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Abstract. Stripped Function Logic Locking (SFLL) as the most advanced
logic locking technique is robust against both the SAT-based and the removal
attacks under the assumption of thorough resynthesis of the stripped function.
In this paper, we propose a bit-coloring attack based on our discovery of a
critical vulnerability in SFLL. In fact, we show that if only one protected input
pattern is discovered, then the scheme can be unlocked with a polynomial
number of queries to an activated circuit. As a remedy to this vulnerability, we
also propose a provably secure general function that deregularizes the relation
between the protected input patterns and the secret key. The mathematical
proofs as well as the experiments confirm both the polynomiality of the bit-
coloring attack on standard SFLL and the exponentiality of similar attacks
on SFLL with general function.
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1 Introduction

Increasing the design costs of Integrated Circuits (ICs) and grow-
ing the number of untrusted third party factories make chip pro-
tection one of the vital priorities for the semiconductor industry.
Leakage of the IC layout to an insecure environment may lead
to piracy and overproduction. In order to prevent the unautho-
rized products from functioning, logic locking [8, 5, 7, 3, 1] is
proposed to insert key-controlled gates to the original design.
To lock a circuit with a random n-bit secret key [8], first a com-
bination of n buffers (for key bit “0”) and inverters (for key bit
“1”) are chosen and matched with the bits of the key, and then
each selected buffer or inverter is replaced with a key bit con-
trolled XOR gate. In this case, the valid behavior of the circuit
only happens when a correct key is applied. Such correct key



will be inserted in a tamper-proof memory by IC designer in
post-fabrication phase.

However, almost all of the traditional logic locking schemes
can be unlocked by the SAT-based attack [12] which efficiently
deciphers the secret key with the help of an activated IC. Here,
the assumption is that the attacker has full access to the physical
layout of the locked circuit and also black-box access to the
unlocked circuit. This can be easily obtained by buying two
activated ICs from the market. One can be used for obtaining
the physical layout of the locked circuit using powerful Reverse
Engineering (RE) tools [13], and the other can be utilized as an
oracle that tells the correct input-output pairs.

On the other hand, Stripped Function Logic Locking (SFLL)
as an advanced locking technique [17] benefits from stripping an
arbitrary part of the design functionality to provide a control-
lable resilience against the SAT-based attack. Upon inserting
the correct key, the circuit is restored to the original one. The
stripped function circuit can be captured in terms of input cubes
for which the hardware-implemented design and the original one
produce different outputs. These input cubes can also be con-
ceived as conditions to manifest the built-in error. Therefore, an
attacker applying the removal attack will obtain a netlist with
this error with respect to the original design. However, any reg-
ularity in a logic locking design forms a signature that can be
misused by the attackers. Although SFLL is robust against both
the SAT-based and the removal attacks if the stripped function
circuit is thoroughly resynthesised, it has a clear regularity in
it: All the protected input patterns are of the same Hamming
Distance (HD) from the secret key.

We argue that if an attacker knows only one protected input
pattern, then she can decipher the correct key of SFLL with a
straight forward polynomial time exact attack. On the other
hand, if finding such protected input pattern is extremely hard
for her, it means the built-in error is very low. Thus, the attacker
can prototype an IC based on the stripped function circuit and



sell it on the market, constituting an approximate attack. The
customers of this preliminary version can be rewarded to find
any bugs. If a customer luckily finds out only one mismatch and
reports it to the seller, the release version is ready by performing
an exact attack. The contributions of this paper are threefold:

e Utilizing SAT solver to identify the HD parameter of SFLL
in a single query;

e Proposing a novel bit-coloring attack that can decrypt SFLL
with a linear number of queries to an activated 1C;

e Suggesting a secure general function to deregularize the rela-

tion between the protected input patterns and the secret
key in SFLL.

2 Background

The famous SAT-based attack [12] can efficiently unlock almost
all of the traditional logic encryption methods [8, 5, 7, 3, 1]
using a few input-output observations taken from an activated
IC. The attack uses two copies of the locked circuit with the
same input but different key values under a given constraint to
check whether it is still possible to generate different outputs.
Such input patterns are called Differentiating Input Patterns
(DIPs.) The idea of using DIP is to exclude at least one wrong
key from consideration. However, each DIP can exclude a large
number of wrong keys in most cases. Thus, the main challenge
for logic locking is to make it hard for an attacker figuring out
a correct key by analysis of the locked circuit even if she has
access to an activated IC.

After proposing the SAT-based attack, some counter mea-
sures [16, 14, 4] have been introduced. As an example, SAR-
Lock [16] adopts a comparator circuit to generate a flip signal
that is asserted for specific input and key combinations. The
flip signal will be XORed with one of the primary outputs. To
prevent the flip signal from being asserted for the correct key



value, an additional mask logic is also inserted. In this case,
SARLock ensures that each wrong key can only be excluded
by checking one input pattern. Similarly, the main goal of the
other SAT-proof methods like Anti-SAT [14] and AND-Tree [4]
is to increase the required number of DIPs exponentially with
the key size. Although these incremental techniques have high
attack complexity, they suffer from very low error rate. Thus,
they are vulnerable to approximate attacks that can return an
almost correct key in which only a small number of input pat-
terns produce wrong outputs.

Unlike the original SAT-based attack which returns an exact
key, approximate attacks [11, 9, 15] relax the exactness con-
straint on decryption and return an approximate key. By de-
ploying an approximate key in the circuit, an attacker can still
make profit by selling the chip since a tiny number of wrong
outputs can not be discovered immediately [10]. As an example,
AppSAT [9] first uses the original SAT-based attack to prune
the key values with a certain number of DIPs. Then, the SAT
solver is utilized to provide a key value satisfying all these DIPs.
To evaluate the correctness of the key value, random testing is
adopted to estimate the error rate of the key. If the estimated
error rate is below a specified threshold, the key value is consid-
ered as an approximate key. Otherwise, the random sampling
that resulted in a disagreement will be added to the SAT for-
mula as a new constraint. The combination of the SAT-based
attack and random testing is repeated until the estimated error
rate is below the threshold. Likewise, the other approximate
attacks including Double DIP [11] and Bypass attack [15] also
utilize the low error rate vulnerability of the SAT-proof methods
to arrange a successful attack.

Sensitization attack as another oracle-based attack, deter-
mines individual key bits by generating and applying patterns
that sensitize them to the outputs. In [6], two key bits are con-
sidered pairwise-secure if and only if the sensitization of one
key bit cannot be done without controlling the other key bit
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Figure 1: Stripped function logic locking

and vice versa. In addition, given a locked netlist, an attacker
can identify and remove the lock blocks, organizing a removal
attack.

Different from traditional SAT-proof methods, an advanced
locking technique called SFLL [17] is proposed to strip part of
the design functionality from its hardware implementation as
shown in Figure 1. In this case, the design implemented in
hardware is different from the original circuit, as the former
will be missing the stripped functionality. Upon inserting the
correct key, the stripped function circuit (i.e., sf(x)) is restored
to the original one. SFLL is secure agains both the SAT-based
and sensitization attacks. Also, in order to prevent removal
attack, only sf(x) needs to be obfuscated.

3 SFLL HD Parameter Detection

As a pre-step to attack SFLL, we introduce two approaches to
find the hamming distance h. The first approach assumes one
protected input pattern is known while the second one relaxes
this assumption.



3.1 Utilizing Restore Unit

If a protected input pattern is known, the CNF formula of the
restore unit shown in Figure 1 can be put into a SAT solver. To
find A, we can constrain the output of the restore unit to be “1”
and find assignments of x and k (i.e., # and k) by a SAT query.
Such # and k should satisfy the condltlon that h = HD(2, k).
Therefore, h can be found by only one SAT query.

3.2 Utilizing Activated IC

Even without knowing a protected input pattern, h can be
found by one query of the SAT-based attack [12], C(z, k1,y1) A
C(x, ko, y2) A (y1 # yo). Since sf(x) in each copy generates the
same output under the same x and k*, in order to have an as-
signment satisfying y; # 1y, £ must have a hamming distance
h with either kAl or 152. We evaluate the correct output under
z (i.e., §) by an activated IC and compare § with ¢, and .
If §, # 4§, then we can consider h = HD(Z,k;). Otherwise,
h = HD(%, k). Therefore, we have the following lemma:

Lemma 1. Given a circuit locked with SFLL, h can be found
in one SAT query.

4 SFLL Decryption

After finding the HD parameter, we propose two attacks on
SFLL. The first attack that is an approximate one assumes find-
ing a protected input pattern is extremely hard while the other
attack that is an exact one assumes one protected input pattern
is known.

4.1 Approximate Attack on SFLL

The selection of h determines the error rate and resilience to the
SAT-based attack. Assuming primary inputs have n bits, when
h approaches “0” or n, the error rate becomes exponentially low.



Algorithm 1: Bit-coloring attack

Input: The SFLL circuit C(z, k,y), a protected input pattern Z, and
original function f(z)
&' K = SAT (restore_unit(z, k) = 1);
h=HD( K);
c(Zo) = red;
2’ = & with 2o flipped;
for z; inz,1<i<n-1do
& = &' with 2} flipped;
if f(2")=sf(2") then
L c(z;) = red;
else
L c(2;) = green;
k* = & with 2; flipped, 0 <i <n — 1, if |¢(Z;)| = h.

When h approaches n/2, SFLL reaches the maximum error rate.
In this case, the resilience to the SAT-based attack becomes
minimum. Therefore, one suggested strategy [17] is to set h as
n/4. However, such h still leads to low error rate. Therefore, an
attacker can extract and build the sf(x) part shown in Figure
1 as an approximate attack and sell such circuits to the market.

4.2 Exact Attack on SFLL

If a protected input pattern z s.t., sf(Z) # f(&) is known, can
an attacker quickly find the correct key k* using the SAT-based
attack [12]?7 The answer is no. Even by putting constraints
C(z, k1, f(Z)) N C(Z, ko, f(Z)) into the SAT solver, the size of
remaining keys that cannot be pruned is still exponential.
Such observation leads to an interesting question: given one
such z, can we develop an attack to defeat SFLL in polynomial
time? The answer is yes. The flowing theorem indicates the
correct k* can be found with only n — 1 queries to f(x):

Theorem 1. Given & s.t., sf(&) # f(&), the correct key k* of
SFLL can be found in n — 1 queries to an activated IC.

Proof. We want to color each bit of £ with green and red colors
in a way that:
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green, otherwise
Since k* is unknown, we develop an attack method to find
k* by flipping bits of . We first flip the first bit of Z, then
flip a bit #; among the remaining n — 1 bits to have Z’, and
check whether f(2') # sf(2'). Please note that HD(Z', %) = 2
and, if f(2') # sf(2'), HD(%',k*) = h. Therefore, the flipped
bit z; will be colored differently from the first bit of . We
flip z; back, and test the next bit. With these operations, we
partitioned the bits of 2 into two groups. Because h is already
known, we compare the number of bits in partitioned groups
with h, and it is easy to show that at least one of the groups
have h number of bits. Therefore, k* can be found by flipping
bits of Z in that group. []

If the number of bits in the two groups are equal, we have
two choices of k*. Fortunately, the following lemma indicates
these two choices are equivalent.

Lemma 2. If the number of bits in two groups are the same after
the coloring process illustrated in Theorem 1, the two choices of
a correct key k* are equivalent.

Proof. Such a situation happens when h = n/2. Therefore, we
can either find k* or its complement of k*. If k* and k* share the
same protected input patterns, then k* and &* are functionally
equivalent.

Assuming 3 2 s.t., HD(%,k*) = h but HD(%, k*) # h. Since
k* is the complement of k*, HD(%,k*) =n — h. Since h = n/2,
HD(%,k*) = HD(Z,k*) = n/2, which is a conflict with the
assumption. N

Here we provide an example. Assuming k£* = 10110, h = 2,
and an attacker has a protected input pattern z = 00010. We

flip the first bit of  to have 10010. We then flip individual bits
from %7 to 4. The result of coloring is shown in Table 1. Since



Table 1: Example of the coloring process

flip | & | sf(@)#f(@)7| cldi)

£1 | 11010 yes # c(2o)
2o | 10110 no = ¢(7p)
#3 | 10000 yes # c(o)
Z4 | 10011 yes # c(2p)

h = 2, we know that the group with two bits (#y and #3) has
the same color. Therefore, £* can be simply found by flipping
5%0 and fg.

Algorithm 1 shows complete procedure of the bit-coloring
attack. Given a protected input pattern, h can be found with
only one SAT query, and k* can be deciphered with n—1 queries
to an activated IC.

5 SFLL Enhancement

The current SFLL design can be enhanced to avoid the bit-
coloring attack. Instead of directly comparing primary inputs
x and key inputs k, one straightforward solution is to include a
One Way Function (OWF) that can be utilized to generate O(k)
as shown in Figure 2. In practice, OWF can be substituted by
a cryptographic hash function such as MD5 or SHA. OWF im-
proves the original SFLL design since the key values are hidden,
and the security level can be proved in Theorem 2.

Theorem 2. Finding the correct key k* in Figure 2 is equivalent
to invert the one way function O(k).

Proof. An attacker may still find outputs of the O(k) in sf(z),
0, by conducting the bit-coloring attack on sf(x). If an attacker
finds k¥, an attacker successfully finds an input £* s.t. O(k*) =
0, which inverts the one way function O(k). On the other hand,
if an attacker can invert the one way function O(k), she can
easily find k* if © is known. Therefore, finding the correct key
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Figure 3: The enhanced design of SFLL with one way functions O(x)

k* in Figure 2 is equivalent to invert the one way function O(k),
which is with negligible probability:. []

Theorem 2 indicates that the correct key value £* in Figure 2
is extremely difficult to find by an attacker. However, such a
design is still not fully secure. Specifically, an attacker may
decrypt such encryption without knowing k*. An attacker may
still locate outputs of the O(k) connecting to the restore unit,
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remove the O(k) and consider its outputs as a new key value.
Therefore, she can bypass O(k), conduct the bit-coloring attack,
and find new key values again. Thus, we propose a better SFLL
design as shown in Figure 3. In this design, OWFs are inserted
in the way of the primary inputs.

Such design is resilient to the bit-coloring, the SAT-based,
sensitization, and removal attacks as shown in Theorem 3 to
Theorem 6. We assume the length of primary inputs, the output
of the one way function, and key inputs are n, m and k, respec-
tively, where £ < n < m. We assume the one way function is
collision free since its collision-resistance is usually exponentially
large.

Theorem 3. The enhanced SFLL design shown in Figure 3
1s with negligible probability to be decrypted by the bit-coloring
attack within polynomial time.

Proof. The OWFs are with the property that it is hard to find
two inputs & and &’ s.t. O(Z) = O(%'), and & # &'. Therefore,
it is with negligible probability to flip ¢y and find another x;,
1 <i<n—1, to cancel out the variation of hamming distance
within polynomial time. []

Theorem 4. The enhanced SFLL design shown in Figure 3 is
(k — logy (Z))—secure against the SAT-based attack.

Proof. The original SFLL design shown in Figure 1 is (k —
logg(fb))—secure against the SAT-based attack [17]. Similarly,
to decrypt the enhanced SFLL design, an attacker can ran-
domly guess to find a protected input pattern with a probabil-
ity 2m_k(§) /2m = (’;) /2F. Therefore, with ¢ queries, the success
probability is q(z) /28 =q/ 9k=1092(3)  The enhanced SFLL design
is also (k — loge (i))—secure against the SAT-based attack. [J

Theorem 5. The enhanced SFLL design shown in Figure 3 is
k-secure against sensitization attack.

Proof. Since OWFs do not directly affect key values, similar to
the proof in [17], an attacker need to control all other key bits to
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sensitize a key bit to the output of the restore unit. Therefore,
all k£ bits are pairwise-secure, and the enhanced SFLL design is
k-secure against sensitization attack. []

Theorem 6. The enhanced SFLL design shown in Figure 3 is
on—k (2)—resz'lient to removal attack.

Proof. An attacker can still extract sf(x). However, there are

gm—Fk (’Z) inputs to the hamming distance block in sf(z) such

. . . . n—k(k
that f(z) # sf(z). Since n < m, sf(x) is still with 277%(})
protected input patterns. Therefore, The enhanced SFLL design
is 2"k (Z)—resilient to removal attack. []

6 Experimental Results

In this section, we evaluate the correctness and the efficiency
of the bit-coloring attack. Our experiments are conducted on a
machine with 2.4 GHz Intel Core i5, running Linux with mem-
ory 8 GB. We randomly select the correct key £* with different
lengths, and we choose different values of h for each k*. Table 2
indicates the result. £* can be found with all the test cases, and
the execution time is around 1 second for all the combination
of £* and h. The experimental results show that if a protected
input pattern is given, the correct key k* can be found in very

short time. However, this cannot be done in linear time by the
SAT-based attack.

Meanwhile, we adopt the Goldreich’'s OWF [2] as the O(x)
function. The experiment shows that the enhanced SFLL en-
cryption shown in Figure 3 cannot be decrypted in polynomial
time by both the bit-coloring and the SAT-based attacks. The
bit-coloring attack can be finished quickly, however, a correct
key k* is not solved.
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Table 2: Bit-coloring attack efficiency

Bits of k* h Correctness | Time(s)
64 16 yes 1.1
64 32 yes 0.6
64 48 yes 1.3
64 64 yes 0.6
128 32 yes 1.2
128 64 yes 0.6
128 96 yes 0.5
128 128 yes 0.5
256 64 yes 1.1
256 128 yes 0.5
256 192 yes 0.5
256 256 yes 0.5
512 128 yes 1.1
512 256 yes 0.6
512 384 yes 0.6
512 512 yes 0.5
1024 256 yes 0.9
1024 512 yes 0.6
1024 768 yes 1.2
1024 1024 yes 0.6
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7 Conclusion

Recently, SFLL has been proposed to successfully defeat both
the SAT-based and removal attacks. In this paper, we carefully
analyzed the security of SFLL. First, we suggested two smart
methods to find the hamming distance h by one SAT query.
Then, we utilized the regularity between the protected input
patterns and the secret key to propose an efficient bit-coloring
attack. The attack can decipher the secret key with n—1 queries.
The experimental results show that given a protected input pat-
tern, the correct key can be found in a very short time by the
bit-coloring attack. We further suggested an enhanced SFLL
design with OWFs to defeat the bit-coloring attack.
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