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Abstract. Internet-of-Things (IoT) applications often require constrai-
ned devices to be deployed in the field for several years, even decades.
Protection of these tiny motes is crucial for end-to-end IoT security. Se-
cure boot and attestation techniques are critical requirements in such de-
vices which rely on public key Sign/Verify operations. In a not-so-distant
future, quantum computers are expected to break traditional public key
Sign/Verify functions (e.g. RSA and ECC signatures). Hash Based Sig-
natures (HBS) schemes, on the other hand, are promising quantum-
resistant alternatives. Their security is based on the security of cryp-
tographic hash function which is known to be secure against quantum
computers. The XMSS signature scheme is a modern HBS construction
with several advantages but it requires thousands of hash operations
per Sign/Verify operation, which could be challenging in resource con-
strained IoT motes. In this work, we investigated the use of the XMSS
scheme targeting IoT constrained. We propose a latency-area optimized
XMSS Sign or Verify scheme with 128-bit post-quantum security. An
appropriate HW-SW architecture has been designed and implemented
in FPGA and Silicon where it spans out to 1521 ALMs and 13.5k gates
respectively. In total, each XMSS Sign/Verify operation takes 4.8 million
clock cycles in our proposed HW-SW hybrid design approach which is
5.35 times faster than its pure SW execution latency on a 32-bit micro-
controller.

1 Introduction

IoT will play an extremely important role in the 21%¢ century by comprising
millions of smart and connected devices offering benefits in a wide range of
situations. A smart city whose street light, energy, water and waste managements
rely on thousands of tiny smart sensors (IoT motes) is one example of them.
These mote devices will be responsible to collect and transfer related information
to the gateway/cloud; the cloud will perform data analytics and send the results
to the particular management system who takes suitable action. This forms



the end-to-end network for IoT technology. Protecting this complete network
against malicious events is one of the toughest challenges for deploying IoT
technology. [14] provides a good analysis on feasible threats for a smart city.
To allow cost and energy effective end-to-end IoT solutions, motes are usually
comprised of a tight power and area constrained system-on-a-chip (SoC) which
also help them to last in the field for a long period of time (either by means
of a battery or by harvesting energy from the environment). However from the
security perspective, these motes can be exploited by attackers as the weakest
link of an IoT end-to-end network to undermine city infrastructure. Therefore,
inbuilt security feature that can survive for a long period of time is a fundamental
requirement for these IoT motes to provide IoT end-to-end security, although
this contradicts the power and area constraints.

Typically, a SoC mote consists of a 8/16/32-bit microcontroller connected
with peripheral hub to collect data from sensors and to transfer data to the
cloud [23]. For ensuring that the transported data are genuine, it is critical to
have the integrity and authenticity of the code running on the mote. Data col-
lected and transfered by malicious code cannot be trusted. Secure boot is used
to check the integrity and authenticity of firmware (FW) and software (SW) by
means of public key signature verification. It comprises of multiple stages during
the platform booting process. Typically, it starts with Root-of-Trust (RoT) [31],
which is usually hard-coded in bootROM or One Time Programmable (OTP)
flash to authenticate the first firmware. One firmware image checks the subse-
quent firmware or OS, thus establishing a chain of trust. A mote with authentic
FW and SW is more reliably used to enable security operations that preserve
end-to-end IoT security like secure communication, attestation etc.

The RSA [27] and Elliptic curve cryptography (ECC) [24] based public-key
signature verification are traditionally used for FW/SW authentication during
secure boot flow as well as remote attestation services. Both schemes rely their
security on number-theory mathematical problems, such as integer factorization
and the discrete logarithm problem. These problems are considered untractable
for current technology but are expected to be solvable by future large-scale
quantum computers due to the polynomial-time Shor’s quantum algorithm [28].
Therefore, applications aiming at long-term security must not rely upon RSA or
ECC, and alternative quantum-resistant schemes must be investigated.

In this context, Hash-Based Signatures (HBS) appear as a very attractive
quantum-resistant approach. Their security is solely based on some well-known
security notions related to hash functions. Hash functions are expected to be only
marginally affected by quantum computers by means of Grover’s attack [16]. This
is the optimal case when compared to all literature on quantum resistant algo-
rithms because these other alternatives depend not only on hash functions (used
to map an arbitrary-length message into a fixed digest that is signed) but also on
other less-studied mathematical problems (e.g., short vectors in a lattice). The
Merkle signature scheme [22] is the best known hash-based signature scheme and
dates back to the same period when RSA cryptosystem was proposed. Modern
constructions based on Merkle scheme have been recently proposed. The XMSS



(eXtended Merkle Signature) scheme offers interesting benefits such as smaller
signatures when compared to the classic Merkle scheme [11]. However, it still
suffers from the somewhat intensive signing/verification procedure that require
thousands of hash computations, a limitation to be deployed in constrained de-
vices.

Contributions: This paper introduces a lightweight solution for post-quantum
secure public key Sign/Verify technique which can preserve end-to-end security
of IoT technology while the IoT edge devices can be deployed in the field for more
than a decade. Our solution is based on the XMSS scheme with lightweight hash
function. We use the Keccak-400 hash function in eXtended Output Function
(XOF) mode as the underlying hash function in order to achieve an acceptable
performance of the XMSS scheme for IoT motes while providing 128-bit preimage
resistance against Grover’s attack [16]. We chose suitable XMSS parameters that
achieve 128-bit security against quantum attacks and ensures that the motes can
not be exploited as the weakest part in the end-to-end IoT security. Furthermore,
this paper provides an area-latency optimized HW-SW hybrid architecture for
enabling proposed lightweight XMSS scheme on resource constrained IoT motes.
To reduce the gap between idea and the practical deployment of the technology,
we designed and implemented the proposed architecture in FPGA as well as in
Silicon, and demonstrated its feasibility for IoT motes in terms of area overhead
and performance.

The paper is organized as follows. A brief introduction on hash-based signa-
tures and the XMSS HBS scheme is given in Section 2. Our proposed solution
for lightweight XMSS scheme is described in Section 3. Section 4 describes the
proposed HW-SW architecture followed by Section 5 that provides detailed de-
scriptions of the internal HW modules. The implementation results and compar-
ison with state of the art solutions are captured in Section 7. We conclude the
paper in Section 8.

2 Hash-Based Signatures

Hash-Based Signature schemes are very promising quantum-resistant crypto-
graphic constructions. Their security rely solely on the security of hash func-
tions. In comparison, any other digital signature scheme (pre-quantum or post-
quantum) with appended message relies not only on the security of hash func-
tions (used to map messages of arbitrary length into fixed length message repre-
sentatives) but also on some other (likely less studied) computational problem.
In fact, even if a well-known hash function is broken, the security of HBS schemes
is not affected at all as this would only suggest that such particular hash function
is not recommended. In summary, HBS schemes can be made secure as long as
there exists at least one secure hash function, which is a minimal assumption
when compared to all assumptions required by other schemes.

The efficiency of HBS schemes inherently depends on the efficiency of the
underlying hash function since all operations (key-generation, signing and verify-



ing) require a large number of hash computations. Selecting different underlying
hash function allows meeting different performance requirements.

The best known HBS schemes are either one-time signature (OTS) or multi-
time signature (MTS) schemes. OTS schemes limits the use of a private key
to sign only a single message. If the same private key is used to sign a second
message, the scheme loses its security guarantees. MTS schemes allows signing
multiple messages with a same key pair but are less efficient than OTS schemes.
In fact, MTS schemes use as a building-block an OTS scheme.

2.1 XMSS Scheme

In this work, we will be particularly interested by the XMSS (eXtended Merkle
Signature) scheme [11], which uses the WOTS+ scheme [18] as a building block.
The WOTS+ scheme [18] is an improvement on top of the classic Winternitz
scheme [22] as it allows shorter hash lengths for a same security level. Winternitz-
like signature schemes have a straightforward rationale. In a simplified descrip-
tion, the private key is a set of random bits. The public key is computed from
applying a hash function on the private key a fixed number N € N of times
(the output of one iteration works as the input of the next iteration). To sign a
message, seen as an integer m € N, 0 < m < N, the hash function is applied m
times on the private-key. To verify a signature o, the hash function is applied
(N —m) times on o. If the result matches the public key, the signature is authen-
tic; otherwise, it should be rejected. From this simple rationale, it is possible to
design OTS schemes that solely rely on well-known security properties of hash
functions (e.g. pre-image or collision resistance).

The XMSS scheme [11] improves the classical Merkle scheme [22] by allowing
shorter hash lengths for a same security level, thus leading to smaller signatures.
Merkle-like signature schemes focus on enabling multi-time signatures for the
limited one-time schemes. They bind a large number of one-time public keys
into a single public key using a data-structure called Merkle tree, which is a
binary tree. In this way, a one-time key is used to sign a single message but all
signatures are verified using a same public key. The root of the Merkle tree is
the overall public key, while the leaf nodes are constructed from the one-time
public keys. The rule to build this tree (from the leaf nodes up to the root node)
depends on the particular scheme. Figure 1 shows a toy-size Merkle tree for
the classical Merkle scheme, which has the leaf nodes computed as the hash of
the one-time public keys and the non-leaf nodes are constructed by hashing the
concatenation of the two children nodes.

The signing process consists of signing the message with a one-time key
and then computing the so-called authentication path. The authentication path
consists of H nodes needed to reconstruct the root node. As an example, consider
Figure 1 and assume that the first (the left most, of index 1) one-time key
pair is used. The authentication path will include nodes hs and hg. The tree
height determines the number of maximum signature per Merkle key pair: 2%
To verify a signature, one needs to at first verify the one-time signature in order



PK=H (hs||he)

he=H(hs||ha)

hs=H(h1]|h2)

(hs=H(pks)) (ha=H(pk1))

Fig. 1: Merkle-Tree of height 2 and 4 leaf nodes.

to produce the corresponding one-time public key. Then, with the assistance of
the authentication path and the hash of the one-time public key, it is possible
to reconstruct the root of the tree by following the tree construction rule. If the
result matches the Merkle public key, then the signature is accepted; otherwise,
it should be rejected.

Merkle-like schemes are stateful because it is necessary to keep track which
leaf nodes have already been used to sign messages (and thus should not be used
anymore, given the one-timeness property of the underlying OTS scheme). In
other words, a state needs to be securely maintained by the signer in order to
prevent duplicate usages of one-time keys. This represents an additional require-
ment for the HBS when compared with traditional signature schemes, and there
are works describing how to satisfy this requirement in practice [21].

Now that we presented the intuition on how Merkle-like signature schemes
work, we will define the XMSS scheme. The XMSS scheme uses a different rule
to build the tree and relies on the WOTS+ scheme, instead of the classical
Winternitz. The parameters are (w,n,m € N, H), which represents the Winter-
nitz parameter, the underlying hash digest length, the digest length of the hash
used to create message representatives and the tree height. The XMSS tree is
built using the following rule: Node; ; = hi((Nodea; j—1 ®bmy ;)||(Nodeg;t1 ;-1
®bm,;)), 0 < j < H, 0 < i < 277, The bitmasks (bmy ;,bm, ;) € {0,1}*"
are sampled uniformly at random and hj is chosen randomly from the set
{hy : {0,1}?" — {0,1}"|k € {0,1}"}.

Key generation consists of generating 2% WOTS+ key pairs. Each WOTS+
public-key is used to build an L-Tree, which is a binary tree of £ leaf nodes that
follows the tree building rule described above, and is used to compress an Ln
bits one-time public key into an n-bits. The root nodes of the L-Trees are used
as leaf nodes of the (main) Merkle tree. The XMSS public key is the root of the
Merkle tree plus the bitmasks. The private key is either the 2% WOTS+ private
keys or, more conveniently, an n-bit seed used to generate all one-time private
keys assuming that a secure pseudo random number generator is available.

To sign the i-th message, the i-th WOTS+ private key is used and the sig-
nature is SIG = (i,0, Auth), where i is an index between 0 < i < 2% — 1,
o is the the WOTS+ signature, and Auth € {0,1}7**" is the authentication
path. Although there are several candidate techniques to compute the authenti-



cation path, [12] is suggested as it provides optimal balanced runtime with little
memory requirement.

To verify a signature SIG, the WOTS+ signature o is verified in order to
produce the WOTS+ public key pk. Then using both WOTS+ public key and
the authentication path, the verifier is able to reconstruct the root of the Merkle
tree. If the result matches the XMSS public key, the signature is valid; otherwise,
the signature is rejected.

3 Lightweight PQ-Secure XMSS for IoT Motes

IoT motes are considered as ultra resource constrained devices that harvest
energy from the environment. To meet the energy budget, a lightweight XMSS
solution is of great relevance. We considered three key configuration knobs for
optimizing XMSS algorithm for resource constrained IoTs.

— Smaller Parameters: The WOTS+ parameters (w,n,m) and tree height
play important roles with respect to the computational cost of the XMSS
Sign or Verify operations. By reducing length of those parameters, we can
achieve a lightweight XMSS scheme constructions.

— Lightweight Hash Function: The underlying hash algorithm is the ma-
jor operation which executes repeatedly for several thousand of times while
computing each XMSS Sign/Verify operation. A suitable lightweight hash
function linearly reduces the compute intensity of an XMSS scheme.

— Design Optimization: To meet the energy budget and smaller-die area
constraints of IoT motes, specific design tread-offs can be taken in each
architecture level of XMSS Sign/Verify computation.

In applications of IoT technology, there is a very limited scope for com-
promising length of the WOTS+ parameter because the motes are essentially
deployed in the field for long period of time. These parameters should be suf-
ficiently long for surviving against attacks by quantum computers. Later two
are the major knobs for enabling the PQ-security features to IoT motes. This
section provides a brief description about the WOTS+ parameters and energy
constrained hash function that are used in this work for enabling XMSS hash
based signature scheme in IoT motes; whereas, the following sections describes
design optimizations and the final XMSS solution for IoT motes.

3.1 The XMSS/WOTS+ Parameters

Table 1 provides the value of the XMSS/WOTS+ parameters that are used in
this work.

Table 1: XMSS/WOTS+ Parameters
l n ‘w‘ h ‘lem‘leng‘len‘
[256]16]16] 64 | 3 [67]




3.2 Energy Constrained Hash Function for XMSS

We investigated several hash algorithms in terms of their performance and HW
costs based on existing analysis reported in [30]. Thereafter, we implement and
perform explicit area and latency analysis of four hash candidates on same tech-
nology. The goal of this analysis is to find out a good hash function for energy
efficient computation of XMSS Sign/Verify operations with selected WOTS+ pa-
rameters. The first hash candidate was SHA-256 which is one of recommended
hash functions by XMSS authors. We implement SHA-256 based on the smallest
implementation reported in [19]. Our second candidate is SHAKE-256 which is
part of SHA-3 standard and also recommended by the XMSS authors as alter-
nate hash function. We considered the round based implementation as reported
in [13,17] with 30500 gates of area and 24 clock cycles of latency per block.
The smallest SHA-3/SHAKE implementation is reported in [26] using only 5898
gates which is 5.17z smaller than round based one. This design takes 15427
clock cycles to process one input blocks which is 6432 higher than the latency of
a round based design. Therefore, this smallest design will consume significantly
higher energy than a round based design which is not appropriate for energy con-
strained IoT motes for hashing a boot-image and performing HBS operations.
Further, we select s-quark which is a popular non-standard lightweight hash algo-
rithm [4]. Our third candidate is Keccak-400 [7]. We consider the keccak-400 for
two reasons. First, the algorithm Keccak is the new SHA-3 standard. Other than
the 1600-bit state size used in the SHA-3 standard, Keccak provides flexibility
to use smaller state sizes (800, 400, 200 etc) based on particular security and
bitrate requirement. Second, we observe that if we choose its 400-bit state size
and configure as (eXtended Output Function) XOF with 128-bit bitrate, 128-bit
digest and 256-bit extended-output then it can provide 128-bit pre-image and
second-preimage resistance against quantum computers. We are able to process
the PQ-secure WOTS+ parameters with this Keccak configuration very effi-
ciently by using two absorb and two squeeze operations.

Figure 2 provides the area and latency comparison when we implemented
them on a 14nm technology [1,8,9]. These round based implementations span
out 30.5k 6.8k, 2.5k and 3.6k gate equivalents (GE) with 24, 64, 1024 and 20
clock cycles latencies for SHAKE-256, SHA-256, S-quark and Keccak-400 re-
spectively. It concludes that the keccak-400 provides 10.2x, 6x and 18x lower
area X latency product compared to SHAKE-256, SHA-256 and s-quark which
is linearly proportional to the energy consumptions for XMSS Sign/Verify oper-
ations.

4 Architecture for XMSS Operations

Our design favors minimal hardware area & latency, simplicity and flexibility.
To achieve these goals, at first, we identified what are the operations from the
XMSS and WOTS+ algorithms that would benefit the most from hardware
acceleration, and what are the ones which will occupy hardware area without
significant gains in terms of performance.
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Fig. 2: Latency of Keccak-400 vs standard SHA-256 vs lightweight s-quark.

WOTS+ operations, such as key generation, signing and verification have
been identified as the most suitable for hardware acceleration since they require
a significant amount of repetitive computations (hash calls). On the other hand,
the XMSS operations, in particular, sign and verify, operates in a higher level of
abstraction that would benefit less from hardware acceleration but still requiring
additional area overhead. Authentication path computation algorithms, such

s [12], also have significant logical complexity. To favor flexibility, we left the
WOTS+ parametrization being defined in the software level.

Therefore, to preserve the simplicity of the design with the most significant
latency gains without penalizing hardware area, we opted to offload to hard-
ware the WOTS+ operations, and leave in software the XMSS operations and
WOTS+ parametrization control. Figure 3 shows the pictorial view of the pro-
posed HW-SW design layers. A HW driver module is collocated within the XMSS
SW library that configures the underlying WOTS+ HW Engine for specific op-
erations.

SW Layer 1: XMSS Key generation, Sign,
Merkel tree management, and Verify

SW Layer 2: WOTS+ HW Driver

HW: WOTS+ Key generation, Sign, Verify

Fig.3: The SW and HW boundary and architecture for XMSS.



4.1 XMSS SW and WOTS+ HW Driver

Regarding the XMSS software library, it is a software library that assumes four
logical modules:

— xmss.c: responsible for providing all XMSS operations, such as key genera-
tion, sign, verify and authentication path update.

— wots.c: responsible for defining the WOTS+ parameters, and either calling a
hardware API of the WOTS+ operations (as in the work here described) or
providing the WOTS+ operations, such as key generation, sign and verify.

— functions.c: responsible for providing the underlying XMSS/WOTS+ func-
tions (the ones that actually call the underlying hash function). Note that
this module is not needed in software when the WOTS+ operations are
assumed to be offloaded in hardware.

— hash.c: responsible for providing the underlying hash function operations.
Note that this module is not needed in software when the WOTS+ operations
are assumed to be offloaded in hardware.

In this work, we assumed that the WOTS+ operations are offloaded to a
hardware acceleration. For this reason, the XMSS module (xmss.c) is the only
complete module implemented in software. The WOTS+ module (wots.c) is still
needed in software to control the parameters chosen for the scheme, however all
operations such as WOTS+ key generation, signing and verification are called
through the hardware API, thus benefiting from a better performance in those
operations.

The WOTS+ HW Driver is implemented in C and integrated as the second
layer of our XMSS SW library which can be viewed as the closest SW layer
to the WOTS+ HW Engine. Fig 4 describes the execution flow of the driver.
The driver module communicates with the WOTS+ HW Engine by executing
Memory-mapped I/O (MMIO) instructions. It writes specific instructions, spe-
cial control signals and data into the address space of the WOTS+ HW Engine
in the platform. After configuring the HW, a typical driver can move to either
of the two states. It can set the interrupt mask to the WOTS+ HW Engine and
return control to the upper SW layer. Once the HW completes the current execu-
tion, it then generates an interrupt to the microcontroller (MCU) unit and so the
control goes through the interrupt vector routine and then the XMSS SW again
initiate the driver module to read back the result. The MCU can perform some
other task in between. The This is little complicated process that requires an
interrupt generation logic in the WOTS+ HW Engine and a dedicated interrupt
line to the microcontroller unit. Only advantage of this process is that MCU can
utilize its cycles for executing some other tasks in parallel with WOTS+ HW
Engine. Though, the context switch and execution of interrupt vector routine
neutralizes a significant latency benefit as the WOTS+ HW Engine completes
each operation very quickly.

We implemented the simpler alternate technique that is described in the flow
diagram. After configuring the WOTS+ HW Engine, the driver move into a



busy loop where it continuously polls (MMIO Read) the status of the WOTS+
HW Engine. Once it receives a satisfactory value of the status register which
indicates that the engine has completed the current execution then it reads out
the result from specific addresses and returns the control to the upper SW layer.
This technique saves a lot of context switchings as well as saves HW design
complexity which is more suitable for an SoC targeting for IoT motes.

WOTS+ operation

|

Wwots+ hw
engine
busy?

no

Do followings:
e Write inputs (msg, seed, addr, s;, polling
and idx) to the specific registers
e Write wots instruction
with start bit set

busy =0
Do followings: Poll wots+
Wri : status —- &
e Write new wots+ private key register Out valid = 1

or wots+ signature chunk (s;)
o Write wots+ instruction with
continuous bit set

?

Fig. 4: Execution flow of the HW Driver.

5 The WOTS+ HW Engine

Figure 5 depicts the top level architecture diagram of the WOTS+ HW Engine
which comprised of the WOTS+ Functional Block, a set of addressable registers
and additional interface logic. The XMSS SW stack is expected to be executed
in a small microcontroller which is connected with the WOTS+ HW Engine
through a bus protocol, like: AMBA [3]. It has an inbuilt driver module that
configures the HW Engine by writing a set of specific values into the address-
able registers. There is a set of instructions for offloading WOTS+ operations



and stand alone Hash function to the HW Engine which are described in the
following section. The interface logic emulates the bus protocol for participating
the communication between the WOTS+ HW Engine and the microcontroller
unit.

( a
datain E> WOTS+ Functional Block :> data_out
address |::> T i

control & statue ( ) control signals
SEED BUS Protocol
clk — . and Interface
resetn — . le—>] Logic
ADDR
Addressable Registers

J
Fig.5: The WOTS+ HW Engine for XMSS PKC solution for IoT motes.

Figure 6 depicts the top level view of the WOTS+ Functional Block within
the WOTS+ HW Engine. It consists of a Keccak400 hash primitive, hash_chain
computation block, wots_gensk block and wots_genpk/sign/verify block. The
later one is a combined block for computing WOTS+ public key generation,
sign and verify operations all boiling down to calls to the hash_chain block.
Both hash_chain block and wots_gensk block executes the respective operations
by invoking Keccak400—128/256 primitive which operates as XOF with 128-bit
bitrate and 256-bit output. Table 2 describes the functionalities of each of the
input and output interface.

5.1 WOTS+ Private Key Generation

Algorithm 1 generates the WOTS+ Private Key which has been adapted to be
called from the XMSS signatures scheme. It receives the SK_KEY which is part
of the XMSS private key, the index idx that specifies which WOTS+ private
key should be generated among the 2" possible, the len; and the lens inputs.
Our PQ-secure WOTS+ HW Engine is based on 256-bit SK_KEY and 32-bit idx
inputs. It uses len; = 64 and leny, = 3. The proposed WOTS+ HW implements
both G and PRF functions using Keccak-400 XOF hash operations. The toByte
function extends the 32-bit idx and 8-bit ¢ to 256-bit value by perpending zeros
which is implemented by wiring into the inputs to the Keccak-400 module. We
compute the seed S by invoking the keccak-400 XOF HW module for five times.
First four invocations absorb 256-bit SK_K EY followed by 256-bit padded idx;
whereas, the final one squeezes XOF for once more for generating 256-bit S
output.
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Fig. 6: Architecture and interface of WOTS+ Functional Block.

Algorithm 1 The WOTS+ private key generation

Require: SK_KFEY, idx, leni, lens
Ensure: The Private key sk
S + G(SK_KEYS, toByte(idz, 32))
for i = 0 to leny + lens — 1 do
sk[i] «+ PRF(S, toByte(i,32))

return sk;




Table 2: Interface of the WOTS+ Functional Block.
l Signal Name ‘In/Out‘Width (bits)‘Functionality ‘
Si Input 256 Provides the following inputs: a) The
sk_keys for wots_gensk b) sk; during
wots_genpk and wots_sign c) Sign; during
wots_verify.

msg Input 256 Hash of the whole message.

seed Input 256 WOTS+ parameter used in wots_genpk,
wots_sign and wots_verify.

addr Input 256 HBS parameter used in wots_genpk,
wots_sign and wots_verify.

idx Input 32 Specifies which WOTS+ private key
should be generated (among the 27 pos-
sible).

lenl Input 8 [(8M/lg(W))]

len2 Input 8 [(Ig(lenl(W — 1)) /lg(W))] + 1

clk Input 1 Functional clock input.

resetn Input 1 Active low asynchronous reset.
start Input 1 It is a pulse to starts a new WOTS+ opera-

tion which may contain multiple elements.
cont Input 1 It is a pulse input to continue the
same WOTS+ operation (which is already
started) with consecutive intermediate sk;
or sign;.

hbs_ins Input 3 HBS instruction which specifies the target
operation. They are defined as: wots_gensk
= 001; wots_genpk = 010; wots_sign =
011; wots_verify = 100; hash_chain = 101;
keccak400_new = 110; keccak400_continue

= 110;
outi Output 256 Provides 256-bit outputs of ski, pki, signi,
verifyi, hash_chain and keccak-400_hash.
outi_valid Output 1 1 output in this port indicates that there
is a valid data in the outi port
new_outi Output 1 This is a pulse, indicates that the new out-
put is available in the outi port.
next_si_expected| Output 1 1 in this port indicates that the HBS engine
is waiting for the next s; input.
chain_error | Output 1 1 means hash_chain error, i.e., (i + s) >
(W -1).
hbs_busy Output 1 1 means the engine is busy.
hbs_done Output 1 1 means the engine has completed the as-

signed operation.

The 67 private key components are computed iteratively by hashing the
S followed by current iteration number that varies from 0 to 66. For all 67



iterations, the first 256-bit input to the hash function is same S. Therefore, it
can be either pre-compute the hash of S and utilize it for 67 times or execute
for all 67-times. Former one provides latency benefit by reducing 132 keccak-400
executions which take 2640 clock cycles in our design. However to accommodate
this latency benefit there are following two HW overheads. First, an additional
400-bit register is necessary inside the WOTS+ HW for storing the pre-computed
Keccak-400 state. Second, keccak-400 engine has to be additional feature for
loading its initial state variable. The later approach on the other hand, takes
2640 clock cycles overhead which is 60% slower than former one. However, it has
no HW overhead which is equivalent to 75% lower register counts than former
design approach. We took the later design approach for current WOTS+ HW
engine that targets resource constraints and cost effective IoT motes.

5.2 WOTS+ Public Key Generation

Algorithm 2 generates the WOTS+ public key for a corresponding input private
key. It takes additional three inputs: the WOTS+ address variable ADDR, the
256-bit SEED, and the parameter w. Our proposed hardware computes the
whole public key in 67 iterations. It takes SEED, ADDR and w at the beginning
for one time and each 256-bit sk[i] input at each iteration. It updates the 32-bit
chain-address field in the ADDR (shown in Fig. 7) based on current iteration
number and starts the hash_chain module into the WOTS+ HW (Fig. 6) for
computing the chain function on current inputs. The hash_chain module returns
the respective 256-bit public key components pk[i] which is stored into the output
register. The WOTS+ HW then sets the respective fields into its status register
with hbs_busy = 0, outi_valid = 1 and next_si_expected = 1. The XMSS SW
module polls the wots+ _status register periodically after sending the current
sk[i]. Once the SW module receives the status with above values, it reads out
the corresponding pk[i]. The XMSS SW then sends the next sk[i] to the WOTS+
HW for its next pk[i] computation.

Algorithm 2 The WOTS+ public key generation

Require: sk, SEED, ADDR, w
Ensure: The WOTS+ Public key pk
for i = 0 to len1 + lenz — 1 do
ADRS.setChainAddress(i)
pkli] < chain(sk[i], 0, w—1, SEED, ADRS)
return pk;

5.3 Computation of WOTS+ Sign

The WOTS+ sign function (Algorithm 3) takes the WOTS+ private key and
the message as the input. For longer messages it is first hashed and the sign
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Fig.7: The ADDR format for WOTS+.

function takes the fixed length digest of the message for generating the WOTS+
signature. The current design supports 256-bit M with 64 chunks of base w
where lg(w) = 4. The WOTS+ engine computes the checksum of the input
message based on the respective base w value of each 4-bit chunk, which is
then formated in base w forms. In our HW, checksum is computed in 64 clock
cycles on a 16-bit adder circuit. The base w computation is easy as w = 16.
In the HW, we compute it on-the-fly by accessing 4-bit at a time from the
circular msg and checksum registers. The signature components are computed
iteratively by adjusting the chain_address field in the ADDR input followed by
staring the hash_chain module with current chunks of the private key, the base w
message value, the SEED and the ADDR. The hash_chain module returns the
respective 256-bit signature components sig[i] which is stored into the common
output register that is already described in the previous sub-section for storing
the public key.

Algorithm 3 The WOTS+ signature generation

Require: sk, M, SEED, ADDR, leni, lenz, w
Ensure: The WOTS+ Signature sig for M
csum <+ 0
msg < basew (M, w)
for : =0 tolen; — 1 do
csum < csum + w — 1 — msgli]
csum < csum << (8 — ((lena * lg(w))%8))
len2_bytes < [((lena x lg(w))/8)]
msg < msg || base,, (toByte(csum, len_2_bytes), w)
for : =0 to len, +lens — 1 do
ADRS.setChainAddress(i)
sigi] < chain(sk[i], 0, msg[i], SEED, ADRS)
return sig;

The WOTS+ HW Engine then sets the respective fields into its status register
with hbs_busy = 0, outi_valid = 1 and next_si_expected = 1. The XMSS SW
module polls the wots+_status register and reads out the corresponding sig[i].
The XMSS SW then sends the next sk[i] to the WOTS+ HW for its next sigli
computation. Note that the XMSS SW module sends all other inputs of the
signature generation algorithm are applied only once at the beginning to the
proposed WOTS+ HW. It only sends the private key chunks one at a time for
each iteration and receives one signature components from each iteration. In our



HW each such iteration is based on 120 keccak-400 executions which in total
takes 2400 clock cycles. Therefore, the computation of the complete WOTS+
signature takes 161 x 10% 4§ clock cycles, where § varies on system interface and
data transfer delay from SW accessible memory to the WOTS+ HW registers.

5.4 WOTS+ Signature Verification

The verification of WOTS+ is performed by regenerating the public key from
the signature and the message M. If the generated public key matches with the
one time WOTS+ public key that corresponds the WOTS+ signature then we
say signature is valid otherwise it is considered as an invalid signature. In the
XMSS signature scheme, WOTS+ public keys are plugged into a Merkle tree
where the root node is used as the multi-time public key. The signature verifica-
tion in XMSS scheme therefore does not keep track of the WOTS+ public keys
rather it uses the root of the Merkle tree as the public key. It reconstructs the
root-node from the regenerated WOTS+ public key by Algorithm 4 and corre-
sponding authentication path that comprised of intermediate nodes necessary
for computing the root node from a leaf node.

Algorithm 4 Computation of WOTS+ public key from signature

Require: sig, M, SEED, ADDR, len, lena, w
Ensure: The WOTS+ public key pk for sig
csum < 0
msg < basew (M, w)
for i =0 to len; — 1 do
csum — csum +w — 1 — msgli]
csum + csum << (8 — ((leng * lg(w))%8))
len_2_bytes < [((lena x lg(w))/8)]
msg < msg || base (toByte(csum, len_2_bytes), w)
for : =0 to leni +lens — 1 do
ADRS.setChainAddress(i)
tmppk[i] < chain(sigli], msg[i], w — 1 —msg[i], SEED, ADRS)
return tmppk;

Our WOTS+ HW Engine regenerates the public key iteratively from a given
signature and message. It takes one 256-bit of signature component in every
iteration and starts the hash_chain module for computing the respective public
key chunk. In total, 67 public key components are computed in 67 iterations in
similar input/output flow that is already described in previous sub-sections. The
public key regeneration on our WOTS+ HW takes same amount of time with
signature generation on average.



5.5 Chain Function

In our WOTS+ HW, there is a shared hash_chain module that computes the
underlying chain functions for public key generation, sign and verify procedures.
Algorithm 5 provides the recursive definition of the WOTS+ chain function as
defined in [18]. In this work, we converted the chain function in its equivalent
iterative form. A counter is used to keep track of each iterations from 0 to j. The
register hc_out is initialized with input S and updated with the new intermediate
result of each iteration. We compute the K EY, BM and new hc_out by utilizing
Keccak-400 module. Each of the PRF' and F' functions in our design consists of
512-bit inputs which are absorbed by the current HW module in four consecutive
Keccak-400 operations. Thereafter, for producing 256-bit output we use one
additional squeeze step. In total, each of the PRF and F function are computed
by five Keccak-400 operations which takes 100 clock cycles in the current design.
Note that, alternatively one can pre-compute the Keccak-400 on the SEED and
reload the resultant state which saves 40 clock cycles for each PRF' execution.
As we described before, this technique requires additional 400-bit registers and
related combinational circuits to load and handle the intermediate Keccak state.
We avoided the incremental area overhead in this work for scope in the proposed
XMSS solution for IoT motes.

Algorithm 5 chain: The WOTS+ hash chain function

Require: S, i, j, w, SEED, ADDR
Ensure: The hc_out
if j is equal to 0 then
return S;
if i+j > w—1 then
return NULL;
hc_out < chain(S, i, j—1, SEED, ADRS)
ADRS.setHashAddress(i + j — 1)
ADRS.setKeyAndMask(0)
KEY < PRF(SEED, ADRS)
ADRS.setKeyAndMask(1)
BM < PRF(SEED, ADRS)
hec_out < F(KEY, tmp XOR BM)
return hcout

Figure 8 demonstrates the hash_chain module of the proposed WOTS+ HW
engine. The state machine controls and sequences the intermediate operations.
It generates the start and continue signals for the Keccak-400 module where a
start pulse indicates a new Keccak-400 operation with all zero initial state and
continue pulse indicates to absorb the input on the existing Keccak state. After
initiating a Keccak-400 operation, the state machine wait in a state for receiving
a ”1” in keccak_done signal on which it restores output into the specific register.
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Fig. 8: The hash_chain module in WOTS+ HW engine.

6 Area-Latency Optimized Keccak-400 HW Design

Figure 9 shows our design architecture of the Keccak-400 module. A 400-bit state
register is used to store the state variable. The sub-round functions (6, p, 7, x, ¢)
are computed back to back on fully combinatorial datapath. Several logic level
optimizations have been taken place in the current design for reducing area.
For example, round constant (RC) are generated through optimized Boolean
functions of a 5-bit LFSR based round counter output, which eliminates the ad-
ditional storage for RCs in the IoT motes. A logic high input to start or continue
signal initiates the Keccak-400 module for executing a new operation. During
ip_busy period, at every clock the state register is updated by the computed
round output. However, all other time the state register holds the old state, so
that through a high value on continue signal the Keccak-400 module initiates its
next execution. During absorb steps, we apply the specific 128-bit input block
on the msg input port; whereas additional squeezes are performed by applying
128-bit zero input to the msg port and a high pulse to the continue signal.

The internal datapath of the Keccak-400 module comprised of linear XOR
gates and non-linear AND gates. The rotations (in 6 and p steps) and the per-
mutation (in 7 step) are implemented by simple rewiring which do not consume
any logic cell. Each round is computed within one clock period by the current
datapath and hence the latency of one keccak-400 operation is 20 clock cycles
in our proposed design.

7 Results

We developed RTL of the WOTS+ HW engine in Verilog (HDL) and SW stack
in C for XMSS operations. For demonstrating the functionality, the HW design
has been synthesized, place & route and implemented on Intel (Altera) Stratix
IV FPGA by integrating it with a 32-bit microcontroller and additional periph-
erals. The WOTS+ HW module consumes 2963 combinational logic cells and
2337 register cells within that the Keccak-400 module spans out to 838 and 406
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Fig.9: The Keccak-400 module in WOTS+ HW engine.

combinational and register logic cells. All combinational and register cells are
fit within 1521 Adaptive Logic Modules (ALMs) of a Stratix IV device. Table 3
and Table 4 provide latency numbers that are measured form our implemen-
tation. We assume that the message to be signed in both WOTS+ and XMSS
experiments is the one which splits the effort equally between the signing and
verification processes.

First we compared the latency improvement from SW execution of WOTS+
operations on a low-power 32-bit Intel Quark microcontroller [15] to the execu-
tion on our WOTS+ HW engine. The WOTS+ HW engine provides more than
two order of magnitude speed up for computing each of the WOTS+ operations.
In the current design, WOTS+ HW is connected with microcontroller unit by
32-bit bus through which SW driver sends and receives data to and from the
WOTS+ engine. This bus takes four clock cycles to perform each write/read
operation to/from the WOTS+ engine which are included into the WOTS+
latency numbers.

Table 3: Latency of WOTS+ operations on software and WOTS+ HW Engine

. Software Latency| WOTS+ HW Latency
WOTS+ Operations [clock cycles] [clock cycles] Speed up
Private key generation 1 042 304 6 325 164x
Public key generation 42 304 000 349 600 121x
WOTS+ Sign 21 160 512 176 944 120x
WOTS+ Verify 21 160 512 176 944 120x




For the XMSS operations, we measured the latency numbers for pure SW
execution and the current hybrid approach for both sign (excluding the authen-
tication path computation, which can always be computed offline) and verify
processes. The XMSS SW stack configures the WOTS+ HW through simple
MMIO operations and do polling from a specific status register to inform com-
pletion of the current WOTS+ operation. Upon receiving a zero at WOTS+
busy bit the SW module reads back the result from specific registers by MMIO
calls and reconfigure the WOTS+ engine for processing the next chunk of inputs
(Sig[i], skli] etc). It is demonstrated that the current solution provides 5.35 times
speedup for XMSS sign/verify operation compared to the pure SW approach
for 32-bit microcontroller based IoT motes. Further speedup can be achieved
by offloading the internal hash operations to the WOTS+ HW engine during
Merkle-Tree node computations in XMSS sign/verify.

Table 4: Latency of XMSS operations on pure software and our hybrid solution

. Software Latency WOTS+ HW Latency
XMSS Operations [clock cycles] [clock cycles] Speed up
XMSS Sign 25 797 728 4 814 160 5.35x
XMSS Verify 25 797 728 4 814 160 5.35x

There are few elliptic curve based lightweight public key solutions exist [6,20]
which are suitable for IoT motes. Table 5 provides a cost and performance com-
parison of our proposed XMSS scheme with existing solutions. A lightweight
implementation of elliptic curve over 2!3! filed is described in [6] with 15k gates
with 75 thousand clock cycles latency per scalar multiplication. A relatively new
work in [20] demonstrates that a NIST p-256 elliptic curve operations can be
computed in RFID Tags by executing 34kB codes in more than 15 million clock
cycles. [10] describes a 16-bit microcontroller based memory mapped ECC co-
processor for NIST p-256 elliptic curve with 5,933 gates and 256 x 16-bit RAM
on 130nm CMOS technology. In total, it spans out to 11.7k gates as estimated
based on RAM size estimation provided in [29]. It takes 6 millions clock cycles
for one scalar multiplication. The first one provides only 65 bits security which
is not acceptable even in today as per standard security recommendations by
NIST [5]. The later two are good for current usages without providing a long
term security [25]. In order to have better area measure for silicon, we synthesized
our WOTS+ HW engine in 14nm CMOS technology [1,2] where it spans out to
3013um? which is equivalent to 13 484 logic gates targeting for 125MHz operat-
ing clock frequency with 0.75V input voltage. Note that, the ECDSA sign/verify
comprised of several other operations than scalar multiplications which will add
a code footprint and latency overhead which are not accounted in the exist-
ing elliptic curve works. Also, none of the existing solutions are secure against
quantum computers. To the best of our knowledge, this work presents a novel
approach for post-quantum secure public-key signature for ultra-lightweight IoT



motes. We expect that the proposed solution would provide significant advance-
ment for deploying IoT technology with long term security and so it provides
longer life cycle for IoT edge devices for preserving end-to-end security.

Table 5: Cost and latency comparison with existing solutions

ECC on NIST p-256  |NIST p-256 g“MrSZQ'SeC“re
2131 [6]T+ SW [20]* HW-SW [10]*
Latency
[clock 75 000 15 584 000 6 000 000 4 814 160
cycles]
34KB code + 13.5K Gates +
Resources [15K Gates HW Multiplier 11.7K gates 5.99KB code

1 Provides 65-bit classic security.
1 Does not provide security against Quantum computers.

8 Conclusion

We present a novel approach for post-quantum-secure signature suitable for re-
source constrained IoT motes. We proposed a hardware-software co-design and
implementation yielding small footprint (13.5k gates and 5.22kB object code)
and low latency (4.8M clock cycles) for computing XMSS sign and verify op-
erations. This public-key signature solution provides 128-bit security against
quantum attacks. Secure boot/update and attestation for long-lived IoT would
benefit from the proposed post-quantum-secure XMSS scheme. The lightweight
digital signature approach presented in this paper serves as a foundation for
future end-to-end IoT security.
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