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Abstract.

Many secure cache designs have been proposed in literature with the aim of mitigating
di�erent types of cache timing-based attacks. However, there has so far been no
systematic analysis of how these secure cache designs can, or cannot, protect against
di�erent types of the timing-based attacks. To provide a means of analyzing the
caches, this paper presents a novel three-step modeling approach that is used to
exhaustively enumerate all the possible cache timing-based vulnerabilities. The model
covers not only attacks that leverage cache accesses or flushes from the local processor
core, but also attacks that leverage changes in the cache state due to the cache
coherence protocol actions from remote cores. Moreover, both conventional attacks
and speculative execution attacks are considered. With the list of all possible cache
timing vulnerabilities derived from the three-step model, this work further manually
analyzes each of the existing secure cache designs to show which types of timing-based
side-channel vulnerabilities each secure cache can mitigate. Based on the security
analysis of the existing secure cache designs using the new three-step model, this
paper further summarizes di�erent techniques gleaned from the secure cache designs
and their ability help mitigate di�erent types of cache timing-based vulnerabilities.
Keywords: Secure Caches · Timing-based Attacks · Security Analysis · Side
Channels · Covert Channels

1 Introduction
Research on timing-based attacks in computer processor caches has a long history, e.g., [1,
2, 3, 4, 5], predating their recent use in Spectre [6] attacks. These past attacks have shown
the possibility to extract sensitive information via the timing-based channels, and often the
focus is on extracting cryptographic keys. In addition, due to the recent Spectre [6] attacks,
there is now renewed interested in timing-channels. Especially, the Spectre attacks consist
of two parts: first, speculative execution is used to access some sensitive information;
second, a timing-based channel is used to actually transfer the information to the attacker.
Whether by itself, or combined with speculative execution, the timing-based channels in
processors pose a threat to a system’s security, and should be mitigated.

We have recently proposed a three-step model [7] in order to analyze cache timing-
based side-channel attacks. The previous model considers cache timing-based side-channel
vulnerabilities as a set of three “steps” or actions performed by either the attacker or the
victim, which can a�ect the states of the cache. In this work, our methodology from [7]
is improved to better represent actions of the attacker and the victim: For each step, all
possible states for a cache block are enumerated in terms of whether the operation is driven
by the attacker or the victim, what memory range the data being operated on belongs
to, and whether the state is changed because of a memory access or data invalidation
operation (due to a cache coherence operation or a flush instruction, for example). To
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understand which possible three-step actions can lead to an attack, we further propose
and develop a cache three-step simulator, and apply a set of reduction rules to derive a
complete list of vulnerabilities by eliminating three-step combinations that do not map
to an attack. Furthermore, we consider both normal and speculative execution for the
memory operations and modeling of the cache attacks. Speculative execution has gotten
increased attention due to recent Spectre [6] attacks, many of which depend on timing
channels to actually extract information – speculation alone is not enough for most of
these attacks. Our model considers timing channels in general, independent of whether it
is a side or a covert channel.

In the process of development of the improved three-step model, we have uncovered 43
types of timing-based vulnerabilities which have not been previously exploited (in addition,
there are 29 types that map to attacks already known in literature). We cannot directly
compare the types of vulnerabilities found in this work and in our prior work [7] due to
the improved and di�erent categorizations of the states of the cache block.

To address the threat of the prior cache timing-based attacks, to date 18 di�erent
secure cache designs have been presented in academic literature [8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The secure processor caches are designed
with di�erent assumptions and often address only specific types of timing-based side-
channel or covert-channel attacks. To help analyze the security of these designs, this
work uses our three-step modeling approach to reason about all the possible timing-based
vulnerabilities. Especially, since our work demonstrates a number of new timing-based
attacks, the existing secure caches have never been analyzed with respect to these new
attacks before. For this work, we manually reviewed and analyzed the 18 existing secure
cache designs [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] in terms
of the security features and implementations. Most of these designs do not have publicly
available hardware implementation source code, so automatic analysis of the caches is not
possible.

Based on the analysis, we summarize cache features that help improve security. Espe-
cially, we propose that an “ideal” secure caches and processor architectures should provide
new features to let software explicitly label memory loads or stores of sensitive data,
and di�erentiate them from normal loads and stores, so sensitive data can be e�ciently
identified and protected by the hardware. The caches can use partitioning to isolate the
attacker and the victim and prevent the attacker from being able to set the victim’s cache
blocks into a known state, which is needed by many attacks. To mitigate attacks based on
internal interference, the caches can use randomization to de-correlate the data that is
accessed and the data that is placed in the cache. More details of the possible defenses are
discussed in Section 5 and Section 6.

1.1 Contributions
The new contributions of this work over [7] are as follows:

• A new formulation of the three-step model with new cache states and derivation of a
new set of types for covering all the cache timing-based vulnerabilities (Section 3).

– Inclusion of cache coherence issues into the three-step mode.
– Expansion of the three-step model to consider both cases of normal and specu-

lative execution attacks.
– Design of reduction rules and cache three-step simulator to automatically derive

the exhaustive list of all the three steps which map to e�ective vulnerabilities;
and elimination of three-step patterns which do not map to a potential attack.

• Overview of the 18 secure cache designs that have been presented in academic
literature (Section 4).



Shuwen Deng, Wenjie Xiong and Jakub Szefer 3

• Manual evaluation of 18 secure processor cache designs to determine how they can
help prevent timing-based attacks and analysis of security features secure caches
used (Section 5 and Section 6).

• Discussion of “ideal” secure caches and the features they would need (Section 6).
• Attack strategies description and comparison among di�erent attack strategies

(Appendix A).
• Analysis of the soundness of the three-step model and why three-steps are able to

describe all timing-based vulnerabilities (Appendix B).

2 Cache Timing-Based Attacks and the Threat Model
Modern processor caches are known to be vulnerable to timing-based attacks. The timing
of the memory accesses varies due to caches’ operation. For example, a cache hit is fast
while a cache miss is slow. The cache coherence protocol can also change the cache states
and a�ect the timing of the memory operations. The cache coherence may invalidate a
cache block from a remote core, resulting in a cache miss in the local core, for example.
Also, the timing of cache flush operations varies depending on whether the data to be
flushed is in the cache or not. Flushing an address using clflush with valid data in the
cache is slow, while flushing an address not in the cache is fast, for example. From these
timing di�erences of memory-related operations, the attacker can infer a data’s specific
memory address or corresponding cache index value, and thus learn some information
about the victim’s secrets.

2.1 Threat Model
This work focuses only on timing-based attacks in processor caches. Numerous other types
of side and covert channels that do not use timing or caches exist, e.g., power-based [26],
EM-based [27] (including RF), thermal-based [28], and in processor channels based on
features such as power state of the AVX unit [29], for example. This work aims to explore
main cache attacks only, but similar approach can be done for the other bu�ers or cache-like
structures, which may be target of attack once main processor caches are secured.

In our threat model, an attacker’s objective is to retrieve victim’s secret information
using timing-based channels in the processor cache. Specifically, we consider the situation
where the victim accesses an address u and the address depends on some secret information.
The address u is within some set of physical memory locations x, which are known to the
attacker. The goal of the attacker is to obtain the address u or at least partial bits of it
which relate to the cache index of the address.

We assume the attacker knows some of the source code of the victim. Especially, the
attacker can only learn some information 1 about the address u from the timing channels,
but with knowledge of the source code he or she can further infer the likely specific value
of u, and thus infer the secret he or she is trying to learn.

The attacker cannot directly access any data in the state machine of the cache logic,
nor directly read the data of the victim, if the two are not sharing the same address space.
The attacker can, however, observe its own timing or the timing of the victim process.
And the attacker knows how the timing of the memory-related operations depends on the
cache states.

The attacker further is able to force the victim to execute a specific function. For
example, the attacker can request victim to decrypt a specific piece of data, thus triggering
the victim to execute a function that makes use of a secret key he or she wants to learn.

1
For a hit-based vulnerabilities, the attacker is able to learn the full address of the victim’s sensitive

data, while for the miss-based vulnerabilities, the attacker usually can learn the cache index of the victim’s

sensitive data. For more details of these vulnerabilities’ categorizations, please refer to Section 3.3.3.
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The victim in the cache attacks can be user software, code in an enclave, operating system,
or another virtual machine.

The processor microarchitecture and the operating system are assumed to be able
to di�erentiate between the victim and the attacker in di�erent processes by assigning
di�erent process IDs. If the victim and the attacker are in the same process, e.g., attacker
is a malicious library, they will have the same process ID. The system software (e.g.,
operating system or hypervisor) is responsible for properly setting up virtual memory
(page tables) and assigning IDs, which may be used by the hardware to identify di�erent
threads, processes or virtual machines. When analyzing secure cache designs, the system
software is considered trusted and bug-free. The attacker is also assumed not to be able to
undermine the physical implementation or change the hardware, e.g., he or she cannot
influence randomness generated by any random number generators in hardware. Physical
or invasive attacks are not in scope of this work. For secure cache designs which add new
instructions for security related operations, the victim process or management software
is assumed to correctly use these instructions. During speculative execution, the cache
state can be modified by the instructions executed speculatively, unless a processor cache
architecture explicitly prevents or forbids certain speculative accesses.

2.2 Side and Covert Channels
This work focuses on both side and covert channels. Covert channels use the same methods
as side channels, but the attacker controls both the sender and the receiver side of the
channel. All types of side-channel attacks are equally applicable to covert channels. For
brevity, we just use the term “victim” in the text to represent both the victim (for side
channels) and the sender (for covert channels).

2.3 Hyperthreading Versus Timing-Slice Sharing
When the hyperthreading is supported in a system, the attacker and the victim are able
to run on di�erent threads in parallel instead of runing once every time slice (when no
hyperthreading is used). Our model can be applied to both of the scenarios since our
model abstracts away how the sharing happens.

3 Modeling of the Cache Timing-Based Side-Channel
Vulnerabilities

This section explains how we developed the three-step modeling approach and used it to
model the behavior of the cache logic and to enumerate all the possible cache timing-based
vulnerabilities.

3.1 Introduction of the Three-Step Model
We have observed that all of the existing cache timing-based attacks can be modeled with
three steps of memory-related operations. Here, “memory-related operation” refers to
loads, stores, or di�erent flushes that can be done by the victim or the attacker on the
same core or di�erent cores. When the victim and the attacker are on di�erent cores, cache
coherence will also be triggered when one of the memory-related operations is performed.

The three-step model has three steps, as the name implies. In Step 1, a memory
operation is performed, placing the cache in an initial state known to the attacker (e.g., a
new piece of data at some address is put into the cache or the cache block is invalidated).
Then, in Step 2, a second memory operation alters the state of the cache from the initial
state. Finally, in Step 3, a final memory operation is performed, and the timing of the
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Figure 1: The 17 possible states for a single cache block in our three-step model: (a) Vu;
(b) Aa/Va/Aaalias /Vaalias /Ad/Vd; (c) A

inv
/V

inv; (d) A

inv
a /V

inv
a /A

inv
aalias /V

inv
aalias /A

inv
d /V

inv
d ; (e)

V

inv
u ; (f) ı).

final operation reveals some information about the relationship among the addresses from
Step 1, Step 2 and Step 3.

For example, in Flush + Reload [30] attack, in Step 1, a cache block is flushed by
the attacker. In Step 2, security critical data is accessed by, for example, victim’s AES
encryption operation. In Step 3, the same cache block as the one flushed in Step 1 will
be accessed and the time of the access will be measured by the attacker. If the victim’s
secret-dependent operation in Step 2 accesses the cache block, in Step 3 there will be a
cache hit and fast timing of the memory operation will be observed, and the attacker
learns the victim’s secret address.

To model all the timing-based attacks, we write the three steps as: Step 1 Step 2 
Step 3, which represents a sequence of steps taken by the attacker or the victim. To
simplify the model, we focus on memory-related operation a�ecting one single cache block
(also called cache slot, cache entry, or cache line). Cache block is the smallest unit of the
cache. Since all the cache blocks are updated following the same cache state machine logic,
it is su�cient to consider only one cache block.

3.2 States of the Three-Step Model
When modeling the attacks, we propose that there are 17 possible states for a cache block.
Table 1 lists all the 17 possible states of the cache block for each step in our three-step
model and their formal definitions. Figure 1 graphically shows for each possible state how
the memory location maps to the cache block.

In each sub-figure of Figure 1, left-most part shows the possible state being described
in the sub-figure. Middle part shows the possible situation of the cache state a�ected by
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Table 1: The 17 possible states for a single cache block in our three-step model.

State Description

Vu

A memory location u belonging to the victim is accessed and is placed in the cache

block by the victim (V). Attacker does not know u, but u is from a set x of memory

locations, a set which is known to the attacker. It may have the same index as a

or a

alias
, and thus conflict with them in the cache block. The goal of the attacker

is to learn the index of the address u. The attacker does not know the address u,

hence there is no Au in the model.

Aa or

Va

The cache block contains a specific memory location a. The memory location is

placed in the cache block due to a memory access by the attacker, Aa, or the victim,

Va. The attacker knows the address a, independent of whether the access was by

the victim or the attacker themselves. The address a is within the range of sensitive

locations x. The address a is known to the attacker.

Aaalias

or

Vaalias

The cache block contains a memory address a

alias
. The memory location is placed

in the cache block due to a memory access by the attacker, Aaalias , or the victim,

Vaalias . The address a

alias
is within the range x and not the same as a, but it has

the same address index and maps to the same cache block, i.e. it “aliases” to the

same block. The address a

alias
is known to the attacker.

Ad or

Vd

The cache block contains a memory address d. The memory address is placed in

the cache block due to a memory access by the attacker, Ad, or the victim, Vd. The

address d is not within the range x. The address d is known to the attacker.

A

inv

or

V

inv

The cache block is now invalid. The data and its address are “removed” from the

cache block by the attacker, A

inv
, or the victim, V

inv
, as a result of cache block

being invalidated, e.g., this is a cache flush of the whole cache.

A

inv
a

or

V

inv
a

The cache block state can be anything except a in this cache block now. The data

and its address are “removed” from the cache block by the attacker, A

inv
a , or the

victim, V

inv
a . E.g., by using a flush instruction such as clflush that can flush

specific address, or by causing certain cache coherence protocol events that force a

to be removed from the cache block. The address a is known to the attacker.

A

inv
aalias

or

V

inv
aalias

The cache block state can be anything except a

alias
in this cache block now. The

data and its address are “removed” from the cache block by the attacker, A

inv
aalias ,

or the victim, V

inv
aalias . E.g., by using a flush instruction such as clflush that can

flush specific address, or by causing certain cache coherence protocol events that

force a

alias
to be removed from the cache block. The address a

alias
is known to

the attacker.

A

inv
d

or

V

inv
d

The cache block state can be anything except d in this cache block now. The

data and its address are “removed” from the cache block by the attacker A

inv
d or

the victim V

inv
d . E.g., by using a flush instruction such as clflush that can flush

specific address, or by causing certain cache coherence protocol events that force d

to be removed from the cache block. The address d is known to the attacker.

V

inv
u

The cache block state can be anything except u in the cache block. The data and its

address are “removed” from the cache block by the victim V

inv
u as a result of cache

block being invalidated, e.g., by using a flush instruction such as clflush, or by

certain cache coherence protocol events that force u to be removed from the cache

block. The attacker does not know u. Therefore, the attacker is not able to trigger

this invalidation and A

inv
u does not exist in the model.

ı

Any data, or no data, can be in the cache block. The attacker has no knowledge of

the memory address in this cache block.

each. For all sub-figures, the middle cache block (shown in bold) is the targeted cache
block. Right-most part shows the memory region in relation to the cache block. Recall,
the addresses a and a

alias are within the sensitive set of addresses x, while d is outside
the set of sensitive addresses (for simplicity the set is shown as a contiguous region, but it
can be any set). Also recall, A represents the operations performed by the attacker and V

represents the victim’s operations.
Figure 1a shows the description of the possible state V

u

, where address u is within
sensitive set and unknown to the attacker. Therefore, it can possibly map to any cache
block including the target cache block shown in the middle. Since its position in the cache
and specific address is unknown, we show V

u

in dashed lines. Meanwhile, Figure 1e shows
the description of the possible state V

inv

u

, which is result of the victim invalidating data
at the sensitive address u and possibly invalidating some address within sensitive region.
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Weak
Vulnerability
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Vulnerability Types
Vulnerability Types

4913

132

572

4209

72

64

Figure 2: Procedure to derive the e�ective types of three-step timing-based vulnerabilities. Ovals
refer to the number of vulnerabilities in each category.

Further, Figure 1f shows the description of the possible state ú, which represents null
knowledge of the address for the attacker to this corresponding cache block. Therefore, it
can possibly refers to any address in the memory, or no valid address at all.

Figure 1b shows the description of the possible state A

a

/V

a

/A

a

alias/V

a

alias /A

d

/V

d

.
Their addresses are all known to the attacker and map to the same targeted cache block.
Both a and a

alias are within the sensitive set of addresses x and a

alias, as its name indicates,
is a di�erent address than a but still within set x and maps to the same cache block as
a. Address d is outside of the set x. Meanwhile, Figure 1d shows the description of the
possible state A

inv

a

/V

inv

a

/A

inv

a

alias/V

inv

a

alias/A

inv

d

/V

inv

d

, which correspond to invalidation of
the address shown in the subscript of the state. Some additional possible invalidation
states, A

inv

/V

inv, are shown in Figure 1c. These states indicate no valid address is in the
cache block. Therefore, all the possible addresses that mapped to this cache block, e.g., a,
a

alias, d and u (if it mapped to this block), before the invalidation step A

inv

/V

inv will be
flushed back to the memory.

3.3 Derivation of All Cache Timing-Based Vulnerabilities
With the 17 candidate states shown in Table 1 for each step, there are in total 17ú17ú17 =
4913 combinations of three steps. We developed a cache three-step simulator and a set
of reduction rules to process all the three-step combinations and decide which ones can
indicate a real attack. As is shown in Figure 2, the exhaustive list of the 4913 combinations
will first be input to the cache three-step simulator, where the preliminary classification of
vulnerabilities is derived. The e�ective vulnerabilities will then be sent as the input to the
reduction rules to remove the redundant three steps and obtain final list of vulnerabilities.

3.3.1 Cache Three-Step Simulator

We developed a cache three-step simulator that simulates the state of one cache block
and derives the attacker’s observations in the last step of the three-step patterns that it
analyzes, for di�erent possible u. Since u is in secure range x, the possible candidates of
u for a cache block are a, a

alias and NIB (Not-In-Block). Here, NIB indicates the case
that u does not have same index as a or a

alias and thus does not map to this cache block.
The cache three-step simulator is implemented in Python script and it’s pesudo

implementation is shown in Algorithm 2. Simulator’s inputs are 17 possible states for each
of the step. Outputs are all the vulnerabilities that belong to the Strong or the Weak
type or the Ine�ective type. The simulator uses a nested for loop to check all possible
combinations (4913) of the three step pattern. For each step of each pattern, if it is V

u

,
this step will be extended to be one of three candidates: V

a

, V

a

alias and V

NIB

. If it is
V

inv

u

, this step will be extended to be one of three candidates: V

inv

a

, V

inv

a

alias and V

inv

NIB

.
We wrote a function output_timing that takes three known memory access steps as input
and output whether fast or slow timing will be observed for the last step. In this case,
for each of the u-related step’s candidate, we can derive a timing observation. Using
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E.g.: E.g.:

E.g.: E.g.:

E.g.: E.g.:

Figure 3: Examples of relations between victim’s behavior (u) and attacker’s observation for
each vulnerability type: (a),(b) Strong Vulnerability; (c),(d) Weak Vulnerability; (e),(f) Ine�ective

Three-Step).

these timing observation, function judge_type decides whether a three-step pattern is a
potential vulnerability by analyzing whether the attacker is able to observe di�erent and
unambiguous timing for di�erent values of u.

The simulator categorizes all the three-step patterns into three categories, as listed
below. Figure 3 shows two examples for the Strong Vulnerability (a, b), Weak Vulnerability
(c, d) and Ine�ective Three-Step (e, f), categories respectively.

1. Strong Vulnerability: When a fast or slow timing is observed by the attacker, he or she
is able to uniquely distinguish the value of u (either it maps to some known address
or has the same index with some known address). In this case, the vulnerability has
strong information leakage (i.e. attacker can directly obtain the value of u based
on the observed timing). We categorize these vulnerabilities to be strong. E.g., for
V

d

 V

u

 A

a

vulnerability shown in Figure 3a, if u maps to a, the attacker will
always derive fast timing. If u is a

alias or NIB, slow timing will be observed. This
indicates that the attacker is able to unambiguously infer the victim’s behavior (u)
from the timing observation.

2. Weak Vulnerability: When fast or slow timing is observed by the attacker, he or she
knows it corresponds to more than one possible value of u (e.g., a or a

alias). For
these vulnerabilities, timing variation can still be observed due to di�erent victim’s
behavior. However, the attacker cannot learn the value of the index of the address u

unambiguously. E.g., for type ı V

u

 A

inv

a

shown in Figure 3c, when fast timing
is observed, u possibly maps to a

alias or NIB (the reason for the possibility of u

mapping to NIB to derive fast timing is that due to the ı in Step 1, the cache could
have a hit and then A

a

would result in a cache hit). On the other hand, when slow
timing is observed, u possibly maps to a or NIB. This pattern leads to uncertain u

guess about value of u based on timing observation.
3. Ine�ective Three-Step: The remaining types are treated to be ine�ective. E.g., for
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Algorithm 1 simulate_cache_three_step (state[])
Input: state[]: a list containing 17 possible states for each of the step
Output: strong[]: a list containing all the vulnerabilities that belong to the Strong type

weak[]: a list containing all the vulnerabilities that belong to the Weak type
ineffective[]: a list containing all the ine�ective typs

1: for step1 œ len(state[]) do
2: for step2 œ len(state[]) do
3: for step3 œ len(state[]) do
4: steps = [state[step1], state[step2], state[step3]]
5: candidates = [] // array to store all possible candidate combinations of this three-step

pattern
6: res = [] // array to store all possible timing observation regading di�erent candidate

combinations for this three-step pattern
7: if (u_related(steps[0]) or u_related(steps[1]) or u_related(steps[2])) then
8: for possi_candidate œ 3 // Vu’s candidates are Va, Vaalias and VNIB; V

inv
u ’s

candidates are V

inv
a , V

inv
aalias and V

inv
NIB . Both candidate’s number is 3. do

9: candidates.append[[change_u(steps[0], possi_candidate),
change_u(steps[1], possi_candidate), change_u(steps[2], possi_candidate)]]

10: end for
11: for i œ 3 do
12: res.append(output_timing(candidates[i]))
13: end for
14: if judge_type(res) == Strong then
15: strong.append(steps)
16: else
17: if judge_type(res) == W eak then
18: weak.append(steps)
19: else
20: ineffective.append(steps)
21: end if
22: end if
23: else
24: ineffective.append(steps)
25: continue
26: end if
27: end for
28: end for
29: end for

type A

a

 V

u

 A

d

shown in Figure 3f, no matter what the value of u is, attacker’s
observation is always slow timing.

After computing the type of all the three-step patterns, the cache three-step simulator
will output e�ective (Strong Vulnerability or Weak Vulnerability) three-step patterns. Due
to the space limit, we only list and analyze the Strong vulnerabilities in this paper. Weak
vulnerabilities are left for future work when channels with smaller channel capacities are
desired to be analyzed.

3.3.2 Reduction Rules

We also have developed rules that can further reduce the output list of all the e�ective
three steps from the cache three-step simulator. Figure 2 shows how the output of the
simulator is filtered through the reduction rules to get the final list of vulnerabilities.
Reduction’s goal is to remove vulnerabilities of repeating or redundant types from the lists
to form e�ective Strong Vulnerability or Weak Vulnerability output. A script was developed
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that automatically applies below reduction rules to the output of the simulator to get the
final list of vulnerabilities. A three-step combination will be eliminated if it satisfies one of
the below rules:

1. Three-step patterns with two adjacent steps which are repeating, or which are both
known to the attacker, can be eliminated, e.g., A

d

 A

a

 V

u

can be reduced to
A

a

 V

u

, which is equivalent to ı  A

a

 V

u

. Therefore, A

d

 A

a

 V

u

is a
repeat type of ı A

a

 V

u

and can be eliminated.
2. Three-step patterns with a step involving a known address a and an alias to that

address a

alias gives the same information. Thus three step combinations which
only di�er in use of a or a

alias cannot represent di�erent attacks, and only one
combination needs to be considered. For example, V

u

 A

a

alias  V

u

is a repeat
type of V

u

 A

a

 V

u

, and we will eliminate the first pattern.
3. Three-step patterns with steps V

u

and V

u

inv in adjacent consecutive steps with each
other will only keep the latter step and eliminate the first step. For example, A

a

 
V

u

 V

u

inv can be reduced to A

a

 V

u

inv and further equivalent to ı A

a

 V

u

inv .
So A

a

 V

u

 V

u

inv can be eliminated.

3.3.3 Categorization of StrongVulnerabilities

As is shown in Figure 2, after applying the reduction rules, there are remaining 72 types
of Strong vulnerabilities. In Appendix B, we analyze the soundness of the three-step
model to demonstrate that the three-step model can cover all possible cache timing-based
side-channel vulnerabilities. And if there is a vulnerability, it can always be reduced to a
model that requires only three steps. Table 2 lists all the vulnerability types of which the
last step is a memory access and Table 3 shows all the vulnerability types of which the last
step is an invalidation-related operation. To ease the understanding of all the vulnerability
types, we group the vulnerabilities based on attack strategies (left most column in Table 2
and Table 3), these strategies correspond to well-known names for the attacks, if such
exist, otherwise we provide a new name. In Appendix A we provide description for each
attack strategy to show the main idea behind them. We use existing names for attack
strategies where such existed before, even if similar attacks, e.g., attacks di�ering in only
one step, have been given di�erent names before. We use these established names to avoid
confusion, but detail some of the similarities in Appendix A as a clarification.

The list of vulnerability types can be further collected into four simple macro types
which cover one or more vulnerability types: internal interference miss-based (IM), internal
interference hit-based (IH), external interference miss-based (EM), external interference
hit-based (EH), as labeled in the Macro Type column of Table 2 and Table 3. All the
types of vulnerabilities that only involve the victim’s behavior, V , in the states in Step 2
and Step 3 are called internal interference vulnerabilities (I). The remaining ones are
called external interference (E). Some vulnerabilities allow the attacker to learn that the
address of the victim accesses map to the set the attacker is attacking by observing slow

timing due to a cache miss or fast timing due to invalidation of data not in the cache2.
We call these miss-based vulnerabilities (M). The remaining ones leverage observation of
fast timing due to a cache hit or slow timing due to an invalidation of an address that is
currently valid in the cache, and are called hit-based vulnerabilities (H).

Many vulnerability types have been explored before. E.g., the Cache Collision attack [4]
is e�ectively based on the Internal Collision, and it maps to types labeled (2) in the Attack
column in Table 2 and Table 3. The types labeled new correspond to new attack not
previously discussed in literature. We believe these 43 are new attacks not previously
analyzed nor known.

2
Invalidation is fast when the corresponding address which is to be invalidated does not exist in the

cache since no operation is needed for the invalidation.
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Table 2: The table shows all the cache timing-based cache vulnerabilities where the last
step is a memory access related operation. The Attack Strategy column gives a common
name for each set of one or more specific vulnerabilities that would be exploited in an
attack in a similar manner. The Vulnerability Type column gives the three steps that
define each vulnerability. For Step 3, fast indicates a cache hit must be observed to derive
sensitive address information, while slow indicates a cache miss must be observed. The
Macro Type column proposes the categorization the vulnerability belongs to. “E” is for
external interference vulnerabilities. “I” is for internal interference vulnerabilities. “M”
is for miss-based vulnerabilities. “H” is for hit-based vulnerabilities. The Attack column
shows if a type of vulnerability has been previously presented in literature.

Attack
Strategy

Vulnerability Type Macro
Type Attack

Step 1 Step 2 Step 3

Cache
Internal
Collision

Ainv Vu Va (fast) IH (2)
V inv Vu Va (fast) IH (2)

Ad Vu Va (fast) IH (2)
Vd Vu Va (fast) IH (2)

A
aalias Vu Va (fast) IH (2)

V
aalias Vu Va (fast) IH (2)
Ainv

a Vu Va (fast) IH (2)
V inv

a Vu Va (fast) IH (2)

Flush
+ Reload

Ainv
a Vu Aa (fast) EH (5)

V inv
a Vu Aa (fast) EH (5)

Ainv Vu Aa (fast) EH (5)
V inv Vu Aa (fast) EH (5)

Ad Vu Aa (fast) EH (5)
Vd Vu Aa (fast) EH (5)

A
aalias Vu Aa (fast) EH (5)

V
aalias Vu Aa (fast) EH (5)

Reload
+ Time

V inv
u Aa Vu (fast) EH new

V inv
u Va Vu (fast) IH new

Flush
+ Probe

Aa V inv
u Aa (slow) EM (6)

Aa V inv
u Va (slow) IM new

Va V inv
u Aa (slow) EM new

Va V inv
u Va (slow) IM new

Evict
+ Time

Vu Ad Vu (slow) EM (1)
Vu Aa Vu (slow) EM (1)

Prime
+ Probe

Ad Vu Ad (slow) EM (4)
Aa Vu Aa (slow) EM (4)

Bernstein’s
Attack

Vu Va Vu (slow) IM (3)
Vu Vd Vu (slow) IM (3)
Vd Vu Vd (slow) IM (3)
Va Vu Va (slow) IM (3)

Evict
+ Probe

Vd Vu Ad (slow) EM new
Va Vu Aa (slow) EM new

Prime
+ Time

Ad Vu Vd (slow) IM new
Aa Vu Va (slow) IM new

Flush
+ Time

Vu Ainv
a Vu (slow) EM new

Vu V inv
a Vu (slow) IM new

(1) Evict + Time attack [31].

(2) Cache Internal Collision attack [4].

(3) Bernstein’s attack [3].

(4) Prime + Probe attack [31, 2], Alias-driven attack [32].

(5) Flush + Reload attack [30, 33], Evict + Reload attack [34].

(6) SpectrePrime, MeltdownPrime attack [35].

4 Secure Caches

Having explained the three-step model, we now explore the various secure caches which
have been presented in literature to date [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25]. Later, in Section 5 we will apply the three-step model to check if the
secure caches can defend some or all of the vulnerabilities in our model.

This section gives brief overview of the 18 secure cache designs that have been presented
in academic literature in the last 15 years. To the best of our knowledge, these cover all the
secure cache designs proposed to date. Most of the designs have been realized in functional
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Table 3: The table shows the second part of the timing-based cache side-channel vulnerabil-
ities where the last step is an invalidation related operation. For Step 3, fast indicates no
corresponding address of the data is invalidated, while slow indicates invalidation operation
makes some data invalid, causing longer processing time.

Attack
Strategy

Vulnerability Type Macro
Type Attack

Step 1 Step 2 Step 3

Cache Internal
Collision

Invalidation

Ainv Vu V inv
a (slow) IH new

V inv Vu V inv
a (slow) IH new

Ad Vu V inv
a (slow) IH new

Vd Vu V inv
a (slow) IH new

A
aalias Vu V inv

a (slow) IH new
V

aalias Vu V inv
a (slow) IH new

Flush + Flush

Ainv
a Vu V inv

a (slow) IH (1)
V inv

a Vu V inv
a (slow) IH (1)

Ainv
a Vu Ainv

a (slow) EH (1)
V inv

a Vu Ainv
a (slow) EH (1)

Flush + Reload
Invalidation

Ainv Vu Ainv
a (slow) EH new

V inv Vu Ainv
a (slow) EH new

Ad Vu Ainv
a (slow) EH new

Vd Vu Ainv
a (slow) EH new

A
aalias Vu Ainv

a (slow) EH new
V

aalias Vu Ainv
a (slow) EH new

Reload + Time
Invalidation

V inv
u Aa V inv

u (slow) EH new
V inv

u Va V inv
u (slow) IH new

Flush + Probe
Invalidation

Aa V inv
u Ainv

a (fast) EM new
Aa V inv

u V inv
a (fast) IM new

Va V inv
u Ainv

a (fast) EM new
Va V inv

u V inv
a (fast) IM new

Evict + Time
Invalidation

Vu Ad V inv
u (fast) EM new

Vu Aa V inv
u (fast) EM new

Prime + Probe
Invalidation

Ad Vu Ainv
d (fast) EM new

Aa Vu Ainv
a (fast) EM new

Bernstein’s
Invalidation

Attack

Vu Va V inv
u (fast) IM new

Vu Vd V inv
u (fast) IM new

Vd Vu V inv
d (fast) IM new

Va Vu V inv
a (fast) IM new

Evict + Probe
Invalidation

Vd Vu Ainv
d (fast) EM new

Va Vu Ainv
a (fast) EM new

Prime + Time
Invalidation

Ad Vu V inv
d (fast) IM new

Aa Vu V inv
a (fast) IM new

Flush + Time
Invalidation

Vu Ainv
a V inv

u (fast) EM new
Vu V inv

a V inv
u (fast) IM new

(1) Flush + Flush attack [36].

simulation, e.g., [14, 19]. Some have been realized in FPGA, e.g., [23], and a few have been
realized in real ASIC hardware, e.g., [37]. No specific secure caches have been implemented
in commercial processors to the best of our knowledge, however, CATalyst [18] leverages
Intel’s CAT (Cache Allocation Technology) technology available today in Intel Xeon E5
2618L v3 processors, and could be deployed today.

When the secure cache description in the cited papers did not mention the issue of
using flush or cache coherence, we assume the victim or the attacker cannot invalidate each
other’s cache blocks by using clflush instructions or through cache coherence protocol
operations; but they can flush or use cache coherence to invalidate their own cache lines.
The victim and the attacker also cannot invalidate protected or locked data. Further, if
the authors specified any specific assumptions (mainly about the software), we list the
assumption as part of the description of the cache. What’s more, when the level of cache
hierarchy was unspecified, we assume the secure caches’ features can be applied to all levels
of caches, including L1 cache, L2 cache and Last Level Cache (LLC). If the inclusivity
of the caches was not specified, we assume they target inclusive caches. Following the
below descriptions of each secure cache design, the analysis of the secure caches is given in
Section 5.

SPú cache [15, 38]3 uses partitioning techniques to statically partition the cache ways
3
Two existing papers give slightly di�erent definitions for an “SP” cache, thus we selected to define a
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into High and Low partition for the victim and the attacker according to their di�erent
process IDs. The victim typically belongs to High security and attacker belongs to Low
security. Victim’s memory accesses cannot modify Low partition (assigned to processes
such as the attacker), while the attacker’s memory accesses cannot modify High partition
(assigned to the victim). However, the memory accesses of both the victim and the attacker
can result in a hit in either Low or High partition if the data is in the cache.

SecVerilog cache [9, 8] statically partitions cache blocks between security levels L
(Low) and H (High). Each instruction in the source code for programs using SecVerilog
cache needs to include a timing label which e�ectively represents whether the data being
accessed by that instruction is Low or High based on the code and this timing label can be
similar to a process ID that di�erentiates attacker’s (Low) instructions from victim’s (High)
instructions. The cache is designed such that operations in the High partition cannot a�ect
timing of operations in the Low partition. For a cache miss due to Low instructions, when
the data is in the High partition, it will behave as a cache miss, and the data will be moved
from the High to the Low partition to preserve consistency. However, High instructions
are able to result in a cache hit in both High and Low partitions, if the data is already in
the cache.

SecDCP cache [14] builds on the SecVerilog cache and uses partitioning idea from
the original SecVerilog cache, but the partitioning is dynamic. It can support at least two
security classes H (High) and L (Low), and configurations with more security classes are
possible. They use the percentage of cache misses for L instructions that was reduced
(increased) when L’s partition size was increased (reduced) by one cache way to adjust the
number of ways of the cache assigned to the Low partition. When adjusting number of
ways in the cache dedicated to each partition, if L’s partition size decreases, the process
ID is checked and L blocks are flushed before the way is reallocated to H. On the other
hand, if L’s partition size increases, H blocks in the adjusted cache way remain unmodified
so as to not add more performance overhead, and they will eventually be evicted by L’s
memory accesses. However, the feature of not flushing High partition data during way
adjustment may leak timing information to the attacker.

NoMo cache [17] dynamically partitions the cache ways among the currently “active”
simultaneous multithreading (SMT) threads. Each thread is exclusively reserved Y blocks
in each cache set, where Y is within the range of [0, Â N

M

Ê], where N is the number of
ways and M is the number of SMT threads. NoMo-0 equals to traditional set associative
cache while NoMo-Â N

M

Ê partitions cache evenly for the di�erent threads and there are no
non-reserved ways. The number of Y assigned to each thread is adjusted based on its
activeness. When adjusting number of blocks assigned to a thread, Y blocks are invalidated
for cache sets to protect timing leakage. Eviction is not allowed within each thread’s own
reserved ways while it is possible for the shared ways. Therefore, to avoid eviction caused
by the unreserved ways, we assume NoMo-Â N

M

Ê is used to fully partition the cache. When
the attacker and the victim share the same library, there will be a cache hit if accessing
the shared data, and the normal cache hit policy holds to guarantee the cache coherence.

SHARP cache [16] uses both partitioning and randomization techniques to prevent
victim’s data from being evicted or flushed by other malicious processes and it targets on
the inclusive caches. Each cache block is augmented with the core valid bits (CVB) to
indicate which private cache (process) it belongs to (similar to the Process ID), where
CVB stores a bitmap and i-th bit in the bitmap is set if the line is present in i-th core’s
private cache. Cache hit is allowed among di�erent processes’ data. When there is cache
miss and data needs to be evicted, data not belonging to any current processes will be
evicted first. If there is no such data, data belonging to the same process will be evicted.
If there is no existing data in the cache that is in the same process, a random data in the

new cache, the SP

ú
cache, that combines secure cache features of the Secret-Protecting cache from [15]

with secure cache features of the Static-Partitioned cache from [38].
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cache set will be evicted. This random eviction will generate an interrupt to the OS to
notify it of a suspicious activity. For pages that are read-only or executable, SHARP cache
disallows flushing using clflush in user mode. However, invalidating victim’s blocks by
using cache coherence protocol is still possible.

Sanctum cache [13] focuses on isolation of enclaves (equivalent to Trusted Software
Module in other designs) from each other and the operating system (OS). In terms of
caches, they implements security features for L1 cache, TLB and LLC. Cache isolation of
LLC is achieved by assigning each enclave or OS to di�erent DRAM address regions. It
uses page-coloring-based cache partitioning scheme [39, 40] and a software security monitor
that ensures per-core isolation between OS and enclaves. For L1 cache and TLB, when
there is a transition between enclave and non-enclave mode, the security monitor will flush
the core-private caches to achieve isolation. Normal flushes triggered by the enclave or
the OS can only be done within enclave or not within enclave code. Also, timing-based
side-channel attacks exploiting cache coherence are explicitly not prevented, thus behavior
on cache coherence operations is not defined. This cache listed extra software assumptions
as follows:

Assumption 1. Software security monitor guarantees that victim and attacker process
cannot share the same cache blocks. It uses page coloring [39, 40] to ensure that victim
and attacker’s memory is never mapped to the same cache blocks for the LLC.

Assumption 2. The software runs on a system with a single processor core where victim
and attacker alternate execution, but can never run truly in parallel. Moreover, security
critical data is always flushed by the security monitor when program execution switches
away from the victim program for the L1 cache and the TLB.

MI6 cache [23] is part of the memory hierarchy of the MI6 processor, which combines
Sanctum [13] cache’s security feature with disabling speculation during the speculative
execution of memory-related operations. During normal processor execution, for L1
caches and TLB, the corresponding states will be flushed across context switches between
software threads. For the LLC, set partitioning is used to divide DRAM into contiguous
regions. And cache sets are guaranteed to be strictly partitioned (two DRAM regions
cannot map to the same cache set). Each enclave is only able to access its own partition.
Speculation is simply disabled when enclave interacts with the outside world because of
small performance influence based on the rare cases of speculation. This cache listed extra
software assumptions as follows:

Assumption 1. Software security monitor guarantees that the victim and the attacker
process cannot share the same cache blocks. It uses page coloring [39, 40] to ensure that
victim’s and attacker’s memory are never mapped to the same cache blocks for the LLC.

Assumption 2. The software runs on a system with a single processor core where victim
and attacker alternate execution, but can never run truly in parallel. Moreover, security
critical data is always flushed by the security monitor when program execution switches
away from the victim program for the L1 cache and the TLB.

Assumption 3. When an enclave is interacting with the outside environment, the
corresponding speculation is disabled by the software.

InvisiSpec cache [22] is able to make speculation invisible in the data cache hierarchy.
Before a visibility point shows up, when all of its prior control flow instructions resolve,
unsafe speculative loads (USL) will be put into a speculative bu�er (SB) without modifying
any cache states. When reaching the visibility point, there are two cases. In one case, the
USL and successive instructions will be possibly squashed because of mismatch of data in
the SB and the up-to-date values in the cache. In another case, the core receives possible
invalidation from the OS before checking of memory consistency model and no comparison
is needed. When speculative execution happens, the hardware puts the data into SB, as to
identify visibility point for dealing with final state transition of the speculative execution.
InvisiSpec cache targets on Spectre-like attacks and futuristic attacks. However, InvisiSpec
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cache is vulnerable to all non-speculative side channels.
CATalyst cache [18] uses partitioning, especially Cache Allocation Technology

(CAT) [41] available in the LLC of some Intel processors. CAT allocates up to 4 dif-
ferent Classes of Services (CoS) for separate cache ways so that replacement of cache blocks
is only allowed within a certain CoS. CATalyst first uses CAT mechanism to partition
caches into secure and non-secure parts (non-secure parts may map to 3 CoS while secure
parts map to 1 CoS). Secure pages are assigned to virtual machines (VMs) at a granularity
of a page, and not shared by more than one VM. Here, attacker and victim reside in
di�erent VMs. Combined with CAT technology and pseudo-locking mechanism which pins
certain page frames managed by software, CATalyst guarantees that malicious code cannot
evict secure pages. CATalyst implicitly performs preloading by remapping security-critical
code or data to secure pages. Flushes can only be done within each VM. And cache
coherence is achieved by assigning secure pages to only one processor and not sharing
pages among VMs. This cache listed extra software assumptions as follows:

Assumption 1. Security critical data is always preloaded into the cache at the beginning
of the whole program execution.

Assumption 2. Security critical data is always able to fit within the secure partition of
the cache. I.e. all data in the range x can fit in the secure partition.

Assumption 3. The victim and the attacker process cannot share the same memory
space.

Assumption 4. Use pseudo-locking mechanism by software to make sure that victim
and attacker process cannot share the same cache blocks.

Assumption 5. Secure pages are reloaded immediately after the flush, which is done by
the virtual machine monitor (VMM) to make sure all the secure pages are still pinned in
the secure partition.

DAWG cache [21] (Dynamically Allocated Way Guard) partitions the cache by cache
ways and provides full isolation for hits, misses and metadata updates across di�erent
protection domains (between the attacker and the victim). DAWG cache is partitioned for
the attacker and the victim and each of them keep their own di�erent domain_id (which
is similar to process ID used in general caches). Each domain_id has its own bit fields,
one is called policy_fillmap, for masking fills and selecting the victim to replace, another
is called policy_hitmap, for masking hit ways. Only both the tag and the domain_id
are the same will a cache hit happen. Therefore, DAWG allows read-only cache lines to
be replicated across ways for di�erent protection domain. For a cache miss, the victim
can only be chosen within the ways belonging to the same domain_id, recorded by the
policy_fillmap. Consistently, the replacement policy is updated with the victim selection
and the metadata derived from the policy_fillmap for di�erent domains is updated as well.
The paper also proposes the idea to dynamically partitions the cache ways following the
system’s workload changes but does not actually implement it.

RIC cache [20] (Relaxed Inclusion Caches) proposes a low-complexity cache to defend
against eviction-based timing-based side-channel attacks on the LLC. Normally for an
inclusive cache, if the data R is in the LLC, it is also in the higher level cache, and eviction
of the R in the LLC will cause the same data in the higher level cache, e.g., L1 cache
to be invalidated, making eviction-based attacks in the higher level cache possible (e.g.,
attacker is able to evict victim’s security critical cache line). For RIC, each cache line is
extended with a single bit to set the relaxed inclusion. Once the relaxed inclusion is set
for that cache line, the corresponding LLC line eviction will not cause the same line in the
higher-level cache to be invalidated. Two kinds of data will be set relaxed inclusion bit:
read only data and thread private data when they are loaded into the cache. These two
kinds of data are claimed by the paper to cover all the critical data for ciphers. Therefore,
RIC will not prevent writable in-private critical data, which is currently not found in any
ciphers. Apart from that, RIC requires flushing for the corresponding cache lines in the
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cases that the RIC bits are modified or for thread migration events to avoid the timing
leakage during transition time.

PL cache [10] provides isolation by partitioning the cache based on cache blocks. It
extends each cache block with a process ID and a lock status bit. The process ID and the
lock status bits are controlled by the extended load and store instructions (ld.lock/ld.unlock

and st.lock/st.unlock) which allow the programmer and compiler to set or reset the lock
bit through use of the right load or store instruction. In terms of cache replacement
policy, for a cache hit, PL cache will perform the normal cache hit handling procedure
and the instructions with locking or unlocking capability can update the process ID and
the lock status bits while the hit is processed. When there is a cache miss, locked data
cannot be evicted by data that is not locked and locked data among di�erent processes
cannot be evicted by each other. In this case, the new data will be either loaded or stored
without caching. In other cases, data eviction is possible. This cache listed extra software
assumption as follows:

Assumption 1. Security critical data is always preloaded into the cache at the beginning
of the whole program execution.

RP cache [10] uses randomization to de-correlate the memory address accessing and
timing of the cache. For each block of RP cache, there is a process ID and one protection
bit P set to indicate if this cache block needs to be protected or not. A permutation table
(PT) stores each cache set’s pre-computed permuted set number and the number of tables
depends on number of protected processes. For memory access operations, cache hits need
both process ID and address to be the same. When a cache miss happens to data D of a
cache set S, if the to-be-evicted data and to-be-brought-in data belong to the same process
but have di�erent protection bit, arbitrary data of a random cache set S

Õ will be evicted
and D will be accessed without caching. If they belong to di�erent processes, D will be
stored in an evicted cache block of S

Õ and mapping of S and S

Õ will be swapped as well.
Otherwise, the normal replacement policy is executed.

Newcache cache [11, 37] dynamically randomizes memory-to-cache mapping. It
introduced a ReMapping Table (RMT), and the mapping between memory addresses and
this RMT is as in a direct mapped cache, while the mapping between the RMT and actual
cache is fully associative. The index bits of memory address are used to look up entries in
the RMT to find the cache block that should be accessed. It stores the most useful cache
lines rather than hold a fixed set of cache lines. This index stored in RMT combined with
the process ID is used to look up the actual cache where each cache line is associated with
its real index and process ID. Each cache block is also associated with a protection bit (P)
to indicate if it is security critical. For cache replacement policy, it is very similar to RP
cache. Cache hit needs both process ID and address to be the same. When cache miss
happens to data D, arbitrary data will be evicted and D will be accessed without caching if
they belong to the same process but either one of their protection bit is set. If the evicted
data and brought-in data have di�erent process IDs, D will randomly replace a cache line
since it is fully associative in the actual cache. Otherwise, the normal replacement policy
for direct mapped cache is executed.

Random Fill cache [12] de-correlates cache fills with the memory access using random
filling technique. New instructions used by applications in Random Fill cache can control
if the requested data belongs to a normal request or a random fill request. Cache hits
are processed as in normal cache. For the security critical data accesses of the victim, a
Nofill request is executed and the requested data access will be performed without caching.
Meanwhile, on a Random Fill request, arbitrary data, from the range of addresses, will
be brought into the cache. In the paper [12], the authors show that random fill of spatially
near data does not hurt performance. For other processes’ memory accesses and normal
victim’s memory accesses, Normal request will be used to achieve normal replacement
policy. Victim and attacker are able to remove victim’s own security critical data including
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using clflush instructions or cache coherence protocol since the flush will not influence
timing-based side-channel attack prevention (the random filling technique is used for this).

CEASER cache [24] is able to mitigate conflict-based LLC timing-based side-channel
attacks using address encryption and dynamic remapping. CEASER cache does not
di�erentiate whom the address belongs to and whether the address is security critical.
When memory access tries to modify the cache state, the address will first be encrypted
using Low-Latency BlockCipher (LLBC) [42], which not only randomizes the cache set
it maps, but also scatters the original, possibly ordered and location-intensive addresses
to di�erent cache sets, decreasing the probability of conflict misses. The encryption and
decryption can be done within two cycles using LLBC. Furthermore, the encryption key
will be periodically changed to avoid key reconstruction. The periodic re-keying will cause
the address remapping to dynamically change.

SCATTER cache [25] uses cache set randomization to prevent timing-based attacks.
It builds upon two ideas. First, a mapping function is used to translate memory address
and process information to cache set indices, the mapping is di�erent for each program or
security domain. Second, the mapping function also calculates a di�erent index for each
cache way, in a similar way to the skewed associative caches [43]. The mapping function
can be keyed hash or keyed permutation derivation function – a di�erent key is used for
di�erent application or security domain resulting in a di�erent mapping from address to
cache sets for each. Software (e.g., the operating system) is responsible for managing the
security domains and process IDs which are used to di�erentiate the di�erent software
and assign it di�erent keys for the mapping. For the hardware extension, a cryptographic
primitive such as hashing and an index decoder for each scattered cache way is added.
SCATTER cache also stores the index bits of the physical address to e�ciently perform
lookups and writebacks. There is also one bit per page-table entry added to allow the
kernel to communicate with the user space for security domain identification.

Non Deterministic cache [19] uses cache access delay to randomize the relation
between cache block access and cache access timing. There is no di�erentiation of data
caching between di�erent process ID or whether the data is secure or not. A per-cache-block
counter records the interval of its data activeness, and is increased on each global counter
clock tick when the data is untouched. When the counter reaches a predefined value, the
corresponding cache line will be invalidated. Non Deterministic Cache randomly sets the
local counters’ initial value that is less than the maximum value of the global counter. In
this case, the cache delay is changed to be randomized. Cache delay interval controlled
by this non-deterministic execution can lead to di�erent cache hit and miss statistics
because the invalidation is determined by the randomized counter of each cache line, and
therefore de-correlates any cache access time from the address being accessed. However,
the performance degradation is tremendous.

5 Analysis of the Secure Caches

In this section, we manually evaluate the e�ectiveness of the 18 secure caches [8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. We analyze how well the di�erent caches
can protect against the 72 types of vulnerabilities defined in Table 2 and Table 3, which
cover all the possible Strong (according to the definition in Seciton 3) cache timing-based
vulnerabilities. Following the analysis, discuss what types of secure caches and features
are best suited for defending di�erent types of timing-based attacks.
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5.1 E�ectiveness of the Secure Caches Against Timing-Based At-
tacks

Table 4 and Table 5 list the result of our analysis of which caches can prevent which
types of attacks. Some caches are able to prevent certain vulnerabilities, denoted by a
checkmark, X, and green color in the table. For example, SPú cache can defend against
V

u

 A

d

 V

u

(slow) (one type of Evict + Time [31]) vulnerability. For some other caches
and vulnerabilities, the cache is not able to prevent the vulnerabilities and it is indicated
by ◊ and red color. For example, SecDCP cache cannot defend against V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [3]) vulnerability.
Each cache is analyzed for each type of vulnerability listed in Table 2 and Table 3. A

cache is judged to be able to prevent a type of cache timing-based vulnerability in three
cases:

1. A cache can prevent a timing attack if the timing of the last step in a vulnerability
is always constant and the attacker can never observe fast and slow timing di�erence
for the given set of three steps. For instance, in a regular set-associative cache, the
V

d

 V

u

 A

a

(fast) (one type of Flush + Reload [30]) vulnerability will allow the
attacker to know that address a maps to secret u when the attacker observes fast
timing, compared with observing slow timing in the other cases. However, in case of
the RP cache [10] will make the timing of the last step to be always slow because
RP cache does not allow data of di�erent processes to derive cache hit between each
other.

2. A cache can prevent a timing attack if the timing of last step is randomized and
cannot have original corresponding relation between victim’s behavior and attacker’s
observation. For instance, A

d

 V

u

 A

inv

d

(fast) (one type of Prime + Probe
Invalidation) vulnerability when executed on a normal set-associative cache will allow
the attacker to know that the address d has the same index with secret u when
observing fast timing, compared with slow timing in the other cases. However, when
executing this attacks on the Random Fill cache [12], for example a slow timing will
not determine that u and d have the same index as the secret, since in Random
Fill cache u would be accessed without caching and another random data would be
cached instead.

3. A cache can prevent a timing attack if it disallows certain steps from the three-
step model to be executed, thus prevents the corresponding vulnerability. For
instance, when PL cache [10] preloads and locks the security critical data in the
cache, vulnerabilities such as A

d

 V

u

 V

inv

d

(slow) (one type of Prime + Time
Invalidation) will not be possible since a preloaded locked security critical data will
not allow A

d

in Step 1 to replace it. In this case, A

d

cannot be in the cache, so this
vulnerability cannot be triggered in PL cache.

From the security perspective, the entries of the secure cache in Table 4 and Table 5
should have as many green colored cells as possible. If a cache design has any red cells,
then it cannot defend against that type of vulnerability – attacker using the timing-based
vulnerability that corresponds to the red cell can attack the system.

The third column in Table 4 and Table 5 shows a normal set associative cache, which
cannot defend against any type of timing-based vulnerabilities. Meanwhile, the last column
of Table 4 and Table 5 shows the situation where the cache is fully disabled. As is expected,
the timing-based vulnerabilities are eliminated and timing-based attacks will not succeed.
Disabling caches, however, has tremendous performance penalty. Similarly, second-to-last
column shows Nondeterministic Cache, which totally randomizes cache access time. It
can defend all the attacks, but again will have a tremendous cost to security when the
application is complex.
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For each of the entry that shows the e�ectiveness of a secure cache against a vulnerability,
there are two results listed. Left one is for normal execution, and the right one is for
speculative execution. Some secure caches such as InvisiSpec cache target timing-based
channels in speculative execution. For most of the caches that do not di�erentiate
speculative execution and normal execution, the two sub-columns for each cache are the
same.

6 Secure Cache Techniques
Among the secure cache designs presented in the prior section, there are three main
techniques that the caches utilize: di�erentiating sensitive data, partitioning, and random-
ization.

Di�erentiating sensitive data (columns for CATalyst cache to columns for Random
Fill cache in Table 4 and Table 5) allows the victim or attacker software or management
software to explicitly label a certain range of the data of victim which they think is sensitive.
The victim process or management software is able to use cache-specific instructions to
protect the data and limit internal interference between victim’s own data. E.g., it is
possible to disable victim’s own flushing of victim’s labeled data, and therefore prevent
vulnerabilities that leverage flushing. This technique allows the designer to have stronger
control over security critical data, rather than forcing the system to assume all of victim’s
data is sensitive. However, how to identify sensitive data and whether this identification
process is reliable are open research questions for caches that support di�erentiation of
sensitive data.

This technique is independent of whether a cache uses partitioning or randomization
techniques to eliminate side channels between the attacker and the victim. Caches that are
able to label and identify sensitive data have the advantage in preventing internal interfer-
ence since they are able to di�erentiate sensitive data from the normal data and can make
use of special instructions to give more privileges to sensitive data. However, it requires
careful use when identifying the actual sensitive data and implementing corresponding
security features on the cache.

Comparing PL cache with SPú cache, although both of them use partitioning, flush
is able to be implemented to be disabled for victim’s sensitive data in PL cache, where
V

u

 V

inv

a

 V

u

(slow) (one type of Flush + Time) is prevented. Newcache is able to
prevent V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [3]) while most of the caches
without ability to di�erentiate sensitive data cannot because Newcache disallows replacing
data as long as either data to be evicted or data to be cached is identified to be sensitive.
However, permitting di�erentiation of sensitive data can potentially backfire on the cache
itself. For example, Random Fill cache cannot prevent V

u

 A

d

 V

u

(slow) (one type
of Evict + Time [31]) which most of the other caches can prevent or avoid, because the
random fill technique loses its intended random behavior when the security critical data is
initially loaded into the cache in Step 1.

Partitioning-based caches usually limit the victim and the attacker to be able to
only access a limited set of cache block (columns for SPú cache to column for PL cache in
Table 4 and Table 5). E.g. either there is static or dynamic partitioning of caches which
allocates some blocks to High victim and Low attacker. The partitioning can be based not
just on whether the memory access is victim’s or attacker’s, but also on where the access
is to (e.g. High partition is determined by the data address) For speculative execution,
attacker’s code can be the part of speculation or out-of-order load or store, which is able
to be partitioned (e.g., using speculative load bu�er) from other normal operations. The
partitioning granularity can be cache sets, cache lines or cache ways. Partitioning-based
secure caches are usually able to prevent external interference by partitioning but are
weak at preventing internal interference. When partitioning is used, interference between
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the attacker and the victim, or data belonging to di�erent security levels, should not be
possible and attacks based on external interference between the victim and the attacker will
fail. However, the internal interference of victim’s own data is hard to be prevented by the
partitioning based caches. What’s more, partitioning is recognized to be wasteful in terms
of cache space and inherently degrades system performance [10]. Dynamic partitioning
can help limit the negative performance and space impacts, but it could be at a cost of
revealing some information when adjusting the partitioning size for each part. It also does
not help with internal interference prevention.

In terms of the three-step model, the partitioning-based caches excel at making use
of partitioning techniques to disallow the attacker to set initial states (Step 0) of victim
partition by use of flushing or eviction, and therefore bring uncertainty to the final timing
observation made by the attacker.

SPú cache can prevent external miss-based interference, but it still allows the victim and
the attacker to get cache hits due to each other’s data, which makes hit-based vulnerabilities
happen, e.g., V

d

 V

u

 V

a

(fast) (one type of Cache Internal Collision [4]) vulnerability
is one of the examples that SPú cache cannot prevent. SecVerilog cache is similar to SPú

cache but prevents the attacker from directly getting cache hit due to victim’s data for
confidentiality and therefore prevents vulnerabilities such as A

inv

a

 V

u

 A

a

(fast) (one
type of Flush + Reload [30]). SHARP cache mainly uses partitioning combined with random
eviction to minimize the probability of evicting victim’s data and prevent external miss-
based vulnerabilities. It is vulnerable to hit-based or internal interference vulnerabilities
such as V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [3]) vulnerability. DAWG
cache will only observing a cache hit if both its address and the process ID are the same.
Therefore, compared with normal partitioning cache such as SPú cache, it is able to prevent
vulnerabilities such as V

d

 V

u

 A

inv

d

(fast) (one type of Prime + Flush).
SecDCP and NoMo cache both leverage dynamic partitioning to improve performance.

Compared to SecVerilog cache, SecDCP cache introduces certain side channels which
manifest themselves when the number of ways assigned to the victim and attacker changes,
e.g., V

u

 A

inv

a

 V

u

(slow) (one type of Flush + Time) vulnerability. NoMo cache
behaves more carefully when changing the number of ways during dynamic partitioning,
however, it requires victim’s sensitive data to fit into the assigned partitions, otherwise
it will be put into the unreserved way and allow eviction by the attacker. SecDCP does
not have unreserved way. All the space in the cache will be either belongs to High or Low
partition.

Sanctum cache and CATalyst cache are both controlled by a powerful software monitor
and they disallow secure page sharing between victim and attacker to prevent vulnerabilities
such as A

d

 V

u

 A

a

(fast) (one type of Flush + Reload [30]). Sanctum cache does not
consider internal interference while CATalyst cache is more carefully designed to prevent
di�erent vulnerabilities with the implemented software system, so far supporting preventing
all of the vulnerabilities, but only works for LLC and with high software implementation
complexity and some assumptions that might be hard to achieve in other scenarios, e.g.,
assuming the secure partition is big enough to fit all the secure data. MI6 cache is the
combination of Sanctum and disabling speculation when interacting with the outside world.
Therefore, in normal execution, it behaves the same as Sanctum. For speculative execution,
because it will simply disable all the speculation when involving the outside world, the
external interference vulnerability such as V

d

 V

u

 A

d

(slow) (one type of Evict +
Probe) vulnerability will be prevented.

InvisiSpec cache does not modify the original cache state but places the data in a
speculative bu�er partition during the speculation or out-of-order load or store. Since
during speculation cache state is not actually updated, the speculative execution cannot
trigger any of the steps in the three-step model. RIC cache focuses on eviction based attack
and therefore are good at preventing even some internal miss-based vulnerability such as
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V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [3]) but are bad at all hit-based
vulnerabilities. PL cache is line-partitioned and uses locking techniques for victim’s security
critical data. It can prevent many vulnerabilities because preloading and locking secure
data disallow the attacker or non-secure victim data to set initial states (Step 0) for victim
partition, and therefore brings uncertainty to the final observation by the attacker, e.g.,
A

d

 V

u

 V

a

(fast) (one type of Cache Internal Collision [4]) vulnerability is prevented.
Randomization-based caches (columns for SHARP cache, and columns for RP

cache to columns for Non Deterministic cache in Table 4 and Table 5) inherently de-
correlate the relationship between information of victim’s security critical data’s address
and observed timing from cache hit or miss, or between the address and observed timing of
flush or cache coherence operations. For speculative execution, they also de-correlate the
relationship between the address of the data being accessed during speculative execution or
out-of-order load or store and the observed timing from a cache hit or miss. Randomization
can be used when bringing data into the cache, evicting data, or both. Some designs
randomize the address to cache set mapping. As a result of the randomization, the
mutual information from the observed timing, due to having or not having data in the
cache, could be reduced to 0, if randomization is done on every memory access. Some
secure caches use randomization to avoid many of the miss-based internal interference
vulnerabilities. However, they may still su�er from hit-based vulnerabilities, especially
when the vulnerabilities are related to internal interference. However, randomization is
also likewise recognized to increase performance overheads [19]. It also requires a fast and
secure random number generator. Most of the randomization is cache-line-based and can
be combined with di�erentiation of sensitive data to be more e�cient.

RP cache allows eviction between di�erent sensitive data, which leaves vulnerabilities
such as V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [3]) still possible, while
Newcache prevents this. Both of the RP cache and Newcache are not able to prevent
hit-based internal-interference vulnerabilities such as A

inv

a

 V

u

 V

a

(fast) (one type
of Cache Internal Collision [4]). Random Fill cache is able to use total de-correlation
of memory access and cache access of victim’s security critical data to prevent most of
the internal and external interference. However, when security critical data is initially
directly loaded into the cache block for Step 1, Random Fill cache will not randomly load
security critical data and allows vulnerabilities such as V

u

 V

inv

a

 V

u

(slow) (one type
of Flush + Time) vulnerability to exist. CEASER cache uses encryption scheme plus
dynamic remapping to randomize mapping from memory addresses to cache sets. However,
this targets eviction based attacks and cannot preventing hit-based vulnerabilities such
as V

a

 V

inv

u

 V

inv

a

(fast) (one type of Flush + Probe Invalidation). SCATTER cache
encrypts both the cache address and process ID when mapping into di�erent cache index
to further prevent more hit-based vulnerabilities for shared and read only memory. Non
Deterministic cache totally randomizes timing of cache accesses by adding delays and can
prevent all attacks (but at tremendous performance cost).

6.1 Estimated Performance and Security Tradeo�s
Table 6 shows the implementation and performance results of the secure caches, as
listed by the designers in the di�erent papers. At the extreme end, there is the Non
Deterministic cache: with random delay, the secure cache can prevent all the cache timing-
based vulnerabilities in some degree – while their paper reports only 7% degradation
in performance, we expect it to be much more for more complex application than AES
algorithm. Disabling caches eliminates the attacks, but at a huge performance cost.
Normally, a secure cache needs to sacrifice some performance in order to de-correlate
memory access with the timing. The secure caches that tend to be able to prevent more
vulnerabilities usually have weaker performance compared with other secure caches. E.g.,
more security seems to imply less performance.
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6.2 Towards Ideal Secure Cache
Based on the above analysis, a good secure cache should consider all the 72 types of
Strong vulnerabilities, e.g., external and internal interference, hit-based and miss-based
vulnerabilities. Considering all factors and based on Table 4 and Table 5, we have several
suggestions and observations for a secure cache design which can defend timing-based
attacks:

• Internal interference is important for caches to prevent timing-based attacks and is
the weak point of most of the secure caches. To prevent this, the following three
subpoints should be considered:

– Miss-based internal interference can be solved by randomly evicting data to
de-correlate memory access with timing information when either data to be
evicted or data to be cached is sensitive, e.g., Newcache prevents V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [3]) vulnerability.
– Hit-based internal interference can be solved by randomly bringing data into the

cache, e.g., Random Fill cache prevents A

d

 V

u

 V

a

(fast) (Cache Internal
Collision) vulnerability.

– To limit internal interference at lower performance cost, rather than simply
assume all of victim’s data is sensitive, it is better to di�erentiate real sensitive
data from other data in the victim code. However, identification of sensitive
information needs to be carefully used, e.g., Random Fill cache is vulnerable to
V

u

 A

d

 V

u

(fast) (one type of Evict + Time [31]) vulnerability which most
of the secure caches are able to prevent.

• Direct partitioning between the victim and the attacker, although may hurt cache
space utilization or performance, is good at disallowing attacker to set known initial
state to victim’s partition and therefore prevents external interference. Alternatively,
careful use of randomization can also prevent external interference.

It should be noted that some cache designs only focus on certain levels, e.g., CATalyst
cache only works at the last level cache. In order to fully protect the whole cache system
from timing-based attacks, all levels of caches in the hierarchy should be protected with
related security features. E.g., Sanctum is able to prevent all levels of caches from L1 to
last-level cache. Consequently, secure cache design needs to be realizable at all levels of
the cache hierarchy.

7 Related Work
There are a lot of existing attacks exploring timing-based cache channels, e.g., [1, 2, 3,
4, 5, 31, 36, 30, 33, 34, 32]. Furthermore, our recent paper [7] has summarized cache
timing-based side-channel vulnerabilities using a three-step model, and inspired this work
on checking which vulnerability types are truly defeated by the secure caches in context
of timing-based attacks. In other work, [55] used finite-state machine to model cache
architectures and leveraged mutual information to measure potential side-channel leakage of
the modeled cache architectures. Meanwhile, [38] modeled interference using probabilistic
information flow graph, and used attacker’s success probability to estimate di�erent caches’
ability to defend against some cache timing-based side-channel attacks. However, they did
not explore all possible vulnerabilities due to cache timing-based channels.

There is also some other work focusing on cache side channel verification [56, 57, 58].
Among these, CacheAudit [56] e�ciently computes possible side-channel observations using
abstractions in a modular way. Bit-level and arithmetic reasoning is used in [57] for memory
accesses in the presence of dynamic memory allocation. CacheD [58] detects potential
cache di�erences at each program point leveraging symbolic execution and constraint
solving.
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Hardware transactional memory has also been leveraged to prevent timing-based cache
side-channel attacks [59, 60]. Hardware transactional memory (HTM) is available on
modern commercial processors, such as Intel’s Transactional Synchronization Extensions
(TSX). Its main feature is to abort the transaction and roll back the modifications whenever
a cache block contained in the read set or write set is evicted out of the cache. In [59],
HTM was combined with preloading strategy for code and data to prevent Flush + Reload
attacks in the local setting, and Prime and Probe attacks in the cloud setting. In [60],
the software-level solution targets system calls, page faults, code refactoring, and abort
reasoning to eliminate not only Prime + Probe, Flush + Reload, but also Evict + time
and Cache Collision attacks.

8 Conclusion
This paper first proposed a new three-step model in order to model all possible cache
timing vulnerabilities. It further provided a cache three-step simulator and reduction rules
to derive e�ective vulnerabilities, allowing us to find ones that have not been exploited
in literature. With exhaustive e�ective vulnerability types listed, this paper presented
analysis of 18 secure processor cache designs with respect to how well they can defend
against these timing-based vulnerabilities. Our work showed that vulnerabilities based on
internal interference of the victim application are di�cult to protect against and many
secure cache designs fail in this. We also provided a summary of secure processor cache
features that could be integrated to make an ideal secure cache that is able to defend
timing-based attacks. Overall, implementing a secure cache in a processor can be a viable
alternative to defend timing-based attacks. However, it requires design of an ideal secure
cache, or correction of existing secure cache designs to eliminate the few attacks that they
do not protect against.

References
[1] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–Bringing access-based cache

attacks on AES to practice,” in Security and Privacy (SP), 2011 IEEE Symposium
on, pp. 490–505, IEEE, 2011.

[2] C. Percival, “Cache missing for fun and profit,” 2005.

[3] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[4] J. Bonneau and I. Mironov, “Cache-collision timing attacks against AES,” in Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pp. 201–215,
Springer, 2006.

[5] O. Acıiçmez and Ç. K. Koç, “Trace-driven cache attacks on AES (short paper),” in
International Conference on Information and Communications Security, pp. 112–121,
Springer, 2006.

[6] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting Speculative
Execution,” ArXiv e-prints, Jan. 2018.

[7] S. Deng, W. Xiong, and J. Szefer, “Cache timing side-channel vulnerability checking
with computation tree logic,” in Proceedings of the 7th International Workshop on
Hardware and Architectural Support for Security and Privacy, no. 2, ACM, 2018.



Shuwen Deng, Wenjie Xiong and Jakub Szefer 27

[8] D. Zhang, A. Askarov, and A. C. Myers, “Language-based control and mitigation of
timing channels,” ACM SIGPLAN Notices, vol. 47, no. 6, pp. 99–110, 2012.

[9] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design language for
timing-sensitive information-flow security,” in ACM SIGARCH Computer Architecture
News, vol. 43, pp. 503–516, ACM, 2015.

[10] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based
side channel attacks,” in ACM SIGARCH Computer Architecture News, vol. 35,
pp. 494–505, ACM, 2007.

[11] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced performance and
security,” in Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on, pp. 83–93, IEEE, 2008.

[12] F. Liu and R. B. Lee, “Random fill cache architecture,” in Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on, pp. 203–215, IEEE, 2014.

[13] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware Extensions
for Strong Software Isolation.,” in USENIX Security Symposium, pp. 857–874, 2016.

[14] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh, “SecDCP: secure dy-
namic cache partitioning for e�cient timing channel protection,” in Design Automation
Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[15] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang, “Architecture
for protecting critical secrets in microprocessors,” in ACM SIGARCH Computer
Architecture News, vol. 33, pp. 2–13, IEEE Computer Society, 2005.

[16] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure Hierarchy-Aware Cache
Replacement Policy (SHARP): Defending Against Cache-Based Side Channel Attacks,”
in Proceedings of the 44th Annual International Symposium on Computer Architecture,
pp. 347–360, ACM, 2017.

[17] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev, “Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 8, no. 4,
p. 35, 2012.

[18] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee, “Cata-
lyst: Defeating last-level cache side channel attacks in cloud computing,” in High
Performance Computer Architecture (HPCA), 2016 IEEE International Symposium
on, pp. 406–418, IEEE, 2016.

[19] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras, “Non determin-
istic caches: A simple and e�ective defense against side channel attacks,” Design
Automation for Embedded Systems, vol. 12, no. 3, pp. 221–230, 2008.

[20] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-Ghazaleh, D. Pono-
marev, and A. Jaleel, “RIC: relaxed inclusion caches for mitigating LLC side-channel
attacks,” in Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE,
pp. 1–6, IEEE, 2017.

[21] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer, “DAWG: A
Defense Against Cache Timing Attacks in Speculative Execution Processors,”



28 Analysis of Secure Caches using a Three-Step Model for Timing-Based Attacks

[22] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas, “InvisiSpec:
Making Speculative Execution Invisible in the Cache Hierarchy,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 428–441,
IEEE, 2018.

[23] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas, et al., “MI6: Secure
Enclaves in a Speculative Out-of-Order Processor,” arXiv preprint arXiv:1812.09822,
2018.

[24] M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-
Address and Remapping,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 775–787, IEEE, 2018.

[25] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard,
“Scattercache: Thwarting cache attacks via cache set randomization,” in 28th USENIX
Security Symposium (USENIX Security 19), (Santa Clara, CA), USENIX Association,
2019.

[26] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu, and K. Fu,
“Wattsupdoc: Power side channels to nonintrusively discover untargeted malware on
embedded medical devices,” in Presented as part of the 2013 {USENIX} Workshop
on Health Information Technologies, 2013.

[27] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side—channel
(s),” in International Workshop on Cryptographic Hardware and Embedded Systems,
pp. 29–45, Springer, 2002.

[28] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Capkun, “Thermal
covert channels on multi-core platforms,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), pp. 865–880, 2015.

[29] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre: Read arbitrary
memory over network,” arXiv preprint arXiv:1807.10535, 2018.

[30] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack.,” in USENIX Security Symposium, pp. 719–732, 2014.

[31] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the
case of AES,” in Cryptographers’ Track at the RSA Conference, pp. 1–20, Springer,
2006.

[32] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage channels: Alias-
driven attacks and verified countermeasures,” in Security and Privacy (SP), 2016
IEEE Symposium on, pp. 38–55, IEEE, 2016.

[33] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are Coherence Protocol States
Vulnerable to Information Leakage?,” in High Performance Computer Architecture
(HPCA), 2018 IEEE International Symposium on, pp. 168–179, IEEE, 2018.

[34] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Automating
Attacks on Inclusive Last-Level Caches,” in USENIX Security Symposium, pp. 897–
912, 2015.

[35] C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and SpectrePrime:
Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence Pro-
tocols,” arXiv preprint arXiv:1802.03802, 2018.



Shuwen Deng, Wenjie Xiong and Jakub Szefer 29

[36] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ Flush: a fast and stealthy
cache attack,” in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 279–299, Springer, 2016.

[37] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache architecture thwarting
cache side-channel attacks,” IEEE Micro, vol. 36, no. 5, pp. 8–16, 2016.

[38] Z. He and R. B. Lee, “How secure is your cache against side-channel attacks?,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 341–353, ACM, 2017.

[39] R. E. Kessler and M. D. Hill, “Page placement algorithms for large real-indexed caches,”
ACM Transactions on Computer Systems (TOCS), vol. 10, no. 4, pp. 338–359, 1992.

[40] G. Taylor, P. Davies, and M. Farmwald, “The TLB slice-a low-cost high-speed address
translation mechanism,” in Computer Architecture, 1990. Proceedings., 17th Annual
International Symposium on, pp. 355–363, IEEE, 1990.

[41] C. Intel, “Improving Real-Time Performance by Utilizing Cache Allocation Technol-
ogy,” Intel Corporation, April, 2015.

[42] J. Borgho�, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, et al., “Prince–a low-latency block
cipher for pervasive computing applications,” in International Conference on the
Theory and Application of Cryptology and Information Security, pp. 208–225, Springer,
2012.

[43] A. Seznec, “A case for two-way skewed-associative caches,” ACM SIGARCH computer
architecture news, vol. 21, no. 2, pp. 169–178, 1993.

[44] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[45] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with
dynamic instrumentation,” in Acm sigplan notices, vol. 40, pp. 190–200, ACM, 2005.

[46] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: a full system simulator
for multicore x86 CPUs,” in Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pp. 1050–1055, IEEE, 2011.

[47] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. StojanoviÊ, and K. AsanoviÊ,
“A 45nm 1.3 GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector
accelerators,” in European Solid State Circuits Conference (ESSCIRC), ESSCIRC
2014-40th, pp. 199–202, IEEE, 2014.

[48] S. Zhang, A. Wright, T. Bourgeat, and A. Arvind, “Composable Building Blocks to
Open up Processor Design,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 68–81, IEEE, 2018.

[49] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI 5.1,” tech.
rep., Technical Report HPL-2008-20, HP Labs, 2008.

[50] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitectural simulation
of thousand-core systems,” in ACM SIGARCH Computer architecture news, vol. 41,
pp. 475–486, ACM, 2013.



30 Analysis of Secure Caches using a Three-Step Model for Timing-Based Attacks

[51] I. X. Processor, “E5-2680 v3.”

[52] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and
area model,” 2001.

[53] J. Sharkey, D. Ponomarev, and K. Ghose, “M-sim: a flexible, multithreaded architec-
tural simulation environment,” Techenical report, Department of Computer Science,
State University of New York at Binghamton, 2005.

[54] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotleakage: A
temperature-aware model of subthreshold and gate leakage for architects,” University
of Virginia Dept of Computer Science Tech Report CS-2003, vol. 5, 2003.

[55] T. Zhang and R. B. Lee, “New models of cache architectures characterizing information
leakage from cache side channels,” in Proceedings of the 30th Annual Computer Security
Applications Conference, pp. 96–105, ACM, 2014.

[56] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit: A tool for the
static analysis of cache side channels,” ACM Transactions on Information and System
Security (TISSEC), vol. 18, no. 1, p. 4, 2015.

[57] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache
attacks,” in Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 406–421, ACM, 2017.

[58] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying Cache-Based
Timing Channels in Production Software,” in 26th USENIX Security Symposium.
USENIX Association, 2017.

[59] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa, “Strong
and e�cient cache side-channel protection using hardware transactional memory,” in
USENIX Security Symposium, pp. 217–233, 2017.

[60] S. Chen, F. Liu, Z. Mi, Y. Zhang, R. B. Lee, H. Chen, and X. Wang, “Leveraging
Hardware Transactional Memory for Cache Side-Channel Defenses,” in Proceedings of
the 2018 on Asia Conference on Computer and Communications Security, pp. 601–608,
ACM, 2018.

Appendix A: Attack Strategies Descriptions
This appendix gives overview of the attack strategies, shown in Table 2 and Table 3 in
Section 3. For each attack strategy, an overview of the three steps of the strategy is given.
Some of the strategies are similar, and some may not be precise, but we keep and use the
original names as they were assigned in prior work. One advantage of our three-step model
is that it gives precise definition of each attack. Nevertheless, the attack strategy names
used before (and added by us for strategies which did not have such names) may be useful
to recall the attacks’ high-level operation.

Cache Internal Collision: In Step 1, cache block’s data is invalidated by flushing or
eviction done by either the attacker or the victim. Then, the victim accesses secret data in
Step 2. Finally, the victim accesses data at a known address in Step 3, if there is a cache
hit, then it reveals that there is an internal collision and leaks value of u.

Flush + Reload: In Step 1, either the attacker or the victim invalidates the cache
block’s data by flushing or eviction. Then, the victim access secret data in Step 2. Finally,
the attacker tries to access some data in Step 2 using a known address. If a cache hit is
observed, then addresses from last two steps are the same, and the attacker learns the
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secret address. This strategy has similar Step 1 and Step 2 as Cache Internal Collision
vulnerability, but for Step 3, it is the attacker who does the reload access.

Reload + Time (new name assigned in this paper): In Step 1, secret data is
invalidated by the victim. Then, the attacker does some known data access in Step 2 that
could possibly bring back the invalidated the victim’s secret data in Step 1. In Step 3, if
the victim reloads the secret data, a cache hit is observed and the attacker can derive the
secret data’s address.

Flush + Probe (new name assigned in this paper): In Step 1 the victim or the
attacker access some known address. In Step 2, the victim invalidates secret data. In
Step 3, reloading of Step 1’s data and observation of a cache miss will help the attacker
learn that the secret data maps to the known address from Step 1.

Evict + Time: In Step 1, some victim’s secret data is put into the cache by the
victim itself. In Step 2, the attacker evicts a specific cache set by performing a memory
related operation that is not a flush. In Step 3, the victim reloads secret data, and if a
cache miss is observed, the will learn the secret data’s cache set information. This attack
has similar Step 1 and Step 3 as Flush + Time vulnerability, but for Step 2, in Evict
+ Time, the attacker invalidates some known address allowing it to find the full address
of the secret data, instead of evicting a cache set to only find the secret data’s cache index
as in the Flush + Time attack.

Prime + Probe: In Step 1, the attacker primes the cache set using data at address
known to the attacker. In Step 2, the victim accesses the secret data, which possibly evicts
data from Step 1. In Step 3, the attacker probes each cache set and if a cache miss is
observed, the attacker knowns the secret data maps to the cache set he or she primed.

Bernstein’s Attack: This attack strategy leverages the victim’s internal interference
to trigger the miss-based attack. For one case, the victim does the same secret data access
in Step 1 and Step 3 while in Step 2, the victim tries to evict one whole cache set’s data
by known data accesses. If cache miss is observed in Step 3, that will tell the attacker the
cache set is the one secret data maps to. For another case, the victim primes and probe a
cache set in Step 1 and Step 3 driven by the attacker while in Step 2, the victim tries to
access the secret data. Similar to the first case, observing cache miss in Step 3 tells the
attacker the cache set is the one secret data maps to.

Evict + Probe (new name assigned in this paper): In Step 1, Victim evict the
cache set using the access to a data at an address known to the attacker. In Step 2, the
victim accesses secret data, which possibly evicts data from Step 1. In Step 3, the attacker
probes each cache set using the same data as in Step 1, if a cache miss is observed the
attacker knowns the secret data maps to the cache set he or she primed. This attack
strategy has similar Step 2 and Step 3 as Prime + Probe attack, but for Step 1, it is
the victim that does the eviction accesses.

Prime + Time (new name assigned in this paper): In Step 1, the attacker
primes the cache set using access to data at an address known to the attacker. In Step 2,
the victim accesses secret data, which possibly evicts data from Step 1. In Step 3, the
victim probes each cache set using the same data Step 1, if a cache miss is observed the
attacker knowns the secret data maps to the cache set he or she primed in Step 1. This
attack strategy has similar Step 1 and Step 2 as Prime + Probe attack, but for Step 3,
it is the victim that does the probing accesses.

Flush + Time (new name assigned in this paper): The victim accesses the same
secret data in Step 1 and Step 3; while in Step 2, the attacker tries to invalidate data at a
known address. If cache miss is observed in Step 3, that will tell the attacker the data
address he or she invalidated in Step 2 maps to the secret data.

Invalidation related (new names assigned in this paper): Vulnerabilities that
have names ending with “invalidation” in Table 3 correspond to the vulnerabilities that
have the same name (except for the “invalidation” part) in Table 2. The di�erence between
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each set of corresponding vulnerabilities is that the vulnerabilities ending with “invalidation”
use invalidation related operation in the last step to derive the timing information, rather
than the normal memory access related operations.

Appendix B: Soundness Analysis of the Three-Step Model
In this section we analyze the soundness of the three-step model to demonstrate that the
three-step model can cover all possible timing-based cache vulnerabilities in normal caches.
If there is a vulnerability that is represented using more than three steps, the steps can
be reduced to only three steps, or a three-step sub-pattern can be found in the longer
representation.

In the below analysis, we use — to denote the number of memory related operations,
i.e., steps, in a representation of a vulnerability. We show that — = 1 is not su�cient to
represent a vulnerability, — = 2 covers some vulnerabilities but not all, — = 3 represents all
the vulnerabilities, and — > 3 can be reduced to only three steps, or a three-step sub-pattern
can be found in the longer representation. Known addresses refer to all the cache states that
interference with the data a, a

alias and d Unknown address refers u. An access to a known
memory address is denoted as known_access_operation, and an invalidation of a known
memory address is denoted as known_inv_operation. The known_access_operation

and known_inv_operation together make up not_u_operations. An unknown memory
related operation (containing u) is denoted as u_operation.

B.1 Patterns with — = 1
When — = 1, there is only one memory related operation, and it is not possible to create
interference between memory related operations since two memory related operations
are the minimum requirement for an interference. Furthermore, — = 1 corresponds to
the three-step pattern with both Step 1 and Step 2 being ı, since the cache state ı

gives no information, and Step 3 being the one operation. These types of patterns are
all examined by the cache three-step simulator and none of these types are found to be
e�ective. Consequently, a vulnerability cannot exit when — = 1.

B.2 Patterns with — = 2
When — = 2, it satisfies the minimum requirement of an interference for memory related
operations and corresponds to the three-step cases where Step 1 is ı, and Step 2 and Step 3
are the two operations. These types are all examined by the cache three-step simulator and
some of them belong to Weak Vulnerabilities, like { ı A

a

 V

u

}. Therefore, three-step
cases where Step 1 is ı have corresponding e�ective vulnerabilities shown in Table 2.
Consequently, — = 2 can represent some weak vulnerabilities, but not all vulnerabilities as
there exist some that are represented with three steps, as discussed next.

B.3 Patterns with — = 3
When — = 3, we have tested all possible combinations of three-step memory related
operations in Section 3.3 using our cache simulator for the three-step model. We found that
there are in total 72 types of Strong Vulnerabilities and 64 types of Weak Vulnerabilities
that are represented by patterns with — = 3 steps. Consequently, — = 3 can represent
all the vulnerabilities (including some weak ones where Step 1 is ı). Using more steps to
represent vulnerabilities is not necessary, as discussed next.
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B.4 Patterns with — > 3
When — > 3, the pattern of memory related operations for a vulnerability can be reduced
using the following rules:

B.4.1 Subdivision Rules

First a set o subdivision rules is used to divide the long pattern into shorter patterns,
following the below rules. Each subdivision rule should be applied recursively before
applying the next rule.

Subdivision Rule 1: If the longer pattern contains a sub-pattern such as { ... ı ...},
the longer pattern can be divided into two separate patterns, where ı is assigned as Step 1
of the second pattern. This is because ı gives no timing information, and the attacker
loses track of the cache state after ı. This rule should be recursively applied until there
are no sub-patterns left with a ı in the middle or as last step (ı in the last step will be
deleted) in the longer pattern.

Subdivision Rule 2: Next, if a pattern (derived after recursive application of the Rule 1
contains a sub-pattern such as { ... A

inv

/V

inv

 ...}, the longer pattern can be divided
into two separate patterns, where A

inv

/V

inv

is assigned as Step 1 of the second pattern.
This is because A

inv

/V

inv

will flush all the timing information of the current block and it
can be used as the flushing step for Step 1, e.g., vulnerability { A

inv

 V

u

 A

a

(fast)}
shown in Table 2. A

inv

/V

inv

cannot be a candidate for middle steps or the last step
because it will flush all timing information, making the attacker unable to deduce the
final timing with victim’s sensitive address translation information. This rule should be
recursively applied until there are no sub-patterns left with a A

inv

/V

inv

in the middle or
the last step (A

inv

/V

inv

in the last step will be deleted).

B.4.2 Simplification Rules

For each of the patterns resulting from the subdivision of the original pattern, we define
Commute Rules, Union Rules and Reduction Rules for a each set of two adjacent steps in
these remaining patterns. In table 7, we show all the possible cases of the rule applying
conditions for each adjacent two steps, regardless of the attacker’s access (A) or the victim’s
access (V ). The table shows whether the corresponding two steps can be commuted, reduced
or unioned (and the reduced or the unioned result if the rules can be applied).

B.4.2.1 Commute Rules

Suppose there are two adjacent steps M and N for a memory sequences {... M  N  
...}. If commuting M and N lead to the same observation result, i.e., {... M  N  ...}
and {... N  M  ...} will have the same timing observation information in the final
step for the attacker, we can freely exchange the place of M and N in this pattern. In this
case, we have more chance to Reduce and Unionthe steps within the memory sequence
by the following Rules. In the possible commuting process, we will try every possible
combinations to commute di�erent pairs of two steps that are able to apply the Commute
Rules and then further apply Reduce Rules and Union Rules to see whether the commute
is e�ective, i.e., there can be steps reduced or unioned after the proper commuting process.
The following two adjacent memory related operations can be commuted:

• Commute Rule 1: For two adjacent steps, if one step is a known_access_operation

and another step is a known_inv_operation. and the addresses they refer to are
di�erent, these two steps can be commuted no matter which position of the two
steps they are in within the whole memory sequence. It will show a “yes” for the
corresponding two-step pattern for the Commute Rule 1 column if these two can be
commuted in Table 7.
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• Commute Rule 2: A superset of two-step patterns that can apply Commute Rule 1
can be commuted if the second step of these two adjacent steps is not the last step
in the whole memory sequence. There are some two adjacent steps that can only
be commuted if the second step of these two adjacent steps is not the last step in
the whole memory sequence. There will be a “yes” for the corresponding two-step
pattern for the Commute Rule 2 column and a “no” for the corresponding two-step
pattern for the Commute Rule 1 column in Table 7.

B.4.2.2 Reduction Rules

If the memory sequence after applying Commute Rules have a sub-pattern that has two
adjacent steps both related to known addresses or both related to unknown address
(including repeating states), the two adjacent steps can be reduced to only one following
the reduction rules (if the two-step pattern has “yes” for the Column “Union Rule or
Reduce Rule” and has no Union result for the “Combined Step” Column in Table 7.

• Reduction Rule 1: For two u_operations, although u is unknown, both of the accesses
target on the same u so can be reduced to only keep the second access in the memory
sequence.

• Reduction Rule 2: For two known adjacent memory access related operations
(known_access_operation), they always result in a deterministic state of the second
memory access related cache block, so these two steps can be reduced to only one
step.

• Reduction Rule 3: For two adjacent steps, if one step is known_access_operation

and another one is known_inv_operation, no matter what order they have, and
the address they refer to is the same, these two can be reduced to one step, which is
the second step.

B.4.2.3 Union Rules

Suppose there are two adjacent steps M and N for a memory sequences {...  M  
N  ...}. If combing M and N leads to the same timing observation result, i.e., {... 
M  N  ...} and {...  Union(M, N)  ...} will have the same timing observation
information in the final step for the attacker, we can combine step M and N to be a joint
one step for this memory sequence, defined as Union(M, N). Two adjacent steps that can
be combined are discussed in the following cases:

• Union Rule 1: Two invalidations to two known di�erent memory addresses can be
applied Union Rule 1. known_inv_operation are two operations both invalidating
some known address, therefore, they can be combined to only one step. The Union
Rule can be continuously done to union all the adjacent invalidation step that
invalidates known di�erent memory addresses.

B.4.2.4 Final Check Rules

Each long memory sequence will recursively apply these three categorizations of the rules in
the order: Commute Rules first to put known_access_operations and known_inv_operation

that targets the same address as near as possible, and u_operations and not_u_operations
are putting together as much as possible. The Reduced Rules are then checked and applied
to the processed memory sequence to reduce the steps. Then the Union Rule is applied to
the processed memory sequence.

The recursion at each application to these three categorizations of the rules should be
always applied and reduce at least one step until the resulting sequence matches one of
the two possible cases:
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• the long (— > 3) memory sequence with u_operation and not_u_operation is
further reduced to a sequence where there are at most three steps in the following
patterns, or less:

– u_operation not_u_operation u_operation

– not_u_operation u_operation not_u_operation

There might be possible extra ı or A

inv

/V

inv before these three-step pattern, where:

– An extra ı in the first step will not influence the result and can be directly
removed.

– If an extra A

inv

/V

inv in the first step:
� If followed by known_access_operation, A

inv

/V

inv can be removed due
to the actual state further put into the cache block.

� If followed by known_inv_operation or V

inv

u

, A

inv

/V

inv can also be re-
moved since the memory location is repeatedly flushed by the two steps.

� If followed by V

u

, worst case will be A

inv

/V

inv  V

u

 
not_u_operation  u_operation, which is either an e�ective vulnera-
bility according to Table 2 and reduction rules shown in Section 3.3 or
A

inv

/V

inv  V

u

 A

inv

d

/V

inv

d

 u_operation, where V

u

 A

inv

d

/V

inv

d

can further be applied Commute Rule 2 to reduce and be within three
steps.

In this case, the steps are finally within three steps and the checking is done.
• There exists two adjacent steps that cannot be applied any Rules above and requires

the Rest Checking.

The only left two adjacent steps that cannot be applied by any of the three categoriza-
tions of the Rules are the following:

• {... A

a

/V

a

/A

a

alias/V

a

alias/A

d

/V

d

/A

inv

a

/V

inv

a

/A

inv

a

alias/V

inv

a

alias  V

u

 ...}
• {... A

a

/V

a

/A

a

alias/V

a

alias  V

inv

u

 ...}
• {... V

u

  ...A

a

/V

a

/A

a

alias/V

a

alias/A

d

/V

d

/A

inv

a

/V

inv

a

/A

inv

a

alias/V

inv

a

alias}
• {... V

inv

u

 A

a

/V

a

/A

a

alias/V

a

alias  ...}

We manually checked all of the two adjacent step patterns above and found that adding
extra step before or after these two steps can either generate two adjacent step patterns
that be processed by the three Rules, where further step can be reduced, or construct
e�ective vulnerability according to Table 2 and reduction rules shown in Section 3.3, where
the corresponding pattern can be treated e�ective and the checking is done.

B.4.3 Algorithm for Reducing and Checking Memory Sequence
The Algorithm 2 is used to: i) reduce a —-step (— > 3) pattern to a three-step pattern,
thus demonstrating that the corresponding — > 3 step pattern actually is equivalent to the
output three-step pattern and represents a vulnerability that is captured by an existing
three-step pattern, or ii) demonstrate that the —-step pattern can be mapped to one or
more three-step vulnerabilities. It is not possible for a —-step vulnerability pattern to not
be either i) or ii) after doing the Rule applications Key outcome of our analysis is that any
—-step pattern is not a vulnerability, or if it is a vulnerability it maps to either outputs i)
or ii) of the algorithm.

Inside the Algorithm 2, contain() represents a function to check if a list contains a corre-
sponding state, is_ine�ective() represents a function that checks the corresponding memory
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Algorithm 2 —-Step (— > 3) Pattern Reduction
Input: —: number of steps of the pattern

step_list: a two-dimensional dynamic-size array. step_list[0] contains the states of each step
of the original pattern in order. step_list[1], step_list[2], ... are empty initially.

Output: reduce_list: reduced e�ective vulnerability pattern(s) array. It will be an empty list if
the original pattern does not correspond to an e�ective vulnerability.

1: reduce_list = ‰
2: while step_list.contain(ı) and ı.index not 0 do
3: step_list = Subdivision_Rule_1 (step_list)
4: end while
5: while (step_list.contain(Ainv) and Ainv.index not 0) or (step_list.contain(Vinv) and

Vinv.index not 0) do
6: step_list = Subdivision_Rule_2 (step_list)
7: end while
8: while !(step_list.set_list.is_ine�ecitve or step_list.set_list.has_interval_e�ective_three_steps)

do
9: step_list = Commute_Rules (step_list)

10: step_list = Reduction_Rules (step_list)
11: step_list = Union_Rule (step_list)
12: if !(step_list.set_list.is_ine�ecitve or step_list.set_list.has_interval_e�ective_three_steps)

then
13: reduce_list += Rest_Checking (step_list)
14: end if
15: end while
16: return reduce_list

sequence does not contain any e�ective three-steps. has_interval_e�ective_three_steps()
represents a function that check if the corresponding memory sequence can be mapped to
one or more three-step vulnerabilities.

B.4.4 Summary
In conclusion, the three-step model can model all possible timing-based cache vulnerability
in normal caches. Vulnerabilities which are represented by more than three steps can be
always reduced to one (or more) vulnerabilities from our three-step model; and thus, using
more than three step is not necessary.


