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Abstract. Continuous Key Agreement (CKA) is a two-party procedure
used by Double Ratchet protocols (e. g., Signal). This is a continuous and
synchronous protocol that generates a fresh key for every sent/received
message. [t guarantees forward secrecy and Post-Compromise Security
(PCS). PCS allows for reestablishing the security within a few rounds
after the state of one of the parties has been compromised.

Alwen et al. have recently proposed a new KEM-based CKA construction
where every message contains a ciphertext and a fresh public key. This
can be made quantum-safe by deploying a quantum-safe KEM. They
mention that the bandwidth can be reduced when using an ElGamal
KEM (which is not quantum-safe). In this paper, we generalized their
approach by defining a new primitive, namely Merged KEM (MKEM).
This primitive merges the key generation and the encapsulation steps of
a KEM. This is not possible for every KEM and we discuss cases where a
KEM can be converted to an MKEM. One example is the quantum-safe
proposal BIKE1, where the BIKE-MKEM saves 50% of the communica-
tion bandwidth, compared to the original construction. In addition, we
offer the notion and two constructions for hybrid CKA.
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1 Introduction

Double Ratchet (DR) protocols (e.g., Signal [16]) are used to secure instant
messaging applications such as WhatsApp [3], Skype [14], Facebook Messenger
[1], and Google Allo [15]. Several formal security analyses of the DR, protocol and
its variants are given in [4,6,10,11,13,17], focusing on slightly different sets of
security properties. For example, according to [4] a secure DR based messaging
protocol between parties A and B in the presence of an attacker A should have
the following properties:

— Correctness. If A is a passive attacker then A (B) receives all the messages
sent by B (A) in the correct order.

— Immediate Decryption and Message-Loss Resilience. A message is decrypted
upon arrival. In addition, the protocol execution continues even if a message
is lost.



Authenticity. A cannot modify messages or inject new ones (unless one of
the parties’ state is compromised).

— Privacy. A does not learn anything about the content of the messages (unless
one of the parties’ state is compromised).

— Forward Secrecy (F'S). If one of the parties’ state is compromised, the pre-
vious messages remain confidential.

— PCS. The parties can recover from a state compromise. Here, we assume that
the parties have access to a randomness source and that A remains passive.

— Randomness leakage/failures. Fresh randomness is required only for achiev-
ing PCS and is not used to achieve other property.

A DR protocol achieves these properties by: a) encrypting and authenticating
every message with a fresh symmetric key; b) using fresh randomness (that is
often used by some Public Key Encryption (PKE) scheme to achieve PCS).

In [4] the DR protocol uses a CKA (public-key ratchets), an AEAD with
new keys for every message (symmetric-key ratchets), FS-AEAD hereafter, and a
hash function. The CKA can be constructed from any PKE scheme, in particular,
any IND-CPA KEM. The use of KEMs is also mentioned in [17] (although the
construction in [4] is simpler). The DR scheme can be made quantum-safe by
using a quantum-safe KEM, FS-AEAD, and hash function.

To construct a CKA from a KEM, party A (wlog) uses a public key (received
from B) to encapsulate a shared secret ss into a ciphertext ct, generates a new
pair of secret/public keys (sk,pk) and sends ¢t and pk to B, at every round.
This protocol doubles the communication bandwidth compared to DH CKA
where only one public key is sent (assuming the DH and the KEM public keys of
the same size). To reduce the bandwidth overhead, [4] mentions that deploying
ElGamal KEM allows using the ciphertext as the subsequent public key. Note
that ElGamal KEM is not quantum-safe.

Our contribution:

— We define a new primitive that we call MKEM. An MKEM is derived from
a KEM by merging the key generation and the encapsulation procedures.
Using it can achieve 50% bandwidth reduction compared to the original
CKA protocol with the same KEM. It also may save some of the operations
executed during encapsulation. We point out that converting a KEM to an
MKEM is not always possible (e.g., BIKE2).

— We present an instantiation of MKEM with BIKE1 [5].

— Following Bindel et al. [8] (who introduced compilers for quantum-safe hybrid
Authenticated Key Exchange) we propose two compilers for a hybrid CKA.
We believe that this is the first hybrid quantum-safe CKA compiler.

The organization of the paper. Section 2 introduces some notation and
background. In Section 3 we describe the MKEM scheme and its properties. We
present an MKEM instantiation that is based on BIKE1 in Section 4, and two
hybrid CKA constructions in Section 5. Section 6 is the conclusion.



2 Notation and background

We denote null values and protocol failures by L. Uniform random sampling from

a set W is denoted by w & W.Foran algorithm A, we denote its output by out =
A() if A is deterministic, and by out < A() otherwise. The (Hamming) weight
of a vector of bits x is denoted by wt(z). The finite field of 2 elements is denoted
by Fs. The xor operation is denoted by @. An attacker A is parameterized by its
running time t. Let the term epoch denote the period between two consecutive
messages sent by the same party in a DR protocol. During an epoch, the other
party can send as many messages as it wishes.

2.1 Continuous Key Agreement (CKA)

A CKA (roughly) models the public-key ratchets in a DR protocol. It can use
a PKE of choice and in particular a KEM. This synchronous protocol between
parties A and B sends a message msg; in round ¢: from A to B if i is even and
from B to A otherwise. A fresh shared secret ss; is agreed by both parties in
round i. The state of the parties is denoted by v(Y) and (B, respectively.

Definition 1. A CKA scheme consists of four algorithms CKA = (CKA-Init-A,
CKA-Init-B, CKA-S, CKA-R), where

— CKA-Init-A (CKA-it-B) gets an input key k and outputs an initial state.
The notation is ¥ «CKA-Init-A(k) (y(B) < CKA-Init-B(k)), respectively.
— CKA-S updates the party’s state v, generates a message msg;, and a key
li
ss;. The notation is: ()", msg;, ss;) + CKA-S(y0)).
— CKA-R for an input message msg; and a state ¥\) generates a new state
! /
7" and calculates the shared secret. The notation is (y()", ss;) < CKA-

CKA-S(v")) is a randomized algorithm. For adversarial cases where the source
of randommess is controlled by an adversary, we denote the algorithm by CKA-
S(v"),r). Here v denotes the adversary controlled randomness. We use K to
denote the set of initial keys and SS to denote the set of possible shared secrets
ss;, 1 =1,2,....

Correctness. A CKA scheme is correct if for every i = 1,2,..., A and B agree
(with high probability) on the same (shared) secret ss;.

Security. We briefly describe the CKA security game (a full description is
found in [4]). A challenger Chal sets the epoch counters t4 = tp = 0, samples
a bit b < {0,1}, an initial key k < K, and invokes v «CKA-Init-A(k) and
7(B) <~ CKA-Init-B(k). Chal receives an input t* that defines the round on which
the challenge oracle may be called.

Let U denote one of the users A or B. An adversary A interacts with Chal by
making oracle calls to one of the following five oracles (in a ping-pong order
A—-B—-A—..):



1. Send-U(): increment t;; by 1, perform (7Y, msgy,,, sst,,) < CKA-S(7Y), and
return (msgy,, , $St,, )-

2. Send-U'(r): increment t; by 1, perform (vY, msgy,,, ssi,) < CKA-S(yY,r),
and return (msgy,,, $St,,). This oracle can be called only if max(ta,tp) <
t* — 2.

3. Receive-U(): increment t;; by 1 and perform (7Y, -) = CKA-R(vY, msgy,, ).

4. Corr-U(): return vY. A call to this oracle is allowed only when max(t4,tp) <
t* —2orty >t*+ Acka. (Acka is defined below).

5. Chall-U(): increment ¢y by 1, and perform (yY, msgy,, , sss,, ) + CKA-S(yY).

If b = 0 return (msg,, $St,,), and otherwise set ss’ & SS and return
(msgt,, , ss). This oracle can be invoked only when ty = t* and if no Corr()
or Send-U’() calls were performed less than two epochs before the call.

The game is parameterized by Acga: the minimum number of epochs be-
tween t* and a state that do not contain secrets. When a party reaches epoch
t* + Acka, its state may be revealed to A (by a Corr-U() call). The game is
endless but we consider it terminated if 4(4) and () are revealed or when A
outputs a bit o'. A wins if ¥ = b. The advantage of A against a CKA with
Acka = A is denoted by AdvCE4(A).

ror,A

Definition 2. A CKA scheme is (t, A, €)-secure if for all t-attackers A,
AdvSEA(A) < e (1)

ror,A

2.2 Key Encapsulation Mechanism (KEM)

A KEM is a public key primitive. We denote the secret key and public key do-
mains by SK and PK, respectively. A KEM consists of three functions: keygen,
encaps, decaps. It is played between parties A and B through three messages
(sent over an un-trusted channel). First, A invokes (sk, pk) + keygen(1”) gen-
erating a secret key sk € SK and a public key pk € PK, and sends pk to B. B
uses the received pk and invokes (ss,ct) < encaps(1”, pk) to produce a cipher-
text ¢t and a shared secret ss € SS. B sends ct to A. A uses the received ct and
invokes ss = decaps(sk, ct) (in some KEM protocols decaps may occasionally
fail. In such cases we say that the output is L).

3 Merged KEM (MKEM)

We propose MKEM as a primitive for CKA.

Definition 3. An MKEM is a public-key primitive with two algorithms M K EM
(kgc, decaps) that have the following syntax:

— kgc. Take an (implicit) security parameter and a public key pko and output
(sk1,pki,cty,ss1). Here, (sk1,pki) is a newly generated key pair. If pko =L
then ct; = ss1 =L (i.e., output (ski,pki, L, L) < kgc(L)). Otherwise, use
pko to generate a ciphertext cty, in a way that pk1 and a shared secret ssy
can be retrieved from ct; by invoking decaps.



— decaps: receive a secret key skog and a ciphertext ct1 and retrieve the shared
secret ssy and pky, i. e., (ss1,pk1) = decaps(sko, ct1).

Remark 1. In MKEM, only the initial public key pky is non-secret. For ¢ > 1,
pk;—1 and pk; have no use after calling (-, pk;,-, ) + kgc(pki—1), and can be
deleted immediately after this invocation.

Correctness. Consider the (continuous) iterative sequences: A executes (skg, pko, L
, L) + kgc(L) and sends pko to B; B executes (sky,pkP, cti,ssP) < kgc(pko)
and sends ct; to A; A repeat the process by executing (ssil, pk{') = decaps(sko, ct1)
and (ska, pkZ, cty, ss8) + kgc(pk1) and sending ct; to B and so on. We say that

an MKEM is correct if for each i > 1, ss#* = ss? and pk{* = pkP.

Security. The security of an MKEM is defined similarly to the IND-CPA and
IND-CCA security of a KEM. Let Chal be the game challenger and let A be an
adversary.

— IND-CPA: Chal generates (ski,pk1,cty =1, ss1 =1) < kge(L) or (skq, pkq,

ct1,ss1) <+ kgc(pko), pko € PK, computes (-, cta,589) < kgc(pky), and

samples ss} & SS, b < {0,1}. It hands (ct1, cta, ss8) to A that outputs a
bit &’ (indicating whether it believes it received ssy or ss3). A wins if ' = b.

— IND-CCA - Here, A also has access to a decaps oracle. This oracle returns
(Ss, pk) for every input ct # ctq, cta.

Definition 4. An MKEM scheme is (t, €)-cpa-secure if for all t-attacker A,

Advé‘ngM(A) <e (2)

Figure 1 shows the flow of a CKA that uses an MKEM (Panel (a)) and also
compares (Panel (b)) to a CKA based on a KEM. We require that the MKEM
is IND-CPA (similarly to KEM, IND-CCA is not required).

Constructing an MKEM scheme is not necessarily simple. Indeed, in Section 4
we show how to transform BIKE1 KEM into BIKE1-MKEM and explain why the
same technique cannot be applied to BIKE2/3. Consequently, we work on each
case separately, without stating a general security relation between an MKEM
and its related KEM (although we believe that equivalence exists).

Lemma 1. Let MK be a (¥, €)-cpa-secure MKEM. Then, the corresponding CKA
scheme (denoted CKA) is (t, A = 0, €)-secure for t ~t'.

Proof. According to [4, Theorem 2] for every KEM K that is (", €)-cpa-secure
(t"" =~ t), there is an adversary B for which

AdvSEL (A) < AdvEEM () (3)

ror,0 cpa

Replacing the KEM with the analogous MKEM does not change the confiden-
tiality of the messages that A can see (it sees a ciphertext in both cases).



Epoch t4 starts when A sends msgs:,—1 and ends when it sends msgas, +1-
If in this epoch, A performs Corr-A(), it gets to see v = skot, 1 (or 44 =
(skat,+1) if msge:, was already received). This allows A to decapsulate cto;,
(vesp. ctar,+2) and extract (sso,,pkat,) (vesp. (ssat,+2, Pkat,4+2)). It provides
no information on sko¢, (resp.ssat,t2) to A, by the properties of the underlying

KEM. Consequently, A = 0 also when using MKEM. ad
A B
sko pkO
(sk1,pk1, cti,ss1) < MK.kge(pko)
ctq
msgy
(ss1,pk1) = MK.decaps(sko, ct1)
(ska, pka, cta, ss2) + MK.kge(pki)
cto
msga
(a)
A B
sko pkO
(ct1,s81) + K.encaps(pko)
(sk1,pk1) + K.keygen()
cty,pk1
msgi1
(ss1) = K.decaps(sko, ct1)
(ct2, ss2) + K.encaps(pki)
(sk2,pk2) + K.keygen()
cty,pka
msgo
(b)

Fig.1: Panel a: A CKA protocol that uses an MKEM (MK). Panel B: A CKA
protocol that uses KEM (K). The initialization sk <—CKA-Init-A(k), pko < CKA-
Init-A(k) (not shown in the figures) starts A with sko and B with pkg. At each
subsequent round (7) the new shared secret (ss;) is generated.



Remark 2. In the proof of Lemma 1 if A gets to see some pk;, i > 1 value it may
be able to decrypt/decapsulate ct; (that was derived from pk;) and obtain ss;.
However by the properties of the underlying KEM, A cannot obtain sk;.

4 BIKE-MKEM

BIKE [5] is a suite of 3 KEMs (BIKE1, BIKE2, BIKE3) submitted to the NIST
Post-Quantum Cryptography (PQC) project ( [2]). They are IND-CPA secure
KEMs. BIKE1/2/3 use Quasi Cyclic - Moderate Density Parity Check (MDPC)
codes, to enjoy shorter keys than McEliece KEM [7]. Fig. 2 outlines BIKE1/2/3,
and full details are available in [5].

The computations of BIKE are executed over R := Fo[X]/ (X" — 1), for the
parameter r. Denote the (Hamming) weights of the secret key sk = (sko, sk1)
and the errors vector e by w and t, respectively. Concrete BIKE1 parameters
for NIST Level-1 are |pk| = |ct| = 20,326, |ss| = 256 r = 10,163, w = 142, and
t = 134. BIKE1/2/3 are IND-CPA KEM because decoding failures may occur,
at some low rate, estimated to be at most 10~8. Therefore, and also to achieve
forward secrecy, BIKE1/2/3 use ephemeral keys.

Server S Client C
Generate ephemeral QC-MDPC
key pair (sk, pk)

pk
msgil
Generate a sparse error vector e
ct <+ QC-MDPC.Encrypty(e)
Derive the ss from e
ct
msgo

(e' or L) = QC-MDPC.Decryptsi(ct)
Derive the ss from e’

Fig.2: A general description of BIKE1/2/3 protocol.

4.1 BIKE1l-MKEM transformation

Figure 3 shows the proposed BIKE1-MKEM. For every X € {pk, sk,ct,e},i =
{0,1} X consists of two equal length halves (X[0], X[1]) (e. g., pk = (pk[0], pk[1])).
We explain the elements of the protocol below.



— kgc(pko). Receive pky € PK as input. Generate a secret key sk with odd
weights of = w/2 (for ski[0] and for sk;[1]). Generate g & R and calculate

the public key pk; = (g - ski[1], g - sk1[0]). Sample bg, by & {0,1} and set
pki = (pk1[0] ® bo, pk1[1] ® b1) (see Remark 4 for the requirement on pk?).

Subsequently, generate an error vector e & R with weight ¢ and use pk] and
pko to encrypt it to a ciphertext ct = (pko[0] - pk}[0] + e, pko[l]-pk;[1]+e1).
Hash the error vector e to generate the value ss (which is the shared secret).
Output sk, pky, ct, and ss.

— decaps(sko, ct). Receive sky € SK as input. Compute the syndrome synd =
ct[0] - sko[0] + ct[1] - sko[0] and decode synd (with a QC-MDPC decoder)
to extract the error vector €’. If the decoding succeeds and also wt(e’) = t,
calculate

pky = (pk1[0], pka[1])
= (ki 0] (ct[0] = ¢'[0]) , Pk *[1] (ctl1] — €'[1]))

(see Remark 5 for how to calculate pky '[0] and pkg *[1]). If pk}[i], i = 0,1 is
even set pki[i] = pki[i] ® 1. Set pk1 = (pk![0], pk1[1]) and derive the shared
secret ss by hashing ¢’.

Remark 3. The encapsulation in BIKE1 (which is a KEM) samples a random

message 1m & {0,1}™. The decapsulation needs only to retrieve the error vector
but not m itself. In BIKE1-MKEM the decapsulation needs to extract both the
shared secret ss and the public key pk;.

Remark 4. In BIKE1 MKEM we replace m with pky = (pk1[0], pk1[1]) € PK =
{0,1}"-with-even-weight. Thus, we need to convert it to be a uniform random

element in {0, 1}™. To this end, we sample two bits b; & {0,1}, 7= 10,1, and xor
them to the least significant bit of pk; [¢]. During decapsulation (after extracting
pki), decaps checks if one of its halves has even weight, and flips its least
significant bit accordingly.

Remark 5. The values pky 1[0],pk0_ '11], required to retrieve pk;, can be cal-
culated during either kgc or decaps (they are invertible by the definition of
BIKEL). In the first case we extend the “structure” of the secret key to sk; =
(sk1[0], sk1[1], pkg 1[0], pky *[1] and in the second case we change it into sk, =
(sk110], sk1[1], pko[0], pko[1]), respectively.

Correctness. The correctness of BIKE1-MKEM follows by inspecting the flows,
up to possible decoding failures that, for BIKE1-MKEM occur at a Decoding
Failure Rate (DFR) < 1078.

Lemma 2. Let BIKE1-KEM be a (t,€)-cpa-secure KEM. Then, BIKE1-MKEM
is a (t, €)-cpa-secure MKEM.



(ski, pki, ct, ss) < kgc(pko)

8]@‘1 (i R,
wt(sk1[0]), wt(sk1[1]) is odd and = w/2

(ss, pk) = decaps(sko, ct)

synd = ct[0] - sko[0] + ct[1] - sko[1]
¢/ = BIKE.decode(synd, sk’)

Abort if (' =1)

$ .
g < R of odd weight Abort if wt(e') # t

pk = (g ski[l],g - sk1[0])

(Pkq * 0)(ct[0] — €[0]),
P [1)(ct[1] — €'[1]))

pk1 =
bo, by <& {0,1} !

pk1 = (pk1[0] @ bo, pk1[1] & b1)
e < R? such that wt(e[0]) + wt(e[1]) = ¢t
ct = (pko[0] - pk1[0] + €[0],

pko[1] - pki[1] + e[1])

If wt(pk}[0]) is even pk1[0] = pki[0] & 1
If wt(pky[1]) is even pki[1] = pki[1] @ 1
pk1 = (pk1[0], pki[1])

ss = Parallel_SHA®®(e) ss = Parallel SHA®*(¢')

Fig.3: BIKE1 MKEM. Here, note that for every X € {pko, sko, pk1, sk1, e, ct},
X consists of two equal length halves (X[0], X[1]) (e.g., ¢t = (ct[0],ct[1])).
Parallel SHA%3 is the hash function (that was optimized for performance) used
by BIKE [5].

Proof. Let A be an adversary against BIKE1-MKEM. We construct an adversary
B against the IND-CPA property of BIKEL. B receives a triple (pk, ct, ssp) and
attempts to guess b = {0, 1} as described before. It hands (pk, ct, ssp) to A and
outputs the same bit that A outputs. A cannot distinguish a ciphertext that
was generated by BIKE1-KEM from a ciphertext generated by BIKE1-MKEM,
because the generation is equivalent. Therefore,

AdpBIKEI-MEEM (£) < AqyBIKEI-KEM () < ¢ (4)
(we consider the same ¢ for both A and B). O

4.2 CKA, MKEM and DFR

This section discusses the difficulties that arise from using a KEM/MKEM that
has non-negligible DFR, (e. g., BIKE1) for constructing a CKA!. Consider, the
case in the DR protocol of [4], where (wlog) A sends a msg; = (ct,pk) to B,
and B cannot decapsulate it (due to a decapsulation error). In this case the DR
protocol stalls: B ignores msg; and leaves its epoch counter tp unchanged. A
that does not expect an acknowledgement, continues to use the “bad” ciphertext
ct for its subsequent messages, during the epoch that has “no reason” to change.
The motivation for not sending an acknowledgement in response to msg; is: a)

! CKA uses ephemeral keys for both KEM and MKEM. This protects the scheme
from attacks that may exploit decapsulation failures, such as [12] in the context of
QC-MDPC codes. We note that CKA is aborted (and subsequently re-initialized)
upon encountering a decapsulation failure.
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the DR, protocol is asynchronous; b) avoid a Denial of Service (DoS) situation
that occurs when A deliberately sends “bad” messages to B that cannot be
decapsulated. Here, sending (a failure) “acknowledgement” would overload the
network.

The DFR of BIKEI-MKEM is at most 1078, We argue that this can be
tolerated from the practical viewpoint. Consider a user that performs 10,000
conversations, using 10,000 epochs. Every epoch includes at least one message.
Even in this extreme scenario, the user is expected to experience a decoding
failure at most once. From the practical viewpoint, it means that BIKE1-MKEM
is correct 99.999999% of the time.

A general treatment for DFRs in DR protocols is left as a future work, but
we provide here, some practical remedies.

1. A messaging application can offer “refresh” /“restart” functionality as com-
monly done in many applications. When a user expects messages but notices
that none arrive for a “long” period of time he can invoke a “restart” / “refresh”
for the conversation. This alleviates inconvenience inflicted by decoding er-
rors. Stalls due to DoS attacks are captured in [4].

2. A messaging application can use a timer. If no response arrives after a long
period of time the application can automatically restart the connection.

3. A receiver who fails to decapsulate a message can alert the sender. This
approach is not ideal because it can lead to a DoS attack. Unless, the re-
ceiver can distinguish between benign decapsulation errors and maliciously-
sent “bad” messages. An example for such case is the Public Key Secure-
Messaging (PKSM) of [4].

5 A Hybrid CKA constructions

Currently, new standards for quantum-safe key exchange, encryption and signa-
tures are developed, but no finalize vetted schemes are available for immediate
deployment (the NIST process [2] is expected to last a few more years). However,
threats (at least theoretical) to current CKAs exist: recorded sessions that are
secure in the classical world may be broken in a Post-Quantum (PQ) setting.
A hybrid approach that combines a classical and a quantum-safe scheme seems
to be a prudent approach, hoping to achieve post-quantum security without
taking the risk of a premature transition to an un-vetted scheme. To this end,
some hybrid Key Exchange (KEX) protocols and combiners have been recently
suggested (constructions and useful survey are given in [8]).

We extend the list of hybrid KEX/AKE/SSH with a new notion, of a Hybrid
CKA (H-CKA). Concretely, we propose two constructions. Parallel H-CKA and
Interleaved H-CKA, both using the hybrid KEM of [8].

Parallel H-CKA. This is a combination of two CKA protocols: classical C K A€
and quantum-safe CK A9 (as illustrated in Fig. 4). Here, 7' = (sk¢, sk?) +-CKA-
Init-A(k¢, k?) and v& = (pk¢, pk?) +CKA-Init-B(k¢, k), where k¢, k7 € K, pk® €
PKS, pk? € PK? and sk, sk? are the associated secret keys.



11

— The procedure (v, msg; = (ct§, ct?), ss;) «~CKA-S(7): 1) calculate (in par-
allel)

(Skic’pkicv th, Sszc) < MKc.kgC(pkf_l)
(ski, pkl, ct], ss?) + MK?.kge(pk!_;)

2) apply a combiner (e.g., as in [8]) ss; = combine(ss$, ss?, msg;) and gen-
erate the shared secret ss;; 3) set 7/ = (sk§, sk).

— The procedure ('y’,ssi) +CKA-R(v,msg;): 1) decapsulate (ct$,ct]) to ex-
tract (ss§, ssi, pk$, pkl); 2) set v = (pk§, pk!) and apply the same combiner
as above.

There are no additional (sub)rounds in the Parallel H-CKA compared to CKA.
However, the communication bandwidth is the sum of the bandwidths of the
two involved schemes. We note that the H-CKA construction uses MKEMSs, but
it also possible to use KEMs instead.

A B
ski, skg pk§, pkg

(skt, pkt, ctf, ssT) + MKC.kge(pk§)
(ski, pki, cti, ss?) + MK? kgc(pkg)
ss1 = combine(ss{, ss¥, msgi1)

cti,ct?
msgi

(ssf, pki) = MK®.decaps(skg, ctf)

(ss¥, pkl) = MKY.decaps(skd, ct?)

(sks, pks, cts, ss5) + MK® . kge(pks)

(skd, pki, ctl, ssl) + MK .kgc(pki)

ss1 = combine(sk{, ski, msg1)

$s2 = combine(sks, ski, msg2)
ctg,ctg
msga

Fig. 4: Parallel Hybrid CKA (H-CKA) combining a classicical security and
quantum-safe MKEMs (MK® and MKY?, respectively). The combiner combine
is one of the options of [8].

Interleaved CKA. An Interleaved CKA uses a CKA that is (¢,2A4, €)-secure
instead of (t, A, €)-secure. This means that recovering from a state compromise
takes 2A rounds rather than only A. By [4], when a CKA uses KEM, we have
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A = 0 (for comparison note that using DH has A = 2). Therefore, our interleaved
schemes are at least (¢, 1, €)-secure. Instantiating an interleaved H-CKA can be
done in two ways (deploying a “third ratchet”).

1. Option 1. We break Parallel H-CKA into two interleaved flows: 1) B — A :
ct§; 2) A — B : ct] 3) B — A : ct§; 4) A — B : ctd. The sequence is
repeated. The associated shared secrets of each round are ss§, ssi, ss§, ssd,
....In an odd round number ¢, ss; = combine(ssf/Q, ssg/z). In an even round
i, 88; = combine(ssf/%17 ssf/z).

2. Option 2. We send the same messages msg; as in Parallel H-CKA, but adding
a Boolean toggle flag f to 7, where: if f = true CKA-S and CKA-R operate
as before but ss; = combine(ct§_,,ct?); if f = false no message will be
sent /received and ss; = combine(ct{, ct?).

The bandwidth in Option 1 is reduced (hopefully, by 50%) compared to Parallel
H-CKA. The bandwidth in Option 2 is the same as in Parallel H-CKA but the
number of rounds is halved. The tradeoff implied by using Interleaved H-CKA
is that A is increased by at least 1. This can be tolerated for achieving better
bandwidth/latency compared to Parallel H-CKA.

6 Conclusion

The new primitive MKEM is designed to reduce the bandwidth of the CKA
protocol used by the DR scheme. A concrete instantiation that is based on
BIKE1, shows that it can have a significant impact (of 50%) on the bandwidth.
We are not sure if every KEM can be converted into an MKEM and if the
bandwidth reduction is necessarily significant. Here are two examples.

— Many KEMs are based on a PKE scheme where the encryption is designed to
operate on “short” messages. Consider Kyber512 [9] for instance. Its public
key has 736 bytes, its ciphertext has 800 bytes, and it encrypts a 32-byte
random message. Here, applying our MKEM method is easy (replacing one
randomized value with another). However, this will reduce the bandwidth
from 800+ 736 = 1,536 to 800+ 704 = 1,504 bytes i. e., save 32/1536 ~ 2%.
It is still worth doing (at practically no cost), but the impact is modest.

— Consider BIKE2/3 that encrypt an error vector. This error vector has a spe-
cific weight that is different from the weight of the public key. Here, encrypt-
ing the public key (instead of the error vector) requires some transformation
from different sets of bit strings (that have different cardinalities).

We suggest that H-CKA (Parallel H-CKA and Interleaved H-CKA) can be
used by messaging applications to hopefully achieve quantum-safe security but
without giving up the classical security.

We raised the difficulty of designing a general CKA primitive and DR scheme
(beyond the practical proposed remedies) that can use KEMs that have a non-
negligible DFR. This is left as an open problem.
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