
MPC with Synchronous Security and
Asynchronous Responsiveness

Chen-Da Liu-Zhang1, Julian Loss2, Ueli Maurer1, Tal Moran3⋆, and Daniel
Tschudi4 ⋆⋆

1 {lichen,maurer}@inf.ethz.ch, ETH Zurich
2 lossjulian@gmail.com, University of Maryland

3 talm@idc.ac.il, IDC Herzliya
4 dt@concordium.com, Concordium

Abstract. Two paradigms for secure MPC are synchronous and asyn-
chronous protocols. While synchronous protocols tolerate more corrup-
tions and allow every party to give its input, they are very slow because
the speed depends on the conservatively assumed worst-case delay ∆ of
the network. In contrast, asynchronous protocols allow parties to obtain
output as fast as the actual network allows, a property called responsive-
ness, but unavoidably have lower resilience and parties with slow network
connections cannot give input.
It is natural to wonder whether it is possible to leverage synchronous
MPC protocols to achieve responsiveness, hence obtaining the advan-
tages of both paradigms: full security with responsiveness up to t cor-
ruptions, and extended security (full security or security with unanimous
abort) with no responsiveness up to T ≥ t corruptions. We settle the
question by providing matching feasibility and impossibility results:

– For the case of unanimous abort as extended security, there is an
MPC protocol if and only if T + 2t < n.

– For the case of full security as extended security, there is an MPC
protocol if and only if T < n

2 and T + 2t < n. In particular, setting
t = n

4 allows to achieve a fully secure MPC for honest majority,
which in addition benefits from having substantial responsiveness.

1 Introduction

In the context of multiparty computation (MPC), a set of mutually distrustful
parties wish to jointly compute a function by running a distributed protocol.
The protocol is deemed secure if every party obtains the correct output and if
it does not reveal any more information about the parties’ inputs than what
can be inferred from the output. Moreover, these guarantees should be met even
if some of the parties can maliciously deviate from the protocol description.
Broadly speaking, MPC protocols exist in two regimes of synchrony. First, there
are synchronous protocols which assume that parties share a common clock and
⋆ Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-center.

⋆⋆ Author was supported by advanced ERC grant MPCPRO.

messages sent by honest parties can be delayed by at most some a priori known
bounded time. Synchronous protocols typically proceed in rounds of length ∆,
ensuring that any message sent at the beginning of a round by an honest party
will arrive by the end of that round at its intended recipient. On the upside,
such strong timing assumptions allow to obtain protocols with an optimal re-
silience of 1

2 n corruptions for the case of full security [6, 15, 50, 32, 2, 24], and
of arbitrary number of corruptions for the case of security with (unanimous)
abort and no fairness [27, 34]. On the downside, especially in real-world net-
works where the actual maximal network delay δ is hard to predict, ∆ has to be
chosen rather pessimistically, and synchronous protocols fail to take advantage
of a fast network.

The second type of protocols that we will study in this work are asynchronous
protocols. Such protocols do not require synchronized clocks or an a priori known
bounded network delay to work properly. As such, they function correctly un-
der much more realistic network assumptions. Moreover, asynchronous protocols
have the benefit of running at the actual speed of the network, i.e., they run in
time that depends only on δ, but not on ∆; a notion that we shall refer to
as responsiveness [46]. This speed and robustness comes at a price, however: it
can easily be seen that no asynchronous protocol that implements an arbitrary
function can tolerate 1

3 n maliciously corrupted parties [7]. We ask the natural
question of whether it is possible to leverage synchronous MPC protocols to also
achieve responsiveness:

Is there a (synchronous) MPC protocol that allows to simultaneously achieve
full security with responsiveness up to t corruptions, and some form of extended
security (full security, unanimous abort) up to T ≥ t corruptions?

We settle the question with tight feasibility and impossibility results:

– For the case where unanimous abort is required as extended security, this is
possible if and only if T + 2t < n.

– For the case where full security is required as extended security, this is pos-
sible if and only if T < n

2 and T + 2t < n.

1.1 Technical Overview of Our Results

The Model. We first introduce a new composable model of functionalities in
the UC framework [12], which captures the guarantees that protocols from both
asynchronous and synchronous worlds achieve in a very general fashion. Our
model allows to capture multiple distinct guarantees such as privacy, correct-
ness, or responsiveness, each of which is guaranteed to hold for (possibly) differ-
ent thresholds of corruption. In contrast to previous works, we do not capture
the guarantees as protocol properties, but rather as part of the ideal function-
ality. This allows to use the ideal functionality as an assumed functionality in
further steps of the composition, without the need to keep track of the properties

2

of the real-world protocols.

Real World Functionalities. Our protocols work with public-key infrastructure
(PKI) and common-reference string (CRS) as setup. Parties have access to a
synchronized global clock functionality Gclk and a communication network of
authenticated channels with unknown upper bound δ, corresponding to the max-
imal network delay. This value is unknown to the honest parties. Instead, pro-
tocols make use of a conservatively assumed worst-case delay ∆ ≫ δ. Within δ,
the adversary can schedule the messages arbitrarily.

Ideal Functionality. In order to capture the guarantees that asynchronous and
synchronous protocols achieve in a fine-grained manner, we describe an ideal
functionality Fhyb which allows parties to jointly evaluate a function. At a high
level, Fhyb is composed of two phases; an asynchronous and a synchronous phase,
separated by some pre-defined time-out. Each party can obtain a unique identi-
cal output in either phase. As in asynchronous protocols, the outputs obtained
during the asynchronous phase are obtained fast, i.e., at a time which depends
on the actual maximal network delay δ, but not on the conservatively assumed
worst-case network delay ∆. Let us describe the guarantees that Fhyb provides.

If there are up to t corruptions, Fhyb achieves full security with responsive-
ness. That is, honest parties obtain a correct and identical output, and honest
parties’ inputs remain private. Moreover, they obtain an output yasynch by a time
proportional to the actual network delay δ. Unavoidably, this means that Fhyb
may ignore up to t inputs from honest parties.

If there are up to T ≥ t corruptions, Fhyb can give output at two different
points in time τ1 ≤ τ2. Either all parties obtain yasynch before time τ1 (there
might be some parties which obtained yasynch in the asynchronous phase), or
all parties obtain the output ysync by time τ2, which is guaranteed to take into
account all inputs from honest parties. For the output ysync, we consider two
versions: Ffs

hyb which guarantees full security up to T corruptions implying that
ysync is the correct output, and Fua

hyb which guarantees security with unanimous
abort up to T corruptions, meaning that the adversary can set ysync to ⊥.

We depict in Figure 1 a time-line showing the point in time at which the
honest parties obtain the output, depending on the number of corruptions.

Black-Box Compiler. We give a generic black-box compiler that combines
an asynchronous MPC protocol with a synchronous MPC protocol and gives a
hybrid protocol that combines beneficial properties from both the synchronous
and asynchronous regime, very roughly in the following way: Using threshold
encryption and assuming 1) a two-threshold asynchronous protocol with full
security up to t corruptions and security with no termination (correctness and
privacy) up to T ≥ t corruptions, and 2) a synchronous protocol with extended
security (full security or security with unanimous abort) up to T corruptions,
the compiler provides full security with responsiveness up to t corruptions, and
extended security up to T corruptions, for any T + 2t < n.

3

Fig. 1. The dotted vertical line separates the asynchronous and the synchronous phase.
The orange dot shows the latest point in time when honest parties get output. The
output yasynch takes into account n − t inputs, whereas ysync takes into account all
inputs. Up to t corruptions all parties obtain yasynch fast. In the other case, either all
parties obtain yasynch by τ1, or all parties obtain ysync by τ2, which is the correct output
for Ffs

hyb, and may be ⊥ for Fua
hyb.

For the first sub-protocol 1), we show how to modify the asynchronous MPC
protocol by Cohen [20] to obtain the trade-off mentioned above when used in
our aforementioned compiler. We separate the termination threshold from all
other security guarantees. That is, we achieve an asynchronous protocol that
terminates (in a responsive and fully-secure manner) for any t < 1

3 n, and provides
security without termination up to T < n − 2t corruptions.

The second sub-protocol 2) can be achieved with known protocols; for T < n
in the case of security with unanimous abort (e.g. [27, 34]) and for T < n/2 for
full security (e.g. [6, 15, 50, 32, 2, 24]).

Compiler Description. We now give an outline of our compiler. At a high level,
the idea of our compiler is to first run an asynchronous protocol until some
pre-defined timeout. Upon timing out, the parties switch to a synchronous com-
putation. If sufficiently many parties are honest, the honest parties obtain their
output at the actual speed of network. The main challenge is to ensure that if
even a single party obtains output during the asynchronous phase, the output
will not be changed during the synchronous phase. This would be problematic for
two reasons: First, because the combined protocol would offer no improvement
over a standard synchronous protocol in terms of responsiveness; if a party does
not know if the output it obtains during the asynchronous phase will be later
changed during the synchronous phase, then this output is essentially useless to
that party. Therefore, if this were indeed the case, then one could run just the
synchronous part of the protocol. Second, computing two different outputs may

4

be problematic for privacy reasons, as two different outputs give the adversary
more information about the honest parties’ inputs than what it should be able
to infer. Our solution to this problem is to have the asynchronous protocol out-
put a threshold ciphertext [y] of the actual output y. Prior to running the hybrid
protocol, the parties each obtain a key share di such that k out of n parties
can jointly decrypt the ciphertext by pooling their shares. This way, if we set
k = n−t, where t is the responsiveness threshold, we are ensured that sufficiently
many parties will pool their shares during the asynchronous phase, given that
fewer than t parties are corrupt. Therefore, every honest party should be able to
decrypt and learn the output during the asynchronous phase, thus ensuring re-
sponsiveness. On the other hand, our compiler ensures that if any honest party
gives out its share during the asynchronous phase after seeing the ciphertext
[y] being output by the asynchronous protocol, then the only possible output
during the synchronous phase can be y. Finally, our compiler has a mechanism
to detect whether no honest party has made its share public yet. In this case,
we can safely recompute the result during the synchronous phase of the hybrid
protocol, as we can be certain that the adversary does not have sufficient shares
to learn the output from the asynchronous phase.

Two-Threshold Asynchronous MPC Protocol. Finally, in Section 5, we show how
to obtain an asynchronous MPC protocol to achieve trade-offs between termi-
nation and security (correctness and privacy). While many asynchronous MPC
protocols (e.g. [48, 17, 16, 20, 37]) can be adapted to the two-threshold setting,
we choose to adapt the protocol in [20] for simplicity.

The protocol in [20] achieves all guarantees simultaneously for the corruption
threshold 1

3 n. At a high level, the idea of this protocol is to use a threshold fully
homomorphic encryption scheme (TFHE) with threshold k = 1

3 n and let parties
distribute encryption shares of their inputs to each other. Then, parties agree
on a common set of at least 2

3 n parties, whose inputs will be taken into account
during the function evaluation. In this step, n Byzantine Agreement protocols
are run. Parties can then locally evaluate the function which is to be computed
on their respective input shares by carrying out the corresponding (homomor-
phic) arithmetic operations on these shares. After this local computation has
succeeded, parties pool their shares of the computation’s result to decrypt the
final output of the protocol. We modify the thresholds in this protocol in the
following manner. Instead of setting k = 1

3 n, we set k = 3
4 n. Intuitively, assum-

ing a perfect Byzantine Agreement (BA) functionality, this modification has the
effect that the adversary needs to corrupt 3

4 n parties to break privacy, but can
prevent the protocol from terminating by withholding decryption shares when-
ever it corrupts more than 1

4 n parties. However, one can see that if one realizes
the BA functionality using a traditional protocol with validity and consistency
thresholds 1

3 n, the overall statement will only have security 1
3 n.

We show how to improve the security threshold T of the protocol by using,
as a sub-component, an asynchronous BA protocol which trades liveness for
consistency without sacrificing validity. Our protocol inherits the thresholds of

5

the improved BA protocol, achieving any T < n − 2t, where t is the termination
threshold.

1.2 Synchronous Protocols over an Asynchronous Network

We argue that it is not trivial to enhance a synchronous MPC protocol to achieve
responsiveness. Two ways to execute a synchronous protocol over a network with
unknown delay δ are as follows:

Time-Out Based. Perhaps the easiest approach to execute a synchronous pro-
tocol over this network is to model each round using ∆ clock ticks, where ∆
is a known upper bound on the network delay. In this case, the output is ob-
tained at a time which depends on ∆. Note that ∆ has to be set high enough to
accommodate any conditions, and such that any honest party has enough time
to perform its local computation; if an honest party is slightly later than ∆ in
any round, it will be considered corrupted throughout the whole computation.
In realistic settings where δ is hard to predict, we will have that ∆ ≫ δ. Hence,
any synchronous protocol (even constant-round) is slow.

Notification Based. A well-known approach (see e.g. [44]) to “speed up” a
synchronous protocol is to let the parties simulate a synchronized clock in an
event-based fashion over an asynchronous network. More concretely, the idea is
that each party broadcasts a notification once it finishes a particular round i
and only advances to round i + 1 upon receiving a notification for round i from
all parties. It is not hard to see that this approach does not achieve the respon-
siveness guarantees we aim for. To this end, observe that a single corrupted
party Pj can make all parties wait ∆ clock ticks in each round, simply by not
sending a notification in this particular round. Note that parties cannot infer
that Pi is corrupted, unless they wait for ∆ clock ticks, because δ is unknown.
Hence, unless there are no corruptions, an approach along these lines can not
ensure responsiveness. In contrast, our protocol guarantees that parties obtain
fast outputs as long as there are up to t corruptions.

1.3 Related Work

Despite being a very natural direction of research, compilers for achieving trade-
offs between asynchronous and synchronous protocol have only begun to be
studied in relatively recent works.

Pass and Shi study a hybrid type of state-machine replication (SMR) proto-
col in [46] which confirms transactions at an asynchronous speed and works in
the model of mildly adaptive malicious corruptions; such corruptions take a short
time to take effect and as such model a slightly weaker adversary than one that
is fully adaptive. Subsequently, Pass and Shi show a general paradigm for SMR
protocols with optimistic confirmation of transactions called Thunderella [47].
In their work, they show how to achieve optimistic transaction confirmation (at

6

asynchronous network speed) as long as the majority of some designated commit-
tee and a party called the ‘accelerator’ are honest and faithfully notarize trans-
actions for confirmation. If the committee or the accelerator become corrupted,
the protocol uses a synchronous SMR protocol to recover and eventually switch
back to the asynchronous path of the protocol. Their protocol achieves safety
and liveness against a fully adaptive adversary, but can easily be kept on the
slow, synchronous path forever in this case. Subsequently, Loss and Moran [45]
showed how to obtain compilers for the simpler case of BA that achieve tradeoffs
between responsiveness and safety against a fully adaptive adversary.

The work by Guo et al. [35] introduced a model which weakens classical syn-
chrony. There, the adversary can interrupt the communication between certain
sets of parties, as long as in each round there is a (possibly different) connected
component with an honest majority of the nodes. Although their focus is not on
responsive protocols, the authors include an MPC responsive protocol, based on
threshold FHE for the case of full-security as extended security. Our protocols
differ from theirs in various aspects: 1) In contrast to their protocol, our approach
is conceptually simpler and allows to plug-in any asynchronous and synchronous
protocol in a black-box manner and automatically inherit the thresholds for each
of the guarantees, and the assumptions from each of the protocols. For example,
we can plug-in a synchronous protocol with full security and unanimous abort,
and obtain the corresponding guarantees; one could further consider other types
of guarantees, or design MPC protocols from different types of assumptions
which would all be inherited automatically from our compiler; 2) We phrase all
our results in the UC framework and capture in a very general fashion the guar-
antees that the protocol provides as part of the ideal functionality. This leads
to some differences, e.g. our ideal functionality allows to capture responsiveness
guarantees; also allows to take into account in the computation the inputs from
all parties in some cases.

Further Related Work. Best-of-both worlds compilers for distributed proto-
cols (in particular MPC protocols) come in many flavours and we are only able
to list an incomplete summary of related work. Goldreich and Petrank [33] give a
black-box compiler for Byzantine agreement which focuses on achieving protocols
which have expected constant round termination, but in the worst case termi-
nate after a fixed number of rounds. Kursawe [43] gives a protocol for Byzantine
agreement that has an optimistic synchronous path which achieves Byzantine
agreement if every party behaves honestly and the network is well-behaved. If
the synchronous path fails, then parties fall back to an asynchronous path which
is robust to network partitions. However, the overall protocol tolerates only 1

3 n
corrupted parties in order to still achieve safety and liveness. A recent line of
works [8, 9, 10] studied protocols resilient to t2 corruptions when run in a syn-
chronous network and also to t1 corruptions if the network is asynchronous, for
0 < t1 < 1

3 n ≤ t2 < 1
2 n. A line of works [3, 4, 18, 49] consider the setting where

parties have a few synchronous rounds before switching to fully asynchronous
computation. Here, one can achieve protocols with better security guarantees

7

than purely asynchronous ones. Finally, the line of works [28, 39, 40, 29, 36]
consider different thresholds to achieve more fine-grained security guarantees.

Worth mentioning, are the works of [39, 40], which consider MPC protocols
with full security up for an honest majority t, and security with abort for a dis-
honest majority T . Our protocols achieve results in this direction as well, except
that our threshold t includes responsiveness as well. Note that the impossibility
of [40], where it is shown that T + t ≥ n is impossible does not apply to our
work, since we consider a weaker trade-off T + 2t < n. Moreover, the fact that
our threshold t for full security case includes responsiveness as well is essential
to prove that the bound T + 2t < n is tight.

2 Preliminaries

Threshold Encryption Scheme. We assume the existence of a secure public-
key encryption scheme which enables threshold decryption.

Definition 1. A threshold encryption scheme is a public-key encryption scheme
which has the following two additional properties:

– The key generation algorithm is parameterized by (t, n) and outputs (ek, dk) =
Gen(t,n)(1κ), where ek is the public key, and dk = (dk1, . . . , dkn) is the list
of private keys.

– Given a ciphertext c and a secret key share dki, there is an algorithm that
outputs di = DecSharedki(c), such that (d1, . . . , dn) forms a t-out-of-n shar-
ing of the plaintext m = Decdk(c). Moreover, with t decryption shares {di},
one can reconstruct the plaintext m = Rec({di}).

Digital Signature Scheme. We assume the existence of a digital signature
scheme unforgeable against adaptively chosen message attacks. Given a signing
key sk and a verification key vk, let Signsk and Vervk the signing and verification
functions. We write σ = Signsk(m) meaning using sk, sign a plaintext m to
obtain a signature σ. Moreover, we write Vervk(m, σ) = 1 to indicate that σ is a
valid signature on m.

3 Model

Notation. We denote by κ the security parameter, P = {P1, . . . , Pn} the set of
n parties and by H the set of honest parties.

3.1 Adversary

We consider a static adversary, who can corrupt up to f parties at the onset of the
execution and make them deviate from the protocol arbitrarily. The adversary
is also computationally bounded.

8

3.2 Communication Network and Clocks

We borrow ideas from a standard model for UC synchronous communication
[41, 42]. Parties have access to functionalities and global functionalities [13].
More concretely, parties have access to a synchronized global clock functionality
Gclk, and a network functionality Fδ

net of pairwise authenticated channels with
an unknown upper bound on the message delay δ.

At a high level, the model captures the two guarantees that parties have in the
synchronous model of communication. First, every party must be activated each
clock tick, and second, every party is able to perform all its local computation
before the next tick. Both guarantees are captured via the clock functionality
Gclk. It maintains the global time τ , initially set to 0, and a round-ready flag
di = 0, for each party Pi. Each clock tick, Gclk sets the flag to di = 1 whenever
a party sends a confirmation (that it is ready) to the clock. Once the flag is set
for every honest party, the clock counter is increased and the flags are reset to 0
again. This ensures that all honest parties are activated in each clock tick.

Functionality Gclk

The clock functionality stores a counter τ , initially set to 0. For each honest party
Pi it stores flag di, initialized to 0.

ReadClock:

1: On input (ReadClock), return τ .
Ready:

1: On input (ClockReady) from honest party Pi set di = 1 and notify the
adversary.

ClockUpdate: Every activation, the functionality runs the following code before
doing anything else:
1: if for every honest party Pi it holds di = 1 then
2: Set di = 0 for every honest party Pi and τ = τ + 1.
3: end if

The UC standard communication network does not consider any delivery
guarantees. Hence, we consider the functionality Fδ

net which models a complete
network of pairwise authenticated channels with an unknown upper bound δ
corresponding to the real delay in the network. The network is connected to the
clock functionality Gclk. It works in a fetch-based mode: parties need to actively
query for the messages in order to receive them. For each message m sent from Pi

to Pj , Fnet creates a unique identifier idm for the tuple (Tinit, Tend, Pi, Pj , m).
This identifier is used to refer to a message circulating the network in a concise
way. The field Tinit indicates the time at which the message was sent, whereas
Tend is the time at which the message is made available to the receiver. At first,
the time Tend is initialized to Tinit + 1.

9

Whenever a new message is input to the buffer of Fnet, the adversary is
informed about both the content of the message and its identifier. It is then
allowed to modify the delivery time Tend by any finite amount. For that, it inputs
an integer value T along with some corresponding identifier idm with the effect
that the corresponding tuple (Tinit, Tend, Pi, Pj , m) is modified to (Tinit, Tend +
T, Pi, Pj , m). Moreover, to capture that there is an upper bound on the delay of
the messages, the network does not accept more than δ accumulated delay for
any identifier idm. That is, Fnet checks that Tend ≤ Tinit + δ. Also, observe that
the adversary has the power to schedule the delivery of messages: we allow it to
input delays more than once, which are added to the current amount of delay.
If the adversary wants to deliver a message during the next activation, it can
input a negative delay. We remark, that the traditional model of an asynchronous
network with eventual delivery can be modeled by setting δ = ∞.

Functionality Fδ
net

The functionality is connected to a clock functionality Gclk. It is parameterized by
a positive constant δ (the real delay upper bound only known to the adversary).
It also stores the current time τ and keeps a buffer of messages buffer which
initially is empty.
Each time the functionality is activated it first queries Gclk for the current time
and updates τ accordingly.

Message transmission:

1: At the onset of the execution, output δ to the adversary.
2: On input (Send, i, j, m) from party Pi, Fnet creates a new identifier idm and

records the tuple (τ, τ + 1, Pi, Pj , m, idm) in buffer. Then, it sends the tuple
(Sent, Pi, Pj , m, idm) to the adversary.

3: On input (FetchMessages, i) from Pi, for each message tuple
(Tinit, Tend, Pk, Pi, m, idm) from buffer where Tend ≤ τ , the functionality
removes the tuple from buffer and outputs (k, m) to Pi.

4: On input (Delay, D, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj , m, id) in buffer and Tend + D ≤ Tinit + δ, then set
Tend = Tend + D and return (Delay-ok) to the adversary. Otherwise, ignore
the message.

3.3 Ideal World

We introduce ideal functionality Ffs
hyb (resp. Fua

hyb) which allows to capture the
guarantees that asynchronous and synchronous protocols for secure function
evaluation offer in a fine-grained manner. The functionality has access to the
global functionality Gclk, and allows parties to evaluate a function f . The idea is
that up to t corruptions, parties have full security and responsiveness. Moreover,
in the case of Ffs

hyb, if up to t ≤ T < n/2 parties are corrupted, full security
is guaranteed, i.e. all honest parties obtain the correct and identical output,
and the inputs from honest parties remain secret. The functionality Fua

hyb is the

10

same, except that it guarantees security with unanimous abort up to t ≤ T < n
corruptions instead of full security, i.e., honest parties obtain the correct output
or unanimously obtain ⊥.

The number of inputs that the function is guaranteed to take into account
and the time at which it provides output depends the number of corruptions.
The time-out divides the execution into two phases: an asynchronous and a
synchronous phase.

– If there are up to t corruptions, parties are guaranteed to obtain an output
at time τasynch, which depends on δ. This fast output is identical to every
party and is guaranteed to take into account at least n − t inputs, i.e. can
ignore the inputs from up to t honest parties.

– Otherwise, the parties are guaranteed to obtain the same output, but at
a time which depends on ∆. More concretely, there are two latest points
in time at which parties can obtain an output after the time-out occurs:
τOD < τOND. Either all parties obtain the output by τOD, which is guaranteed
to take into account n − t inputs, or all parties obtain output at a later time
τOND, which is guaranteed to take into account all inputs.

The adversary can in addition gain certain capabilities depending on the
amount of corruption it performs. More technically, we introduce a tamper
function Tamper, parametrized by a tuple of thresholds (t, T). This allows to
naturally capture the different guarantees for the two corruption thresholds t
and T . Basically, if the number of corruptions is greater than t, the adversary
can prevent the parties to obtain fast outputs. And beyond T , no security guar-
antee is ensured, as the adversary learns the inputs from the honest parties and
can choose the outputs as well.
Tamper Function. The ideal functionality is parameterized by a tamper func-
tion, which indicates the adversary’s capabilities depending on the threshold.
We consider two thresholds: T for full security, and t for responsiveness.

Definition 2. We define the ideal functionality with parameters (t, T) if it has
the following tamper function TamperHyb

t,T :

Function TamperHyb
t,T

// Flags indicating violation of c correctness, p privacy, r responsiveness (c, p, r) =
TamperHyb

t,T , where:
– c = 1, p = 1 if and only if |P \ H| > T .
– r = 1 if and only if |P \ H| > t

The ideal functionality has in addition a set of parameters. It contains a
parameter τasynch which models the maximum output delay in the asynchronous
phase, and parameters τOD and τOND which model the output delays for an output
that takes into account n − t inputs, or an output with all the inputs. One can
think of τasynch = O(δ), and τOD < τOND are times which depend on ∆.

In addition, it keeps the following local variables:

11

– FastOutput indicates if the output contains n − t inputs or all inputs.
– τ keeps the current time.
– τtout is the pre-defined time-out to switch between the two phases.
– sync indicates the phase being executed (asynchronous or synchronous).
– xi, yi the input and output for party Pi.
– wi indicates if the adversary decided to not deliver output yi in the asyn-

chronous phase. The adversary can only use this capability if the number of
corruptions is larger than t.

– I keeps the set of parties whose input are taken into account for the fast
output.

Functionality Ffs
hyb

The functionality is connected to a global clock Gclk.
The functionality is parametrized by δ, τasynch, τOD, τOND, Tamper, τtout and the
function to evaluate f .
The functionality stores variables FastOutput, τ , sync, xi, yi, wi. These variables
are initialized as FastOutput = false, τ = 0, sync = false, xi = ⊥, and
yi = wi = ⊥.
It keeps I = H, where H is the set of honest parties, and a set C = ∅.

Timeout/Clock :
Each time the functionality is activated, query Gclk for the current time and
update τ accordingly.
If τ ≥ τtout, set sync = true. If FastOutput = false, compute y1 = · · · =
yn = f(x1, . . . , xn).

Asynchronous Phase If sync = false do the following:

– At the onset of the execution, output δ and τasynch to the adversary.
– On input (Input, vi, sid) from party Pi:
• If some party has received output, ignore this message. Otherwise, set

xi = vi.
• If xi ̸= ⊥ for each Pi ∈ I, set each output to yj = f(x′

1, . . . , x′
n), where

x′
i = xi for each Pi ∈ I ∪ (P \ H) and x′

i = ⊥ otherwise.
• Output (Input, Pi, sid) to the adversary.

– On input (GetOutput, sid) from Pi do the following:
• If the output has not been set yet or is blocked, i.e., yi = ⊥ or wi =

aBlocked, ignore this message.
• If τ ≥ τasynch output (output, yi, sid) to Pi and set FastOutput = true.
• Otherwise, output (output, Pi, sid) to the adversary.

Synchronous Phase If sync = true do the following:

– On input (GetOutput, sid) from party Pi

• If FastOutput = true and τ ≥ τtout + τOD, it outputs (Output, yi, sid)
to Pi.

• If FastOutput = false and τ ≥ τtout + τOND, it outputs (Output, yi, sid)
to Pi.

12

Adversary
Upon each party corruption, update (c, p, r) = TamperHyb

t,T .
// Core Set and Delivery of Outputs

1: Upon receiving a message (No-Input,P ′, sid) from the adversary, if sync =
false, P ′ is a subset of P of size |P ′| ≤ tr and y1 = · · · = yn = ⊥, set
I = H \ P ′.

2: On input (DeliverOutput, i, sid) from the adversary, if yi ̸= ⊥ and sync =
false, output (output, yi, sid) to Pi and set FastOutput = true.
// Adversary’s capabilities

3: On input (TamperOutput, Pi, y′
i, sid) from the adversary, if c = 1, set yi =

y′
i.

4: If p = 1, output (x1, . . . , xn) to the adversary.
5: On input (BlockAsynchOutput, Pi, sid) from the adversary, if r = 1 and

sync = false, set wi = aBlocked.

In the version where Fua
hyb provides security with unanimous abort and no

fairness, the adversary can in addition choose to set the output to ⊥ for all
honest parties and learn the output ysync, in the case FastOutput = false.

4 Compiler

In this section, we present a protocol which realizes the ideal functionality pre-
sented in the previous section. The protocol works with a setup FSetup, where
parties have access to a public-key infrastructure used to sign values, and keys
for a threshold encryption scheme.

The protocol uses a number of sub-protocols:

– ΠZK is a bilateral zero-knowledge protocol which allows a party to prove
knowledge of a witness corresponding to a statement.

– ΠaMPC is an asynchronous MPC protocol that provides full security up to t
corruptions, and security without termination (correctness and privacy) up
to T ≥ t corruptions.

– Πfs
sMPC (resp. Πua

sMPC) is a synchronous MPC protocol with full security (resp.
security with unanimous abort) up to T corruptions.

– ΠsBC is a synchronous broadcast protocol secure up to T corruptions.

4.1 Key-Distribution Setup

The compiler works with a key distribution setup. The setup can be computed
once for multiple instances of the protocol, without knowing the parties’ inputs
nor the function to evaluate.

As usual, we describe our compiler in a hybrid model where parties have
access to an ideal functionality FSetup. At a very high level, FSetup allows to
distribute the keys for a threshold encryption scheme and a digital signature
scheme. The threshold encryption scheme here does not need to be homomorphic.
More concretely, it provides to each party Pi a global public key ek and a private

13

key share dki. Moreover, it gives a PKI infrastructure. That is, it gives to each
party Pi a signing key ski and the verification keys of all parties (vk1, . . . , vkn).

We describe the two setups, PKI setup FPKI and threshold encryption setup
FTE independently. The setup of the protocol consists of includes both function-
alities FSetup = [FPKI, FTE].

Digital Signature Setup. The protocol assumes a signature setup. That is,
each party Pi has a pair secret key and verification key (ski, vki), where vki is
known to all parties.

Threshold Encryption Setup. The protocol assumes also a threshold encryp-
tion setup, which allows each party to access a global public key ek and a private
key share dki.

4.2 Zero-Knowledge

The protocol ΠZK is a bilateral zero-knowledge protocol which allows a party to
prove knowledge of a witness corresponding to a statement. The protocol must
be UC-secure, meaning that it has to UC-realize the Fzk functionality (described
in Section A for completeness). As shown in [25], such a protocol exists in the
FCRS-hybrid model for any relation. For this protocol, we need proofs of correct
decryption, where the relation is parametrized by a threshold encryption scheme.
The statement consists of ek, a ciphertext c, and a decryption share d. The
witness is a decryption key share dki such that d = Decdki

(c).

4.3 Synchronous MPC

Classical synchronous MPC protocols [6, 15, 50, 32, 2, 24], for Πfs
sMPC can be

proven to UC-realize an ideal MPC functionality Ffs
sync (described in Section A

for completeness) up to T < n/2 corruptions, which allows a set of n parties
to evaluate a specific function f . For the case of unanimous abort, where the
adversary is allowed to set the output ⊥, one can instantiate Πua

sMPC for any T < n
[27, 34].

4.4 Synchronous Byzantine Broadcast

A Byzantine broadcast primitive allows a party Ps, called the sender, to consis-
tently distribute a message among a set of parties P.

Definition 3. Let Π be a protocol executed by parties P1, . . . , Pn, where a desig-
nated sender Ps initially holds an input v, and parties terminate upon generating
output. Π is a T -secure broadcast protocol if the following conditions hold up to
T corruptions:

– Validity: If the sender Ps is honest, every honest party outputs the sender’s
message v.

– Consistency: All honest parties output the same message.

14

The classical result of Dolev-Strong [26] shows that synchronous broadcast
protocol ΠsBC can be achieved for any T < n, assuming a public-key infrastruc-
ture. The protocol UC-realizes the synchronous broadcast functionality FsBC
(which is a synchronous MPC functionality, where the output is the sender’s
input) for our setting with static corruptions [30, 41].

4.5 Asynchronous MPC

In this section we formally define what it means for a protocol ΠaMPC to achieve
full security up to t corruptions and security without termination (correctness
and privacy) up to T ≥ t corruptions. In Section 5.2 we show how to achieve
such a protocol.

In a nutshell, the idea is that the protocol realizes an ideal MPC functionality
which is parametrized with the two thresholds (t, T). If the adversary corrupts up
to t parties, all honest parties obtain all the security guarantees as a conventional
asynchronous MPC functionality. If the adversary corrupts t ≤ f ≤ T parties,
it is allowed to block any party from obtaining output; however, those parties
that obtain output, are ensured to obtain the correct output, and privacy is
still guaranteed. Finally, if the adversary corrupts f > T parties, no guarantees
remain: the adversary learns the inputs from all honest parties and can choose
the outputs to be anything.

To model formally an asynchronous MPC functionality, we borrow ideas
from [41, 23]. In traditional asynchronous protocols, the parties are guaranteed
to eventually receive output, meaning that the adversary can delay the output
of honest parties in an arbitrary but finite manner. The reason for this is that
the assumed network guarantees eventual delivery. One can make the simple
observation that if the network has an unknown upper bound δ, then the ad-
versary can delay the outputs of honest parties up to time τasynch = τ(δ), which
is a function of δ. The guarantee obtained in an asynchronous MPC with even-
tual delivery (e.g. as in [23]) is a special case of our functionality, namely when
τasynch = ∞. We describe it for the case where τasynch is a fixed time, but one
can model τasynch to be probabilistic as well.

It is known that asynchronous protocols cannot achieve simultaneously fast
termination (at a time which depends on δ) and input completeness. This is
because δ is unknown and hence it is impossible to distinguish between an honest
slow party and an actively corrupted party. If fast termination must be ensured
even when up to t parties are corrupted, the parties can only wait for n − t
inputs. Since the adversary is able to schedule the delivery of messages from
honest parties, it can also typically choose exactly a set of parties P ′ ⊆ P,
|P ′| ≤ t, whose input is not considered. Therefore, the ideal functionality also
allows the simulator to choose this set. As in [23], and similar to the network
functionality Fδ

net, we use a “fetch-based” mode functionality and allow the
simulator to specify a delay on the delivery to every party.

15

Functionality Fasync

Fasync is connected to a global clock functionality Gclk. It is parameterized by
a set P of n parties, a function f , a tamper function Tampert,T , a delay δ, and
a maximum delay τasynch. It initializes the variables xi = yi = ⊥, τin = ⊥ and
τi = 0 for each party Pi ∈ P and the variable I = H, where H is the set of honest
parties.
Upon receiving input from any party or the adversary, it queries Fclock for the
current time and updates τ accordingly.
Party Pi:

1: On input (Input, vi, sid) from party Pi:
– If some party has received output, ignore this message. Otherwise, set

xi = vi.
– If xi ̸= ⊥ for each Pi ∈ I, set each output to yj = f(x′

1, . . . , x′
n), where

x′
i = xi for each Pi ∈ I ∪ (P \ H) and x′

i = ⊥ otherwise. Set τin = τ .
– Output (Input, Pi, sid) to the adversary.

2: On input (GetOutput, sid) from Pi, if the output is not set or is blocked,
i.e., yi ∈ {⊥,⊤}, ignore the message. Otherwise, if the current time is larger
than the time set by the adversary, τ ≥ τi, output (Output, yi, sid) to Pi.

Adversary:

1: Upon receiving a message (No-Input,P ′, sid) from the adversary, if P ′ is a
subset of P of size |P ′| ≤ t and y1 = · · · = yn = ⊥, set I = H \ P ′.

2: On input (SetOutputTime, Pi, τ ′, sid) from the adversary, if τin ̸= ⊥ and
τ ′ < τin + τasynch, set τi = τ ′.

Upon each party corruption, update (c, p, l) = TamperAsynch
t,T .

1: On input (TamperOutput, Pi, y′
i, sid) from the adversary, if c = 1, set yi =

y′
i.

2: If p = 1, output (x1, . . . , xn) to the adversary.
3: On input (BlockOutput, Pi, sid) from the adversary, if l = 1, set yi = ⊤.

Similar to Fhyb, we parametrize the functionality by a tamper function to
capture the guarantees depending on the set of corrupted parties. The Fasync
functionality has the tamper function TamperAsynch

t,T , where the adversary can
tamper with the output value and learn the inputs if the number of corruptions
is larger than T , and is allowed to block the delivery of the outputs if the number
of corruptions is larger than t.

Definition 4. We define an asynchronous MPC functionality with full security
t and security without termination T , if it has the tamper function TamperAsynch

t,T :

Function TamperAsynch
t,T

(c, p, l) = TamperAsynch
t,T , where:

– c = 1, p = 1 if and only if |P \ H| > T .
– l = 1 if and only if |P \ H| > t.

16

4.6 Protocol Compiler

The protocol has two phases: an asynchronous phase and a synchronous phase,
separated by a pre-defined timeout. The timeout is set large enough (using ∆
and the number of asynchronous rounds) so that the asynchronous phase should
have supposedly terminated if there were not too many corruptions.

During the asynchronous phase, parties may obtain an output yasynch. We
need to ensure (1) that if an honest party obtains an output yasynch during the
asynchronous phase, then every other honest party obtains this output as well;
and (2) that the adversary does not learn two outputs. We remark that even if
the function to evaluate is the same, the output obtained from the synchronous
MPC protocol ΠsMPC is not necessarily yasynch. This is because in an asynchronous
protocol ΠaMPC, up to t inputs from honest parties can be ignored. This is the
reason why we require that ΠaMPC evaluates the function f ′ = Encek(f). During
the synchronous phase, parties agree on whether they execute the synchronous
protocol ΠsMPC. The parties will invoke ΠsMPC only if it is guaranteed that the
adversary did not obtain yasynch. Also, if the parties do not invoke ΠsMPC, it is
guaranteed that they can jointly decrypt the output yasynch.

Asynchronous Phase. In this phase, parties optimistically execute ΠaMPC.
When a party Pi obtains as output a ciphertext c = [y] from ΠaMPC, it sends
a signature of c and collects a list L of n − t signatures on the same c. Once such
list L is collected, it runs a robust threshold decryption protocol. For that, Pi

computes a decryption share di = Decdki
(c), and proves using ΠZK to each Pj

that di is a correct decryption share of c. Upon receiving di and a correct proof
of decryption share for c from n− t parties, compute and output yi = Rec({dj}).

Synchronous Phase. After the timeout, parties execute a synchronous broad-
cast protocol to send a pair list-ciphertext (c, L), where L contains at least n − t
signatures on c, if such a list was collected during the asynchronous phase. If a
party receives via broadcast any valid L, then it sends its decryption share di

and runs the same robust threshold decryption protocol as above. Otherwise,
parties execute the synchronous MPC ΠsMPC.

Observe that if an honest party collects a list L of n − t signatures on a ci-
phertext [y] during the asynchronous phase, it broadcasts the pair ([y], L) during
the synchronous phase. Then, every honest party obtains at least a valid pair
([y], L) after the broadcast round finishes. By a standard quorum argument, if
there are up to T < n−2t corruptions, there cannot be two signature lists of size
n − t on different values. Given that honest parties only sign the correct output
ciphertext [yasynch] from ΠaMPC, this is the only value that can gather a list of sig-
natures. Hence, all parties are instructed to run the robust threshold decryption
protocol, and if there are up to t corruptions, every honest party is guaranteed
to receive enough decryption shares to obtain the output yasynch. On the other
hand, if no honest party obtained such a pair during the asynchronous phase,
it is guaranteed that the adversary did not learn yasynch, since no honest party
sent its decryption share. However, it might be that the adversary collected a
valid ([yasynch], L′). The adversary can then decide whether to broadcast a valid

17

pair. If it does, every party will hold this pair and everyone outputs yasynch as
before. And if it does not, no honest party holds a valid pair after the broadcast
round, and every party can safely run the synchronous MPC protocol ΠsMPC.

We remark that it is not enough that upon the timeout parties simply send
([y], L), because the parties need to have agreement on whether or not to invoke
ΠsMPC. It can happen that the adversary is the only one who collected ([y], L).

Protocol Π∆
hyb(Pi)

The party stores the current time τ , a flag sync = false and a variable τsync = ⊥.
Let τtout = Tasynch(∆) + Tzk(∆) + ∆ be a known upper bound on the time to
execute the asynchronous phase, composed of protocols ΠaMPC, ΠZK and a network
transmission message. Also, let Tzk(∆) denote an upper bound on the time to
execute ΠZK.
Clock / Timeout Each time the party is activated do the following:
1: Query Gclk for the current time and updates τ accordingly.
2: If τ ≥ τtout, set sync = true and τsync = τ .

Setup:
1: If activated for the first time input (GetKeys, sid) to FSetup. We denote the

public key ek, a (n − t, n)-share dki of the corresponding secret key dk, the
signing key sk and the verification key vk.

Asynchronous Phase: If sync = false handle the following commands.

– On input (Input, xi, sid) (and following activations) do
1: Execute ΠaMPC with input xi and wait until an output c is received.
2: Send (c, Sign(c, sk)) to every other party using Fnet.
3: Receive signatures and values via Fnet until you received n− t signatures

L = (σ1, . . . , σl) on a value c.
4: Send (c, L) to every party using Fnet.
5: Receive message lists (c, L′). For each such list send (c, L′) to every party

using Fnet.
6: Once done with the above, compute di = Decdki (c), and prove, using Fzk,

to each Pj , that di is a correct decryption share of c.
7: Upon receiving n− t correct decryption shares for c, compute and output

y = Rec({dj}).
– At every clock tick, if it is not possible to progress with the list above, send

(ClockReady) to Gclk.

Synchronous Phase: If sync = true and τ ≥ τsync, stop all previous steps and
do the following commands.

– On input (ClockReady) do:
1: Send (ClockReady) to Gclk.
2: if τ ≥ τsync then
3: Use ΠsBC to broadcast (c, L), for each pair (c, L) received during the

Asynchronous Phase.
4: Wait until ΠsBC terminated. If a pair (c, L) was received as output,

compute di = Decdki (c), and prove, using Fzk, to each Pj , that di is a

18

correct decryption share of c. Otherwise, if no pair (c, L) was received,
run the synchronous MPC protocol Πfs

sMPC with input xi.
5: end if

– If there was an output (c′, L′) from ΠsBC, wait for Tzk(∆) clock ticks. After
that, if n − t correct decryption shares dj are received from Fnet, compute
and reconstruct the value y = Rec({dj}) from c, and output y. Otherwise, if
there was no output (c, L′) from ΠsBC, output the output received from Πfs

sMPC.

Let Tzk(δ), Tsync(∆), TBC(∆), Tasynch(δ) be the corresponding time to execute
the protocols ΠZK, ΠsMPC, ΠsBC and ΠaMPC, respectively. We state the following
theorem, and the proof is formally described in Section B. The communication
complexity is inherited from the corresponding sub-protocols.

Theorem 1. Assuming PKI and CRS, for any ∆ ≥ δ, Π∆
hyb realizes Ffs

hyb with
full security with responsiveness t and full security min{T, n−2t}. The maximum
delay of the asynchronous phase is τasynch = Tasynch(δ) + Tzk(δ) + δ, and of the
synchronous phase is τOD = TBC(∆) + Tzk(∆) for a fast output with n − t inputs,
and otherwise is τOND = TBC(∆) + Tsync(∆) for an output with all the inputs.

By replacing the invocation of Πfs
sMPC to Πua

sMPC, one realizes Fua
hyb for the same

parameters. Let Π∆
hyb-ua denote the same protocol as Π∆

hyb, except that the invo-
cation of Πfs

sMPC is replaced by Πua
sMPC.

Theorem 2. Assuming PKI and CRS, for any ∆ ≥ δ, Π∆
hyb-ua realizes Fua

hyb with
full security with responsiveness t and security with unanimous abort min{T, n−
2t}. The maximum delay of the asynchronous phase is τasynch = Tasynch(δ) +
Tzk(δ) + δ, and of the synchronous phase is τOD = TBC(∆) + Tzk(∆) for a fast
output with n− t inputs, and otherwise is τOND = TBC(∆)+Tsync(∆) for an output
with all the inputs.

5 Asynchronous Protocols

In this section, we show how to obtain ΠaMPC with full security with respon-
siveness up to t corruptions and security (correctness and privacy) up to T
corruptions, for any t < n

3 and any T < n − 2t.

Technical Remark. In our model, parties have access to a synchronized clock.
The asynchronous protocols do not read the clock, but in our model they need
to specify at which point the parties send a (ClockReady) message to Gclk,
so that the clock advances. Observe that we do not model time within a single
asynchronous round (between fetching and sending messages), or computation
time. Hence, in an asynchronous protocol, at every activation, each party Pi

fetches the messages from the assumed functionalities, and then checks whether
it has any message available that it can send. If so, it sends the corresponding
message. Otherwise, it sends a (ClockReady) message to Gclk.

19

5.1 Asynchronous Byzantine Agreement

The goal of Byzantine agreement is to allow a set of parties to agree on a common
value.

Definition 5. Let Π be a protocol executed by parties P1, . . . , Pn, where each
party Pi initially holds an input vi and parties terminate upon generating output.

– Validity: Π is t-valid if the following holds whenever up to t parties are
corrupted: if every honest party has the same input value v, then every
honest party that outputs, outputs v.

– Consistency: Π is t-consistent if the following holds whenever up to t parties
are corrupted: every honest party which outputs, outputs the same value.

– Liveness: Π is t-live if the following holds whenever up to t parties are
corrupted: every honest party outputs a value.

The first step is to obtain an asynchronous Byzantine Agreement protocol
ΠaBA with higher consistency threshold. In Section C, we formally prove security
of such a protocol ΠaBA in the UC framework for any validity tv, consistency tc

and termination tl, such that tl ≤ tv < n
3 and tc + 2tl < n.

The general idea is to trade termination by consistency, while keeping validity.
The protocol is quite simple. First, each party Pi runs with input xi a regular
Byzantine agreement protocol secure up to a single threshold t′ = tv < n/3. Once
an output x is obtained from the BA, it computes a signature σ = Sign(x, sk)
and sends it to every other party. Once n − tl signatures on a value x′ are
collected, the party sends the list containing the signatures along with the value
x′ to every other party, and terminates with output x′. Since there cannot be
two lists of n − tl signatures on different values if there are up to tc < n − 2tl

corruptions, this prevents parties to output different values if there are up to
tc < n − 2tl corruptions. On the other hand, termination is reduced to tl. One
can also verify that validity is inherited from the regular BA protocol: if every
honest party starts with input x, no honest party signs any other value x′ ̸= x,
and hence there cannot be a list of n − tl signatures on x′, given that tl ≤ tv.

Lemma 1. There is a Byzantine agreement protocol ΠaBA with validity, consis-
tency and termination parameters (tv, tc, tl), for any tl < n

3 , tl ≤ tv < n
3 and

tc < n − 2tl, assuming a PKI infrastructure setup FPKI. The expected maximum
delay for the output is τaba = O(δ).

5.2 Two-Threshold Asynchronous MPC

In order to realize Fasync with full security up to t and security with no termi-
nation (correctness and privacy) up to T , where t < n

3 and T +2t < n, we follow
the ideas from [20, 37, 38], and replace the single-threshold asynchronous BA
protocol for the one that we obtained in Section 5.1 with increased consistency
tc < n − 2tl.

20

The protocol works with a threshold FHE setup, similar to [20], which we
model with the functionality FFHE

Setup, which is the same as FSetup from Sec-
tion 4.1, except that the threshold encryption scheme is fully-homomorphic. For
completeness, we review the definition of a FHE scheme in Section E.

The protocol uses in addition a number of sub-protocols:

– ΠaBA is a Byzantine agreement protocol with liveness threshold tl = t < n/3,
validity t ≤ tv < n/3 and consistency tc = T < n − 2t.

– ΠZK is a bilateral zero-knowledge protocol, similar to the one in Section 4.

Very roughly, the protocol asks each party Pi to encrypt its input xi and
distribute it to all parties. Then, parties homomorphically evaluate the function
over the encrypted inputs to obtain an encrypted output, and jointly decrypt
the output. Of course, the protocol does not work like that. In order to achieve
robustness, we need that every party proves in zero-knowledge the correctness
of essentially every value provided during the protocol execution.

We are interested in zero-knowledge proofs for two relations, parametrized
by a threshold encryption scheme with public encryption key ek:

1. Proof of Plaintext Knowledge: The statement consists of ek, and a ciphertext
c. The witness consists of a plaintext m and randomness r such that c =
Encek(m; r).

2. Proof of Correct Decryption: The statement consists of ek, a ciphertext c,
and a decryption share d. The witness consists of a decryption key share dki,
such that d = Decdki(c).

The protocol proceeds in three phases: the input stage, the computation and
threshold-decryption stage, and the termination stage.

Input Stage. The goal of the input stage is to define an encrypted input for
each party. In order to ensure that the inputs are independent, the parties are
required to perform a proof of plaintext knowledge of their ciphertext. It is known
that input completeness and guaranteed termination cannot be simultaneously
achieved in asynchronous networks, since one cannot distinguish between an
honest slow party and an actively corrupted party. Given that we only guarantee
termination up to t corruptions, we can take into account n − t input providers.

The input stage is as follows: each party Pi encrypts its input to obtain a
ciphertext ci. It then constructs a certificate πi that Pi knows the plaintext of
ci and that ci is the only input of Pi, using bilateral zero-knowledge proofs and
signatures. It then sends (ci, πi) to every other party, and constructs a certificate
of distribution disti, which works as a non-interactive proof that (ci, πi) was
distributed to at least n − t parties. This certificate is sent to every party.

After Pi collects n − t certificates of distribution, it knows that at least n − t
parties have proved knowledge of the plaintext of their input ciphertext and
distributed the ciphertext correctly to n− t parties. If the number of corruptions
is smaller than n − t, this implies that each of the n − t parties have proved
knowledge of the plaintext of their input ciphertext and also have distributed the
ciphertext to at least 1 honest party. At this point, if each party is instructed to

21

echo the certified inputs they saw, then every honest party will end up holding
the n − t certified inputs. To determine who they are, the parties compute a
common set of input providers. For that, n asynchronous Byzantine Agreement
protocols are run, each one to decide whether a party’s input will be taken into
account. To ensure that the size of the common set is at least n − t, each party
Pi inputs 1 to the BAs of those parties for which it saw a certified input. It then
waits until there are n − t ones from the BAs before inputting any 0.

Protocol Πinput
aMPC (Pi)

The protocol keeps sets Si and Di, initially empty. Let xi be the input for Pi.
Setup:

1: If activated for the first time input (GetKeys, sid) to FFHE
Setup. We denote the

public key ek, a (n − t, n)-share dki of the corresponding secret key dk, the
signing key sk and the verification key vk.

Plaintext Knowledge and Distribution:
1: Compute ci = Encek(xi).
2: Prove to each Pj knowledge of the plaintext of ci, using ΠZK.
3: Upon receiving a correct proof of plaintext knowledge for a ciphertext cj from

Pj , send σpopk
i = Signski

(cj) to Pj .
4: Upon receiving n−t signatures {σpopk

j }, compute πi = {σpopk
j } and send (ci, πi)

to all parties.
5: Upon receiving a message (cj , πj) from Pj , send σdist

i = Signski
((cj , πj)) to

Pj . Add (j, (cj , πj)) to Si.
6: Upon receiving n − t signatures {σdist

j }, compute disti = {σdist
j } and send

((ci, πi), disti) to all parties.
7: Upon receiving ((cj , πj), distj) from Pj , add j to Di.

Select Input Providers: Once |Di| > n − t, stop the above rules and proceed
as follows:
1: Send Si to every party.
2: Once n − t sets {Sj} are collected, let R =

∪
j

Sj and enter n asynchronous
Byzantine agreement protocols ΠaBA with inputs v1, . . . , vn ∈ {0, 1}, where
vj = 1 if ∃(j, (cj , πj)) ∈ R. Keep adding possibly new received sets to R.

3: Wait until there are at least n − t outputs which are one. Then, input 0 for
the BAs which do not have input yet.

4: Let w1, . . . , wn be the outputs of the BAs.
5: Let CoreSet := {j|wj = 1}.
6: For each j ∈ CoreSet with (j, (cj , πj)) ∈ R, send (j, (cj , πj)) to all parties.

Wait until each tuple (j, (cj , πj)), j ∈ CoreSet is received.

Computation and Threshold-Decryption Stage. After input stage, parties
have agreed on a common subset CoreSet of size at least n − t parties, and each
party holds the n − t ciphertexts corresponding to the encryption of the input
from each party in CoreSet. In the computation stage, the parties homomorphi-
cally evaluate the function, resulting on the ciphertext c encrypting the output.
In the threshold-decryption stage, each party Pi computes the decryption share

22

di = Decdki
(c), and proves in zero-knowledge simultaneously towards all parties

that the decryption share is correct. Once n − t correct decryption shares on the
same ciphertext are collected, Pi reconstructs the output yi.

Protocol Πcomp
aMPC (Pi)

Start once Πinput
aMPC (Pi) is completed. Let CoreSet be the resulting set of at least

n− t parties, and let the input ciphertexts be cj , for each j ∈ CoreSet.
Function Evaluation:
1: For each j /∈ CoreSet, assume a default valid ciphertext cj for Pj .
2: Locally compute the homomorphic evaluation of the function c =

fek(c1, . . . , cn).
Threshold Decryption:
1: Compute a decryption share di = Decdki (c).
2: Prove, using ΠZK, to each Pj that di is a correct decryption share of c.
3: Upon receiving a correct proof of decryption share for a ciphertext c′ and

decryption share dj from Pj , send σpocs
i = Signski

((dj , c′)) to Pj .
4: Upon receiving n − t signatures {σpocs

j } on the same pair (di, c′), compute
ProofSharei = {σpocs

j } and send ((di, c′), ProofSharei) to all parties.
5: Upon receiving n− t valid pairs ((dj , c′), ProofSharej) for the same c′, com-

pute the output yi = Rec({dj}).

Termination Stage. The termination stage ensures that all honest parties
terminate with the same output. This stage is essentially a Bracha broadcast
[11] of the output value. The idea is that each party Pi votes for one output yi

and continuously collects outputs votes. More concretely, Pi sends yi to every
other party. If Pi receives n−2t votes on the same value y, it knows that y is the
correct output (because at least an honest party obtained the value y as output if
the security threshold T < n−2t is satisfied). Hence, if no output was computed
yet, it sets yi = y as its output and sends yi to every other party. Observe that
if the security threshold is not satisfied, the adversary can tamper the outputs,
but so can the simulator. Once n − t votes on the same value y are collected,
terminate with output y. If a party receives n − t votes on y, and termination
should be guaranteed (f ≤ t), there are n − 2t honest parties that voted for y,
and hence every honest party which did not output will at some point collect
n − 2t votes on y, and hence will also vote for y. Since each honest party which
terminated voted for y and each honest party which did not terminated voted
for y as well, this means that all honest parties which did not terminate will
receive n − t votes for y.

Protocol Πterm
aMPC (Pi)

During the overall protocol, execute this protocol concurrently.
Waiting for Output:
1: Wait until the output c is computed from Πcomp

aMPC (Pi).

23

Adopt Output:
1: Wait until receiving n− 2t votes for the same value y.
2: Adopt y as output, and send y to every other party.

Termination:
1: Wait until receiving n− t votes for the same value y.
2: Terminate.

Let us denote ΠaMPC the protocol that executes concurrently the protocols
Πinput

aMPC , Πcomp
aMPC and Πterm

aMPC . Each party, at every activation, tries to progress with
any of the subprotocols. If they cannot, they output (ClockReady) to Gclk so
that the clock advances. In Section D, we prove the following theorem.

Theorem 3. The protocol ΠaMPC uses FFHE
Setup as setup and realizes Fasync on

any function f on the inputs, with full security up to t corruptions and security
without termination up to T , for any t < n/3 and T +2t < n. The total maximum
delay for the honest parties to obtain output is τasynch = τaba(δ) + 2τzk(δ) + 9δ.

6 Impossibility Results

In this section we argue that the obtained trade-offs are optimal. We prove
that any MPC protocol that achieves full security with responsiveness up to t
corruptions, and extended security with unanimous abort up to T corruptions
needs to satisfy T + 2t < n. Since full security is stronger than security with
unanimous abort, these bounds also hold for the case where the extended security
is full security.

Lemma 2. Let t, T be such that T + 2t ≥ n. There is no MPC protocol Π
that achieves full security with responsiveness up to t corruptions, and extended
security with unanimous abort up to T ≥ t corruptions.

Proof. Let δ be the unknown delay upper bound. Moreover, let δ′ ≪ δ be such
that the time to execute Π when messages are scheduled within δ′ is τ(δ′) < δ.

Assume without loss of generality that 3t = n. We prove impossibility for
the case where the function to be computed is the majority function. Consider
three sets S0, S1 and S, where |S0| = |S1| = t and |S| = T .

First, consider an execution where parties in S0 and S are honest and have
input 0, and parties in S1 are corrupted and crash. Moreover, the adversary
instantly delivers the messages between S0 and S (within δ′). Since full security
with responsiveness is guaranteed, parties in S0 output 0 at time τ(δ′). Similarly,
in an execution where parties in S1 and S are honest and have input 1, the parties
in S1 output at time τ(δ′).

Now, consider an execution where S is corrupted, and the parties in S0
and S1 have inputs 0 and 1 respectively. The corrupted parties in S emulate an
honest protocol execution with input b ∈ {0, 1} with the parties in Sb. Moreover,
the adversary delays δ the messages between S0 and S1. A party in S0 (resp.

24

S1) cannot distinguish between the two executions, because it outputs at time
τ(δ′) < δ, and hence outputs 0 (resp. 1).

However, since T parties are corrupted, the protocol provides security with
unanimous abort meaning that in the ideal world all honest parties output the
same value (which may be ⊥).

This contradicts the fact that Π achieves full security with responsiveness
up to t corruptions and unanimous abort up to T corruptions. ⊓⊔

In addition, classical bounds in synchronous MPC with full security, show
that full security for dishonest majority T ≥ n/2 is impossible [19]. As a conse-
quence, MPC with extended full security is impossible for dishonest majority.

7 Conclusions

We summarize all our results. Using the compiler from Section 4 and the follow-
ing instantiations:

– A bilateral zero-knowledge protocol like in [25], which uses CRS.
– A synchronous MPC with full security (resp. unanimous abort) for T < n/2

(resp. T < n), using a protocol such as [6, 32] (resp. [27, 34]).
– A synchronous broadcast protocol for T < n such as [26] from PKI.
– An asynchronous MPC with full security up to t < n/3 and security without

termination up to T < n − 2t, as described in Section 5.2, based on PKI and
threshold FHE (achievable from CRS [1]).

We obtain the following corollaries, where Tsync(∆) and TBC(∆) are the run-
ning times for the synchronous MPC protocol and the synchronous broadcast:

Corollary 1. There exists a protocol parametrized by ∆ ≥ δ, which realizes Ffs
hyb

on any function f , with full security with responsiveness t and full security T
for any t < n

3 and T < min{n/2, n − 2t}, in the (Gclk, Fδ
net, FPKI, FCRS)-hybrid

world. The expected maximum delay of the asynchronous phase is τasynch = O(δ),
and the maximum delay of the synchronous phase is τOD = TBC(∆) + Tzk(∆) if
an output was delivered in the asynchronous phase, and otherwise is τOND =
TBC(∆) + Tsync(∆).

For tr = n
4 , we obtain Ffs

hyb with correctness with privacy for any ts < n
2 .

Corollary 2. There exists a protocol parametrized by ∆ ≥ δ, which realizes Fua
hyb

on any function f , with full security with responsiveness t and full security T
for any t < n

3 and T < n − 2t, in the (Gclk, Fδ
net, FPKI, FCRS)-hybrid world. The

expected maximum delay of the asynchronous phase is τasynch = O(δ), and the
maximum delay of the synchronous phase is τOD = TBC(∆) + Tzk(∆) if an output
was delivered in the asynchronous phase, and otherwise is τOND = TBC(∆) +
Tsync(∆).

25

References

[1] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
483–501. Springer, Heidelberg, April 2012.

[2] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM
Press, May 1990.

[3] Zuzana Beerliova-Trubiniova, Martin Hirt, and Jesper Buus Nielsen. Almost-
asynchronous MPC with faulty minority. Cryptology ePrint Archive, Report
2008/416, 2008. http://eprint.iacr.org/2008/416.

[4] Zuzana Beerliová-Trubíniová, Martin Hirt, and Jesper Buus Nielsen. On the the-
oretical gap between synchronous and asynchronous MPC protocols. In PODC,
Zurich, Switzerland, 2010.

[5] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in
constant time. Distributed Computing, 16(4):249–262, 2003.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

[7] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations
with optimal resilience (extended abstract). In Jim Anderson and Sam Toueg,
editors, 13th ACM PODC, pages 183–192. ACM, August 1994.

[8] Erica Blum, John Katz, and Julian Loss. Synchronous consensus with optimal
asynchronous fallback guarantees. In Theory of Cryptography Conference, 2019.

[9] Erica Blum, Jonathan Katz, and Julian Loss. Network-agnostic state machine
replication. Cryptology ePrint Archive, Report 2020/142, 2020. https://eprint.
iacr.org/2020/142.

[10] Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. Always have a backup plan:
Fully secure synchronous mpc with asynchronous fallback. In CRYPTO, to appear,
2020.

[11] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840, 1985.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[13] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

[14] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer,
Heidelberg, August 2001.

[15] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM
Press, May 1988.

[16] Ashish Choudhury. Optimally-resilient unconditionally-secure asynchronous
multi-party computation revisited. Cryptology ePrint Archive, Report 2020/906,
2020. https://eprint.iacr.org/2020/906.

26

http://eprint.iacr.org/2008/416
https://eprint.iacr.org/2020/142
https://eprint.iacr.org/2020/142
https://eprint.iacr.org/2020/906

[17] Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous mpc with
linear communication complexity. In Proceedings of the 2015 International Con-
ference on Distributed Computing and Networking, pages 1–10, 2015.

[18] Ashish Choudhury, Arpita Patra, and Divya Ravi. Round and communication
efficient unconditionally-secure MPC with t<n / 3 in partially synchronous net-
work. In ICITS 2017, 2017.

[19] Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In 18th ACM STOC, pages 364–369. ACM Press, May
1986.

[20] Ran Cohen. Asynchronous secure multiparty computation in constant time. In
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part II, volume 9615 of LNCS, pages 183–207. Springer, Heidelberg,
March 2016.

[21] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. Round-preserving
parallel composition of probabilistic-termination cryptographic protocols. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 80. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[22] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic
termination and composability of cryptographic protocols. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 240–269. Springer, Heidelberg, August 2016.

[23] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round
asynchronous multi-party computation based on one-way functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032
of LNCS, pages 998–1021. Springer, Heidelberg, December 2016.

[24] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Birgit Pfitzmann, editor, EU-
ROCRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer, Heidelberg,
May 2001.

[25] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Heidelberg, Au-
gust 2001.

[26] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine
agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[27] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam
Smith. Detectable byzantine agreement secure against faulty majorities. In Aleta
Ricciardi, editor, 21st ACM PODC, pages 118–126. ACM, July 2002.

[28] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-
threshold broadcast and detectable multi-party computation. In Eli Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS, pages 51–67. Springer, Heidelberg,
May 2003.

[29] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party compu-
tation with hybrid security. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 419–438. Springer, Heidelberg,
May 2004.

[30] Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adap-
tively secure broadcast, revisited. In Proceedings of the 30th annual ACM
SIGACT-SIGOPS symposium on Principles of distributed computing, pages 179–
186, 2011.

27

[31] Craig Gentry. A fully homomorphic encryption scheme. PHD. Thesis, 2009.
[32] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

[33] Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing ter-
mination in fast randomized byzantine agreement protocols. Technical report,
Computer Science Department, Technion, 1990.

[34] Shafi Goldwasser and Yehuda Lindell. Secure computation without a broadcast
channel. In 16th International Symposium on Distributed Computing (DISC).
Citeseer, 2002.

[35] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tol-
erance. In Annual International Cryptology Conference, pages 499–529. Springer,
2019.

[36] Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff between
active and passive corruptions in secure multi-party computation. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
203–219. Springer, Heidelberg, August 2013.

[37] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asyn-
chronous multi-party computation with optimal resilience (extended abstract). In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 322–
340. Springer, Heidelberg, May 2005.

[38] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-
party computation with quadratic communication. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 473–485.
Springer, Heidelberg, July 2008.

[39] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining
privacy with guaranteed output delivery in secure multiparty computation. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 483–500.
Springer, Heidelberg, August 2006.

[40] Jonathan Katz. On achieving the “best of both worlds” in secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC,
pages 11–20. ACM Press, June 2007.

[41] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477–498. Springer, Heidelberg, March 2013.

[42] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-
party computation using a global transaction ledger. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 705–734. Springer, Heidelberg, May 2016.

[43] Klaus Kursawe. Optimistic asynchronous byzantine agreement. 2000.
[44] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure

protocols and security under composition. In Jon M. Kleinberg, editor, 38th ACM
STOC, pages 109–118. ACM Press, May 2006.

[45] Julian Loss and Tal Moran. Combining asynchronous and synchronous byzantine
agreement: The best of both worlds. Cryptology ePrint Archive, Report 2018/235,
2018. https://eprint.iacr.org/2018/235.

[46] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the per-
missionless model. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

28

https://eprint.iacr.org/2018/235

[47] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant
confirmation. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 3–33. Springer, 2018.

[48] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. Communication efficient
statistical asynchronous multiparty computation with optimal resilience. In In-
ternational Conference on Information Security and Cryptology, pages 179–197.
Springer, 2009.

[49] Arpita Patra and Divya Ravi. On the power of hybrid networks in multi-party
computation. IEEE Trans. Information Theory, 2018.

[50] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM
Press, May 1989.

29

Supplementary Material
The following supplementary material is divided in sections labeled by latin
letters and appropriately referred to in the body.

A UC Zero-Knowledge and Synchronous MPC
For completeness, we formally describe the UC functionalities for zero-knowledge
[14] and synchronous MPC [41].

A.1 Zero-Knowledge
We formally describe the UC Fzk functionality, which allows a prover to prove
knowledge of a certain witness w for a statement x satisfying a relation R.

Functionality Fzk

Fzk is connected to a global clock functionality Gclk. It is parameterized by a
prover P , verifier V , a relation R, and a delay time τzk. It also stores the current
time τ and keeps a buffer buffer of messages containing the proofs that is initially
empty.
Each time the functionality is activated, it first queries Gclk for the current time
and updates τ accordingly.

Zero-Knowledge Proof:
1: On input (x, w) from P , if R(x, w) = 1, create a new identifier sid and record

the tuple (τ, τ + 1, (x, w), sid).Then sends (x, sid) to the adversary.
2: On input (GetProof, sid) from V , for each tuple (Tinit, Tend, (x, w), sid) such

that Tend ≤ τ , remove it from buffer and output (x, sid) to V .
3: On input (Delay, T, sid) from the adversary, if there is a tuple

(Tinit, Tend, (x, w), sid) in buffer and Tend + T ≤ Tinit + τzk, then set Tend =
Tend + T and return (Delay-OK) to the adversary. Otherwise, ignore the
message.

A.2 Synchronous MPC
We describe the ideal functionality Ffs

sync for full security and Fua
sync. The func-

tionality is connected to a global clock Gclk and is parametrized by the delay
time τsync for which the honest parties obtain the output. For simplicity, we
model the synchronous functionality with deterministic termination, but one
can extend this to probabilistic termination using the frameworks presented in
[22, 21].
Tamper Function for Synchronous SFE. The tamper function TamperSynch

T

models the adversary’s capabilities for a SFE functionality secure up to a single
threshold T . The adversary can tamper with the output and learn the inputs
from honest parties if and only if the number of corruptions is larger than T .

30

Definition 6. We define a synchronous SFE functionality secure up to T cor-
ruptions if it has the following tamper function TamperSynch

T :

Function TamperSynch
T

(c, p) = TamperSynch
T , where:

– c = 1, p = 1 if and only if |P \ H| > T .

Functionality Ffs
sync

Fsync is connected to a global clock Gclk. Fsync is parameterized by a set P of
n parties, a function f and a tamper function TamperSynch

T , and a delay time at
which the parties obtain output τsync. Additionally, it initializes τ = 0 and, for
each party Pi, xi = yi = ⊥. It keeps the set of honest parties H.
Upon receiving input from any party or the adversary, it queries Fclock for the
current time and updates τ accordingly.
Party:

1: On input (Input, vi, sid) from each party Pi ∈ H at a fixed time τ ′:
– If xi = ⊥, it sets xi = vi.
– Set τout = τ ′ + τsync.

2: If for each party Pi ∈ H xi ̸= ⊥, set each yi = f(x1, . . . , xn).
3: On input (GetOutput, sid) from honest party Pi or the adversary (for cor-

rupted Pi), if τ ≥ τout, it outputs (Output, yi, sid) to Pi.
Adversary: Upon party corruption, set (c, p) = TamperSynch

T ((x1, . . . , xn),H).

1: On input (TamperOutput, Pi, y′
i, sid) from the adversary, if c = 1, set yi =

y′
i.

2: If p = 1, output (x1, . . . , xn) to the adversary.
3: On input (Input, vi, sid) from the adversary on behalf of Pi, set xi = vi.

In the version where Fua
sync provides security with unanimous abort, the ad-

versary can in addition choose to set the output to ⊥ for all parties after learning
the output.

B Proof of the Protocol Compiler

In this section, we show the proof of the Theorem 1, stated in Section 4.

Theorem 1. For any ∆ ≥ δ, Π∆
hyb realizes Ffs

hyb with full security with re-
sponsiveness t and full security min{T, n − 2t}. The maximum delay of the
asynchronous phase is τasynch = Tasynch(δ) + Tzk(δ) + δ, and of the synchronous
phase is τOD = TBC(∆) + Tzk(∆) for a fast output with n − t inputs, and otherwise
is τOND = TBC(∆) + Tsync(∆) for an output with all the inputs.

31

Proof. Completeness. We first show that the protocol is complete. That is, if
there are no corruptions, no environment can distinguish the real world from the
ideal world. To this end, we need to argue that the output the parties obtain in
both worlds are exactly the same. Observe that even if the adversary does not
corrupt any party, it can still delay messages.

Given that the time-out occurs after τasynch = Tasynch(δ) + Tzk(δ) + δ clock
ticks and there are no corruptions, every honest party obtains output during
the asynchronous phase. More concretely, each honest party obtains an output
[yasynch] from ΠaMPC and manages to collect a list L of n − t signatures on this
ciphertext during the asynchronous phase, decrypts [yasynch] and obtains the
output yasynch.

Soundness. To argue soundness, we first describe the simulator. The simula-
tor Shyb has to simulate the view of the dishonest parties during the protocol
execution.

Algorithm Shyb

Clock / Timeout At every activation, the simulator does the following:
1: Query Gclk for the current time and updates τ accordingly.
2: Send (CheckTimeOut, sid) to Gtimeout. If the response is

(CheckTimeOut, true, sid), set sync = true, τsync = τ .
Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are sent to
corrupted parties throughout the simulation (recall the variable buffer in Fnet).
More concretely, it does the following:
1: On input δ from Fhyb, output δ to the adversary.
2: On input (FetchMessages, i) from Pi, for each message tuple

(Tinit, Tend, Pk, Pi, m, idm) from buffer where Tend ≤ τ , output (k, m)
to Pi.

3: On input (Delay, D, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj , m, id) in buffer and Tend + D ≤ Tinit + δ, then set
Tend = Tend + D and return (Delay-ok) to the adversary. Otherwise, ignore
the message.

Setup:
1: The simulator generates the keys at the beginning of the execution. That

is, it computes (ek, dk) ← Gen(n−t,n)(1κ), where dk = (dk1, . . . , dkn), and
(vkj , skj) ← SigGen(1κ) for each party Pj . Then, it records the tuple
(sid, ek, dk, vk, sk), where vk = (vk1, . . . , vkn) and sk = (sk1, . . . , skn).

2: On input (GetKeys, sid) from a corrupted party Pi, send output
(sid, ek, dki, vk, ski) to Pi.

Asynchronous Phase:
It receives the time output τasynch from Ffs

hyb. It keeps a variable τi for each
party Pi.

// Internal emulation of ΠaMPC

32

1: Emulate the messages of the protocol ΠaMPC. If a corrupted party Pi is sup-
posed to gets an output from the protocol, output c0 = [0], an encryption of
0.
// Internal emulation of Fnet.

2: As soon as τi = 0 for an honest party Pi, input to buffer, the tuple
(τ, τ + 1, i, j, [y], Sign([y], ski)), id), for each party Pj and freshly generated
id. Output (Sent, i, j, ([y], Sign([y], ski))), id) to the adversary.

3: As soon as the current time τ is such that there are n − t tuples
(τ1, τ2, j, i, ([y], Sign([y], skj))) such that τ2 ≤ τ for the same i in buffer,
input to buffer the tuple (τ, τ + 1, i, j, ([y], L′), id), for each Pj , where L′

contains the list of signatures.
// Internal emulation of ΠZK.

4: The simulator internally emulate the delays of ΠZK. Upon receiving an output
y from Ffs

hyb, it computes an encryption [y] under the key ek. Then, it computes
the decryption shares of the corrupted parties di = DecShareski (c0), and sets
the decryption shares from honest parties such that (d1, . . . , dn) forms a secret
sharing of the output value y.

5: Every time the adversary requests validity of the decryption share di from an
honest party Pi, it responds with a confirmation of the validity of di.

6: Every time a corrupted Pi provides a proof of correct decryption (c′, d′), check
whether c′ = c0 and d′ = di. If so, record that a correct proof of decryption
was input by Pi.
// Delivery of honest parties’ outputs.

7: On input (Output, Pi, sid) from Ffs
hyb, where Pi is an honest party, if Pi

obtained n− t correct decryption shares, input (DeliverOutput, Pi, sid) to
Ffs

hyb.
Synchronous Phase:

// Internal emulation of ΠsBC

1: The simulator emulates the messages from the broadcast protocol. For each
emulated honest party Pi that received a valid pair ([y], L) in the asyn-
chronous phase, output ([y], L) to the adversary after TBC(∆) clock ticks.

2: On input a valid pair ([y], L) from the adversary, after TBC(∆) start the em-
ulation of ΠZK.
// Internal emulation of ΠZK

3: Output the message (c0, di) at the corresponding time, for each honest Pi.
That is, keep a local delay ui for each honest party, which can be updated on
input (Delay, D, id), and output the message if τ ≥ τsync + TBC(∆) + ui.
// Internal emulation of ΠsMPC.

4: If no valid pair was received from the adversary, and no honest party received a
valid pair in the asynchronous phase, emulate the messages of the synchronous
MPC protocol.

Tamper Function:
1: On input (TamperOutput, Pi, y′

i, sid) from the adversary, forward the input
to Ffs

hyb.
2: On input (x1, . . . , xn) from Ffs

hyb, output it to the adversary.

33

3: When the adversary blocks an output from the asynchronous
MPC protocol in the real world, the simulator forwards the input
(BlockAsynchOutput, Pi, sid) to Ffs

hyb.

We need to prove that the real and ideal worlds are indistinguishable. First,
we remark that the simulator emulates the network by keeping a variable buffer
which stores the messages that are sent. If a corrupted party inputs a message to
Fnet in the real world, the simulator inputs the corresponding tuple to buffer
exactly the same way as Fnet. Moreover, the simulator have to input to buffer
all messages that are sent from honest parties to corrupted parties in the real
world. One can see that such messages correspond to signatures on an encrypted
output and lists of such signatures. All these messages can be simulated. Observe
that the simulator uses an encryption of 0 instead of [y] in all the messages
above. By the security of the threshold encryption scheme, both messages are
indistinguishable. We remark that the simulator has knowledge of all the keys
from the parties, since it simulates the setup functionality FSetup.

Now we analyze each phase individually.
Setup Phase. It is straightforward to see that the messages that the adversary
sees during the setup phase are identical in both worlds. This is because the sim-
ulator executes the key generation algorithms for both the threshold encryption
and the digital signature scheme as the functionality FSetup in the ideal world.
Asynchronous Phase. We argue that the view of the adversary is indistin-
guishable in both worlds.
Internal emulation of ΠaMPC. The simulator keeps a delay variable τi for each
party Pi, which it sets the same way as the adversary. When τi = 0, a corrupted
party Pi gets the encryption [y] in the real world. In the ideal world, the simulator
outputs an encryption of 0, c0 = [0], when τi = 0 as well.
Internal emulation of Fnet. In the real world, the corrupted parties obtain two
types of messages after obtaining the ciphertext [y]: signatures on [y] and lists
of signatures. Once an honest party obtains [y] from the asynchronous MPC
protocol, it inputs to Fnet a signature of [y] towards every party. Then, when
n − t signatures are collected, the honest party inputs the list to Fnet towards
every party.

The simulator maintains a variable buffer which stores the messages that
are sent via the network. It then inputs signatures of [0] on behalf of each hon-
est party Pi to buffer, towards every party (in particular, towards corrupted
parties), and at the corresponding time. Once n− t signatures are collected with
destination Pi, the simulator emulates internally the protocol of Pi, and inputs
to buffer the corresponding list, towards every party.
Internal emulation of ΠZK. The simulator keeps a delay variable ui for each
party Pi, which it sets the same way as the adversary. When the delay is met,
a corrupted party Pi gets a proof of correct decryption ([y], di), where di =
DecShareski

([y]) from ΠZK in the real world. In the ideal world, the simulator
outputs a pair (c0, di), where di = DecShareski

(c0), where the decryption shares
from honest parties are set such that they reconstruct the value y.

34

Delivery of honest parties’ outputs. The simulator has the power to deliver the
outputs of honest parties in the ideal world. Hence, it delivers the outputs at the
corresponding time. Namely, when the honest party has the output ciphertext
[y] and collects n − t decryption shares in the real world.

Synchronous Phase. We argue again that the view of the adversary is exactly
the same in both worlds.
Internal emulation of ΠsBC. In the real world, the parties broadcast all valid pairs
([y], L) that were received in the Asynchronous phase. This behavior is emulated
by the simulator as follows: the simulator keeps track of the honest parties that
obtained a valid pair ([y], L) during the asynchronous phase. The simulator then
internally emulates ΠsBC and outputs the valid pairs ([y], L) at the end of the
broadcast round, after TBC clock ticks. Also, if the adversary inputs a valid pair
([y], L) during the broadcast round, it also outputs the valid pair ([y], L) to each
party at the corresponding time.
Internal emulation of ΠZK. After the round of synchronous broadcasts termi-
nated, if a valid pair ([y], L) was received, then in the real world the honest
parties send the decryption shares along with proofs of correct decryption using
ΠZK. In the ideal world, the simulator the internal emulation of ΠZK is similar to
the one during the asynchronous phase.
Internal emulation of ΠsMPC. If no valid pair was received, in the real world the
parties execute ΠsMPC, whose behavior is directly emulated by the Ffs

hyb function-
ality in the ideal world. That is, the simulator forwards the output from Ffs

hyb
to the adversary.

All that is left to do is to argue about the messages the adversary obtains
from breaking the correctness, privacy and termination thresholds.

Full Security. In the real world, if the adversary corrupts more than T par-
ties, it can set the output of the asynchronous protocol ΠaMPC to any output y,
and it can also obtain the inputs from the honest parties. In this case, the sim-
ulator learns the inputs from the honest parties as well and can set the output
correspondingly.

Similarly, if the adversary corrupts more than n − 2t parties, it can forge
a list of signatures on any value and choose the output, potentially violating
security. But in this case the simulator can also set the output of Ffs

hyb in the
ideal world and learn the inputs from Ffs

hyb, since the full security threshold is
min(T, n − 2t).

Termination. We remark that even if the responsiveness bound t of is vio-
lated, all the adversary can do in the real world is to prevent a party to obtain
an output from ΠaMPC. Hence, responsiveness is lost and the simulator will block
the output from the asynchronous phase.

⊓⊔

One can prove similarly the theorem with the variant where the hybrid offers
unanimous abort.

Theorem 2. For any ∆ ≥ δ, Π∆
hyb-ua realizes Fua

hyb with full security with re-
sponsiveness t and security with unanimous abort min{T, n−2t}. The maximum

35

delay of the asynchronous phase is τasynch = Tasynch(δ) + Tzk(δ) + δ, and of the
synchronous phase is τOD = TBC(∆) + Tzk(∆) for a fast output with n − t inputs,
and otherwise is τOND = TBC(∆) + Tsync(∆) for an output with all the inputs.

Proof. The proof is exactly the same as in Theorem 1, except that the emulation
of the synchronous MPC protocol is according to the messages of the protocol
Πua

sMPC that gives security with unanimous abort instead of full security. ⊓⊔

C ABA with Increased Consistency

C.1 Ideal Functionality

We introduce the asynchronous functionality for Byzantine Agreement, FaBA.
The asynchronous Byzantine Agreement functionality FaBA can be seen as a
instantiation of the asynchronous MPC functionality Fasync introduced in Sec-
tion 4.5 with a specific function and tamper function. The function fFaBA to
evaluate is defined as follows: If the honest parties in the core set have prea-
greement on an input value x, the output value is also x. Otherwise, the output
value is the same for every honest party, but is defined by the adversary.

We define the functionality FaBA to be an asynchronous MPC functionality
Fasync evaluating the function fFaBA , and parametrized by the tamper function
TamperBA

tv,tc,tl
defined below.

Definition 7. We say that a Byzantine Agreement functionality has validity,
consistency and termination parameters T = (tv, tc, tl) if it has the following
tamper function TamperBA

tv,tc,tl
:

Function TamperBA
tv,tc,tl

(x1, ..., xn, H)

(c, p, d) = TamperBA
tv,tc,tl

(x1, ..., xn,H), where:

– c = 0 if and only if |P \ H| ≤ tv and there exists x such that for all Pi ∈ H :
xi = x, or |P \ H| < tc.

– p = 1.
– l = 1 if and only if |P \ H| ≥ tl.

C.2 Protocol Description

In this section we show how to increase the consistency of an ABA protocol by
sacrificing liveness.

In the following, we describe a protocol which operates with PKI setup FPKI
and uses a secure ABA protocol ΠaBA with parameters (tv, tc, tl) as primitive. It
then realizes a binary asynchronous Byzantine Agreement functionality with the
same validity t′

v = tv and termination t′
l = tl, but with consistency t′

c < n − 2tl.
The protocol is quite simple. First, each party Pi run with input xi the

protocol Π ′
aBA, and once an output x is obtained, it computes a signature σ =

36

Sign(x, sk) and sends it to every other party. Once n − tl signatures on a value
x′ are collected, the party sends the list containing the signatures along with the
value x′ to every other party, and terminates with output x′. The idea is that
there cannot be two lists of n − tl signatures on different values if there are up
to tc < n − 2tl corruptions.

Protocol Πcon
aBA (Pi)

Setup:
1: Input (GetDSSKeys, sid) to FPKI. Let the signing key be sk and the corre-

sponding verification key vk.
Asynchronous Phase: Upon every activation, progress with the following list
of instructions. If not possible, output (ClockReady) to Gclk.
1: On input xi, execute ΠaBA on input xi. Let x denote the output.
2: Compute the signature σ = Sign(x, sk).
3: Input (Send, i, j, (x, σ)), for each party Pj , to Fnet.
4: Upon receiving ℓ ≥ n − t valid messages of the form (x′, σ) from Fnet, let

L = (x′, σ1, . . . , σl) be the list containing these ℓ signatures on x′. Input
(Send, i, j, L), for each party Pj , to Fnet, and terminate with output x′.

Let τaba(δ) denote the running time of Π ′
aBA that has validity, consistency and

termination parameters (tv, tc, tl), tl ≤ n
3 .

Lemma 3. The protocol Πcon
aBA operates with PKI setup FPKI, and is a secure

ABA protocol with validity, consistency and termination parameters (tv, t′
c, tl),

for any t′
c < n − 2tl. The maximum delay for the output is τcon = τaba(δ) + δ.

Proof. Completeness. We first argue that if the adversary does not corrupt
any party, the real world and the ideal world are indistinguishable. The output
is the same in both worlds. If every party has the same input b, in the real world,
Π ′

aBA outputs b, and then each party signs b and collects n − tl signatures on b.
This implies that the parties terminate with output b, which is the value that is
output in the ideal world as well. The same happens if the parties do not hold
the same input. In this case, in the real world, each party obtains the input x1,
signs this value, collects n − tl signatures and terminates with output x1. This
is also the output of the ideal world.
Soundness. We start describing the simulator. The job of the simulator Scon is
to simulate the view of the adversary during the protocol execution. For read-
ability, let us denote the ideal world Byzantine agreement functionality with
improved consistency FaBA.

On a very high level, the simulator simulates internally the messages that
the real world functionalities Fnet, FSetup and the protocol Π ′

aBA output to the
adversary. In order to simulate the messages that the adversary obtains from the
asynchronous network Fnet, the simulator simply keeps the variable buffer as in
Fnet, which records the messages sent via Fnet in the real world, with the delays
of the messages. It also records the delays that the adversary inputs, and only

37

delivers the messages when the corresponding party fetches the messages and the
delay of the message is 0. To simulate the messages from FSetup, the simulator
executes the DSS key generation algorithm at the onset of the execution, and
outputs the signing keys of the corrupted parties and all the verification keys to
the adversary. Finally, to simulate the messages from Π ′

aBA, the simulator waits
for the adversary to define a core set I (which by default is the set of honest
parties), and after all parties in I provide his input bit, the simulator computes
the output as in Π ′

aBA: if there is preagreement on a value x, that is the output,
and otherwise, the output corresponds to the input of the corrupted party with
lowest index.

Algorithm Scon

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are sent to
corrupted parties throughout the simulation (recall the variable buffer in Fnet).
More concretely, it does the following:
1: On input (FetchMessages, i) from Pi, for each message tuple

(0, Pk, Pi, m, idm) in buffer, output (k, m) to Pi.
2: On input (Delay Fnet, T, id) from the adversary, if there exists a tuple

(D, Pi, Pj , m, id) in buffer then set D = D + T and return (Delay-ok)
to the adversary. Otherwise, ignore the message.

Setup:
1: The simulator generates the keys at the beginning of the execution. That is,

it computes (vkj , skj) ← SigGen(1κ) for each party Pj . Then, it records the
tuple (sid, vk, sk), where vk = (vk1, . . . , vkn) and sk = (sk1, . . . , skn).

2: On input (GetKeys, sid) from a corrupted party Pi, send (sid, vk, ski) to Pi.
Main:
1: On input (No-Input,P ′, sid) from the adversary, set a variable I = H \ P ′,

and forward (No-Input,P ′, sid) to FaBA.
2: Upon receiving the input bi from honest party Pi or the adversary on behalf

of a party, set xBA
i = bi. Moreover, if it is from the adversary, forward xBA

i

to FaBA.
3: On input (Output, x, sid) from FaBA, output (Output, x, sid) to the adver-

sary.
4: Emulate the messages of the sub-protocol ΠaBA by keeping the delays of each

honest party.
5: As soon as Pi obtains output from ΠaBA, input to buffer, on behalf of Pi, the

tuple (τ, τ +1, i, j, (x, Sign(x, ski)), id) for each corrupted party Pj and freshly
generated id. Output (Sent, i, j, (x, Sign(x, ski)), id) to the adversary.

6: Once there are n − tl tuples of the form (τ1, τ2, j, i, (x′, Sign(x′, skj))) have
been delivered from buffer to a fixed honest party Pi, input, for each j, to
buffer the tuple (τ, τ + 1, i, j, L, id), where L contains the list of signatures
on the value x′. Output (Sent, i, j, L, id) to the adversary.

7: Keep track of the delays so that the parties receive the output at the same
time as in the real world.

38

Tamper Function:
1: On input (TamperOutput, Pi, y′

i, sid), where Pi is honest, from the adver-
sary, forward the input to FaBA.

2: On input (x1, . . . , xn) from FaBA, output it to the adversary.
3: On input (BlockOutput, Pi, sid), where Pi is honest, from the adversary,

forward the input to FaBA.

In order to prove that the real world and the ideal world are indistinguishable,
we divide cases depending on the adversary’s capabilities.

If the validity threshold is satisfied, i.e. |P \ H| ≤ tv and the parties in
the core-set have the same input, or the consistency threshold is satisfied, i.e.
|P \H| ≤ tc, then ΠaBA ensures that the output at Step 1 is consistent among the
honest parties. Let us denote this value x. In this case, if |P \H| ≤ tl, then every
honest party eventually receives a list of n − TL signatures on x. In the ideal
world, the output is x as well. Otherwise, if |P \ H| > tl, some honest parties
may not receive a list of n − tl signatures on x, and hence they do not receive
any output. For these honest parties, the simulator blocks the output value of
these parties.

On the other hand, if it is not the case that |P \ H| ≤ tv where the parties in
the core-set have the same input, nor the consistency threshold is satisfied, i.e.
|P \H| > tc, then it is not guaranteed that the output after Step 1. (from FaBA)
is consistent. However, we still need that if |P \H| ≤ t′

c < n−2tl, all final outputs
are consistent. That is the case, because there cannot be two lists of signatures
of size at least n − tl on different values. Assume towards contradiction, that
there are such two lists. Observe that any two lists of size n − tl, intersect in at
least n − 2tl parties. Since |P \ H| ≤ t′

c < n − 2tl, there must be at least one
honest party in this intersection. But honest parties do not send signatures on
different values.

Moreover, let us remark that in the real world, the parties only send messages
in Step 2 via the network, and in Step 1 via the protocol Π ′

aBA. This means, since
the adversary can only delay each network message by up to δ clock ticks, and
the output from FaBA up to τaba(δ) clock ticks, then the maximum delay for the
output is τcon = τaba(δ)+δ. Hence, it is enough that the simulator has the power
to delay the output up to τcon clock ticks.

⊓⊔

If we assume an asynchronous Byzantine Agreement Π ′
aBA which runs con-

currently in expected constant time as in [5], with validity, consistency and
termination for any t < n

3 corruptions, we obtain the following corollary:

Lemma 1. There exists a protocol which realizes FaBA with validity, consistency
and termination parameters (tv, tc, tl), for any tl < n

3 , tl ≤ tv < n
3 and tc <

n − 2tl, in the (Gclk, Fδ
net, FPKI)-hybrid world. The expected maximum delay for

the output is τaba = O(δ).

39

D Proof of Theorem 3

In this section, we prove the theorem stated in Section 5.2.

Theorem 3. The protocol ΠaMPC uses FFHE
Setup as setup and realizes Fasync on

any function f on the inputs, with full security up to t corruptions and security
without termination up to T , for any t < n/3 and T +2t < n. The total maximum
delay for the honest parties to obtain output is τasynch = τaba(δ) + 2τzk(δ) + 9δ.

Proof. Completeness. We first show that the protocol is complete. It is easy
to see that, if there are no corruptions, no environment can distinguish the real
world from the ideal world. First, observe that the output that is evaluated in
both worlds is the same, since the simulator sets the core set containing the
same parties as in the real world. Moreover, the simulator delivers the outputs
of honest parties at the time at which the honest parties obtain the output and
terminate in the real execution.

One can readily verify, that in the protocol, the parties send messages in 9
steps, performs calls to ΠZK in two steps, and executes in parallel n BAs during
the input provider selection. Hence, the protocol takes at most τaba(δ)+2τzk(δ)+
9δ clock ticks to execute.

Soundness. At a very high level, the consistency property of ΠaBA can affect
both correctness and privacy of the overall SFE. Moreover, it is important that
the validity of ΠaBA is higher than the termination threshold tl. Otherwise, when
parties wait for the input ciphertexts from each j ∈ CoreSet, it might be that no
party has this input ciphertext and the protocol does not terminate. Given that
tv ≥ tl, then in the region of thresholds where there are up to tl corruptions,
validity is guaranteed to hold and hence in the input phase parties are guaranteed
to collect all tuples (j, (cj , πj)) such that j ∈ CoreSet. Let us now describe the
simulator.

Algorithm SMPC

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are sent to
corrupted parties throughout the simulation (recall the variable buffer in Fnet).
More concretely, it does the following:
1: Let δ be the network delay, received from Fasync
2: On input (FetchMessages, i) from Pi, for each message tuple

(0, Pk, Pi, m, idm) in buffer, output (k, m) to Pi.
3: On input (Delay Fnet, T, id) from the adversary, if there exists a tuple

(D, Pi, Pj , m, id) in buffer and T ≤ δ, then set D = D + T and return
(Delay-ok) to the adversary. Otherwise, ignore the message.

Setup:
1: The simulator generates the keys at the beginning of the execution. That is, it

computes and records (ek, dk)← Gen(n−tl,n)(1κ), where dk = (dk1, . . . , dkn).

40

2: On input (GetKeys, sid) from a corrupted party Pi, output (sid, ek, dki) to
Pi.

Input Stage:
// Plaintext Knowledge and Distribution.

1: Set ci = Encek(0), for each honest party Pi.
2: The simulator keeps track of the delays the adversary sets for the outputs

from ΠZK. Then, when the adversary requests the output of Pi from ΠZK at
the corresponding time, the simulator responds with a confirmation of the
validity of the ciphertext ci.

3: On input σpopk
j from corrupted party Pj to Pi, input the tuple (τ, τ +

1, Pj , Pi, σpopk
j , id) to buffer.

4: When a corrupted party Pi inputs ((ek, ci), (xi, ri)) to prove plaintext knowl-
edge of ci to a party Pj , the simulator checks that ci = Encek(xi, ri). If so, it
inputs (τ, τ + 1, Pj , Pi, σpopk

j , id) to buffer.
5: As soon as there are n − t tuples (τ1, τ2, Pj , Pi, σpopk

j , id) for different Pj ,
such that τ ≥ τ2 in buffer, then compute πi = {σpopk

j } and input (τ, τ +
1, i, j, (ci, πi), id) for each Pj .

6: On input (ci, πi) from a corrupted party Pi to Pj , the simulator inputs (τ, τ +
1, Pi, Pj , (ci, πi), id) to buffer.

7: As soon as there is a tuple (τ1, τ2, Pj , Pi, (cj , πj), id), such that τ ≥ τ2 in
buffer, input a signature to buffer. That is, input (τ, τ + 1, i, j, σdist

i , id) to
buffer.

8: As soon as there are n− t tuples (τ1, τ2, Pj , Pi, σdist
j , id) for different Pj , such

that τ ≥ τ2 in buffer, then start simulating the input provider selection.
// Input Providers.

9: For each party Pi, keep track of the parties which successfully proved plaintext
knowledge to Pi. We denote that set Si.

10: The simulator inputs to buffer each set Si towards every party. That is,
input (τ, τ + 1, i, j, Si, id) to buffer, for each Pj .

11: Once an emulated honest party Pi received n− t such sets, emulate for that
party the execution of the BAs. That is, input a 1 to Pj ’s BA, if Pj is in
one of the received sets. Take into account all the commands tampering the
outputs or blocking the outputs of the BAs that come from the adversary,
and change the output accordingly.

12: Wait until there are n − t ones as outputs from the BAs. Then, input 0 to
the remaining BAs.

13: Define CoreSeti as the set of parties such that the emulated BA for that
party outputted 1. Observe that if the adversary corrupted more than n− 2t,
the consistency of the BAs is not satisfied, since tc < n − 2t, and hence the
core sets can be different.

14: The simulator emulates each party Pi, by inputting the pairs (cj , πj) that it
collected in the n− t sets Sj , to buffer.

Computation and Threshold Stage:
// Setting the Core Set.

1: Once the simulator computes CoreSeti from the previous Stage, do the fol-
lowing: if the core sets are consistent, it sends to Fasync the input values xi

from each corrupted party, and also inputs (No-Input,P \ CoreSet, id) to

41

Fasync. It obtains the output y. Otherwise, input any of the core sets CoreSeti

to Fasync. Then, obtain the inputs from honest parties (if the core set are not
consistent, f ≥ n − 2t, the simulator is allowed to obtain the inputs since
privacy is not satisfied).
// Computation.

2: For each honest party Pi, the simulator internally computes the evaluated
ciphertext ci = fek(c1, . . . , c|CoreSeti|), based on the ciphertext from the input
providers.
// Threshold Decryption.

3: The simulator computes the decryption share di = DecSharedki (ci) for each
corrupted party Pi, and sets the decryption shares from honest parties such
that (d1, . . . , dn) forms a secret sharing of the output value y, if the core sets
are consistent. Otherwise, for each honest Pi it can evaluate the function on
the inputs in CoreSeti to obtain yi, encrypt it, and set the decryption share
exactly as in the real world. In this case, the simulator also fixes the output
of Pi to yi.

4: Each time the adversary requests validity of the decryption share di from an
honest party Pi, the simulator responds with a confirmation of the validity
of di.

5: As soon as the adversary inputs a decryption share di for ciphertext c′, the
simulator checks the validity of the decryption share, and if it is valid, inputs
to buffer a signature on (di, c′).

6: Once an emulated honest party Pi received n − t signatures on the same
pair (di, c′), it computes a proof that the decryption share di for c′ is correct
ProofSharei = {σpocs

j }. It inputs to buffer the tuple ((di, c′), ProofSharei)
to every party.

7: When an honest party receives n− t tuples of the form ((di, c′), ProofSharei)
with the same c′, it sets his output bit to y.

Termination Stage:
1: The simulator keeps track of the votes that each party performs. That is, if

an emulated honest party Pi received an output y in the previous stage, it
inputs y to buffer, towards every other party.

2: As soon as an emulated honest party receives n− 2t votes on y, if the party
Pi did not vote yet, it sets its output to y, and inputs y to buffer, towards
every other party.

3: As soon as an emulated honest party receives n− t votes on y, the simulator
delivers the party’s output in the ideal world.

We define a series of hybrids to argue that no environment can distinguish
between the real world and the ideal world.

Hybrids and security proof.

Hybrid 1. This corresponds to the real world execution. Here, the simulator
knows the inputs and keys of all honest parties.

Hybrid 2. We modify the real-world execution in the computation stage. Here,
when a corrupted party requests a proof of decryption share from an honest

42

party, the simulator simply gives a valid response without checking the witness
from the honest party.

Hybrid 3. This is similar to Hybrid 2, but in the computation of the decryption
shares is different. In this case, the simulator obtains the output y from Fasync,
computes the decryption shares of corrupted parties, and then adjusts the de-
cryption shares of honest parties such that the decryption shares (d1, . . . , dn)
form a secret sharing of the output value y. That is, here the simulator does
not need to know the secret key share of honest parties to compute the decryp-
tion shares. If there are more than n − 2t corrupted parties, privacy is broken,
so the simulator obtains the inputs from the honest parties and computes the
decryption shares as in the previous hybrid.

Hybrid 4. We modify the previous hybrid in the Input Stage. Here, when a
corrupted party requests a proof of plaintext knowledge from an honest party,
the simulator simply gives a valid response without checking the witness from
the honest party.

Hybrid 5. We modify the previous hybrid in the Input Stage. Here, the hon-
est parties, instead of sending an encryption of the actual input, they send an
encryption of 0.

Hybrid 6. This corresponds to the ideal world execution.
In order to prove that no environment can distinguish between the real world

and the ideal world, we prove that no environment can distinguish between any
two consecutive hybrids.

Claim 1. No efficient environment can distinguish between Hybrid 1 and Hy-
brid 2.
Proof: This follows trivially, since the honest parties always have a valid witness
in ΠZK. �

Claim 2. No efficient environment can distinguish between Hybrid 2 and Hy-
brid 3.
Proof: This follows from properties of a secret sharing scheme and the security of
the threshold encryption scheme. Given that the threshold is n − t, any number
corrupted decryption shares below n − t does not reveal anything about the
output y. Moreover, one can find shares for honest parties such that (d1, . . . , dn)
is a sharing of y. Above n − t corruptions, the simulator obtains the inputs from
honest parties, and hence both hybrids are trivially indistinguishable. �

Claim 3. No efficient environment can distinguish between Hybrid 3 and Hy-
brid 4.
Proof: This follows trivially, since the honest parties always have a valid witness
in ΠZK. �

Claim 4. No efficient environment can distinguish between Hybrid 4 and Hy-
brid 5.
Proof: This follows from the semantic security of the encryption scheme. �

43

Claim 5. No efficient environment can distinguish between Hybrid 5 and Hy-
brid 6.
Proof: This follows, because the simulator in the ideal world and the simulator
in Hybrid 5 emulate internally the joint behavior of the ideal assumed function-
alities, exactly the same way. �

We conclude that the real world and the ideal world are indistinguishable.
⊓⊔

E Fully Homomorphic Encryption Scheme

In this section, we briefly recall the sintax of a fully homomorphic encryption
scheme. One can find the security definition for example in [31, 1].

Definition 8. A fully homomorphic encryption scheme consists of four algo-
rithms:

– Key generation: (ek, dk) = Gen(1κ), where ek is the public encryption key
and dk is the decryption key.

– Encryption: c = Encek(m; r) denotes an encryption with key ek of a plaintext
m with randomness r, to obtain ciphertext c.

– Decryption: m = Decdk(c) denotes a decryption of ciphertext c with key dk
to obtain plaintext m.

– Homomorphic evaluation: c = fek(c1, . . . , cn) denotes the evaluation of a
circuit f over a tuple of ciphertexts (c1, . . . , cn) to obtain c.

44

	MPC with Synchronous Security and Asynchronous Responsiveness
	Introduction
	Technical Overview of Our Results
	Synchronous Protocols over an Asynchronous Network
	Related Work

	Preliminaries
	Model
	Adversary
	Communication Network and Clocks
	Ideal World

	Compiler
	Key-Distribution Setup
	Zero-Knowledge
	Synchronous MPC
	Synchronous Byzantine Broadcast
	Asynchronous MPC
	Protocol Compiler

	Asynchronous Protocols
	Asynchronous Byzantine Agreement
	Two-Threshold Asynchronous MPC

	Impossibility Results
	Conclusions
	UC Zero-Knowledge and Synchronous MPC
	Zero-Knowledge
	Synchronous MPC

	Proof of the Protocol Compiler
	ABA with Increased Consistency
	Ideal Functionality
	Protocol Description

	Proof of Theorem 3
	Fully Homomorphic Encryption Scheme

