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Abstract. Homomorphic secret sharing (HSS) is an analog of somewhat- or fully homomorphic encryp-
tion (S/FHE) to the setting of secret sharing, with applications including succinct secure computation,
private manipulation of remote databases, and more. While HSS can be viewed as a relaxation of
S/FHE, the only constructions from lattice-based assumptions to date build atop specific forms of
threshold or multi-key S/FHE.
In this work, we present new techniques directly yielding efficient 2-party HSS for polynomial-size
branching programs from a range of lattice-based encryption schemes, without S/FHE. More concretely,
we avoid the costly key-switching and modulus-reduction steps used in S/FHE ciphertext multiplication,
replacing them with a new distributed decryption procedure for performing “restricted” multiplications
of an input with a partial computation value. Doing so requires new methods for handling the blowup of
“noise” in ciphertexts in a distributed setting, and leverages several properties of lattice-based encryption
schemes together with new tricks in share conversion.
The resulting schemes support a superpolynomial-size plaintext space and negligible correctness error,
with share sizes comparable to SHE ciphertexts, but cost of homomorphic multiplication roughly one
order of magnitude faster. Over certain rings, our HSS can further support some level of packed SIMD
homomorphic operations. We demonstrate the practical efficiency of our schemes within two application
settings, where we compare favorably with current best approaches: 2-server private database pattern-
match queries, and secure 2-party computation of low-degree polynomials.

1 Introduction

Homomorphic secret sharing (HSS) [9] is a form of secret sharing that supports a compact local evaluation on
its shares. HSS can be viewed as the analog of fully (or somewhat-) homomorphic encryption (S/FHE) [42,
28] to the setting of secret sharing: a relaxation where homomorphic evaluation can be distributed among two
parties who do not interact with each other. Over the past years, there has been a wave of HSS constructions
for rich function classes (e.g., [9, 11, 27, 8, 23]) as well as an expanding range of corresponding applications.
HSS suffices for many scenarios in which S/FHE can be applied (and even some for which it cannot), including
low-communication secure computation [9, 12, 8], private manipulation of remote databases [31, 10, 21, 11,
43], methods of succinctly generating correlated randomness [8, 7], and more.

One of the appealing features of HSS compared to FHE is that allowing homomorphic evaluation to
be distributed among two parties may constitute a simpler target to achieve. Indeed, forms of HSS for
branching programs have been built from discrete logarithm type assumptions [9]; in contrast, obtaining
encryption schemes from these structures that support comparable homomorphism on ciphertexts seems
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well beyond reach of current techniques. In regard to structures from which FHE does exist, the Learning
With Errors (LWE) assumption [41] (and in turn its Ring LWE (RLWE) variant [40]) is known to imply
strong versions of HSS [10, 24, 13].

However, in spite of its potential for comparative simplicity, all HSS constructions based on LWE or
RLWE to date remain at least as complex as S/FHE. In particular, underlying each such HSS scheme is
the common approach of beginning with and building atop some existing construction of FHE—relying on
specific forms of threshold FHE, multi-key FHE, or even FHE-based “spooky encryption” [3, 10, 24, 13]. In
this sense, current lattice-based HSS constructions serve predominantly as statements of feasibility, and have
not been explored as a competitive alternative for use within applications.

Given the rapidly expanding set of HSS applications, together with the demonstrated power and success
of leveraging lattices as a tool for advanced cryptography, a natural question is whether this situation can
be improved. In particular, can we construct HSS from LWE and RLWE without (in some sense) S/FHE?

1.1 Our Results

In this work we consider precisely this question. We present and leverage new approaches for directly obtain-
ing 2-party HSS schemes from LWE and RLWE, bypassing the intermediate step of fully (or even somewhat-)
homomorphic encryption (S/FHE).

More concretely, our techniques avoid the costly key-switching and repeated modulus-reduction steps
typically required for homomorphic multiplication of ciphertexts in existing (R)LWE-based FHE schemes [15,
29], and replace them instead with a new distributed decryption procedure for multiplying an encrypted
value by a value in secret shared form, resulting in secret shares of the product. The cost of a homomorphic
multiplication thus drops roughly to the cost of a decryption operation per party. This operation requires
a new toolkit of methods for handling the blowup of “noise” from ciphertexts in a distributed setting, and
leverages properties of lattice-based encryption schemes (such as key-dependent message security) in new
ways.

Our construction takes inspiration from the HSS framework of [9], and yields a similar result: namely, HSS
for the class of polynomial-size branching programs (capturing NC1 and logspace computations). However,
as discussed below, our construction offers several strong advantages over existing DDH-based schemes [9,
12, 8, 23], including negligible correctness error and superpolynomial-size plaintext space, as well as over
S/FHE-based solutions for the same program class [3, 24], including cheaper multiplication, simpler setup,
and no noise growth. We showcase these advantages via two sample applications: (1) Generating correlated
randomness for secure 2-party computation in the prepocessing model, and (2) 2-server Private Information
Retrieval for various private database queries such as conjunctive keyword search and pattern matching.

We now proceed to describe our main results.

HSS from Nearly Linear Decryption. Our core approach leverages the “nearly linear” structure of
ciphertext decryption common to a range of lattice-based encryption schemes:

Definition 1 (Informal - Nearly Linear Decryption). Let R = Z or R = Z[X]/(Xn+1) for n a power
of 2. Let p, q ∈ N be moduli with p|q and 1 � p � q. We say that an encryption scheme supports nearly
linear decryption for messages m ∈ Rp := R/pR if the secret key is s ∈ Rdq , and for any ciphertext c ∈ Rdq
encrypting m,

〈s, c〉 = (q/p) ·m+ e mod q

for some “small” noise e ∈ R.

This captures, for example, the LWE-based schemes of Regev [41] and Applebaum et al. [2] (with R =
Z, d = λ), RLWE-based schemes of Lyubashevsky-Peikert-Regev [40] and Brakerski-Vaikutanathan [16] (with
R = Z[X]/(Xn + 1), d = 2), as well as various schemes based on Learning With Rounding [4] and Module-
LWE [36]. For simplicity, we restrict ourselves to the decryption structure and polynomial rings R of the form
specified above; however, our techniques extend to more general polynomial rings, as well as to encryption
schemes which encode messages in low-order symbols (i.e., for which 〈s, c〉 = p · e+m mod q).
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We demonstrate how to exploit the near-linearity of decryption to support sequences of homomorphic
additions over R, as well as homomorphic “restricted” multiplications over R of an evaluated value with
an input. Ultimately, our scheme supports any sequence of these two homomorphic operations over Rr
(for r ∈ N of choice) with negligible correctness error, subject to the requirement that the magnitude of
computation values remain bounded by some chosen value B with r ≤ B � p (where the required size of p,
and thus q, must grow with this bound). We remark that taking magnitude bound B = 2 suffices already
to evaluate the class of polynomial-size branching programs with polynomial overhead [9]. Since efficiency is
the primary focus of this work, however, we state our results as a function of these two operations directly,
and applications can further exploit the ability to support large message spaces.

We achieve the stronger “public-key” variant of HSS [9], where the secret-sharing process can be split
into a one-time setup phase (resulting in a public key pk and evaluation shares (ek0, ek1)) together with a
separate “input encryption” phase, wherein any user can use pk to load his input xi into secret-shared form
(and where homomorphic evaluation can take place across parties’ inputs). This variant of HSS facilitates
applications of secure multi-party computation.

Theorem 1 (Informal - Main HSS Construction). Given any encryption scheme with nearly linear
decryption (as above) over ring R with parameters p, q, d ∈ N, as well as magnitude bound B ∈ N for which
B � p� q/B, and output modulus r ≤ B, there exists 2-party public-key HSS for inputs in Rr with size:

– Public key pk = pk of the encryption scheme, Evaluation keys ekb ∈ Rd−1q

– HSS shares of each input xi ∈ Rr consist of d ciphertexts.

supporting any polynomial number of the following homomorphic operations over Rr (subject to the `∞
magnitude bound ‖y‖∞ ≤ B (in R) for all partial computation values y), with negligible correctness error,
and the specified complexities:

– Loading an input into memory (yi ← xi): d decryptions
– Addition of memory values (yk ← yi + yj): 1 addition over Rdq
– Multiplication of input with memory value (yk ← xi · yj): d decryptions

“Terminal” multiplication (s.t. yk appears in no future mult): 1 decryption

where “decryption” is essentially one inner product over Rdq .

Plugging in the “LPR” RLWE-based scheme of [40] (where ciphertexts consist of d = 2 ring elements), our
HSS shares consist of 4 Rq-elements per Rr-element plaintext, and homomorphic multiplication of an input
and memory value in Rr is dominated by 4 Rq-multiplications (with correctness if the resulting product
y over R maintains ‖y‖∞ ≤ B). When incorporating the necessary choices of modulus q and dimension
n, the resulting HSS shares will be of comparable size to the analogous SHE-based approach, but will
offer significantly cheaper homomorphic multiplication operations—faster by approximately one order of
magnitude. (See “Comparison to SHE-based solutions” discussion below.)

We further explore extensions and optimizations to the core construction, within the following settings:

1. Secret-key HSS: For applications where all secrets in the system originate from a single party; e.g., the
client in 2-server Private Information Retrieval.

2. Degree-2 computations: For the special case of homomorphic evaluation of degree-2 polynomials (and
extension to low-degree polynomials), with applications to secure computation.

3. SIMD computations: Direct support for homomorphic evaluation of “packed” single-instruction multi-
ple data (SIMD) parallel computations on data items encoded as vectors. This has useful application
to parallel computations, and to PIR-type applications, where one wishes to perform several identical
evaluations on different database items.
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Comparison to existing approaches. We briefly discuss our resulting HSS in reference to existing ap-
proaches for comparable function classes.

Comparison to Group-Based HSS. Our core construction framework resembles the HSS schemes of Boyle,
Gilboa, and Ishai [9] and successors [12, 8, 23], which rely on various flavors of discrete logarithm type
assumptions in cryptographically hard Abelian groups (e.g., Decisional Diffie Hellman (DDH) or circular
security of ElGamal). We refer to this line as “group-based” HSS.

Despite many algorithmic and heuristic advances, all works in this line are subject to a common com-
putation barrier: In addition to their upper bounds, Dinur, Keller, and Klein [23] showed that (barring a
breakthrough in discrete logarithm techniques4) performing a homomorphic multiplication via this general
approach with plaintext space size B and correctness error δ requires runtime T = Ω(

√
B/δ). Of particular

note, this inherently restricts support to plaintext spaces of polynomial size B, as well as inverse-polynomial
error δ.

– Superpolynomial-size plaintext space. In contrast, our HSS scheme can directly support operations within
superpolynomial plaintext spaces over Z or Z[X]/(Xn + 1), with complexity growing roughly as the
logarithm of the maximum magnitude B. This circumvents blowups associated with artificial emulation
of larger input spaces by breaking input elements into small pieces (e.g., bits) and operating piecewise.
Such blowups manifest even when operating over small inputs, as encodings of the secret key as a plaintext
are necessary in order to support homomorphism.

– Negligible error. Our HSS also enjoys negligible correctness error. Beyond a theoretical distinction, this
greatly affects efficiency. Even to obtain constant failure probability in group-based approaches, homo-
morphic evaluation of S multiplications requires computation scaling as S3/2 [23], since the error of each
individual multiplication must be pushed down to ∼ δ/S to reach overall error δ. The presence (or non-
presence) of error may further leak information about the secret inputs; this adds layers of complexity and
overhead to HSS-based applications, wherein effects of error must be sanitized before homomorphically
evaluated output shares can be exchanged [9, 12, 8].

– Cheaper operations. Overall, the resulting lattice-based schemes require cheaper operations than group-
based alternatives, e.g. replacing cryptographic group exponentiations by simple polynomial ring multi-
plications (efficiently implementable using FFT). Most stark in contrast: the expensive “share-conversion”
steps in group-based approaches—requiring large scales of repeated group multiplications and pattern
matches, and dominating computation costs in homomorphic evaluation—are trivialized given our new
techniques.

Comparison to SHE-based solutions. Two-server HSS can also be constructed from threshold variants of
somewhat or fully homomorphic encryption, by replacing the (interactive) distributed decryption procedure
with the non-interactive “rounding” technique from [24] to give additive shares of the output. Using FHE this
can give HSS for circuits, although the computational overhead either grows with the depth of the circuit [15]
or is independent of the circuit size but very large due to a costly bootstrapping step.5

SHE is reasonably practical for evaluating low-depth circuits, where the dominant cost is homomorphic
multiplication. There are several different approaches to SHE multiplication, all of which have various com-
plications due to the need for a “key-switching” procedure [15, 29] to avoid ciphertext expansion, as well as
either modulus switching [15] or scale-invariant operations [14, 26] to reduce noise growth.6

Our approach avoids these complications, leading to a conceptually simpler and more efficient scheme
with several advantages over SHE-based HSS.

– Cheaper multiplication. Our homomorphic multiplication procedure is much simpler and cheaper than in
SHE, since we avoid costly ciphertext expansion or key/modulus-switching procedures which are inherent
4Namely, solving the Discrete Logarithm in a Interval problem with interval length R in time o(

√
R).

5Although the cost of bootstrapping has fallen dramatically in recent years [34, 25, 18, 19], the efficiency is still
orders of magnitude worse than low-depth somewhat homomorphic encryption using SIMD operations.

6So-called “third generation” SHE schemes based on GSW [30] have simpler homomorphic multiplication, but
much larger ciphertexts that grow with Ω(n log2 q) instead of O(n log q), for (R)LWE dimension n and modulus q.
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in most SHE schemes. Concretely, our multiplication procedure has roughly the cost of 2 decryption
operations in SHE, which we estimate improves our performance by around an order of magnitude based
on recent implementation results [32]. While our supported multiplications are of a “restricted” form,
requiring one of the multiplicands to be an original input value, this has a mild effect within low-degree
computations, which are anyway the competitive regime for SHE.

– Simpler setup. Since we do not need key-switching, we also avoid the cost of setting up the key-switching
material in a distributed manner, which is a source of additional complexity in threshold FHE [3] as it
requires generating several “quasi-encryptions” of s2, where s is the secret-shared private key.

– No noise growth. Unlike FHE, ciphertexts in our homomorphic evaluation procedure do not incur noise
growth, which increases ciphertext size and limits the number of homomorphic operations. Instead, we
are only limited in that the parameters must be chosen based on an upper bound on the maximum size
of any plaintext value (without modular reduction) during the computation.

Sample applications. To illustrate the potential of our techniques, we consider two example use-cases of
HSS for branching programs. Firstly, we look at secure two-party computation of low-degree polynomials, and
its application to generating various forms of correlated randomness. Many MPC protocols use preprocessed,
correlated randomness such as Beaver multiplication triples, matrix multiplication triples or truth-table
correlations to achieve a very fast “online” protocol. Protocols such as SPDZ [22] often use SHE to generate
this randomness, whereas using HSS (considered in [8]) has potential to greatly improve computational costs,
and reduce the round complexity to just a single round, while paying a slight overhead with larger ciphertexts.
Secondly, we look at 2-server Private Information Retrieval (PIR), which allows a client to perform private
queries to a public database. Our HSS for branching programs allows a much richer set of queries than
previous, practical schemes based on one-way functions [43], and in this case we can reduce the share size
compared with using SHE, as well as the computation.

1.2 Technical Overview

Recall our HSS is with respect to an encryption scheme (Gen,Enc,Dec) with nearly linear decryption over ring
R = Z or Z[X]/(Xn+1) (as discussed above), with moduli r ≤ B � p� q/B and parameter d. Ciphertexts
and the secret key of the encryption scheme are elements c, s ∈ Rdq with s = (1, ŝ) ∈ Rq×Rd−1q , the plaintext
space of encryption is Rp, and we will support homomorphic operations over Rr for computations for which
all intermediate computation values y (as performed over R) remain bounded by ‖y‖∞ ≤ B. (We will denote
y ∈ [R]B to highlight that arithmetic is not performed modulo B.)

The core of our HSS resembles the DDH-based framework of [9], translated to the setting of lattice-based
encryption. The HSS public key pk is precisely the public key of the encryption scheme.7 The evaluation
keys (ek0, ek1) ∈ Rdq × Rdq are additive secret shares of the key s ∈ Rdq over Rq.8 Homomorphic evaluation
maintains the invariant that for every intermediate computation value y ∈ [R]B , Party 0 and Party 1 will
hold additive shares (ty0, t

y
1) ∈ Rdq ×Rdq of the product y · s ∈ Rdq over Rq. This directly admits homomorphic

addition, by locally adding the corresponding secret shares.
As usual, the challenge comes in addressing multiplication. We support homomorphic “restricted” mul-

tiplications, between any intermediate computation value y and input value x. To aid this operation,
the HSS sharing of input x ∈ [R]B will be a (componentwise) encryption of x · s: i.e., d ciphertexts
Cx = (cx·s1 , . . . , cx·sd) ∈ (Rdq)

d. Interestingly, these encryptions can be generated given just pk of the
encryption, leveraging a weak form of key-dependent message (KDM) security implied by nearly linear
decryption—see “KDM Security” discussion below. Combining the HSS encoding Cx of x with the secret
shares (ty0, t

y
1) for y, nearly linear decryption then gives us:

for every i ∈ [d] : 〈ty0, cx·si〉+ 〈t
y
1, c

x·si〉 = 〈y · s, cx·si〉 ≈ (q/p) · xy · si over Rq.

7Note that nearly linear decryption generically implies existence of a public-key encryption procedure.
8This can be decreased to (d− 1) Rq-elements communicated, as s1 = 1 ∈ Rq.
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Collectively, this almost yields the desired additive shares of xy · s ∈ Rdq to maintain the homomorphic
evaluation invariant.

Rounding. Our first observation is that we can use the non-interactive rounding trick as in [24] to locally
convert the approximate shares of (q/p) · xy · si over Rq from above, to exact shares of xy · si over Rp.
Concretely, each party simply scales his share by (p/q) and locally rounds to the nearest integer value. This
operation heavily relies on the fact that there are 2 parties, and provides correct output shares over Rp with
error probability pB/q, negligible for p� q/B.

However, this is not quite what we need: the resulting secret shares of xy · s are over Rp, not Rq. This
means we cannot use the shares again to “distributively decrypt” the original set of ciphertexts Cx′ for any
input x′, a task whose operations must take place over Rq. (In fact, information about the si ∈ Rq may even
be lost when taken mod p.) Performing a second analogous multiplication would then necessitate a second
set of ciphertexts, over a smaller modulus: namely with Rp playing the original role of Rq, and some p1 � p
playing the previous role of p. In such fashion, one can devise a leveled HSS scheme operating via a sequence
of decreasing moduli q � p � p1 � p2 � · · · pdeg, where each step must drop by a superpolynomial factor
to guarantee negligible correctness error. The size and complexity of such HSS scheme, however, would grow
significantly with the desired depth of homomorphic computation.

Lifting. We avoid the above conundrum by (quite literally) doing nothing. Our observation is as follows.
In general, converting secret shares up to a higher modulus constitutes a problem: e.g., even from Z2 to Z3

we have 1 + 1 ≡ 0 ∈ Z2 turning to 1 + 1 ≡ 2 ∈ Z3. However, if we can guarantee that the secret shared
payload is very small compared to the modulus, this wraparound problem drops to a negligible fraction of
possible secret shares. Concretely, given shares t0 + t1 ≡ t mod p for t0, t1, t ∈ (−bp/2e, . . . , b(p − 1)/2e],
then t0 + t1 = t with equality (over Z) unless t− t0 falls ≤ −bp/2e or > b(p− 1)/2e. If t0 is randomly chosen
and t� p, then these corner cases occur with only negligible probability. Conditioned on this, conversion to
shares modulo q is immediate: it already holds that t0 + t1 = t mod q.

Recall that we wish to perform share conversion on payload values of the form y ·si ∈ Rq. To use this trick,
we must thus adjust the construction to guarantee any such value has low magnitude ‖y · si‖∞ � p. This is
done via two pieces. First, we leverage a result of Applebaum et al. [2], which allows us to replace a randomly
sampled secret key s ∈ Rdq of encryption with one sampled from the low-magnitude noise distribution, without
loss of security. Second, we introduce an additional modulus level B � p, and address only computations
which remain bounded in magnitude by ‖y‖∞ ≤ B. Together, this will ensure each value y · si has small
norm in comparison to p, and thus the shares of y · si over Rp can be directly interpreted as shares of y · si
over Rq, successfully returning us to the desired homomorphic evaluation invariant. Finally, using the same
low-magnitude-payload share conversion trick, in the final step of computation, the parties can convert their
shares of y · s = (y, y · ŝ) (recall s = (1, ŝ)) over Rq to shares of y over Rr for target output modulus r.

Ultimately, the HSS scheme uses three moduli levels: B � p � q/B. Correctness holds as long as the
magnitude of computation values is bounded within [R]B . Homomorphic evaluation maintains secret shares
over Rq as its invariant. Each homomorphic multiplication drops down to Rp to remove effects of noise, then
steps back up to shares over Rq to reinstate the invariant. An advantageous side effect of this structure is
that, conditioned on remaining within magnitude bound B (e.g., Boolean computations), the size of our HSS
shares is completely independent of the depth or size of the homomorphic computation.

To conclude, we highlight some of the additional ideas and techniques arising within our scheme and
extensions.
KDM security. Our HSS reveals encryptions of the form Enc(x · si), for input x and secret key s of
the underlying encryption scheme. Key-dependent message (KDM) security of the encryption scheme with
respect to this class of linear functions of s follows from its nearly linear decryption structure. As typical
in KDM literature (following [2, 16]), this is shown by demonstrating as an intermediate step that such
encryptions can be efficiently generated from knowledge only of the public key and rerandomized to “look
like” fresh encryptions.

In our construction, we leverage this efficient generation procedure. This enables pk of the HSS to consist
purely of the public key of the encryption scheme, while still allowing parties to encode their respective inputs
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x as {Enc(x ·si)}i∈[d]. The corresponding encoding procedure is simpler and achieves better parameters than
publishing {Enc(si)}i∈[d] as part of pk (as was done in [9]), as this introduces extra ciphertexts as well as a
second noise term that must be “drowned” by larger noise when scaling by x and rerandomizing.
Secret key as an input. For our RLWE-based HSS schemes with plaintext space Rr = Zr[X]/(Xn + 1),
and when sampling the secret key s = (1, ŝ) ∈ R2

q from the low-magnitude noise distribution, it holds that ŝ
itself lies within the supported input space Rr of the HSS. This is implicitly exploited in our attained HSS
efficiency, e.g. where our encryptions of x ·s = (x, xŝ) ∈ R2

q can consist of just two ciphertexts (instead of λ).
However, this also opens qualitatively new approaches toward optimization. For example, suppose the

evaluation keys ek0, ek1 are augmented with shares of (ŝ)2, as well as shares of ŝ. We can then view the shares
of (ŝ, (ŝ)2) = ŝ(1, ŝ) as HSS sharings of the computation value ŝ, and thus use them to homomorphically
multiply an input x by ŝ. For degree 2, this allows us to save sending encryptions of x · ŝ for inputs x, since
we can now generate these “for free” using ek0, ek1 and the encryptions of x, reducing the share size by a
factor of two.
SIMD operations. If the underlying encryption scheme is over a ring R of the right form, then our basic
HSS supports homomorphic evaluation of “single instruction, multiple data” (SIMD) operations. Namely,
suppose R = Z[X]/(Xn + 1) where Xn + 1 splits over Rr (for some prime r ≥ 2) into pairwise different
irreducible polynomials of degree k ∈ N: that is, Rr ∼= Frk ×· · ·×Frk for n/k copies of Frk . In such case, our
homomorphic additions and multiplications over Rr directly translate to corresponding SIMD operations
within the individual computation “slots.”

A caveat of this correspondence is that the magnitude bound requirement B over Rr (in coefficient
embedding) does not translate directly to a per-slot magnitude bound of B (in CRT embedding). Thus
current SIMD support can effectively handle low-degree computations, but suffers performance degradation
as the degree increases, even if the magnitude of the SIMD computations is bounded. An interesting goal
for future investigation will be to devise new ways of packing to mitigate this disadvantage.

2 Preliminaries

We begin this section by introducing some notation. For notation that we consider common knowledge we
refer to Section A in the Appendix. We denote our security parameter by λ. Throughout this paper we
consider all parameters to implicitly depend on λ, e.g. by ` ∈ N we actually consider ` to be a function
` : N→ N, but simply write ` in order to refer to `(λ).

For a real number x ∈ R, by bxe ∈ Z we denote the element closest to x ∈ R, where we round up when
the first decimal place of x is 5 or higher.

In many cases, we will consider a ring which is either R = Z or R = Z[X]/(Xn + 1), where n ∈ N with
n ≤ poly(λ) is a power of 2. We will denote the dimension of the corresponding ring over Z by N (i.e. N = 1
in the former case and N = n in the latter). We denote this by saying R is of dimension N .

We employ the infinity norm on R. For x ∈ R with coefficients x1, . . . , xN , the infinity norm of x is
defined as ‖x‖∞ := maxNi=1 |xi|.

For p ∈ N, by Rp we denote R/pR. Note that we consider Rp as elements for which all coefficients are in
the interval (−bp/2e , . . . , b(p− 1)/2e]. For B ∈ N, we denote [R]B := {x ∈ R | ‖x‖∞ ≤ B}. More generally,
for an interval I ⊆ Z, we write R|I to denote all elements of R that have only coefficients in I.

We denote vectors by bold lower-case letters and matrices by bold upper-case letters. We interpret vectors
as column-vectors. For a vector x ∈ R`, by xi we refer to the i-th entry (for i ∈ {1, . . . , `}).

We consider public-key encryption schemes that satisfy the security notion of pseudorandomness of ci-
phertexts. For a formal definition we refer to Definition 6 and 7 in the Appendix.

2.1 Homomorphic Secret Sharing

We consider homomorphic secret sharing (HSS) as introduced in [9]. By default, in this work, the term HSS
refers to a public-key variant of HSS. Unlike [9], we do not need to consider non-negligible δ error failure
probability.
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Definition 2 (Homomorphic Secret Sharing). A (2-party, public-key) Homomorphic Secret Sharing
(HSS) scheme for a class of programs P over a ring R with input space I ⊆ R consists of PPT algorithms
(HSS.Gen,HSS.Enc,HSS.Eval) with the following syntax:

– HSS.Gen(1λ): On input a security parameter 1λ, the key generation algorithm outputs a public key pk and
a pair of evaluation keys (ek0, ek1).

– HSS.Enc(pk, x): Given public key pk and secret input value x ∈ I, the encryption algorithm outputs a
ciphertext ct.

– HSS.Eval(b, ekb, (ct
(1), . . . , ct(ρ)), P, r): On input party index b ∈ {0, 1}, evaluation key ekb, vector of ρ

ciphertexts, a program P ∈ P with ρ input values and an integer r ≥ 2, the homomorphic evaluation
algorithm outputs yb ∈ Rr, constituting party b’s share of an output y ∈ Rr.

The algorithms (HSS.Gen,HSS.Enc,HSS.Eval) should satisfy the following correctness and security require-
ments:

– Correctness: For all λ ∈ N, for all x(1), . . . , x(ρ) ∈ I, for all programs P ∈ P with size |P | ≤
poly(λ) and P (x(1), . . . , x(ρ)) 6= ⊥, for integer r ≥ 2, for (pk, ek0, ek1) ← HSS.Gen(1λ) and for ct(i) ←
HSS.Enc(1λ, pk, x(i)) we have

PrcorHSS,(x(i))i,P,r
(λ) :=Pr

[
y0 + y1 = P (x(1), . . . , x(ρ)) mod r

]
≥ 1− λ−ω(1),

where
yb ← HSS.Eval(b, ekb, (ct

(i))i, P, r)

for b ∈ {0, 1} and where the probability is taken over the random coins of HSS.Gen, HSS.Enc and HSS.Eval.
– Security: For all security parameters λ ∈ N, for all PPT adversaries A that on input 1λ output a

bit b ∈ {0, 1} (specifying which encryption key to corrupt), and input values x0, x1 ∈ I, we require the
following advantage to be negligible in λ:

AdvsecHSS,A(λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

A(inputb) = β

∣∣∣∣∣∣∣∣∣∣
(b, x0, x1, state)← A(1λ),
β ← {0, 1},
(pk, (ek0, ek1))← HSS.Gen(1λ),
ct← HSS.Enc(pk, xβ),
inputb := (state, pk, ekb, ct)

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

Remark 1. Within applications, we additionally consider a secret-key variant of HSS. For details we refer to
Definition 8 in the Appendix.

2.2 Computational Models

Our main HSS scheme naturally applies to programs P in a computational model known as Restricted
Multiplication Straight-line (RMS) programs [20, 9].

Definition 3 (RMS programs). An RMS program consists of a magnitude bound Bmax and an arbitrary
sequence of the four following instructions, sorted according to a unique identifier id ∈ Sid:
– Load an input into memory: (id, ŷj ← x̂i).
– Add values in memory: (id, ŷk ← ŷi + ŷj).
– Add input values: (id, x̂k ← x̂i + x̂j).
– Multiply memory value by input: (id, ŷk ← x̂i · ŷj).
– Output from memory, as R element: (id, r, Ôj ← ŷi).

If at any step of execution the size of a memory value exceeds the bound Bmax (i.e. ‖ŷj‖∞ > Bmax), the
output of the program on the corresponding input is defined to be ⊥. Otherwise the output is the sequence of
Ôj values, sorted by id. We define the size (resp., multiplicative size) of an RMS program P as the number
of instructions (resp., multiplication and load input instructions). Note that we consider addition of input
values merely for the purpose of efficiency. We denote the maximum number of additions on input values by
Pinp+.
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3 HSS from encryption with nearly linear decryption

As explained in the introduction, the core of our HSS construction is an encryption scheme with nearly linear
decryption, where nearly linear means that for message m ∈ Rp := R/pR, secret key s ∈ Rdq , and ciphertext
c ∈ Rdq encrypting m, for some “small” noise e ∈ R we have

〈s, c〉 = (q/p) ·m+ e mod q.

We begin in Section 3.1 by explaining our two main share conversion tricks, which allow two parties
holding secret shares of (q/p) ·m+ e mod q for small m to locally modify their values, such that in the end
each party holds a secret share of the message m modulo q. In Section 3.2 we present our formal definition
of nearly linear decryption, and prove two properties that it implies. Then, in Section 3.3 we give our HSS
construction based on any such encryption scheme.

3.1 Computation on 2-party secret shared values

First, we present a local rounding trick as in [24] which allows to recover the shares of m (modulo p). The
idea is that if q/p is large, the probability that the error term e leads to a rounding error is small. Note that
it is crucial here that we are in the 2-party setting, where the secret shares of (q/p) ·m+ e mod q have both
approximately (that is, except for the error e) the same distance from some multiple of q/p. In fact, even for
arbitrarily large gap between p and q, rounding for 3 or more parties fails with constant probability. For a
proof of the rounding lemma we refer to Section B.1 in the Appendix.

Lemma 1 (Rounding of noisy shares). Let p, q ∈ N be modulus values with q/p ≥ λω(1). Let R ∈
{Z,Z[X]/(Xn + 1)} be of dimension N . Let t0, t1 ∈ Rq random subject to

t0 + t1 = (q/p) ·m+ e mod q

for some m ∈ Rp, e ∈ R with q/(p · ‖e‖∞) ≥ λω(1). Then there exists a deterministic polynomial time
procedure Round that takes an input tb ∈ Rq and outputs a value in Rp such that it holds

Round(t0) + Round(t1) = m mod p

with probability at least 1−N · (‖e‖∞ + 1) · p/q ≥ 1− λ−ω(1) over the choice of the shares t0, t1.

The following simple observation constitutes a crucial step of our HSS construction, as it will allow to
have several levels of multiplication without requiring a sequence of decreasing moduli. While in general the
conversion of secret shares from one modulus to another constitutes a problem, we observe that whenever the
secret shared value is small in comparison to the modulus, and we use the centered representation of Rp with
coefficients in (−bp/2e , . . . , b(p− 1)/2e], then with high probability the secret sharing actually constitutes
a secret sharing over R, so switching to an arbitrary modulus is trivial. Note that (as for rounding) this only
holds true in the 2-party setting. For the proof we refer to Section B.1 in the Appendix.

Lemma 2 (Lifting the modulus of shares). Let p ∈ N be a modulus with p ≥ λω(1). Let R ∈
{Z,Z[X]/(Xn + 1)} be of dimension N . Let m ∈ R and z0, z1 ∈ Rp be random, subject to

z0 + z1 = m mod p.

Then we have
z0 + z1 = m over R

with probability at least 1− (N · (‖m‖∞ + 1)/p) ≥ 1− λ−ω(1) over the choice of the shares z0, z1.
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Expkdm−ind
PKE.OKDM,A(λ) :

(pk, sk)← PKE.Gen(1λ)
β ← {0, 1}
β′ ← AOKDM(·,·)(1λ, pk)
if β = β′ return 1
else return 0

OKDM(x, j) :
if β = 0

return PKE.OKDM(pk, x, j)
else

return PKE.Enc(pk, 0)

Fig. 1: Security challenge experiment for the KDM oracle.

3.2 Encryption with nearly linear decryption

We now formally introduce encryption with nearly linear decryption. Basically, we require the following
properties: First, there is a way to encrypt certain key-dependent messages without knowledge of the secret
key. Second, it is possible to “distributively decrypt” a ciphertext. More precisely, given an encryption of
message m and secret shares of some multiple x of the secret key s, there is a way to obtain secret shares
of x ·m over the same modulus as the original secret shares. These properties together enable us to perform
several stages of distributed decryption. That is, given an encryption of x · s (for some value x) and a secret
share of x′ · s modulo q, distributed decryption results in a secret share of x ·x′ · s modulo q, which can serve
as input to another distributed decryption. One way to achieve both properties at once is to require nearly
linear decryption.

Definition 4 (Encryption scheme with nearly linear decryption). Let PKE := (PKE.Gen,PKE.Enc,
PKE.Dec) be a public-key encryption scheme with pseudorandom ciphertexts. We say that PKE is a public-key
encryption scheme with nearly linear decryption if it further satisfies the following properties:

– Parameters: The scheme is parametrized by modulus values p, q ∈ N, dimension d ∈ N, and bounds
Bsk, Bct ∈ N, where p|q, p ≥ λω(1), q/p ≥ λω(1) and d,Bsk, Bct ≤ poly(λ), as well as a ring R, which is
either Z or the polynomial ring Z[X]/(Xn + 1), where n ≤ poly(λ) is a power of 2.

– Message space and secret key: The scheme has message space M := Rp := R/pR and ciphertext
space C := Rdq := (R/qR)d. The secret key s returned by PKE.Gen on input 1λ is an element of Rd

satisfying ‖s‖∞ ≤ Bsk. Further, s is of the form (1, ŝ) for some ŝ ∈ Rd−1p .
– Nearly linear decryption: For any λ ∈ N, for any (pk, s) in the image of Gen(1λ), for any message
m ∈ Rp and for any ciphertext c ∈ Rdq in the image of PKE.Enc(pk,m), for some e ∈ R with ‖e‖∞ ≤ Bct

it holds
〈s, c〉 = (q/p) ·m+ e mod q.

Notation. For (pk, s)← Gen(1λ) and m = (m1, . . . ,md) ∈ Rdp, we denote by PKE.Enc(pk,m) the compo-
nentwise encryption C← (PKE.Enc(pk,m1), . . . ,PKE.Enc(pk,md)); we denote by Dec(sk,C) the decryption
(PKE.Dec(sk, c1), . . . ,PKE.Dec(sk, cd)) ∈ Rdp of the matrix of d ciphertexts C = (c1| . . . |cd) ∈ Rd×dq .

Remark 2. Encryption with nearly linear decryption can be instantiated based on LWE (e.g. with [41, 2],
where d = λ) and based on RLWE (e.g. with [40, 16], where d = 2). Further, it can be instantiated with
schemes based on assumptions like module-LWE [36] and LWR [4]. For more details on the instantiation
from the RLWE-based encryption scheme of LPR [40], we refer to Section 4, and for the instantiation from
the LWE-based encryption scheme of Regev [41] we refer to Section D in the Appendix.

We prove that our two desired properties are satisfied by any encryption scheme with nearly linear
decryption. The first property allows anyone to compute an encryption of any linear function of the secret
key without having access to the secret key itself, serving as a “KDM oracle.” A similar notion, but for
secret-key encryption schemes and with deterministic procedure, was introduced in [5]. For the proof of the
following lemma we refer to Section B.2 in the Appendix.
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Lemma 3 (KDM oracle). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption scheme
with nearly linear decryption and parameters (p, q, d,Bsk, Bct, R). Then there exists a PPT procedure PKE.OKDM
that takes as input a public key pk, a value x ∈ R and an index j ∈ {1, . . . , d} and outputs a ciphertext cj,
such that the following properties are satisfied.

– Nearly linear decryption to the message x · sj: For any λ ∈ N, for any (pk, s) in the image of
Gen(1λ), and for any ciphertext cj ∈ Rdq in the image of PKE.OKDM(pk, x, j), it holds

〈s, cj〉 = (q/p) · (x · sj) + e mod q

for some e ∈ R with ‖e‖∞ ≤ Bct.
– Security: For any λ ∈ N and any PPT adversary A we have that

Advkdm−indPKE.OKDM,A(λ) :=
∣∣∣Pr [Expkdm−indPKE.OKDM,A(λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expkdm−indPKE.OKDM,A(λ) is as defined in Figure 1

By PKE.OKDM(pk, x) we denote the KDM oracle that returns a componentwise encryption of x ·s, i.e. that
outputs the matrix (PKE.OKDM(pk, x, 1), . . . ,PKE.OKDM(pk, x, d)) ∈ Rd×dq .

The following shows that any encryption with nearly linear decryption allows two parties to perform
decryption distributively, employing their respective shares of the secret key to obtain a secret share of
the corresponding message modulo q. Further, the scheme inherently supports homomorphic addition of
ciphertexts, and the distributed decryption property holds accordingly for any sum of a bounded number of
ciphertexts (generated from Enc or OKDM).

Lemma 4 (Distributed decryption of sums of ciphertexts). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec)
be a public-key encryption scheme with nearly linear decryption and parameters (p, q, d,Bsk, Bct, R), where
R has dimension N . Let PKE.OKDM be the KDM oracle from Lemma 3. Let Badd ∈ N with Badd ≤ poly(λ).
Then there exists a deterministic polynomial time decryption procedure PKE.DDec with the following syntax
and properties:

– PKE.DDec(b, tb, c): On input a bit b ∈ {0, 1}, “key” share tb ∈ Rdq and ciphertext c, outputs a message in
R.

– For all x ∈ Rp with p/‖x‖∞ ≥ λω(1) and q/(p · ‖x‖∞) ≥ λω(1), for all (pk, s)← Gen(1λ), for all messages
m1 . . . ,mBadd

∈ Rp, for all encryptions ci of mi that are either output of PKE.Enc or of PKE.OKDM (in
that case we have mi = xi · sj for some value xi ∈ Rp and some index j ∈ {1, . . . , d}) and for shares
t0, t1 ∈ Rdq random subject to

t0 + t1 = x · s mod q

for c :=
∑Badd

i=1 ci and m :=
∑Badd

i=1 mi it holds

PKE.DDec(0, t0, c) + PKE.DDec(1, t1, c) = x ·m mod q

with probability over the random choice of the shares t0, t1 of at least

1−N · (N ·Badd · ‖x‖∞ ·Bct · p/q + ‖x ·m‖∞/p+ p/q + 1/p) ≥ 1− λ−ω(1).

For C = (c1| . . . |cd) ∈ Rd×dp by m ← PKE.DDec(b, tb,C) we denote the componentwise decryption m ←
(PKE.DDec(b, tb, c1), . . . ,PKE.DDec(b, tb, cd)) ∈ Rdp.

Proof. Let Round be the procedure for rounding of noisy shares from Lemma 1. We define PKE.DDec to be
the algorithm that on input b ∈ {0, 1}, tb ∈ Rd, c ∈ Rdq outputs

Round(〈tb, c〉 mod q) ∈ Rq.
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We prove that PKE.DDec indeed satisfies the required in Section B.2 in the Appendix. The idea is that
nearly linear decryption allows (almost) homomorphic addition of ciphertexts with linear growth in the
error. As q/(p · ‖x‖∞) ≥ λω(1) and the vectors tb are individually random, by Lemma 1 we can recover x ·m
mod p with overwhelming probability. Finally, as p ≥ λω(1), by Lemma 2 we can lift the modulus q (as with
overwhelming probability the shares constitute a correct sharing of x ·m over R).

Remark 3. Note that our techniques also extend to encryption schemes which encrypt messages in low-order
symbols, e.g. where 〈s, c〉 = m+ p · e mod q for p and q coprime. For more details we refer to Remark 4 in
the Appendix.

3.3 HSS from encryption with nearly linear decryption

We now present our construction of a public-key HSS from an encryption scheme with nearly linear decryp-
tion. For various extensions that allow to improve the efficiency in specific applications, we refer to Section
3.4. We give an overview of the key and encryption sizes, as well as the evaluation costs of all schemes in
Tables 1 and 2 at the end of Section 3.4.

Theorem 2 (HSS from encryption with nearly linear decryption). Let PKE := (PKE.Gen,PKE.Enc,
PKE.Dec) be a secure public-key encryption scheme with nearly linear decryption and parameters (p, q, d,Bsk, Bct,
R).

– Let Binp ∈ N with p/Binp ≥ λω(1) and q/(Binp · p) ≥ λω(1).
– Let PKE.OKDM be the KDM oracle from Lemma 3.
– Let PKE.DDec be the distributed decryption from Lemma 4.
– Let PRF : K × Sid → Rdq be a pseudorandom function.

Then the scheme HSS = (HSS.Gen,HSS.Enc,HSS.Eval) given in Figure 2 is a 2-party public-key homomorphic
secret sharing scheme with input space [R]Binp for the class of RMS programs with magnitude bound Bmax,
where p/Bmax ≥ λω(1) and q/(Bmax · p) ≥ λω(1). More precisely, HSS satisfies the following.

– Correctness: For any λ ∈ N, for any x(1), . . . , x(ρ) ∈ [R]Binp , for any polynomial-sized RMS program P

with P (x(1), . . . , x(ρ)) 6= ⊥ and magnitude bound Bmax with p/Bmax ≥ λω(1) and q/(Bmax · p) ≥ λω(1), and
for any integer r ≥ 2, there exist a PPT adversary B on the pseudorandomness of PRF such that

PrcorHSS,(x(i))i,P,r
(λ) ≥ 1−

(
AdvprfPRF,B(λ) + λ−ω(1)

)
.

– Security: For every PPT adversary A on the security of HSS, there exists an PPT adversary B on the
security of PKE.OKDM such that

AdvsecHSS,A(λ) ≤ Advkdm−indPKE.OKDM,B(λ).

Proof. We present the construction of the HSS in Figure 2. For the proof of correctness we refer to Lemma
5.

For the proof of security we employ a hybrid argument. We define the corresponding games in Figure 3.
Game G0

HSS,A(λ) corresponds to the HSS security game, therefore we have

AdvsecA,HSS(λ) =
∣∣Pr [G0

HSS,A(λ) = 1
]
− 1/2

∣∣ .
From a PPT adversary A distinguishing between G0

HSS,A(λ) and G1
HSS,A(λ) we can construct a PPT adver-

sary B on the security of PKE.OKDM as follows. On input (b, x0, x1, state) by A and input of the public key
pk by the security challenge experiment of the KDM oracle, B chooses β ∈ {0, 1}, s0

$← Rdq , sets s1 := s− s0
mod q and queries cj ← OKDM(xβ , j) for all j ∈ {1, . . . , d}. Finally, B sends pk, ekb := (K, sb) and C to
A, where C := (c1| . . . |cd) ∈ Rd×dq . If the security challenge experiment of the KDM oracle returns real
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HSS.Gen(1λ) :

– Generate a key pair (pk, s)← PKE.Gen(1λ) for encryption and draw a PRF key K $← K. //Recall
s = (1, ŝ) ∈ Rq ×Rd−1

q .

– Secret share the secret key. Choose s0
$← Rdq at random. Define

s1 := s− s0 mod q.

– Output pk and ekb ← (K, sb).

HSS.Enc(1λ, pk, x) :

– Encrypt the input. Compute and output Cx ← PKE.OKDM(pk, x).
//This corresponds to Cx = PKE.Enc(pk, x · s) ∈ Rd×dq .

HSS.Eval(b, ekb, (C
x(1) , . . . ,Cx(ρ)), P, r) :

Parse (K, sb) =: ekb, parse P as a sequence of RMS operations and proceed as follows.

– Load an input into memory: On instruction (id,Cx) compute

txb := PKE.DDec(b, sb,C
x) + (1− 2b) · PRF(K, id) mod q.

– Add values in memory: On instruction (id, txb , t
x′
b ) compute

tx+x
′

b ← txb + tx
′
b + (1− 2b) · PRF(K, id) mod q.

– Add input values: On instruction (id,Cx,Cx′) compute

Cx+x′ ← Cx +Cx′ mod q.

– Multiply memory value by input: On instruction (id, txb ,C
x′) compute

tx·x
′

b := PKE.DDec(b, txb ,C
x′) + (1− 2b) · PRF(K, id) mod q.

– Output from memory, as element in Rr: On instruction (id, txb ) parse txb =: (xb, t̂
x
b ) for some

xb ∈ Rq, t̂xb ∈ Rd−1
q and output

xb mod r.

Fig. 2: 2-party public-key homomorphic secret sharing scheme HSS for the class of RMS programs from en-
cryption with nearly linear decryption. Here, x ∈ R with ‖x‖∞ ≤ Binp is an input value. Throughout, input
values x ∈ R are represented by encryptions Cx of x · s and memory values x ∈ R are represented by shares
(tx0 , t

x
1) ∈ Rdq ×Rdq with tx0 + tx1 = x · s mod q.
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G0
HSS,A(λ) :

(b, x0, x1, state)← A(1λ)
β ← {0, 1}
(pk, (ek0, ek1))← HSS.Gen(1λ)
//Encrypt xβ · s.
C← PKE.OKDM(pk, xβ)
β′ ← A(state, pk, ekb,C)
if β′ = β return 1
else return 0

G1
HSS,A(λ) :

(b, x0, x1, state)← A(1λ)
β ← {0, 1}
(pk, (ek0, ek1))← HSS.Gen(1λ)
//Encrypt 0 ∈ Rd.
C← PKE.Enc(pk,0)

β′ ← A(state, pk, ekb,C)
if β′ = β return 1
else return 0

Fig. 3: Games G0
HSS,A(λ) and G1

HSS,A(λ) in the proof of Theorem 2 (Sec. of HSS).

encryptions of x · sj , the distribution of ekb equals the distribution of game G0
HSS,A(λ). On the other hand, if

the experiment returns encryptions of 0, the distribution of ekb equals the distribution of game G1
HSS,A(λ).

We have thus ∣∣Pr [G0
HSS,A(λ) = 1

]
− Pr

[
G1

HSS,A(λ) = 1
]∣∣ ≤ Advkdm−indPKE.OKDM,B(λ).

As in game G1
HSS,A(λ) the view of A is independent of β, it holds

Pr
[
G1

HSS,A(λ) = 1
]
= 1/2.

Lemma 5 (Correctness of the HSS). Let HSS be the HSS from Figure 2. Let N = 1 if R = Z, let N = n
if R = Z[X]/(Xn + 1). Then, for all λ ∈ N, for all inputs x(1), . . . , x(ρ) ∈ [R]Binp , for all RMS programs P ,
s.t.

– P is of size |P | ≤ poly(λ)

– P has magnitude bound Bmax with p/Bmax ≥ λω(1) and q/(Bmax · p) ≥ λω(1),
– P has maximum number of input addition instructions Pinp+

for (pk, ek0, ek1)← HSS.Gen(1λ), for Cx(i) ← HSS.Enc(1λ, pk, x(i)), there exists an PPT adversary B on the
pseudorandom function PRF with such that correctness holds with probability at least

PrcorHSS,(x(i))i,P
(λ) ≥ 1−AdvprfPRF,B(λ)−N · (Bmax + 1)/q

− |P | · d ·N2 · Pinp+ ·Bmax · (Bct · p/q +Bsk/p) .

− |P | · d ·N · (p/q + 1/p).

Proof. We prove correctness via a hybrid argument. Let ε0 := PrcorHSS,(x(i))i,P,r
(λ). Recall that by ε0 we denote

the probability that homomorphic evaluation of a program P on input (x(1), . . . , x(ρ)) ∈ [R]ρBinp
employing

our HSS presented in Figure 2 is successful (over the random choices of HSS.Gen,HSS.Enc). Our goal is to
prove that for all x(1), . . . , x(ρ) ∈ [R]Binp and for all bounded RMS programs P the probability ε0 is negligible
in λ.

To this end, let ε1 := Pr1HSS,(x(i))i,P,r
(λ) denote the probability that evaluation yields the correct output,

where we replace every evaluation of the PRF by inserting a value r $← Rdq chosen at random. We show that if
the probabilities ε0 and ε1 differ significantly, then there exists an adversary B attacking the underlying PRF
PRF. Namely, B homomorphically evaluates the program P on input (x(1), . . . , x(ρ)), but instead of evaluating
PRF(K, id) the adversary B queries its PRF oracle. Finally, B returns real if homomorphic evaluation does
not yield the correct result, and random otherwise. This yields

|ε0 − ε1| ≤ AdvprfPRF,B(λ).
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It is left to give a lower bound for the probability ε1. To that end, we prove that with overwhelming
probability over the choice of r ← Rdq (in place of the PRF evaluation) all shares (tx0 , tx1) computed during
homomorphic evaluation of P satisfy

tx0 + tx1 = x · s = (x, x · ŝ) mod q (1)

if the function evaluation of P at point (tx0 , t
x
1) corresponds to x ∈ R, where s = (1, ŝ) ∈ R × Rd−1 is the

secret key returned by PKE.Gen on input 1λ. Further, we have that (tx0 , t
x
1) are distributed uniformly at

random conditioned on Equation 1.
Assuming Equation 1 is true, by Lemma 2 we have x0+x1 = x over R (and thus over Rr) with probability

at least 1−N · (Bmax + 1)/q.
It is left to prove that indeed Equation 1 holds true during homomorphic evaluation of P except with

negligible probability. Recall that PKE.DDec is the procedure for distributed decryption from Lemma 4.
First, assume that distributed decryption is always successful. In this case we prove that any instruction
preserves correctness. Note that we do not need to consider the addition of input values and the output of
a memory value, as those do not affect the shares.

– Load an input into memory: Consider intruction (id,Cx) for b ∈ {0, 1}.
Assuming correctness of distributed decryption it holds

tx0 + tx1 =PKE.DDec(0, s0,C
x) + r+ PKE.DDec(1, s1,C

x)− r mod q

=1 · (x · s) mod q = x · s mod q.

– Add values in memory: Assuming correctness holds for shares (tx0 , t
x
1) and (tx

′

0 , t
x′

1 ) we have, as
required,

tx+x
′

0 + tx+x
′

1 = tx0 + tx
′

0 + r+ tx1 + tx
′

1 − r mod q

= x · s+ x′ · s mod q = (x+ x′) · s mod q.

– Multiply memory value by input: Assuming correctness holds for the share (tx0 , t
x
1) and assuming

correctness of distributed decryption it holds

tx·x
′

0 + tx·x
′

1 =PKE.DDec(0, tx0 ,C
x′) + PKE.DDec(1, tx1 ,C

x′) mod q

=x · (x′ · s) mod q = (x · x′) · s mod q.

As r is chosen at random, the distribution of (ty0, t
y
1) ∈ Rdq for y ∈ {x, x+x′, x ·x′} is random conditioned

on Equation 1.

It is left to bound the probability that distributed decryption fails. As for all x computed throughout
the evaluation of program P the distribution of (tx0 , t

x
1) ∈ Rdq is random conditioned on Equation 1, by

Lemma 4 for all messages m1 . . . ,mPinp+ ∈ Rp and for all encryptions ci of mi that are output of PKE.OKDM
distributed decryption of

∑Pinp+

i=1 ci fails with probability at most

N2 · Pinp+ · ‖x‖∞ ·Bct · p/q +N · ‖x ·m‖∞/p+N · (p/q + 1/p),

where m :=
∑Pinp+

i=1 mi. Throughout the evaluation of P we are guaranteed ‖x‖∞ ≤ Bmax for all intermediary
values x ∈ R. Further, for the messages mi = xi · sji corresponding to outputs of PKE.OKDM we have

‖x ·
Pinp+∑
i=1

xi · sji‖∞ ≤
Pinp+∑
i=1

‖x · xi · sji‖∞ ≤ Pinp+ ·N ·Bmax ·Bsk.

Finally, applying a union bound over all |P | · d decryptions yields

ε1 ≥ 1−N · (Bmax + 1)/q − |P | · d ·N2 · Pinp+ ·Bmax · (Bct · p/q +Bsk/p)

− |P | · d ·N · (p/q + 1/p).
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3.4 Extensions

In the following we briefly describe some extensions which are tailored to special applications and improve
the HSS construction introduced in the previous section in terms of efficiency. For a complete treatment, we
refer the reader to Section C in the Appendix.
Secret-key HSS. For certain applications, where all secret inputs originate from a single party, it is
sufficient to consider a secret-key HSS. This allows a more efficient instantiation for two reasons. First, the
underlying encryption scheme is not required to support ciphertexts from a KDM oracle (but has to be KDM
secure), which slightly saves in noise parameters. Further, we can save in terms of computations (at the cost
of a larger share size), by replacing the DDec steps for loading an input x into memory, by instead sending
the secret shares of x · s as an additional part of the HSS share.

HSS for degree-2 polynomials. For the restricted class of degree-2 polynomials, we can achieve improved
efficiency in both the secret-key and public-key setting, by leveraging the fact that our HSS need only support
terminal multiplications.

For the secret-key case, as we do not need to load inputs, we actually only need one level of distributed
decryption. This has two advantages: First, it suffices to encrypt x ∈ Rp instead of x ·s ∈ Rdp, as the output is
not required to allow another distributed encryption. Second, for the same reason, we do not need to lift the
modulus of the output of the distributed decryption back to q. Thus, we can take p ≤ poly(λ) and q ≥ λω(1)
(as we no longer must apply Lemma 2).

The idea of our public-key HSS is to change the way inputs are loaded into memory. The idea is to obtain
the shares of x · s = (x, x · s2, . . . , x · sd) ∈ Rd by decrypting PKE.Enc(pk, x) with s and with s2 · s, . . . , sd · s.
This strategy requires a quadratic number of secret shares (namely shares of s · s>), but reduces the number
of required encryption from d to 1 (as only encryptions of x are required). An additional advantage of this
approach is that we only have to require the underlying encryption scheme to be IND-CPA secure (instead
of satisfying pseudorandomness of ciphertexts).

HSS supporting SIMD operations. We show that our basic HSS supports “single instruction, multiple
input” (SIMD), if the underlying ring R is of the right form. Namely, we show that if R = Z[X]/(Xn+1) for
n ∈ N, n ≤ poly(λ) a power of 2, such that Xn+1 splits over Rr (for some prime r ≥ 2) into pairwise different
irreducible polynomials of degree k ∈ N (i.e. Rr ∼= (Frk)

n/k), one can evaluate a program P simultaneously
on n/k inputs in Frk . However, there are some caveats regarding magnitude growth with respect to the
SIMD versus coefficient representations (see Section C.4).

Complexity. For an overview of key sizes and sizes of ciphertext/shares of our schemes HSS, skHSS,HSS2

and skHSS2, we refer to Table 1. For an overview of the evaluation costs, we refer to Table 2. Recall that d is
the size of a ciphertext of PKE/SKE. Further, recall that for skHSS2 we can allow p ≤ poly(λ) and therefore
also smaller (but still super-polynomial) modulus q.

4 Instantiations and Efficiency Analysis

Our HSS schemes can be instantiated in a number of ways, using LWE or RLWE-based encryption schemes
satisfying the nearly-linear decryption property from Definition 4. In this section we focus on a particularly
efficient RLWE-based instantiation using the “LPR” encryption scheme [39]. In Section D of the Appendix
we also show how to use standard Regev encryption based on LWE [41], but this is less efficient in terms of
share size.

4.1 Instantiation from Ring-LWE

Definition 5 (Decisional Ring Learning With Errors). Let n be a power of 2, q ≥ 2 be an integer,
R = Z[X]/(Xn + 1) and Rq = R/(qR). Let Derr be an error distribution over R and Dsk be a secret key
distribution over R. Let s← Dsk. The RLWEn,q,Derr,Dsk

problem is to distinguish the following two distributions
over R2

q:
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HSS (Fig. 2) skHSS (Fig. 8) HSS2 (Fig. 10) skHSS2 (Fig. 11)

pk/sk: |pk| d |pk| d
ekb: d+ |K| d+ |K| d2 + |K| d+ |K|
ct/shb: d2 d2 + d d 2d

Table 1: Overview of sizes of keys and of ciphertexts/shares. Here, |pk| denotes public key size of
the underlying encryption scheme, |K| denotes PRF key size. Values are expressed in units of Rq
elements.

HSS (Fig. 2) skHSS (Fig. 8) HSS2 (Fig. 10) skHSS2 (Fig. 11)

Load d2 ·multq 0 d2 ·multq 0
Add (mem,nt) d · addq d · addq d · addq d · addq
Add (mem,t) 1 · addr 1 · addr 1 · addr 1 · addp
Add (input) d2 · addq d2 · addq d · addq d · addq
Multiply (nt) d2 ·multq d2 ·multq − −
Multiply (t) d ·multq d ·multq d ·multq d ·multq

Table 2: Overview of evaluation costs, where we restrict to the dominant cost and omit the cost for
evaluating the PRF. For mod ∈ {r, p, q} by addmod and multmod we denote the number of additions
and multiplications over Rmod required, respectively. By “nt” and “t” we denote non-terminal and
terminal operations (i.e. not followed by another multiplication).

LPR.Gen(1λ) :

1. Sample a← Rq, ŝ← Dsk, e← Derr and compute b = a · ŝ+ e in Rq.
2. Let s = (1, ŝ) and output pk = (a, b), sk = s.

LPR.Enc(pk,m) :

1. To encrypt m ∈ Rp, first sample v ← Dsk, e0, e1 ← Derr.
2. Output the ciphertext (c0, c1) ∈ R2

q , where c1 = −av + e0 and c0 = bv + e1 + (q/p) ·m.

LPR.OKDM(pk,m) :

1. Compute c0 = LPR.Enc(0) and cm = LPR.Enc(m).
2. Output the tuple (cm, c0 + (0, (q/p) ·m)) as encryptions of m · s.

LPR.DDec(b, tb, c
x) :

1. Given b ∈ {0, 1}, a ciphertext cx and a share tb of m · s, first parse cx = (c0, c1) and tb =
(tb,0, tb,1).

2. Output (d0, d1) := (b(p/q) · (c0 · tb,0 + c1 · tb,1)e mod p) mod q

Fig. 4: Ring-LWE based instantiation of PKE with approximately linear decryption, with procedures for HSS
from Section 3

– ODerr,s: Output (a, b) where a← Rq, e← Derr and b = a · s+ e
– U : Output (a, u)← R2

q

Formally, for a PPT adversary A we define the advantage Advrlwen,q,Derr,Dsk
(λ) = |Prs←Dsk

[AODerr,s(λ) = 1] −
Prs←Dsk

[AU (λ) = 1]|.

In Figure 4 we present the core algorithms for our RLWE-based instantation using the LPR [39] public-key
encryption scheme LPR = (LPR.Gen, LPR.Enc), as well as the auxiliary algorithms LPR.OKDM and LPR.DDec
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used by our HSS constructions. We use an error distribution Derr where each coefficient is a rounded Gaussian
with parameter σ, which gives Berr = 8σ as a high-probability bound on the `∞ norm of samples from Dsk,
with failure probability erf(8/

√
2) ≈ 2−49. We choose the secret-key distribution such that each coefficient

of s is uniform in {0,±1}, subject to the constraint that only hsk coefficients are non-zero.9
The following lemma (proven in Section 4 of the Appendix) shows that LPR satisfies the nearly-linear

decryption property for our HSS scheme. Furthermore, notice that ciphertexts output by LPR.Enc are pseu-
dorandom under the decisional ring-LWE assumption, by a standard hybrid argument [40]. Therefore, the
correctness and security properties of the LPR.OKDM and LPR.DDec procedures follow from Lemmas 3 and
4.

Lemma 6. Assuming hardness of RLWEn,q,Derr,Dsk
, the scheme LPR (Figure 4) is a public-key encryption

scheme with nearly-linear decryption over R = Z[X]/(Xn + 1), with ciphertext dimension d = 2 and bounds
Bsk and Bct = Berr · (2hsk + 1).

4.2 Parameters and Efficiency Analysis

We now analyse the efficiency of our RLWE-based instantiation and compare it with using HSS constructed
from somewhat homomorphic encryption, for various different settings of parameters.

For comparison with HSS based on DDH [9], we remark that for non-SIMD computations, DDH-based
HSS shares can be smaller than both our approach and SHE. However, we estimate that homomorphic
evaluation is around an order or magnitude faster than the times reported in [8] due to the expensive share
conversion procedure, and when using SIMD both this and the share size can be dramatically improved.
Parameter estimation. We derived parameters for our HSS based on LPR using the bounds for correctness
from Lemma 5, chosen to ensure that each RMS multiplication of a ring-element during evaluation is correct
with probability 1−2−κ, where we chose κ = 40. To compare with constructing HSS from SHE, we estimated
parameters for the “BFV” scheme based on RLWE [14, 26], currently one of the leading candidate SHE
schemes. To modify this to achieve HSS with additive output sharing, we need to increase the size of q by
around 2κ bits. With both schemes we chose parameters estimated to have at least 80 bits of computational
security, see Section D in the Appendix for more details.
Share size. Tables 3–4 show BFV ciphertext parameters for different multiplicative depths of circuit,
and plaintext modulus 2 or ≈ 2128, respectively, to illustrate different kinds of Boolean and arithmetic
computations. Table 5 gives our HSS parameters for various choices of Bmax, the maximum value any plaintext
coefficient can hold during the computation. Note that in contrast to SHE, our parameters depend only on
this bound and not the multiplicative depth, although we are more restricted in that we can only perform
homomorphic multiplications where one value is an input.

This means that comparing parameters of the two schemes is very application-dependent. For instance,
for Boolean computations where we can have Bmax = 2, our scheme has smaller parameters than SHE for all
computations of depth > 3, so this can give a significant advantage for very high degree functions that can
be expressed as an RMS program. However, if SIMD computations are required then Bmax must be chosen
to account for the worst-case coefficient growth, which is not directly related to the plaintexts, so our scheme
would likely have larger ciphertexts than SHE in most cases. For operations on large integers, the parameters
in both schemes quickly get very large, though our parameters grow slightly quicker due to the increase in
Bmax.
Computational efficiency. The relative computational efficiency of the schemes is much clearer, and is
the main advantage of our scheme over SHE. The cost of a homomorphic RMS multiplication with RLWE
is roughly twice the cost of a decryption in any RLWE-based scheme (including BFV) with the same pa-
rameters. Recently, Halevi et al. [32] described an optimized implementation of BFV using CRT arithmetic,
where according to their single-threaded runtimes, decryption costs between 20–30x less than multiplication

9Choosing a sparse secret like this does incur a small loss in security, and only gives us a small gain in parameters
for the HSS. The main reason we choose s like this is to allow a fair comparison with SHE schemes, which typically
have to use sparse secrets to obtain reasonable parameters.
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(including key-switching) for the ranges of parameters we consider (cf. [32, Table 3]). This indicates a 10–15x
improvement in performance for homomorphic evaluation with our scheme compared with SHE, assuming
similar parameters and numbers of multiplications. We remark that this comparison deserves some caution,
since other SHE schemes such as BGV [15] may have different characteristics; we have not run experiments
with BGV, but due to the complications in key-switching and modulus-switching we expect the improvement
to still be around an order of magnitude.

Depth N log q Security

1 4096 102 145.1
2 4096 118 122.6
3 4096 134 106.2
4 4096 150 93.73
5 4096 164 85.53
6 8192 186 157.5
7 8192 202 142.9
8 8192 220 129.8
9 8192 236 120.1
10 8192 252 111.9

Table 3: BFV parameters
with plaintext modulus 2

Depth N log q Security

1 16384 456 124.3
2 16384 602 92.44
3 32768 750 154.2

Table 4: BFV parameters
with plaintext modulus ≈ 2128

Bmax N log q Security

2 4096 137 103.3
216 4096 167 83.74
232 8192 203 142.0
264 8192 267 104.9
2128 16384 399 143.9
2256 16384 655 84.60

Table 5: RLWE based HSS
parameters for RMS programs
with maximum plaintext size
Bmax

5 Applications

In this section we highlight some applications of HSS for which our scheme seems well-suited. There are
four primary approaches to compare: approaches not relying on HSS, using DDH-based or one-way function-
based HSS, using HSS based on SHE, or using our new HSS. We remark that the concrete practicality of
SHE-based HSS approaches has also not been considered before this work.

5.1 Secure 2-PC for low-degree polynomials

Perhaps the most natural application of HSS is to achieve a very succinct form of multi-party computation.
After a setup phase to create the key material pk, (ek0, ek1), each party publishes HSS-shares of its input,
which can then be directly used to compute additive shares of the output. Even the simplest case of evaluating
degree-2 polynomials has many interesting applications, and also allows us to use our optimized HSS scheme
from Section 3.4, where shares consist of a single RLWE ciphertext, instead of two. The main motivating
example we look at is to MPC protocols in the preprocessing model, where correlated randomness is pre-
generated ahead of time to help increase efficiency when the actual computation takes place. This correlated
randomness can take many forms, but the most common are Beaver triples, namely additive shares of (a, b, c)
where c = a · b and a, b are random elements of a (typically) large prime field. These can easily be generated
using degree-2 HSS, where each party inputs two field elements, and are also highly amenable to SIMD
processing.

Looking at Tables 4–5, for an example of degree 2 functions over a 128-bit message space, BFV with
depth 1 requires a dimension N = 16384 and modulus log q = 456, whereas our scheme would need to use
Bmax ≈ 2256, giving the same dimension and a slightly larger modulus of around 655 bits. Therefore, our
communication cost will be slightly larger than using SHE-based HSS, but we expect to gain from the lower
computational costs that come with our multiplication.

Using DDH-type HSS [8], an m-bit triple can be created with 3712(5m/4 + 160) bits of communication,
giving 148kB for m = 128, meaning our communication is 20x higher for producing a single triple (at
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2682kB), but orders of magnitude smaller (∼900x) when amortized using SIMD (over n = 16834 triples).
Computation requirements will greatly favor our approach.

We can also compare this with other approaches to Beaver triple generation. The SPDZ protocol [22] uses
SHE (without HSS) to create triples; as well as the more complex homomorphic multiplication, this incurs
extra costs in an interactive distributed decryption protocol, which adds a round of interaction that we can
avoid using HSS with local rounding. The latest version of SPDZ [35] uses linearly-homomorphic encryption
instead of SHE, and reports ciphertexts with log q as small as 327 bits, around half the size of ours. This
would likely beat HSS in terms of communication and computation, but still has the undesirable feature of
2 rounds of interaction, whereas with HSS (and a small one-time setup), the triples are obtained after just
one message from each party.

The recent work of Boyle et al. [8] considered an interesting alternative approach to triple generation using
so-called “cryptographic capsules”, where HSS evaluation of a local PRG is used to expand a small, initial
amount of correlated randomness into many more triples. This allows communication complexity sublinear
in the number triples. They showed that this can be done with O(β2) Boolean RMS multiplications, where β
is a parameter related to the locality of the PRG. With a DDH-like scheme, their protocol involves significant
complications to ensure correct triples in the presence of a non-negligible failure probability for multiplication,
making it quite impractical. However, using our HSS or SHE-based HSS with negligible error considerably
simplifies this approach; it is not immediately clear of the best way to instantiate the parameters, but since
it is a Boolean computation with relatively small degree it seems well-suited to our HSS scheme. We leave
this exploration, as well as extending to other distributions, as an interesting direction of future research.

5.2 2-server PIR

An attractive application of HSS is to obtain highly succinct Private Information Retrieval (PIR) protocols
for m ≥ 2 servers. Here, m servers hold a public database DB and allow clients to submit private queries to
DB, such that both the query and response remain hidden to up to m − 1 colluding servers.10 When using
HSS, we can obtain a very simple, 1-round protocol where the client first sends an encryption of its query to
both servers, who respond with an additive share of the result. Note that we only need the more efficient,
secret-key version of HSS, such as our scheme from Section 3.4 with m = 2 servers.

Recent works on 2-server PIR have used HSS for point functions11 to support basic queries including
equality conditions, range queries and disjoint OR clauses, based on simple schemes using only one-way
functions [11, 43]. However these techniques degrade dramatically for more complex queries, due to the
relatively weak homomorphic ability of the underlying HSS. With HSS for branching programs we can
significantly increase the expressiveness of queries, at the cost of some overhead in ciphertext size and
running time.

In a bit more detail, suppose that a client issues a simple COUNT query,12 which applies some predicate
Q to each row xi ∈ DB, and returns

∑
iQ(xi), that is, the number of rows in DB that match Q. The general

idea is that the client splits Q into HSS shares s1, s2, and sends sj to server j. For each row xi ∈ DB,
the servers then use homomorphic evaluation with the function fxi(Q) := Q(xi) on the shares, to obtain
a shared 0/1 value indicating whether a match occurred. Given additive shares modulo r of the results
q1, . . . , qD (where D = |DB|), the servers can sum up the shares and send the result to the client, who
reconstructs the result q =

∑
qi (this assumes that r < n, so wraparound does not occur).

Below we analyse some useful classes of predicates that are much more expressive than function classes
that can be handled using one-way function based approaches, and seem well-suited for our scheme supporting
RMS programs.

10Using S/FHE alone instead of HSS allows for the stronger setting of single-server PIR. However, a major ad-
vantage of HSS with additive reconstruction is that shares across many rows can easily be combined, allowing more
expressive queries with simpler computation.

11Actually, these works use function secret-sharing [10] for point functions, which in this case is equivalent to HSS
for the same class of functions.

12Other queries such as returning the record identifier, or min/max and range queries can easily be supported with
similar techniques, as previously shown in [43, 8].

20



Conjunctive keyword search. Suppose that each entry in DB is a document x with a list of keywords
Wx = {wx1 , . . . , wxm}, and the query is a COUNT query consisting of an arbitrary conjunction of keywords,
each in {0, 1}`. That is, for a query W = {w1, . . . , wk} containing keywords shared bit-by-bit using the HSS,
the servers will compute a sharing of

#{(x,Wx) ∈ DB :W ⊆Wx}

To evaluate the query on a single entry of DB as an RMS program, we maintain the result f as a secret-
shared memory value, which is initially set to 1. We then iterate over each query keyword wi ∈ W , letting
wij denote the j-th bit of wi, and update f as

f :=
∑

wx∈Wx

f ·
m∏
j=1

(1⊕ wxj ⊕ wij)

Note that the i-th product evaluates to 1 iff xx = wi, and since all wx are distinct, at most one of these
will be 1. Multiplication by f applies a conjunction with the previous keyword, and must be performed inside
the summation as f is a memory value. All other product terms are linear functions (over Z) in the inputs
wi (via a⊕ b = a+ b− 2ab), so each product can be evaluated left-to-right as an RMS program, for a total
of m · ` · k RMS multiplications after iterating over all k query keywords.

Comparison to SHE-based HSS. When using SHE, the number of homomorphic multiplications is roughly
the same as our case, and the multiplicative depth is log(m`k). For a concrete example, suppose that
each document has m = 10 keywords of length ` = 128 bits, and a client’s query has k = 4 keywords.
Using either our HSS scheme or HSS from SHE would need around 5120 multiplications per document,
with a multiplicative depth of 13. This needs SHE parameters of log q ≈ 300 and dimension n = 8192
for the BFV scheme as above, whereas with our scheme we can use the best case of Bmax = 2, giving
log q ≈ 137 and n = 4096. Using our secret-key HSS (Figure 8) and LPR instantiation, the share size is
3n log q bits ≈ 210kB, around 1/3 of the SHE ciphertext size using BFV. The communication cost for the
whole query would be 107MB for our HSS, and 314MB with BFV, whilst we estimate the computational
costs of homomorphic evaluation per document are around 2.5s and 300s, respectively, so even with the
relatively high communication cost, for matching several documents using our HSS would certainly give a
significant performance improvement.

However, one drawback of our approach is that handling SIMD computations is more challenging, since
the Bmax bound must be chosen much larger to account for the coefficient growth of the plaintext polynomials,
which may continue to grow even when the packed plaintext messsages themselves are only bits. If the number
of documents in the database is large enough to warrant SIMD processing then it seems likely that SHE will
be preferable, since n = 8192 documents could be searched at once without increasing the parameters.

Pattern-matching queries. Suppose here that the client wants to search for the occurrence of a pattern
p = (p1, . . . , pm) ∈ {0, 1}m in each row x = (x1, . . . , xn) ∈ {0, 1}n. An RMS program for computing the
pattern-matching predicate, with public input x and private input p, can be done with m · n multiplications
using a similar method to the previous example, modified slightly to compute the OR of matching p with
every position in x.

Comparison to SHE-based HSS. When using SHE, this computation has depth log(nm), also requiring
around n ·m homomorphic multiplications. The comparison with our scheme is then similar to the keyword
search example, depending on the parameters chosen. For another example, if we have a fairly large string
of length n = 10000, and a pattern of size m = 100, then the SHE-based HSS must support depth 20, giving
parameters (n, log q) = (16384, 434). Again, we can use our HSS with parameters for Bmax = 2, which lead
to ciphertexts around 8.5x smaller than with SHE.
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A Preliminaries

We say that ` is negligible in λ if its inverse vanishes asymptotically faster than any polynomial in λ, also
denoted by ` ≤ λ−ω(1). We say ` ≤ poly(λ), if there exists a polynomial p[X] ∈ N[X] and a λ0 ∈ N such that
for all λ ≥ λ0 we have `(λ) ≤ poly(λ). If no such polynomial exist, we write ` ≥ λω(1).

We say that A is probabilistic polynomial time (PPT), if A is a probabilistic algorithm with running time
polynomial in λ. We use y ← A(x) to denote that y is assigned the output of A running on input x.

For ` ∈ N a prime power, by F` we denote a finite field consisting of ` elements.

For an arbitrary set S, by x $← S we denote the process of sampling an element x from S uniformly at
random.

23



Exppr
PKE,A(λ) :

(pk, sk)← PKE.Gen(1λ)
β ← {0, 1}
β′ ← AOEnc(·)(1λ, pk)
if β = β′ return 1
else return 0

OEnc(m) :
if β = 0
c← PKE.Enc(pk,m)
return c

else
c

$← C
return c

Fig. 5: Security challenge experiment for pseudorandomness of ciphertexts.

Definition 6 (Public-key encryption scheme).We say a tuple of PPT algorithms PKE := (PKE.Gen,PKE.Enc,
PKE.Dec) is a public-key encryption scheme with message space M and ciphertext space C, if it is of the
following syntax.

– PKE.Gen(1λ): On input 1λ the key generation algorithm PKE.Gen returns a key pair (pk, sk).
– PKE.Enc(pk,m): On input of the public key pk and a message m ∈M, the encryption algorithm returns

a ciphertext c ∈ C.
– PKE.Dec(sk, c): On input of the secret key sk and a ciphertext c ∈ C, the deterministic decryption algorithm

returns a message m ∈ C or ⊥.

Further, we require PKE to satisfy correctness, that is for every λ ∈ N, for every (pk, sk) in the image of
PKE.Gen, for every message m ∈M and for every ciphertext c in the image of PKE.Enc(pk,m) we require

PKE.Dec(sk, c) = m.

Throughout this paper we only consider public-key encryption schemes that are secure in the sense of
Definition 7.

Definition 7 (Pseudorandomness of ciphertexts). We say a public-key encryption scheme PKE :=
(PKE.Gen,PKE.Enc,PKE.Dec) with ciphertext space C satisfies pseudorandomness of ciphertexts or simply
PKE is secure, if for every PPT adversary A the advantage

AdvprPKE,A(λ) :=

∣∣∣∣Pr [ExpprPKE,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ, where ExpprPKE,A(λ) is as defined in Figure 5.

B HSS from encryption with nearly linear decryption

B.1 Computation on 2-party secret shared values

Lemma 1 (Rounding of noisy shares). Let p, q ∈ N be modulus values with q/p ≥ λω(1). Let R ∈
{Z,Z[X]/(Xn + 1)} be of dimension N . Let t0, t1 ∈ Rq random subject to

t0 + t1 = (q/p) ·m+ e mod q

for some m ∈ Rp, e ∈ R with q/(p · ‖e‖∞) ≥ λω(1). Then there exists a deterministic polynomial time
procedure Round that takes an input tb ∈ Rq and outputs a value in Rp such that it holds

Round(t0) + Round(t1) = m mod p

with probability at least 1−N · (‖e‖∞ + 1) · p/q ≥ 1− λ−ω(1) over the choice of the shares t0, t1.
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Proof. We define Round to be the algorithm that on input tb ∈ Rq outputs

b(p/q) · tbe mod p ∈ Rp.

In order to prove correctness of Round we consider the values of t0 and t1 as elements in R. We express
t0 in the basis of (q/p), i.e. let I := [−q/(2p), q/(2p)), let z0 ∈ Rp, r0 ∈ R|I such that t0 = (q/p) · z0 + r0.
Let l ∈ R such that t1 = (q/p) · (m− z0) + e− r0 + q · l in R. Then we have

Round(t0) = b(p/q) · ((q/p) · z0 + r0)e mod p

= bz0 + (p/q) · r0︸ ︷︷ ︸
∈R|[−1/2,1/2)

e mod p

= z0 mod p

and

Round(t1) = b(p/q) · ((q/p) · (m− z0) + e− r0 + q · l)e mod p

= bm− z0 + p · l + (p/q) · (e− r0)e mod p.

Now, assume e− r0 ∈ R|[−q/(2p),q/(2p)). In this case it holds

Round(t1) = bm− z0 + p · l + (p/q) · (e− r0)︸ ︷︷ ︸
∈R|[−1/2,1/2)

e mod p

= m− z0 mod p.

It is left to compute the probability of e − r0 ∈ R|I . This is the case, whenever all coefficients of r0 are
not “too close” to the boundaries of the interval I (constituting the good area). As t0 is chosen uniformly at
random, we have that the distribution of z0 is the uniform distribution over Rp and the distribution of r0
is the uniform distribution over R|I . For every j ∈ {1, . . . , N}, for the j-th component of r0 the probability
that it is outside the interval

Ij := (−q/(2p) + ej , q/(2p) + ej ]

is at most
(‖e‖∞ + 1) · p/q.

A union bound over all components of r0 yields thus correct rounding with probability at least

1−N · (‖e‖∞ + 1) · p/q.

Lemma 2 (Lifting the modulus of shares). Let p ∈ N be a modulus with p ≥ λω(1). Let R ∈ {Z,Z[X]/(Xn+
1)} be of dimension N . Let m ∈ R and z0, z1 ∈ Rp be random, subject to

z0 + z1 = m mod p.

Then we have
z0 + z1 = m over R

with probability at least 1− (N · (‖m‖∞ + 1)/p) ≥ 1− λ−ω(1) over the choice of the shares z0, z1.

Proof. We have to show that for z0
$← Rp random, with overwhelming probability it holds m − z0 ∈ Rp

(without computing modulo p). Recall that we consider Rp as elements whose coefficients are all in I :=
(−bp/2e , . . . , b(p− 1)/2e]. Thus, m− z0 ∈ Rp, whenever for all j = {1, . . . , N}, the j-th coefficient of z0 is
in Ij := [−b(p− 1)/2e+mj , . . . , bp/2e+mj). For every j we have |I ∩ Ij | ≥ p −mj − 1. A union bound
over all coefficients yields that m− z0 ∈ Rp (and thus z0 + z1 = m over R) except with probability at most

N · (‖m‖∞ + 1)/p.
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B.2 Encryption with nearly linear decryption

Lemma 3 (KDM oracle). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption scheme
with nearly linear decryption and parameters (p, q, d,Bsk, Bct, R). Then there exists a PPT procedure PKE.OKDM
that takes as input a public key pk, a value x ∈ R and an index j ∈ {1, . . . , d} and outputs a ciphertext cj,
such that the following properties are satisfied.

– Nearly linear decryption to the message x · sj: For any λ ∈ N, for any (pk, s) in the image of
Gen(1λ), and for any ciphertext cj ∈ Rdq in the image of PKE.OKDM(pk, x, j), it holds

〈s, cj〉 = (q/p) · (x · sj) + e mod q

for some e ∈ R with ‖e‖∞ ≤ Bct.
– Security: For any λ ∈ N and any PPT adversary A we have that

Advkdm−indPKE.OKDM,A(λ) :=
∣∣∣Pr [Expkdm−indPKE.OKDM,A(λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expkdm−indPKE.OKDM,A(λ) is as defined in Figure 1

By PKE.OKDM(pk, x) we denote the KDM oracle that returns a componentwise encryption of x ·s, i.e. that
outputs the matrix (PKE.OKDM(pk, x, 1), . . . ,PKE.OKDM(pk, x, d)) ∈ Rd×dq .

Proof. We define PKE.OKDM to be the algorithm that on input of a public key pk, a value x ∈ R and an
index j ∈ {1, . . . , d} computes an encryption

c← PKE.Enc(pk, 0)

and outputs
cj := (q/p) · x · ej + c mod q,

where ej ∈ Rdq is the j-th unit vector.
It is left to prove that PKE.OKDM meets the required properties. As PKE is a encryption scheme with

nearly linear decryption, we have
c = (q/p) · 0 + e = e mod q

for some e ∈ R with ‖e‖∞ ≤ Bct. We thus have

〈s, cj〉 = (q/p) · x · 〈s, ej〉+ 〈s, c〉 = (q/p) · (x · sj) + e mod q,

as required for nearly linear decryption.
In order to prove security of PKE.OKDM, we proceed via a series of games depicted in Figure 6. We have

Advkdm−indPKE.OKDM,A(λ) :=

∣∣∣∣Pr [G0
PKE.OKDM,A(λ) = 1

]
− 1

2

∣∣∣∣ .
From an adversary distinguishing between G0

PKE.OKDM,A(λ) and G1
PKE.OKDM,A(λ), we can construct an ad-

versary B on the pseudorandomness of ciphertexts with∣∣Pr [G0
PKE.OKDM,A(λ) = 1

]
− Pr

[
G1

PKE.OKDM,A(λ) = 1
]∣∣ ≤ AdvprPKE,B(λ).

In game G1
PKE.OKDM,A(λ) the view of A is independent of β, as the vectors cj and c are both distributed

uniformly at random over Rdp. We have thus

Pr
[
G1

PKE.OKDM,A(λ) = 1
]
=

1

2
.

As PKE satisfies indistinguishability of ciphertexts by prerequisites, we have thus that

Advkdm−indPKE.OKDM,A(λ) ≤ AdvprPKE,B(λ)

is negligible in λ as required.
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G0
PKE.OKDM,A(λ),G

1
PKE.OKDM,A(λ) :

(pk, sk)← PKE.Gen(1λ)
β ← {0, 1}
β′ ← APKE.OKDM(·,·)(1λ, pk)
if β = β′ return 1
else return 0

OKDM(x, j) :
if β = 0
//Encrypt 0 (in game G0).
c← PKE.Enc(pk, 0)
//Draw a ciphertext (in game G1).

c
$← Rdq

cj ← (q/p) · x · cj + c
return cj

else
c← PKE.Enc(pk, 0)

c
$← Rdq

return c

Fig. 6: Games G0
PKE.OKDM,A(λ) and G1

PKE.OKDM,A(λ) in the proof of Lemma 3 (Security of OKDM).

Lemma 4 (Distributed decryption of sums of ciphertexts). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec)
be a public-key encryption scheme with nearly linear decryption and parameters (p, q, d,Bsk, Bct, R), where
R has dimension N . Let PKE.OKDM be the KDM oracle from Lemma 3. Let Badd ∈ N with Badd ≤ poly(λ).
Then there exists a deterministic polynomial time decryption procedure PKE.DDec with the following syntax
and properties:

– PKE.DDec(b, tb, c): On input a bit b ∈ {0, 1}, “key” share tb ∈ Rdq and ciphertext c, outputs a message in
R.

– For all x ∈ Rp with p/‖x‖∞ ≥ λω(1) and q/(p · ‖x‖∞) ≥ λω(1), for all (pk, s)← Gen(1λ), for all messages
m1 . . . ,mBadd

∈ Rp, for all encryptions ci of mi that are either output of PKE.Enc or of PKE.OKDM (in
that case we have mi = xi · sj for some value xi ∈ Rp and some index j ∈ {1, . . . , d}) and for shares
t0, t1 ∈ Rdq random subject to

t0 + t1 = x · s mod q

for c :=
∑Badd

i=1 ci and m :=
∑Badd

i=1 mi it holds

PKE.DDec(0, t0, c) + PKE.DDec(1, t1, c) = x ·m mod q

with probability over the random choice of the shares t0, t1 of at least

1−N · (N ·Badd · ‖x‖∞ ·Bct · p/q + ‖x ·m‖∞/p+ p/q + 1/p) ≥ 1− λ−ω(1).

For C = (c1| . . . |cd) ∈ Rd×dp by m ← PKE.DDec(b, tb,C) we denote the componentwise decryption m ←
(PKE.DDec(b, tb, c1), . . . ,PKE.DDec(b, tb, cd)) ∈ Rdp.

Proof. Let Round be the procedure for rounding of noisy shares from Lemma 1. Recall that we defined
PKE.DDec to be the algorithm that on input b ∈ {0, 1}, tb ∈ Rd, c ∈ Rdq outputs

(Round(〈tb, c〉 mod q)) mod q.

We start by proving that nearly linear decryption holds true also for the sum of a bounded number of
ciphertexts, but with an increased error term. To that end, let m :=

∑Badd

i=1 mi. Because PKE is an encryption
scheme with nearly linear decryption and by Lemma 3, for all i ∈ {1, . . . , Badd} we have

〈s, ci〉 = (q/p) ·mi + ei mod q, (2)

where ‖ei‖∞ ≤ Bct. This yields

〈s,
Badd∑
i=1

ci〉 =
Badd∑
i=1

〈s, ci〉 =
Badd∑
i=1

((q/p) ·mi + ei) = (q/p) ·m+

Badd∑
i=1

ei mod q,
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where ‖
∑Badd

i=1 ei‖∞ ≤
∑Badd

i=1 ‖ei‖∞ ≤ Badd ·Bct.
It thus holds

〈t0, c〉+ 〈t1, c〉 = x · 〈s, c〉 = (q/p) · (x ·m) + (x · e) mod q

for some e ∈ R with ‖e‖∞ ≤ Badd ·Bct.
By Lemma 1 we have

Round(〈t0, c〉 mod q) + Round(〈t1, c〉 mod q) = x ·m mod p

except with probability at most

N · (‖x · e‖∞ + 1) · p/q ≤ N · (N ·Badd · ‖x‖∞ ·Bct + 1) · p/q.

Whenever Round is successful, by Lemma 2 we have

(Round(〈t0, c〉 mod q)) + (Round(〈t1, c〉 mod q)) = x ·m mod q

except with probability at most N · (‖x ·m‖∞ + 1)/p.

Remark 4 (Distributed decryption for low-order symbol encryption schemes). As mentioned in the main part,
our techniques carry over to encryption schemes which encrypt messages in low-order symbols, i.e. where p
and q are coprime and for which for message m ∈ Rp := R/pR, secret key s ∈ Rdq , and ciphertext c ∈ Rdq
encrypting m, we have

〈s, c〉 = m+ p · e mod q

for some “small” noise e ∈ R.
For this class of encryption schemes, we define PKE.OKDM as the algorithm that on input of a public key

pk, a value x ∈ R with ‖x‖∞ ≤ Binp and an index j ∈ {1, . . . , d} computes an encryption c← PKE.Enc(pk, 0)
and outputs cj := x · ej + c mod q, where ej ∈ Rdq is the j-th unit vector.

Further, we define PKE.DDec to be the algorithm that on input b ∈ {0, 1}, tb ∈ Rd, c ∈ Rdq outputs

((〈tb, c〉 mod q) mod p) mod q.

C HSS extensions

C.1 Secret-key HSS

Definition 8 (Secret-key HSS). Secret-key HSS is a weaker notion of HSS, where the role of the public
key pk is replaced by a secret key sk and where HSS.Enc is replaced by the following algorithm.

– HSS.Share(sk, x): Given secret key sk and secret input value x ∈ I, the encryption algorithm outputs a
pair of shares (sh0, sh1).

The correctness and security requirements are as above, but where HSS.Enc is replaced by HSS.Share and
ct(i), ct are replaced by sh

(i)
b , shb, respectively.

Definition 9 (Secret-key encryption scheme with nearly linear decryption). We say a tuple of
PPT algorithms SKE := (SKE.Gen,SKE.Enc,SKE.Dec) is a secret-key encryption scheme with message space
M and ciphertext space C, if it has the properties and the syntax of a public-key encryption scheme, but
where pk = sk.

We say SKE is key dependent message (KDM) secure (see e.g.[6], also known as circular secure) with
respect to the family of functions Υ from the secret key space of SKE to the message space of SKE, if for
every PPT adversary A that only queries f ∈ Υ the probability

AdvkdmSKE,Υ,A(λ) :=

∣∣∣∣Pr [ExpkdmSKE,Υ,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ, where ExpkdmSKE,Υ,A(λ) is as defined in Figure 7.

If a secure secret-key encryption scheme SKE complies with the properties of Definition 4 (where pk =
sk = s), we say SKE is a secret-key encryption scheme with nearly linear decryption.
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Expkdm
SKE,Υ,A(λ) :

sk← PKE.Gen(1λ)
β ← {0, 1}
β′ ← AOEnc(·)(1λ)
if β = β′ return 1
else return 0

OEnc(f) :
if β = 0
c← PKE.Enc(sk, f(sk))
return c

else
c← PKE.Enc(sk, 0)
return c

Fig. 7: Security challenge experiment for KDM security with respect to the family of functions Υ.

skHSS.Gen(1λ) :

– Generate a secret key s← SKE.Gen(1λ) for encryption and draw a PRF key K $← K.
– Secret share the secret key. Choose s0

$← Rdq at random. Define

s1 := s− s0 mod q.

– Output s and ekb ← (K, sb).

skHSS.Share(1λ, s, x) :

– Encrypt the input. Compute Cx ← SKE.Enc(s, x · s).
– Secret share the input. Choose tx0

$← Rdq at random. Define

tx1 := x · s− tx0 mod q

and output ((Cx, tx0), (C
x, tx1)).

skHSS.Eval(b, ekb, ((C
x(1) , tx

(1)

b ), . . . , (Cx(ρ) , tx
(ρ)

b )), P, r) :

– Load an input into memory: On instruction (id, (Cx, txb )) return txb .

– Add/multiply/output: As HSS.Eval(b, ekb, (Cx(i))i, P, r) (Fig. 2).

Fig. 8: 2-party secret-key homomorphic secret sharing scheme skHSS for the class of RMS programs from
encryption with nearly linear decryption. Here, x ∈ R with ‖x‖∞ ≤ Binp is an input value. Throughout, input
values x ∈ R are represented by encryptions Cx of x · s and memory values x ∈ R are represented by shares
(tx0 , t

x
1) ∈ Rdq ×Rdq with tx0 + tx1 = x · s mod q.

Remark 5. Lemma 4 on distributed decryption carries over to secret-key encryption schemes with nearly
linear decryption (where we only consider outputs of SKE.Enc to be decrypted).

Theorem 3 (Secret-key HSS from encryption with nearly linear decryption). Let SKE := (SKE.Gen,
SKE.Enc,SKE.Dec) be a secret-key encryption scheme with nearly linear decryption and parameters (p, q, d,
Bsk, Bct, R).

– Let SKE satisfy KDM security with respect to the function family

Υ :=
{
fx,j : R

d → R, s 7→ x · sj : x ∈ R s.t. ‖x‖∞ ≤ Binp ∧ 1 ≤ j ≤ d
}
,

where Binp ∈ N with p/Binp ≥ λω(1) and q/(Binp · p) ≥ λω(1),
– Let SKE.DDec be the distributed decryption procedure from Lemma 4.
– Let PRF : K × Sid → Rdq be a pseudorandom function.
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G0
skHSS,A(λ), G1

skHSS,A(λ),G
2
skHSS,A(λ) :

(b, x0, x1, state)← A(1λ)
β ← {0, 1}
s← SKE.Gen(1λ)

K
$← K

s0
$← Rdq

s1 := s− s0 mod q
ekb := (K, sb)
//Encrypt xβ · s (in Game G0).
C← SKE.Enc(sk, xβ · s)
//Encrypt 0 ∈ Rd (in Game G1, G2).
C← SKE.Enc(sk,0)

t0
$← Rdq

//Secret share xβ · s (in Game G0, G1).
t1 := x · s− t0 mod q
//Secret share 0 ∈ Rd (in Game G2).
t1 := −t0 mod q

shb := (C, tb)
β′ ← A(state, pk, ekb, shb)
if β′ = β return 1
else return 0

Fig. 9: Games G0
skHSS,A(λ) and G1

skHSS,A(λ) in the proof of Theorem 3 (Security of skHSS).

Then there exists a 2-party secret-key homomorphic secret sharing scheme skHSS = (skHSS.Gen, skHSS.Enc,
skHSS.Eval) with input space [R]Binp = {x ∈ R | ‖x‖∞ ≤ Binp} for the class of RMS programs, as given in
Figure 8, that satisfies the following.

– Correctness: For any security parameter λ ∈ N, for any inputs x(1), . . . , x(ρ) ∈ [R]Binp , for any polyno-
mially bounded RMS programs P with P (x(1), . . . , x(ρ)) 6= ⊥ and for any integer r ≥ 2, there exist a PPT
adversary B on the pseudorandomness of PRF such that

PrcorskHSS,(x(i))i,P,r
(λ) ≥ 1−

(
AdvprfPRF,B(λ) + λ−ω(1)

)
.

– Security: For every PPT adversary A on the security of skHSS, there exists an PPT adversary B on
the KDM security of SKE such that

AdvsecskHSS,A(λ) ≤ AdvkdmSKE,Υ,B(λ).

Proof. We give the secret-key HSS construction in Figure 8. The proof of correctness carries over from the
proof of correctness of the public-key HSS (Lemma 5).

We prove security via a hybrid argument. For an overview of the games see Figure 9. Game G0
skHSS,A(λ)

corresponds to the HSS security game, therefore we have

AdvsecA,skHSS(λ) =

∣∣∣∣Pr [G0
skHSS,A(λ) = 1

]
− 1

2

∣∣∣∣ .
Note that from an adversary A distinguishing between G0

HSS,A(λ) and G1
HSS,A(λ) we can construct a PPT

adversary B on the KDM security of SKE as follows.
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HSS2.Gen(1λ) :

– Generate a key pair (pk, s)← PKE.Gen(1λ) for encryption and draw a PRF key K $← K.
– Secret share the tensor product of a secret key. Choose S0

$← Rd×dq at random. Define

S1 := s · s> − S0 mod q.

– Output pk and ekb ← (K,Sb).

HSS2.Enc(1λ, pk, x) :

– Encrypt the input. Compute and output cx ← PKE.Enc(pk, x).

HSS2.Eval(b, ekb, (c
x(1) , . . . , cx

(ρ)

), P, r) :

Parse (K,Sb) =: ekb, and let Sb,i denote the i-th column of Sb. Parse P (restricted to the class
of degree 2 polynomials) as a sequence of RMS operations and proceed as follows.

– Load an input into memory: On instruction (id, cx) compute

∀i ≤ d : txb,i := PKE.DDec(b,Sb,i, c
x) + (1− 2b) · PRF(K, id) mod q

and return the share
txb := (txb,1, . . . , t

x
b,d) ∈ Rdq .

– Add/multiply/output: Proceed as HSS.Eval′(b, ekb, (c
x(i))i, P, r) (Fig. 2), where HSS.Eval′ is as

HSS.Eval, but operates on single encryptions instead of d-tuples of encryptions.

Fig. 10: 2-party public-key homomorphic secret sharing scheme HSS2 for the class of degree-2 polynomials from
encryption with nearly linear decryption. Here, x ∈ R with ‖x‖∞ ≤ Binp is an input value. Throughout, input
values x ∈ R are represented by encryptions cx of x and memory values are x ∈ R are represented by shares
(tx0 , t

x
1) ∈ Rdq ×Rdq with tx0 + tx1 = x · s mod q.

On input (b, x0, x1, state) of A, B chooses β ∈ {0, 1}, s0, t0
$← Rdq , sets s1 := s− s0 mod q, t1 := x · s− t0

mod q and for all j ∈ {1, . . . , d} queries cj ← OEnc(xβ , j). Finally, B sends ekb := (K, sb) and shb := (C, tb)
to A, where C := (c1| . . . |cd) ∈ Rd×dq . If the KDM security experiment returns real encryptions of x · sj ,
the distribution of ekb equals the distribution of game G0

HSS,A(λ). On the other hand, if the KDM security
experiment returns encryptions of 0, the distribution of ekb equals the distribution of game G1

HSS,A(λ). We
have thus ∣∣Pr [G0

HSS,A(λ) = 1
]
− Pr

[
G1

HSS,A(λ) = 1
]∣∣ ≤ Advkdm−indPKE.OKDM,B(λ).

As the distribution of (t0, t1) in game G1 is random over Rd × Rd conditioned on t0 + t1 = x · s mod q,
each value on its own t1 is indistinguishable from being distributed uniformly at random over Rd. We have
thus

Pr
[
G1

HSS,A(λ) = 1
]
= Pr

[
G2

HSS,A(λ) = 1
]
.

Finally, as in game G2
HSS,A(λ), the view of A is independent of β, it holds

Pr
[
G2

HSS,A(λ) = 1
]
=

1

2
.
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C.2 HSS for degree-2 polynomials

Theorem 4 (HSS for degree-2 polynomials). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be a public-key
encryption scheme with nearly linear decryption and parameters (p, q, d,Bsk, Bct, R).

– Let Binp ∈ N with p/Binp ≥ λω(1) and q/(Binp · p) ≥ λω(1).
– Let PKE.DDec be the distributed decryption procedure as defined in Lemma 4.
– Let PRF : K × Sid → Rdq be a pseudorandom function.

Then there exists a 2-party public-key homomorphic secret sharing scheme HSS2 = (HSS2.Gen,HSS2.Enc,
HSS2.Eval) with input space [R]Binp for the class of degree-2 polynomials, as given in Figure 10, that satisfies
the following.

– Correctness: For any security paramter λ ∈ N, for any inputs x(1), . . . , x(ρ) ∈ [R]Binp , for any degree-2
polynomial P of polynomially bounded size and with P (x(1), . . . , x(ρ)) 6= ⊥ and for any integer r ≥ 2,
there exist a PPT adversary B on the pseudorandomness of PRF such that

PrcorHSS2,(x(i))i,P,r
(λ) ≥ 1−

(
AdvprfPRF,B(λ) + λ−ω(1)

)
.

– Security: For every PPT adversary A on the security of HSS, there exists an PPT adversary B on the
security of PKE such that

AdvsecHSS2,A(λ) ≤ AdvprPKE,B(λ).

Proof. Let P we a program with

– P is of size |P | ≤ poly(λ)
– P has magnitude bound Bmax with p/Bmax ≥ λω(1) and q/(Bmax · p) ≥ λω(1),
– P has maximum number of input addition instructions Pinp+.

The construction of HSS2 is given in Figure 10. For the proof of correctness we built on the proof of correctness
of our basic public-key HSS (Lemma 5).

It is left to show that loading an input into the memory actually yields tx0 + tx1 = x · s ∈ Rdq as required.
Note that for s = (s1, . . . , sd) and S := s · s>, for the i-th colum Si of S we have Si = si · s. As PKE satsifies
nearly linear decryption, for i ≤ d it thus holds

xb = PKE.DDec(b,Sb,i, c
x) + (1− 2b) · PRF(K, id) mod q

by Lemma 4 we have x0 + x1 = si · x mod q except with probability

N2 · Pinp+ · ‖si‖∞ ·Bct · p/q +N · ‖si · x‖∞/p+N · (p/q + 1/p).

Thus, as in the proof of the basic public-key HSS we have correctness of a single load input with probability
at least

1− d ·N2 · Pinp+ ·Bsk ·Bct · p/q − d ·N2 ·Binp/p− d ·N · (p/q + 1/p).

Therefore, using the observations of the proof of Lemma 5 together with the fact that messages encrypted
do not contain the secret key, we obtain that correctness holds at least with probability

PrcorHSS2,(x(i))i,P
(λ) ≥ 1−AdvprfPRF,B(λ)−N · (Bmax + 1)/q

− |P | · d ·N2 · Pinp+ ·max(Bmax, Bsk) ·Bct · p/q
− |P | · d ·N ·max(Bmax, N ·Binp)/p

− |P | · d ·N · (p/q + 1/p).

For the proof of security, the proof of security of our basic public-key HSS (Theorem 2) carries over
directly. Note that we would actually only require IND-CPA security, as we do not require a KDM oracle.
This is due to the fact that for the evaluation of degree-2 polynomials it suffices to encrypt the input x
(instead of x · s).
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skHSS2.Gen(1λ) :

– (s, (ek0, ek1))← skHSS.Gen(1λ) (see Fig. 8)

skHSS2.Share(1λ, s, x) :

– Encrypt the input. Compute cx ← SKE.Enc(s, x).

– Secret share the input. Choose tx0
$← Rdq at random. Define

tx1 := x · s− tx0 mod q

and output ((cx, tx0), (cx, tx1)).

skHSS2.Eval(b, ekb, (sh
(1), . . . , sh(ρ)), P, p) :

Parse (K, sb) =: ekb and for i ∈ {1, . . . , ρ} parse sh(i) =: (cx
(i)

, tx
(i)

0 ). Parse P (restricted to the class of
degree-2 polynomials) as a sequence of RMS operations and proceed as follows.

– Load an input into memory: On instruction (id, (cx, txb )) return txb .
– Add values in memory: On instruction (id, xb, x

′
b) compute

yb ← xb + x′b mod p.

On instruction (id, txb , t
x′
b ) compute

tx+x
′

b ← txb + tx
′
b + (1− 2b) · PRF(K, id) mod q.

– Add input values: On instruction (id, cx, cx
′
) compute

cx+x
′
← cx + cx

′
mod q.

– Multiply memory value by input: On instruction (id, txb , c
x′) compute

tb := 〈txb , cx
′
〉 mod q

and return yb := Round(tb). //Recall that for t0 + t1 = (q/p) · x · x′ + e mod q we have Round(t0) +
Round(t1) = x · x′ mod p.

– Output from memory, as element in Rp: On (id, xb) output xb.
On instruction (id, txb ) parse txb =: (xb, t̂

x
b ) for some xb ∈ Rq, t̂xb ∈ Rd−1

q and output

xb mod p.

Fig. 11: 2-party secret-key homomorphic secret sharing scheme skHSS2 for the class of degree-2 polynomials
from encryption with nearly linear decryption. Here, x ∈ R with ‖x‖∞ ≤ Binp is an input value. We consider
encryptions cx of x to represent input values and shares (tx0 , t

x
1) ∈ Rdq × Rdq with tx0 + tx1 = x · s mod q to

represent (non-terminal) memory values (this is represented by the trivial load instruction). Further, we have
terminal memory values represented as shares (x0, x1) ∈ Rdp × Rdp. Only non-terminal memory values can be
part of multiplications.
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C.3 Secret-key HSS for degree-2 polynomials

Theorem 5 (Secret-key HSS for degree-2 polynomials). Let SKE := (SKE.Gen,SKE.Enc,SKE.Dec) be
a relaxed version of secret-key encryption scheme with nearly linear decryption and parameters (p, q, d,Bsk,
Bct, R), where we do not require p ≥ λω(1) (i.e. we can choose p ≤ poly(λ)).

– Let SKE satisfy KDM security with respect to the function family of constant functions

Υconst :=
{
fx : R

d → R, s 7→ x : x ∈ [R]Binp

}
,

where Binp ∈ N with p/Binp ≥ λω(1) and q/(Binp · p) ≥ λω(1). .
– Let Round be the procedure for the rounding of noisy shares as defined in Lemma 1. (Recall that this

procedure corresponds to distributed decryption without lifting the modulus to q.)
– Let PRF : K × Sid → Rdq be a pseudorandom function.

Then there exists a 2-party secret-key homomorphic secret sharing scheme skHSS2 = (skHSS2.Gen, skHSS2.Enc,
skHSS2.Eval) with input space [R]Binp for the class of degree-2 polynomials with output space Rp, as given in
Figure 11, that satisfies the following.

– Correctness: For any security parameter λ ∈ N, for any inputs x(1), . . . , x(ρ) ∈ [R]Binp and for any
degree-2 polynomial P of size |P | ≤ poly(λ) with P (x(1), . . . , x(ρ)) 6= ⊥, there exist a PPT adversary B
on the pseudorandomness of PRF such that

PrcorskHSS2,(x(i))i,P,p
(λ) ≥ 1−

(
AdvprfPRF,B(λ) + λ−ω(1)

)
,

where N = 1 if R = Z, let N = n if R = Z[X]/(Xn + 1).
– Security: For every PPT adversary A on the security of skHSS, there exists an PPT adversary B on

the security of SKE such that
AdvsecskHSS2,A(λ) ≤ AdvkdmSKE,Υconst,B(λ).

Proof. Let P we a program with

– P is of size |P | ≤ poly(λ)
– P P has magnitude bound Bmax with p/Bmax ≥ λω(1) and q/(Bmax · p) ≥ λω(1),
– P has maximum number of input addition instructions Pinp+.

The construction of skHSS2 is given in Figure 11. For the proof of correctness, we first switch the PRF to
random as in the proof of correctness of our public-key HSS (Lemma 5). Again, from a difference in the
probability of correct evaluation, we can construct an adversary B on the security of PRF.

Note that for all encryptions cx of some input value x we have

〈s, cx〉 = (q/p) ·m+ e

for some e ∈ Rq with ‖e‖∞ ≤ Bct as PKE satisfies nearly linear decryption. Assuming the programm P
has a maximum number of input addition instructions Pinp+ ≤ poly(λ), we thus have for all encryption cx

computed during the evaluation of P that

〈s, cx〉 = (q/p) ·m+ e

for some e ∈ Rq with ‖e‖∞ ≤ Pinp+ · Bct. For all (tx0 , tx1) ∈ Rq × Rq, we have tx0 + tx1 = x · s, as this holds
true for input values and is preserved by addition.

We now consider multiplication of a memory value by an input value. By previous considerations we have

t0 + t1 = 〈tx0 + tx1 , c
x′〉

= x · 〈s, cx
′
〉 = (q/p) · x · x′ + x · e,
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for some e ∈ Rq with ‖e‖∞ ≤ Pinp+ ·Bct.
Further, t0, t1 ∈ Rq are distributed uniformly at random conditioned on this equation, as we switched

the PRF output to random values.
Thus, by Lemma 1 we have

Round(t0) + Round(t1) = m mod p

except with probability at most

N · (‖e · x‖∞ + 1) · p/q ≤ N2 · Pinp+ ·Bct ·Bmax · p/q +N · p/q

over the choice of the shares t0, t1. A union bound yields thus correctness of multiplication with probability
at least 1− |P | ·N2 · Pinp+ ·Bct ·Bmax · p/q −N · p/q.

This yields correctness of the output of terminal memory values. For the output of non-terminal values
we obtain correctness of outputs except with probability Badd/q.

Altogether, we obtain that the HSS evaluation is correct with probability at least

PrcorskHSS2,(x(i))i,P,p
(λ) ≥1−AdvprfPRF,B(λ)−Badd/q

− |P | ·N2 · Pinp+ ·Bct ·Bmax · p/q −N · p/q.

For the proof of security, we proceed as in the proof of security of our secret-key HSS (Theorem 3), except
that now we only require KDM security with respect to the family of constant function Υconst, because the
encryptions are independent of the secret key itself.

C.4 HSS supporting SIMD

Theorem 6 (HSS supporting SIMD operations). R = Z[X]/(Xn+1) for n ∈ N, n ≤ poly(λ) a power
of 2, such that Xn+1 splits over Rr into pairwise different irreducible polynomials of degree k ∈ N for some
prime r ≥ 2 with r ≤ poly(λ).

– Let Fr be a finite field of degree r.
– Let Binp ∈ N such that p/Binp ≥ λω(1), q/(Binp · p) ≥ λω(1) and Binp ≥ r/2 (i.e. such that for all x ∈ Rr

we have ‖x‖∞ ≤ Binp).
– Let HSS be the HSS from Definiton 2 for the class of RMS programs with input space [R]Binp constructed

from an encryption scheme with parameters (p, q, d,Bsk, Bct, R).

Then there exists an HSS HSSsimd, with input space Isimd := Frk , that supports evaluation of a single instruc-
tion on n/k inputs simultaneously, such that the following hold.

– Correctness: For any security parameter λ ∈ N, for any input vectors x(1), . . . ,x(ρ) ∈ (Isimd)n/k and
for any polynomially bounded RMS programs P with P (x

(1)
j , . . . , x

(ρ)
j ) 6= ⊥ (for all j ∈ {1, . . . , n/k}),

there exists inputs y(1), . . . , y(ρ) ∈ [R]Binp and a PPT adversary B on the correctness of HSS such that

PrcorHSSsimd,(x(i))i,P,r
(λ) ≥ PrcorHSS,(yi)i,P,r(λ).

– Security: For every PPT adversary A on the security of the scheme HSSsimd, there exists an PPT
adversary B on the security of HSS such that

AdvsecHSSsimd,A(λ) ≤ AdvsecHSS,A(λ).

Proof. Let Ψ : (Frk)
n/k → Rr be an isomorphism and Ψ−1 its inverse. By the generalized Chinese remainder

theorem and [37] both exist and are efficiently computable. For i ∈ {1, . . . , n/k} let Ψi : Rr → Frk denote
the i-th component of Ψ .

We define HSSsimd as the homomorphic secret sharing scheme that for a program P and input x(1), . . . ,x(ρ),
sets up
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– (pk, ek0, ek1)← HSS.Gen(1λ),
– ct(i) ← HSS.Enc(1λ, pk, Ψ(x(i))),
– yb ← HSS.Eval(b, ekb, (C

Ψ(x(1)), . . . ,CΨ(x(ρ))), P, r) and
– outputs Ψ−1(yb).

Note that whenever correctness of HSS holds, we have y0 + y1 = P (Ψ(x(1)), . . . , Ψ(x(ρ))) mod r. For the
following we consider all elements in R as elements of Rr. As Ψ is an isomorphism, we have

P
(
Ψ(x(1)), . . . , Ψ(x(ρ))

)
= Ψ

(
P (x

(1)
1 , . . . , x

(ρ)
1 ), . . . , P (x

(1)
n/k, . . . , x

(ρ)
n/k)

)
over Rr. This yields

Ψ−1(y0) + Ψ−1(y1) = Ψ−1(y0 + y1) = Ψ−1
(
P (Ψ(x(1)), . . . , Ψ(x(ρ)))

)
=
(
P (x

(1)
1 , . . . , x

(ρ)
1 ), . . . , P (x

(1)
n/k, . . . , x

(ρ)
n/k)

)
and thus

PrcorHSSsimd,(x(i))i,P,r
(λ) ≥ PrcorHSS,(yi)i,P,r(λ)

as required.
For security, note that from a PPT adversary A of the security of HSSsimd we can construct an adversary B

on the security of HSS as follows. On input (b,x0,x1, state) of A, the adversary B sends (b, Ψ(x0), Ψ(x1), state)
to its own security experiment. On receiving a tuple (pk, ekb, ct) back, B forwards (pk, ekb, ct) to A. Finally,
B forwards the bit β′ sent by A to its own experiment. As HSSsimd.Enc(1λ, pk,xβ) (the encryption that
A expects to receive) corresponds to HSS.Enc(1λ, pk, Ψ(xβ)) (the encryption that B receives from its own
security experiment), we have indeed

AdvsecHSSsimd,A(λ) ≤ AdvsecHSS,A(λ).

Remark 6. Note that a disadvantage of this approach is that in order to guarantee correctness, we need
to have a worst-case bound on the execution size of the program P with respect to arbitrary values
y(1), . . . , y(ρ) ∈ Rr, even if the input values x(1), . . . ,x(ρ) ∈ (Frk)

n/k are bounded. This is due to the fact
that Ψ does not preserve “smallness” of values.

D Further Instantiations and Details on Parameters

D.1 Proof of Lemma 6

Lemma 7 (Lemma 6, restated). The scheme LPR (Figure 4) is a public-key encryption scheme with
nearly-linear decryption over R = Z[X]/(Xn + 1), with ciphertext dimension d = 2 and bounds Bsk and
Bct = Berr · (2hsk + 1).

Proof. Notice that for a ciphertext c = (c0, c1) = LPR.Enc(m), we have

〈c, s〉 = c0 + c1 · ŝ = bv + e1 + (q/p) ·m− avs+ e0ŝ = ev + e1 + e0s+ (q/p) ·m

This means that LPR satisfies property 3 of Definition 4, with noise bound Bct given by the maximum
of ‖ev + e1 + e0s‖∞. Since ‖e‖∞ ≤ Berr and v has only hsk non-zero coefficients of ±1, it follows that the
product ev has coefficients bounded by Berr · hsk. Summing up, the total noise bound in a fresh ciphertext is
therefore Bct = Berr · (2hsk + 1).

We conclude that LPR is a PKE with approximately linear decryption (Definition 4) and parameters
(p, q, d = 2, Bsk = 1, Bct, R).
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Regev.Gen(1λ) :

1. Sample A← ZM×nq , ŝ← χnsk and e← χM

2. Compute b = A · ŝ+ e mod q.
3. Let s = (1, ŝ) and output pk = P := (b‖ −A) ∈ ZM×(n+1)

q and sk = s.

Regev.Enc(pk,m) :

1. To encrypt m ∈ Zp, first let m = (m, 0, . . . , 0) ∈ Zn+1
p

2. Sample r← {0, 1}M
3. Output the ciphertext c = PT · r+ (q/p) ·m mod q

Regev.OKDM(pk,m) :

1. Compute c0i = LPR.Enc(0), for i = 1, . . . , n and cm = LPR.Enc(m).
2. Let m = (0, . . . , 0, (q/p) ·m, . . . , 0) ∈ Zn+1

q (where only the i-th component is non-zero)
3. Output the tuple (cm, c01 +m1, . . . , c

0
n +mn) as encryptions of m · s.

Regev.DDec(b, cx, tb) :

1. Given a bit b, a ciphertext cx and a share tb of m · s, output the share

(b(p/q) · 〈cx, tb〉e mod p) mod q

where the reduction modulo p is into the range (−p/2, . . . , p/2].

Fig. 12: LWE-based instantiation of PKE with approximately linear decryption, with procedures for HSS from
Section 3

D.2 Other Instantiations

As well as the efficient, RLWE-based construction from Section 4, our HSS can be instantiated based on a
number of different lattice-based encryption schemes, including standard Regev encryption [41] and also the
“lower-order symbol” variants of (R)LWE schemes, as described in Section 3.

Definition 10 (Decisional Learning With Errors). Let n ≥ 1 and q ≥ 2 be integers. Let χ be an
error distribution over Z and χsk be a secret key distribution over Zn. For s← χsk, define LWEχ,s to be the
distribution obtained by sampling a ← Znq uniformly at random, e ← χ and outputting (a, b = 〈a, s〉 + e) ∈
Zn+1
q .
The decisional-LWEn,q,χ,χsk

problem is to distinguish polynomially many samples (ai, bi)← LWEχ,s from
the same number of samples taken from the uniform distribution on (Znq ,Zp), where the secret s← χsk.

Figure 12 shows the instantiation from standard Regev encryption based on LWE. The pseudorandomness
of ciphertexts of Regev follows from a standard argument based on the leftover hash lemma and the decisional-
LWE problem [41]. Likewise, correctness of the distributed decryption procedure can be analysed in the same
way as the proof of Lemma 6, and correctness of the OKDM procedure follows from Lemma 3.

D.3 Parameter estimation

In this section we expand on our parameter estimation methodology for both our HSS, and the HSS derived
from the BFV SHE scheme.
Parameter estimation for our HSS from ring-LWE. To estimate parameters for our scheme, we
start with a choice of Bmax, an upper bound on the `∞ norm of plaintexts throughout the computation, a
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parameter σ = 8 for the RLWE noise distribution, a statistical security parameter κ = 40, and the number
of non-zero entries in the secret key, hsk = 64. We choose the parameters so that each RMS multiplication
has a failure probability no more than 2−κ, by adapting the formula from Lemma 5.

Plugging in d = 2, Pinp+ = 1 (assuming for simplicity there are not too many homomorphic additions of
inputs), Bsk = 1, and ignoring lower-order terms, this means we require13

2 ·N ·Bmax · (2 ·N ·Bct · p/q + hsk/p) ≤ 2−κ (3)

To ensure this holds, we set p = N ·Bmax · hsk · 2κ+2, and q ≥ 2κ+3 · p ·N2 ·Bmax ·Bct, which, combined
with the value of Bct from the LPR scheme, give a bound on q as

q ≥ 22κ+5 ·N3 ·B2
max ·Berr · hsk · (2hsk + 1) (4)

To obtain a secure set of parameters, we fix an initial value of N , which defines the smallest possible q
satisfying the above, and then iterate this process with increasing N until the parameters are predicted to
have at least 80 bits of security according to the LWE estimator tool14 by Albrecht et al. [1].
Parameter estimation for HSS from homomorphic encryption. We compare our HSS scheme with
HSS constructed from the BFV somewhat homomorphic encryption scheme from ring-LWE, which is based
on Brakerski’s scale-invariant scheme [14], ported to the ring-LWE setting by Fan and Vercauteren [26]. To
support HSS evaluation, we increase the modulus q of BFV ciphertexts so that after homomorphic evaluation,
we can run our distributed decryption procedure to recover additive shares (modulo p) of the output with
probability at least 1− 2−κ.

In more detail, our parameter selection process is as follows. Given a multiplicative depth parameter L,
we fix the noise standard deviation σ = 8, secret key weight hsk = 64 and relinearization parameter w = 232

(these are common choices from the literature, and consistent with our HSS), choose an initial dimension
N , then find the smallest modulus q allowing evaluation of depth-L circuits followed by correct distributed
decryption into additive shares. We remark that this results in a modulus q around 2κ times larger than
a standard FHE ciphertext, to allow for distributed decryption. We then use the LWE estimator tool to
estimate the cost of various attacks; this process is iterated with increasing N until we obtain parameters
with at least 80 bits of estimated security15.

To find the size of q, we used the criterion 2 ·N · ν · p/q ≤ 2−κ to ensure correct decryption into shares of
all N coefficients of a ciphertext with noise magnitude ν and plaintext modulus p|q, with failure probability
2−κ (cf. Lemma 1). For a binary secret key, the noise after evaluating a depth-L circuit can be bounded by
ν ≤ CL1 · V + L · CL−11 · C2 from [38], where

C1 = (1 + 4/δ) · δ2 · p, C2 = δ2 · (1 + p2) + δ · logw q · w ·Berr

Here, δ is a ring expansion factor measuring the amount by which the `∞ norm of ring elements can grow
after multiplication. When R = Z[X]/(Xn + 1) we have a worst-case value of δ = N , however, in practice
the noise growth from homomorphic operations is much smaller than this, since the polynomials involved are
all zero-centered and with small coefficients. So instead, we follow a heuristic approach taken in [32] and let
δ = 2

√
N . This is similar to parameter selection methods used in software libraries such as HElib [33] and

SEAL [17], and can be analysed more formally using the canonical embedding norms of random variables.

13Here we have applied a small optimization to the original equation, replacing one N term by hsk, which accounts
for our choice of a sparse secret key and can be seen from the proof of Lemma 5.

14Available at https://bitbucket.org/malb/lwe-estimator/
15If 128-bit security is desired and not achieved, in all our examples it suffices to double the dimension and increase

the modulus by a few bits.
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