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Abstract. Internet of Things (IoT) have seen tremendous growth and
are being deployed pervasively in areas such as home, surveillance, health-
care and transportation. These devices collect and process sensitive data
with respect to user’s privacy. Protecting the privacy of the user is an
essential aspect of security, and anonymous attestation of IoT devices are
critical to enable privacy-preserving mechanisms. Enhanced Privacy ID
(EPID) is an industry-standard cryptographic scheme that offers anony-
mous attestation. It is based on group signature scheme constructed from
bilinear pairings, and provides anonymity and sophisticated revocation
capabilities (private-key based revocation and signature-based revoca-
tion). Despite the interesting privacy-preserving features, EPID opera-
tions are very computational and memory intensive. In this paper, we
present a small footprint anonymous attestation solution based on EPID
that can meet the stringent resource requirements of IoT devices. A
specific modular-reduction technique targeting the EPID prime num-
ber has been developed resulting in 50% latency reduction compared to
conventional reduction techniques. Furthermore, we developed a multi-
exponentiation technique that significantly reduces the runtime memory
requirements. Our proposed design can be implemented as SW-only, or
it can utilize an integrated Elliptic Curve and Galois Field HW acceler-
ator. The EPID SW stack has a small object code footprint of 22kB. We
developed a prototype on a 32-bit microcontroller that computes EPID
signature generation in 17.9s at 32MHz.
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1 Introduction

Enhanced Privacy ID (EPID) was introduced by Brickell and Li [11] in 2007
to address the need for anonymous attestation. The authentication technique in
EPID is based on Boneh, Boyen, and Shacham’s group signature scheme [6] and
Furukawa and Imai’s group signature scheme [20]. One of the main features of
EPID consists of its sophisticated revocation techniques which are constructed
from pairing-based cryptography [10,13,14].



The EPID scheme follows the privacy-preserving technique in digital signa-
tures that was introduced by Camenisch and Lysyanskaya in 2001 [16] as the gen-
eralization of the anonymous credential system due to [15] and the generalization
of the group signature scheme proposed by Ateniese et. al [2]. With Strong-RSA
assumption, [16] provides the provably secure signature scheme where a member
can participate in a group and can generate a signature without revealing its
identity. Later in 2004, this scheme was extended to Direct Anonymous Attes-
tation (DAA) [9], which was adopted by the Trusted Computing Group (TCG)
as the method for remote attestation in Trusted Platform Module (TPM). The
DAA scheme has evolved in the past several years to achieve higher security, im-
proved efficiency and fine-grained revocation capabilities [10–14]. This resulted
in EPID being adopted as an ISO standard in 2013 [18].

The EPID scheme as described in [12] is based on bilinear pairings on Barreto-
Naehrig (BN) elliptic curves [4], which are pairing-friendly elliptic curves. It uses
Optimal-ate pairing [31] on BN curves comprised of three bilinear groups:G1, G2,
and GT . In EPID scheme, each of these groups are defined with a 256-bit prime
ordered sub-groups where, G1 is defined over a 256-bit BN curve on the base field
(Fq), G2 is defined on BN curve with sextic twist on Fq2 so that a member of
G2 is defined as the tuple (x, y) where x, y ∈ Fq2 and the group GT is defined on
Fq12 as an integer group. The EPID Sign and Verify operations involve multiple
Optimal-ate pairing operations as well as multiple exponentiations on G1 and
GT which are essentially computed on 256-bit and 3072-bit numbers. Therefore,
a näıve implementation of the EPID protocol incurs significantly high latency,
compute energy and area/memory footprint overhead which are the bottlenecks
for enabling EPID on resource constrained IoT devices.

1.1 Contributions

To address the above problem, we introduce an optimized SW implementation of
EPID scheme for resource-constrained embedded IoT platforms. A set of novel
techniques has been explored, implemented and carefully integrated resulting in
the proposed EPID software stack with minimal code and memory footprint, as
well as it keeps up an acceptable latency on 32-bit microcontrollers. Additionally,
there is a compile-time knob that replaces the specific SW modules by a driver
module of an Elliptic Curve and Galois Field HW Engine. If the target platform
consists of such a dedicated HW accelerator then specific operations can be of-
floaded for additional latency improvements of the EPID operations. The design
of such HW Engine is out of the scope of this work. It can be based on any of
the existing HW Engines that supports short Weierstrass form of elliptic curves
over 256-bit prime field (Fp) [8, 19, 22, 26]. The most significant optimization
techniques used in our EPID software implementation are described as follows:

– EPID Prime Specific Reduction. We explored a reduction technique targeting
the EPID prime modulus which reduces the reduction latency by 50% when
compared to traditional Barrett reduction.



– Latency-Footprint Tread-off Exponentiations. EPID Sign/Verify operation
consists of several exponentiation operations in G1 and GT which take most
of the associated computation time. The lowest latency of those operations
can be achieved by increasing the window size with several pre-computations.
However, this increases the memory footprint for execution. We developed
a footprint-and-latency balanced technique for computing Single as well as
Multi-exponentiation operations inG1 andGT . The respective software func-
tions are implemented in constant-time and with unified executions to pre-
vent timing and simple power/EM vulnerabilities.

– Pre-computation of members pairing value and basic signature. There are
four pairing values involved in EPID Sign which are computed on public and
private-key components. Similar four pairings are involved in EPID Verify
which are computed only on public-key components [12]. In the proposed
EPID software stack, we compute them in an offline fashion and store them
within the same public/private key data structure, thus reducing the signif-
icant latency overhead of Sign and Verify operations.

– Reduction of Verification Latency through revocation test followed by signa-
ture verification. In the EPID protocol, there are multiple revocation lists.
For a signature verification, the Verifier typically establishes the proof for the
signature and then validates that the signature/private-key have not been
revoked. The later one is achieved by validating the revocation-proof embed-
ded in the signature. In our investigation, we concluded that the revocation
check requires a relatively lower latency when compared to the actual proof
generation for the signature validation. Therefore, in our work, we first check
that a given signature is valid across all revocation lists then we perform the
actual signature validation thus saving a significant latency and compute
energy for the verifier.

The paper is organized as follows. A brief introduction of EPID scheme is
provided in Section 2. Our proposed software stack is described in Section 3.
Section 4 provides our latency optimization techniques in the base-field and its
elliptic curve group operations. Section 5 provides detailed descriptions of the
extension fields and their execution in our EPID software. Optimal-ate pairing
computation has been described in Section 6. EPID Join, Sign and Verify ex-
ecution techniques are described in Section 7. The implementation results and
comparison with state of the art implementations of the underlying functions
are captured in Section 8. We conclude the paper in Section 9.

2 Background

As described in [14], the EPID scheme is comprised of four types of entities: an
issuer, a revocation manager, users, and verifiers. The issuer can be the same
entity as the revocation manager. An EPID scheme has the following four major
functions:

– Setup: The issuer creates a group public key and a group issuing private key.
The issuer publishes the group public key.



– Join: The issuer and the user cooperate to add the user to the group. The
user obtains a membership private key unknown to the issuer.

– Proof of Membership: A prover interacts with a verifier to convince the
verifier that he is a member of the group in good standing (i.e., not revoked).
It has the following steps: (1) the prover sends a request to the verifier, (2)
the verifier responds with a message m, (3) the prover generates a signature
on m based on his membership private key, and (4) the verifier verifies the
signature using the group public key.

– Revocation: The revocation manager puts a group member into one of the
revocation lists. There are three types of revocations:

1. Private-Key-Based Revocation: the revocation manager revokes a user’s
membership private key if it is discovered.

2. Signature-Based Revocation: the revocation manager revokes a user based
on a signature created by the user.

3. Name-Base Revocation: a verifier forces users to use pseudonyms in
name-base mode, and revokes individual pseudonyms.

The EPID scheme generates a proof-of-membership signature whose prop-
erties match common group signature [2, 6, 7, 16] properties: (1) unforgeability,
i.e., only non-revoked group members are able to generate valid signatures, (2)
anonymity, i.e., the verifier cannot identify the actual signer given a valid sig-
nature, and (3) unlinkablity, i.e., it is computationally infeasible to determine
whether two different signatures were computed by the same group member.
It was developed from the Direct Anonymous Attestation (DAA) scheme [9]
and applied Camenisch-Lysyanskaya (CL) signature scheme [16]. For private-
key based revocation, it uses verifier local revocation [7], i.e., the revocation
check is done only at the verifier’s side. For the other two types of revocation,
EPID provides proof of knowledge protocols under the strong RSA assumption
and the decisional Diffie-Hellman assumption to prove that a user’s membership
has not been revoked by the revocation list [14].

Many group signature schemes handle revocation by adding traceability where
the revocation manager has the ability to open a signature and identify the ac-
tual signer. To revoke a user based on his signature, the revocation manager first
finds out the user’s private key or his identity, then put the user into the revoca-
tion list. However, EPID provides much higher privacy than traceability-based
signature revocation. Traceability provides that a revocation manager can deter-
mine which user generated which signatures without any acknowledgment from
the user that is being traced. This is not desirable from a privacy perspective.
With EPID, if a user’s membership private key has been revoked, i.e., placed in
a revocation list, the user will know that he is revoked or being traced. If the
user finds that he is not in the revocation list, then he is assured that nobody
can trace him, including the issuer and the revocation manager, which is a major
advantage of the EPID scheme.



2.1 EPID Parameters

The order of G1, G2, GT is a 256-bit prime p. The characteristic of the finite
field used in the elliptic curve is chosen as a 256-bit prime q. The parameter b
defines the elliptic curve y2 = x3 + b. The parameter t is used to generate the
prime q = 36t4 + 36t3 + 24t2 + 6t+ 1 and p = 36t4 + 36t3 + 18t2 + 6t+ 1. The
variable neg is used to identify the sign of t and it is queried in the computation
of the Optimal-ate pairing. The parameter β defines the extension field Fq2 over
Fq. Similarly, the parameter ξ defines the extension field Fq6 over Fq2 .

p = FFFFFFFF FFFCF0CD 46E5F25E EE71A49E

0CDC65FB 1299921A F62D536C D10B500D

q = FFFFFFFF FFFCF0CD 46E5F25E EE71A49F

0CDC65FB 12980A82 D3292DDB AED33013

b = 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000003

t = 6882F5C0 30B0A801

neg = 1 (where neg is true if t is a negative value)

β = -1

= FFFFFFFF FFFCF0CD 46E5F25E EE71A49F

0CDC65FB 12980A82 D3292DDB AED33012

ξ[0] = 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000002

ξ[1] = 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000001

3 Optimized SW Architecture

Figure 1 depicts the hierarchical architecture and underlying functional layers of
our embedded EPID Software-Hardware stack. Operations in the lower levels in
shaded boxes can be performed by either hardware or software. There is a global
flag in the embedded SW stack which indicates whether a hardware accelerator is
available on the target platform. If no hardware accelerator is available then the
entire hierarchy is implemented and executed in software. However, if the target
platform contains a HW accelerator, then the software offloads those operations
into the HW. Note that the underlying HW design is out of the scope of this
work. However, in the following sub-section we provide how the current SW stack
is configured and how it utilizes the underlying HW Engine.

In the proposed EPID SW stack, Fq is the finite field of order q. Fq2 is a
degree-two finite field extension of Fq, of order q2. Fq6 is a degree-three extension
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Fig. 1: Embedded SW stack for EPID.

of Fq2 , of order q6. Fq12 is a degree-two extension of Fq6 , of order q12. Fq*Elem
are data structures representing elements of their respective finite fields. Ecc-
PointFq holds affine (x,y pair) representations of points on the curve over Fq.
EccPointJacobiFq holds Jacobi (X : Y : Z, corresponding to X/Z2, Y/Z3) rep-
resentations of points on the curve over Fq. EccPointFq2 holds affine (x,y pair)
representations of points on EPID’s twisted curve y2 = x3 + b/ξ over Fq2 . Ecc-
PointJacobiFq2 holds Jacobi representations of points on EPID’s twisted curve
over Fq2 . In general, Fq*Add computes the sum of two values, in its respec-
tive finite field; Fq*Sub computes the difference of two such values; Fq*Mult
computes the product; Fq*Inv computes the multiplicative inverse of the input
value; and Fq*Neg computes the additive inverse of the input value, in the finite
field.

3.1 Utilization of HW Accelerator

An IoT device may optionally have an inbuilt HW accelerator for performing
256-bit Prime Field and Elliptic Curve operations. Figure 2 depicts a trivial
architecture and interface of such a HW engine. It is comprised of an Elliptic
Curve Cryptography (ECC) & Fp HW, the Interface and Bus Protocol Logic
and a set of Addressable Registers. In the SoC environment, it is connected with
an MCU which can perform read and write transactions in the ECC & Fp HW
Engine’s address space by Memory Mapped I/O (MMIO) instructions. Through
a few writes into some of these addressable registers, the MCU can configure
the HW accelerator for a specific operation. Similarly, the MCU can receive



the result of an operation from the HW accelerator by executing MMIO read
instructions. We are not going into any further details about the HW accelerator
in this paper and keeping major focus on the embedded EPID SW stack for IoT
platforms. For further information about how to design and build such a HW
engine we refer [8, 19,22,26] to the readers.

Fig. 2: The 256-bit Galois Field and Elliptic Curve HW Engine and Interface.

4 Latency Optimization in the Base Field

Galois Field over the 256-bit prime q is used as base field in the EPID scheme. We
use BN curve group E(Fq) over this base field with prime order p, which is used
as the subgroup order in each of the three groups (G1, G2, GT ) used in EPID.
Integer multiplication and reductions by p and q are the basic mathematical
operations for computing each functional layers of the EPIS SW stack. The
following subsection provides the optimized reduction technique for p and q that
we explored and implemented in the current EPID SW stack.

4.1 EPID Specific Modulus Reduction

Our new EPID-prime reduction technique has been designed for the prime num-
bers used in EPID aiming at better efficiency on 32-bit processors. Algorithm
1 provides the detailed steps for computing the proposed reduction which is
primarily based on Barrett reduction. It computes the reciprocal of the most
significant 32 bits of the prime. Then it multiplies the Barrett multiplier (32-bit
reciprocal) with the most significant 32 bits of the intermediate reduced result.
It multiplies the most significant 32 bits of the last result with prime modulus.
Then it subtracts this result from the most significant k+32 bits of the inter-
mediate reduced result. Finally it left-shifts the intermediate result by 31 bits
which is subsequently considered as the new intermediate reduced result. The
above steps are repeated until the result is reduced to a k-bit number.

EPID has a prime q that is very close to 2256, greater than 2256 − 2224. This
lends itself to an efficient reduction method, targeted for 32-bit platforms, that
reduces 31 bits at a time. We treat the highest-order 288 bits of a 512-bit number
to be reduced like a 288-bit number n, and reduce it to a 257-bit number. Then
we left shift the result by 31 bits and repeat the procedure until we ended up with
the final 256-bit reduced result. For k the highest-order 32 bits of n, we know



Algorithm 1 EPID Modulus Reduction

Require: The 256-bit Modulus P , 512-bit integer M
Ensure: N = M mod P
i← 8
while i > 0 do
R31:0 ← 2288/P
S31:0 ← (R ∗M511:224)543:512
T287:0 ← S31:0 ∗ P255:0

U287:0 ←M511:224 − T287:0

M511:0 ←M511:0 << 31
i← i− 1

M511:0 ←M511:0 >> 24
S31:0 ← (R ∗M511:224)543:512
T287:0 ← S31:0 ∗ P255:0

U287:0 ←M511:224 − T287:0

M511:0 ←M511:0 << 31
if M511:256 < P255:0 then

Return M511:256

else
Return M511:256 − P255:0

that k∗q <= n < k∗q+2257 because 0 < n−k∗q = n−k∗2256+(2256−q)∗k < (n
mod 2256) + 2224 ∗ k ≤ 2256 + 2256. This process can be repeated eight times,
and then once more on the remaining eight bits, to reduce a 512-bit number to
a 257-bit number, it computes n′ < 2256 + 2232. n′ − q, and chooses either n′ or
n′ − q as the value of n mod q based on whether n′ − q is at least, or less than,
zero.

This method resembles Barrett reduction, but the multiplier is a power of 2,
so the step of multiplying by the Barrett multiplier is eliminated; this improves
the efficiency of this method without adding more memory cost.

5 Memory and Latency Trade-off in Extension Field

The EPID setup, join, sign verify operations require several extension field arith-
metic operations. The optimized formula and implementation techniques of those
mathematical operations are highlighted in the following subsections.

5.1 Fq2 , Fq6 , and Fq12 Arithmetic

Fq2 arithmetic relies on Fq[x]/(x2 + 1), a polynomial irreducible over Fq. It is
stored as a tuple, (a, b) of Fq elements representing a reduced Fq polynomial
a + bx, where x2 = −1. Addition and subtraction are pairwise addition in Fq,
and multiplication is done in the same way as the fast complex multiplication:
(a, b)(a′, b′) = (a ·a′− b · b′, (a+ b) · (a′+ b′)−a ·a′− b · b′). Multiplicative inverse
uses (a′, b′) = (a,−b)/[(a, b)(a,−b)], where (a, b)(a,−b) is a scalar in Fq.



Fq6 is Fq2 [y]/(y3 − ξ), where ξ is a non-square, non-cube element in Fq2 .
Arithmetic is hard-coded to have as few multiplications as possible, as follows:

(a, b, c)·(a′, b′, c′) =

(((b+ c)(b′ + c′)− b · b′ − c · c′)ξ + a · a′,
c · c′ · ξ + (a+ b)(a′ + b′)− a · a′ − b · b′,
(a+ c)(a′ + c′)− a · a′ − c · c′ + b · b′)

The modular inverse is obtained by similar computation; we construct the con-
jugate that solves (a, b, c) · (a, b′, c′) = (k, 0, 0) for some k, and then divide by
k:

(a′, b′, c′) =(a2 − ξb2c2, c2ξ − a2br, b2 − a2c2)

(a′, b′, c′) · (a, b, c) =(a′a+ ξb′c+ ξbc′, 0, 0)

k =a′a+ ξb′c+ ξbc′

(a, b, c)−1 =(a′/k, b′/k, c′/k)

Fq12 is Fq6 [z]/(z2−y), which is an extension field because ξ is not a square or
a cube. Arithmetic is done in the same way Fq2 arithmetic is, with the exception
that (a, b)(a′, b′) = (aa′ − ybb′, (a + b)(a′ + b′) − aa′ − bb′), where y is the cube
root of ξ, represented as the Fq6 element (0, 1, 0).

5.2 E(Fq) and E′(Fq2) Group Operations

E(Fq) is the elliptic curve over Fq subject to the equation y2 = x3 + 3, with
order p. E′(Fq2) is the sextic twist of this curve, over Fq2 , subject to the equation
y2 = x3+3/ξ. ξ is picked so that the order of E′(Fq2) is p(2q−p). The formula for
point addition on the curves is the same, because the Weierstrass curve addition
formula does not depend on the constant.

Among the curves of form y2 = x3+ax+b, setting a = 0 improves the perfor-
mance of the curve because the addition formula includes an a term, but when
a = 0, this term disappears. In the EPID software, we implemented the group
operations on both the elliptic curves on Jacobian Projective Coordinates [17].

5.3 Fq12 Multi-exponentiation

Multiexponentiation computes AaBbCcDd for A,B,C,D ∈ Fq12 , a, b, c, d ∈ Fp.
Typical approaches include computing four exponentiations by traditional bi-
nary exponentiation, running one loop in which an accumulator is conditionally
multiplied by A, B, C, and D as necessary then squared, or computing a lookup
table of [1, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd] and then
multiplying the accumulator by the appropriate member of this table, as desired.
The first approach avoids reusing code, but takes four times as long as the third
approach; the second approach saves three squarings per iteration of the loop,



but squaring costs less than multiplication so it is desirable to also reduce the
number of multiplications. Exponentiation with table lookup requires a lookup
table with at least 11 entries, taking up 4 kB of RAM during runtime even if
we assume a, b, c, and d are present as inputs; for simplicity, a table might
be compiled of all 16 values, using 6 kB. Side-channel-resistant memory access
requires polling all of these values every time a memory lookup is done, which
makes its advantages less attractive. Instead, we compromised on a hybrid ap-
proach using two tables, one effectively containing 1, a, b, ab and one containing
1, c, d, cd. This approach has the advantage of requiring only that we compute
and store only ab and cd, with 2 entries instead of 11. We select from the table
a, b, ab, and multiply by the accumulator, then select either the original or the
new product; we again select from the table c, d, cd and multiply, then again
select the accumulator or the new product as the new value of the accumulator.

Algorithm 2 EPID Fq12 Multiexponentiation

Require: The Fq12 elements A, B, C, and D, and Fp exponents a, b, c, and d

Ensure: R = AaBbCcDd

i← 255
R← 1 ∈ Fq12

S ← 1 ∈ Fq12

ab← a× b
cd← c× d
while i >= 0 do
S ← a if ai = 1 else S
S ← b if bi = 1 else S
S ← ab if ai = bi = 1 else S
S ← R× S
R← S if ai ∨ bi = 1 else R
S ← c if ci = 1 else S
S ← d if di = 1 else S
S ← cd if ci = di = 1 else S
S ← R× S
R← S if ci ∨ di = 1 else R
i← i− 1

Return R = AaBbCcDd

6 Optimal-ate pairing over BN Curve

Algorithm 3 computes the Optimal-ate pairing [31]. We chose a pairing friendly
Barreto-Naehrig (BN) elliptic curve [4] E : y2 = x3 + 2; z = −(262 + 255 +
1) < 0 for efficiency, with the Optimal-ate pairing. The algorithm consists
of two major parts - namely, Miller’s loop, and final exponentiation. Several
software and hardware implementations for the Optimal-ate pairing over BN



curves are reported in [5, 23, 25, 27, 29]. The EPID uses a negative t, because of
which, after the Miller loop, we set accumulator T = [−|s|]Q, and the value of
f(s,Q)(P ) is raised to the power q6 which is equivalent to f−1 as shown in [1]. The
latter operation is computed by conjugation in Fq12 . Thereafter, the algorithm
computes g(sQ,πq(Q))(P ) and g(sQ+πq(Q),−π2

q(Q))(P ), which are multiplied into f .

Algorithm 3 Optimal-ate pairing on BN curve (t < 0)

Require: P = (xP , yP ) ∈ E(Fq), Q = (xQ, yQ) ∈ E(Fq2), s = 6t− 2 = Σn−1
i=0 si2

i

Ensure: aopt(Q,P ) ∈ Fp12

T ← (xQ, yQ, 1), f ← 1
for i = n− 2 downto 0 do
g ← l(T,T )(P ), T ← 2T, f ← f2, f ← f · g
if si = 1 then
g ← l(T,Q)(P ), T ← T +Q, f ← f · g

T ← −T, f ← fq6

Q1 ← πq(Q), Q2 ← −π2
q(Q)

g ← l(T,Q1)(P ), T ← T +Q1, f ← f · g
g ← l(T,Q2)(P ), T ← T +Q2, f ← f · g

f ←
(
fq6−1

)q2+1

f ← f (q4−q2+1)/p

return f

Algorithm 3 employs arithmetic in Fq12 . High-performance arithmetic over
extension fields is achieved through a tower of extensions using irreducible bi-
nomials as defined in Section 5. In the EPID protocol, we follow the towering
Fq2 → Fq6 → Fp12 which makes the arithmetic (mainly squaring) required for
this final exponentiation cheaper. The choice q ≡ 3 (mod 4) accelerates arith-
metic in Fp2 , since β = −1 is a square-free element, and multiplications by β can
be computed as simple subtractions [21]. The final exponentiation is computed

in three major steps: f ← fq
6−1, f ← fq

2+1, and f ← f (q
4−q2+1)/p. The first

two exponentiations are easily computed by using conjugate, inverse, Frobenius
and multiplication operations in Fq12 . The last one is the most computationally
intensive operation in the final exponentiation step. However, after raising f to
the power q6−1, it becomes a member of the cyclotomic subgroup in Fq12 which
allows underlying square and exponentiation to be easier than their näıve com-
putation in Fq12 , which helps to speedup the last part of the final exponentiation.

7 Optimized EPID Functions

In order to make EPID feasible for IoT embedded devices with scarce compu-
tational capability, we developed techniques to minimize the necessary working
memory and code size, besides targeting the implementation for 32-bits architec-



tures. Since it is unlikely that edge devices will play the issuer role, we focused
on optimizing the operations required by members and verifiers.

7.1 EPID Setup and Join

In EPID, the issuer is responsible for setting up the EPID group for the purpose
of device authentication. The EPID group corresponds to a group of trusted
devices, as decided by the issuer. The group is created by generating a pub-
lic/private keypair: the private key is a random Fp element that is not 0 nor 1,
and the public key is a tuple (gid, h1, h2, w), which consists of a group ID gid,
random E(Fq) elements h1 and h2, and w = gγ2 , where g2 is a parameter of
EPID and the generator of the group G2 ⊂ E′(Fq2).

Once this group is created, the issuer must communicate with each member via
a trusted channel, to assert that the member is the entity it claims to be. It is
over this channel that the Join protocol occurs.

EPID Join occurs in several steps; first, the member obtains the group public
key to which it is joining, (gid, h1, h2, w). The member generates a private key f

which remains a secret, and generates a membership request F = hf1 with proof
of knowledge c, s, where s = r + cf and c = HASH(hr1, F ) for some random
r ∈ Fp, which is sent to the issuer. This membership request (F, c, s) is received
by the issuer, who verifies that it is a valid membership request by checking that
H(hs1F

−c, F ) = c = H(hr1, F ). The issuer then computes a random x, and sends
the member the membership credential (gid, A, x) where x ∈ Fp is a random

nonzero element and A = (g1F )
1

x+γ .

This credential is enough for the member to prove they have the private key
f matching the membership credential A, x; to prove this, all that the mem-
ber is required to do is show they possess A, x, and f such that P (A,wgx2 ) =

P (g1h
f
1 , g2) = P (g1, g2)+P (hf1 , g2) = P (g1, g2)+f ·P (h1, g2), which proves that

A = (g1F )
1

x+γ . The pairing function gives EPID the flexibility to randomize
and therefore obscure the identity of the member, by obscuring the identity-
associated or secret key values of f , A and gx2 , and by randomizing any values
computed from them, while still proving that it possesses values which match
in this way. These values can be anonymized, by randomly obscuring them, or
pseudonymized, by basing one of the obscuring values on the hash of a known
string. Pseudonymizing the strings links signatures signed with that pseudonym
together, at the choice of the member, usually at the request of a verifier.

7.2 EPID Sign

The member prepares to sign messages with its private key by precomputing
several pairing values; the signature itself is computed without running the ex-
pensive pairing function, but it still must computes several exponentiations in
the field Fq12 . This requires us to optimize for Fq12 multiexponentiation as de-
scribed before, as well as elliptic curve operations.



Member precomputation, which occurs before any signature is signed, consists of
the four Optimal-ate pairing computations pm1 = P (A, g2), pm2 = P (h1, g2), pm3 =
P (h2, g2), pm4 = P (h2, w), where A belongs to the member’s private key,
h1, h2, w are part of the public key and g2 is the generator of G2.

EPID Sign must both prove possession of a private key and hide the identity
of that private key. Signing a message m with private key A, x, f and group
public key (gid, h1, h2, w) goes as follows:

A random name is produced, in the form of an elliptic curve point B ∈ E(Fq).
Random parameters a, rx, rf , ra, rb are generated to obscure the values of x, f, a,
and b. Then the signature is computed as:

b =ax

K =Bf

T =Aha2

R1 =Brf

R2 =pm−rx1 × pmrf
2 × pm

rb−a·rx
3 × pmra

4

c =H(H(p||g1||g2||h1||h2||w||B||K||T ||R1||R2)||m)

sx =rx+ c · x
sf =rf + c · f
sa =ra+ c · a
sb =rb+ c · b

The final signature is (B,K, T, c, sx, sf , sa, sb).

7.3 EPID Verify

Verification works backwards to reconstruct the values of R1 and R2 from c.
The verifier also has four precomputed pairing values: pv1 = P (h1, g2), pv2 =
P (h2, g2), pv3 = P (h2, w), pv4 = P (g1, g2), where h1, h2, w are part of the
public key and g1, g2 are the generator of G1, G2 respectively.

R1 =K−c ·Bsf

R2 =P (T, g−sx2 w−c)× pvsf1 × pvsb1 × pvsa1 × pvc1

The verifier verifies that R1 and R2 are correct by recomputing the hash that
the signer produced, proving that R1 and R2 are correct, which therefore proves
that the relationship between P (B, g2) and P (K, g2) is the same exponent as

exists between P (h1, g2) and P (h1
f
γ+x , wgx2 ), which is to say the exponent f. γ is

hidden from the signer by the value of x, which is hidden from the verifier with
rx. The other values exist to hide the values of the variables in question.

The verifier has to also ensure that the member is not on any of the revocation
lists. The verifier does this in three ways.



Private key revocation: The private key revocation list is a list of private keys
f that have been exposed and subsequently revoked. Because K = Bf in the
signature provided, the verifier has only to check that K 6= Bf

′
for each f ′ in

the list. If the two were to match, the member key has been revoked.

Group revocation: If the group has been revoked, the verifier rejects all signa-
tures signed under that group. This only requires checking the gid. Verifier-based
revocation: The verifier can request that signers sign using B = H(pseudonym).
The signer then produces signatures with a unique, identifiable K, which is con-
stant only when signing messages under that pseudonym. The verifier has the
option to restrict or block certain members by adding this K to the list and
rejecting signatures whose B and K match this list.

Signature revocation: This revocation is interactive; the user must submit
proofs that it is not on the list of revoked signatures. For each revoked signature
B′, K ′, the member chooses random nonzero Fp element µ and nu = −f ·µ, and
random nonzero Fp elements rµ, rν . Then the member computes:

T =K ′
µ
B′

ν

R1 =KrµBrν

R2 =K ′
rµB′

rν

c =H(p||g1||B||K||B′||K ′||T ||R1||R2||m)

sµ =rµ + c · µ
sν =rν + c · ν

σ = (T, c, sµ, sν); T is essentially K(f ′−f)µ, but by the signer proving it knows
µ and ν, and that ν = −µ · f , it pre-commits to the exponents being the same.
If ν 6= −µ · f , then R1 6= KsµBsν ; the member cannot force a particular value of
c, so this amounts to a proof of that relationship. The same is true with respect
to the value of T and the relationship between B′ and K ′, which also proves
that the signature containing B′ and K ′ was signed by a different member. The
verifier computes R1 = KsµBsνT−c, R2 = KsµBsν , and recomputes c to make
sure the value is correct.

8 Footprint and Performance

The complete embedded EPID software stack was developed in C and designed
targeting 32-bit microcontrollers as [24] and [28] demonstrated runtime data that
discourage the use of any smaller (8-bit and 16-bit) microcontrollers for comput-
ing public key operations. The object code of the signer/verifier/issuer library is
22k bytes, compiled with gcc using the compilation flag: -Os, targeted for a repre-
sentative IoT platform based on a low-power 32-bit Intel Quark microcontroller
with 80k bytes internal SRAM. Using static code analysis, we calculated that the
sign/verify operations consume about 10k bytes in the memory stack. Table 1
provides the latency of underlying operations of our EPID implementation on
Intelr Curier IoT platform.



Table 1: Latency of Galois Field and Elliptic Curve Operations on Intelr Curier

Operation∗ Fq-M Fq2-M Fq12-M Fq12-ME E(Fq)-SM E(Fq2)-SM

Clock Cycles 8, 900 27, 998 553, 459 437, 623, 937 54, 798, 533 175, 300, 779
∗ M: Multiplication, ME: Multi-exponentiation, SM: Scalar multiplication.

The Optimal-ate pairing is one of the most expensive operations used by
EPID. There are four such pairing values that are involved in EPID signing oper-
ation. Each member precomputes these values and uses them for signing multiple
messages with the same key. Table 2 provides a performance comparison of our
software implementation of the Optimal-ate pairing, running on Intelr’s Curier

platform with some of the existing implementations in different platforms. The
Optimal-ate SW running on Intel Core processors are significantly faster than
microcontrollers due to two main reasons: 64-bit instructions and the availability
of high volume cache memory.

Table 2: Latency (Clock Cycles) of Optimal-ate pairing on 256-bit BN curves

Work, Year Platform
Latency (Clock

Cycles)

[27], 2010 Intel Core 2 Quad Q6600 (64-bit) 4, 470, 408

[5], 2010 Intel Core i7 (64-bit) 2, 330, 000

[1], 2011 Intel Core i5 (64-bit) 1, 688, 000

[30], 2014 ARM Cortex-M0 + HW module 47, 643, 000

Ours, 2018 Intel Curie (32-bit MCU) 188, 053, 871

Table 3 provides the performance of the full EPID software stack on Intel
Curie platform. On Intel Curie platform, one EPID sign takes 572, 902, 590 clock
cycles or 17.9s when it runs at 32MHz clock. Similarly, our experiment shows
each Verify takes 1, 020, 079, 132 clock cycles or 31.9s at the same clock frequency.
It also provides additional results on Intel Core i5 with 32-bit mode. It is observed
that there are significant latency difference between two 32-bit platforms which
is mainly due to the availability of high-speed cache memory in the Core i5
processor whereas Curie is based on 32-bit Intel Quark microcontroller with
80kB low-speed SRAM.

Table 3: Performance of EPID SW stack on Intel Curie
Intel Curie (32-bit) Intel Core i5 (32-bit)

(Clock Cycles) (Clock Cycles)

EPID Sign 572, 902, 590 194, 199, 881

EPID Verify 1, 020, 079, 132 347, 854, 538



As we discussed before, the performance of the EPID scheme can be improved
further by utilize the underlying ECC & Fp HW Engine and implementing/compi-
ling our proposed software with a specific knob. In typical such hardware en-
gines [8, 19, 22, 26] each modulus multiplication can be computed in as low as
100’s of clock cycles compared to 8, 900 clock cycles on a Intel Curie platform.
Therefore, our proposed EPID software stack in a suitable IoT platform can
perform one EPID Sign or anonymous attestation in less than 1s.

9 Conclusion

IoT devices are used in a wide range of applications that deal with privacy
sensitive data. Enhanced Privacy ID (EPID) is an industry standard that pro-
vides anonymous attestation. EPID Sign/Verify operations involve large number
arithmetic, and are computationally and memory intensive. This makes it chal-
lenging for deploying EPID in resource constrained IoT devices. In this paper,
we have proposed a design for small footprint anonymous attestation based on
EPID, and built a prototype to demonstrate its feasibility for IoT. The EPID
SW stack has a small object code footprint of 22kB. Results from our prototype
on a 32-bit microcontroller show that EPID Sign has latency of 572, 902, 590
clock cycles or 17.9s at 32MHz.
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Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal

https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22


ate pairing over barreto-naehrig curves. In: Pairing-Based Cryptography - Pair-
ing 2010 - 4th International Conference, Yamanaka Hot Spring, Japan, December
2010. Proceedings. pp. 21–39 (2010). https://doi.org/10.1007/978-3-642-17455-1 2,
https://doi.org/10.1007/978-3-642-17455-1_2

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M.K.
(ed.) Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryp-
tologyConference, Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings. Lecture Notes in Computer Science, vol. 3152, pp. 41–55. Springer
(2004). https://doi.org/10.1007/978-3-540-28628-8 3, https://doi.org/10.1007/
978-3-540-28628-8_3

7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In:
Atluri et al. [3], pp. 168–177. https://doi.org/10.1145/1030083.1030106, http:

//doi.acm.org/10.1145/1030083.1030106

8. Bosmans, J., Roy, S.S., Järvinen, K., Verbauwhede, I.: A tiny coprocessor for el-
liptic curve cryptography over the 256-bit NIST prime field. In: 29th Interna-
tional Conference on VLSI Design and 15th International Conference on Em-
bedded Systems, VLSID 2016, Kolkata, India, January 4-8, 2016. pp. 523–528.
IEEE Computer Society (2016). https://doi.org/10.1109/VLSID.2016.82, https:
//doi.org/10.1109/VLSID.2016.82

9. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri
et al. [3], pp. 132–145. https://doi.org/10.1145/1030083.1030103, http://doi.

acm.org/10.1145/1030083.1030103

10. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A., Koch, K. (eds.) Trusted Computing -
Challenges and Applications, First International Conference on Trusted Comput-
ing and Trust in Information Technologies, Trust 2008, Villach, Austria, March
11-12, 2008, Proceedings. Lecture Notes in Computer Science, vol. 4968, pp.
166–178. Springer (2008). https://doi.org/10.1007/978-3-540-68979-9 13, https:

//doi.org/10.1007/978-3-540-68979-9_13

11. Brickell, E., Li, J.: Enhanced privacy id: a direct anonymous attestation
scheme with enhanced revocation capabilities. In: Ning, P., Yu, T. (eds.)
Proceedings of the 2007 ACM Workshop on Privacy in the Electronic Soci-
ety, WPES 2007, Alexandria, VA, USA, October 29, 2007. pp. 21–30. ACM
(2007). https://doi.org/10.1145/1314333.1314337, http://doi.acm.org/10.1145/
1314333.1314337

12. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
In: Acquisti, A., Smith, S.W., Sadeghi, A. (eds.) Trust and Trustworthy Com-
puting, Third International Conference, TRUST 2010, Berlin, Germany, June
21-23, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6101, pp.
181–195. Springer (2010). https://doi.org/10.1007/978-3-642-13869-0 12, https:

//doi.org/10.1007/978-3-642-13869-0_12

13. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for
hardware authentication and attestation. IJIPSI 1(1), 3–33 (2011).
https://doi.org/10.1504/IJIPSI.2011.043729, https://doi.org/10.1504/IJIPSI.
2011.043729

14. Brickell, E., Li, J.: Enhanced privacy ID: A direct anonymous attestation scheme
with enhanced revocation capabilities. IEEE Trans. Dependable Sec. Comput.
9(3), 345–360 (2012). https://doi.org/10.1109/TDSC.2011.63, https://doi.org/
10.1109/TDSC.2011.63

https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1145/1030083.1030106
http://doi.acm.org/10.1145/1030083.1030106
http://doi.acm.org/10.1145/1030083.1030106
https://doi.org/10.1109/VLSID.2016.82
https://doi.org/10.1109/VLSID.2016.82
https://doi.org/10.1109/VLSID.2016.82
https://doi.org/10.1145/1030083.1030103
http://doi.acm.org/10.1145/1030083.1030103
http://doi.acm.org/10.1145/1030083.1030103
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1145/1314333.1314337
http://doi.acm.org/10.1145/1314333.1314337
http://doi.acm.org/10.1145/1314333.1314337
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1504/IJIPSI.2011.043729
https://doi.org/10.1504/IJIPSI.2011.043729
https://doi.org/10.1504/IJIPSI.2011.043729
https://doi.org/10.1109/TDSC.2011.63
https://doi.org/10.1109/TDSC.2011.63
https://doi.org/10.1109/TDSC.2011.63


15. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
Advances in Cryptology - EUROCRYPT 2001, International Conference on the
Theory and Application of Cryptographic Techniques, Innsbruck, Austria, May
6-10, 2001, Proceeding. Lecture Notes in Computer Science, vol. 2045, pp. 93–118.
Springer (2001). https://doi.org/10.1007/3-540-44987-6 7, https://doi.org/10.

1007/3-540-44987-6_7

16. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) Security in Communication Networks,
Third International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002.
Revised Papers. Lecture Notes in Computer Science, vol. 2576, pp. 268–289.
Springer (2002). https://doi.org/10.1007/3-540-36413-7 20, https://doi.org/10.
1007/3-540-36413-7_20

17. D Hankerson, A Menezes, S.V.: Guide to elliptic curve cryptography. Springer
Science & Business Media (2006)

18. (editor), P.J.L., (co editor), S.M.: Text for iso/iec fdis 20009-2 — information
technology — security techniques — anonymous entity authentication — part 2:
Mechanisms based on signatures using a group public key. In: ISO/IEC JTC 1/SC
27 N12580 (2013)

19. Feng, X., Li, S.: A high-speed and spa-resistant implementation of ECC
point multiplication over gf(p). In: 2017 IEEE Trustcom/BigDataSE/ICESS,
Sydney, Australia, August 1-4, 2017. pp. 255–260. IEEE (2017).
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.245, https:

//doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.245

20. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. IE-
ICE Transactions 89-A(5), 1328–1338 (2006). https://doi.org/10.1093/ietfec/e89-
a.5.1328, https://doi.org/10.1093/ietfec/e89-a.5.1328

21. Geovandro, C.C.F.P., Jr., M.A.S., Naehrig, M., Barreto, P.S.L.M.: A family of
implementation-friendly BN elliptic curves. Journal of Systems and Software
84(8), 1319–1326 (2011). https://doi.org/10.1016/j.jss.2011.03.083, https://doi.
org/10.1016/j.jss.2011.03.083

22. Ghosh, S., Mukhopadhyay, D., Chowdhury, D.R.: Petrel: Power and timing
attack resistant elliptic curve scalar multiplier based on programmable gf(p)
arithmetic unit. IEEE Trans. on Circuits and Systems 58-I(8), 1798–1812
(2011). https://doi.org/10.1109/TCSI.2010.2103190, https://doi.org/10.1109/

TCSI.2010.2103190

23. Ghosh, S., Verbauwhede, I., Chowdhury, D.R.: Core based architecture to speed up
optimal ate pairing on FPGA platform. In: Abdalla, M., Lange, T. (eds.) Pairing-
Based Cryptography - Pairing 2012 - 5th International Conference, Cologne, Ger-
many, May 16-18, 2012, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 7708, pp. 141–159. Springer (2012). https://doi.org/10.1007/978-3-642-
36334-4 9, https://doi.org/10.1007/978-3-642-36334-4_9
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