirokauer. The number field sieve for integers of low
weight. Mathematics of Computation, 79(269):583–602, January
2010. https://doi.org/10.1090/S0025-5718-09-02198-X, http:

//eprint.iacr.org/2006/107.

[29] M. Scott. Computing the Tate pairing. In CT-RSA, volume 3376 of
LNCS, pages 293–304. Springer-Verlag, 2005.

[30] M. Scott. A note on twists for pairing-friendly curves, 2009. indigo.

ie/~mscott/twists.pdf.

[31] M. Scott. On the efficient implementation of pairing-based protocols. In
IMACC 2011, volume 7089 of LNCS, pages 296–308. Springer-Verlag,
2011. https://eprint.iacr.org/2011/334.

[32] M. Scott. Unbalancing pairing-based key exchange protocols. Cryp-
tology ePrint Archive, Report 2013/688, 2013. Available from http:

//eprint.iacr.org/2013/688.

13

https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2016/1102
https://doi.org/10.1090/S0025-5718-09-02198-X
http://eprint.iacr.org/2006/107
http://eprint.iacr.org/2006/107
indigo.ie/~mscott/twists.pdf
indigo.ie/~mscott/twists.pdf
https://eprint.iacr.org/2011/334
http://eprint.iacr.org/2013/688
http://eprint.iacr.org/2013/688


[33] F. Vercauteren. Optimal pairings. IEEE Transactions of Information
Theory, 56:455–461, 2009. https://eprint.iacr.org/2008/096.

14

https://eprint.iacr.org/2008/096

	Introduction
	Security
	Line functions
	The classic Miller loop
	An alternate construction
	Efficient and flexible multi-pairings
	Fully exploiting sparsity
	Implementation
	Higher Security
	Conclusion

