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ABSTRACT

Motivated by recent advances in exploring the power of hybridized
TEE-blockchain systems, we present LucidiTEE, a uni�ed frame-
work for con�dential, policy-compliant computing that guarantees
fair output delivery. For context:
• Kaptchuk et al. (NDSS’19) showed that enclave-ledger interac-
tions can enable applications such as one-time programs and
rate limited logging. We generalize their ideas to enforcing arbi-
trary history-based policies within and across several multi-step
computations. Towards this, we de�ne a new ideal functional-
ity for policy-compliant computing FPCC, and then show how
LucidiTEE implements FPCC.
• Chaudhuri et al. (CCS’17) showed that enclave-ledger interactions
enable fair exchange, contract signing, and more generally, fair
secure multiparty computation. In a setting with n processors
each of which possesses a TEE, they show how to realize fair
secure computation tolerating up to t corrupt parties for any
t < n. We improve upon their result by showing a novel protocol
which requires only t out of the n processors to possess a TEE.
When n = 2 and t = 1, this provides practical fair computation in
client-server settings, where clients may not possess a TEE.
• Ekiden (EuroS&P’19) and FastKitten (Sec’19) use enclave-ledger
interactions to enable practical, privacy-preserving smart con-
tracts. However, Ekiden and FastKitten store the contract’s in-
puts on-chain (during malicious behavior in the latter’s case).
In contrast, LucidiTEE implements privacy-preserving stateful
computation while storing inputs, outputs, and state o�-chain,
using the ledger only to enforce history-based policies.

Summarizing, LucidiTEE enablesmultiple parties to jointly compute
on private data, while enforcing history-based policies even when
input providers are o�ine, and fairness to all output recipients, in a
malicious setting. LucidiTEE uses the ledger only to enforce policies;
i.e., it does not store inputs, outputs, or state on the ledger, letting it
scale to big data computation.We show novel applications including
a personal �nance app, collaborative machine learning, and policy-
based surveys amongst an apriori-unknown set of participants.

1 INTRODUCTION

Alice wishes to analyze her monthly spending behavior using a
personal �nance application, such as Mint [1]. Moreover, she seeks
to gauge, and even control, how her transaction records are stored,
analyzed, and further shared with other parties — however, main-
stream applications today only present a privacy policy written
in legalese, without any technical means to enforce them. We dis-
cuss Alice’s requirements from a new, transparent personal �nance
application that we build in this paper, called Acme.

Ideally, Acme does not access her raw transaction data, and she
opts for only select functions from Acme (e.g. a monthly aggregate

summary), and control who can attain the output report. Moreover,
she cannot provision her own servers (to engage in a multiparty
computation (MPC) protocol with Acme, for instance), and is ex-
pected to go o�ine at any time. For privacy and correctness, we
must enforce a policy over what inputs are supplied to a computa-
tion: 1) only a single instance of the analysis, over an entire month’s
worth of transactions, is permitted, as opposed to multiple, �ner-
grained analytics that can leak signi�cantly more information about
her spending behavior (one-time program [2] policy); 2) all of her
monthly transactions are fed as input to the computation.

As another example, Acme wishes to run a survey to collect
feedback from users (such as Alice), without having to build a
survey application but rather outsourcing it to a third-party service.
Ideally, instead of trusting them to collect genuine responses, Acme
wishes to enforce the following policy: 1) only accept inputs from
enrolled users of Acme; 2) all valid inputs are tallied in the output.

These policies are expressed over inputs and outputs over the
entire history of a computation, and across histories of multiple
computations, and we call them history-based policies. It is an
open research problem to e�ciently enforce such policies in a multi-
party setting (such as the apps above), where the participants are
not known in advance, may not be online, and may act maliciously.

In addition to enforcing policies, we wish to ensure fair output
delivery to all participants, even when the computation is carried
out by malicious parties (e.g. when Acme computes on Alice’s data,
or collaboration between businesses (see § 9.1). It is an open problem
how to provide fairness [3, 4] — if any party gets the output, then so
must all honest parties — in a multi-party computation (malicious
setting), where a subset of the participants have commodity devices
without a trusted execution environment [4], such as end users.

In this work, we build on recent advances in exploring the power
of a hybridized TEE-blockchain system (cf. [4–6] and references
therein) to address the problem of policy-compliance on computa-
tions over user data. To that end, we provide a concrete de�ni-

tion for policy-compliant computation. Our de�nition takes
the form of an ideal functionality FPCC in the UC framework of [7].
FPCC accepts user data and user-de�ned policies as inputs, and
guarantees (1) con�dentiality of inputs on which computations are
performed, and (2) fair output delivery to output recipients, and (3)
execution of only policy-compliant computations.
FPCC internally maintains a log of all function evaluations across

all concurrent computations, and a computation-speci�c policy
check uses this log to determine whether to allow any further
function evaluation. Additionally, the interfaces provided by our
FPCC abstraction are well-suited to the practical setting of repeated
(big data) computations on user data which may grow over time,
thereby expressive enough to enforce policies on this important
class of applications. In more detail, parties provide their input data
to FPCC once, and then bind it to an unbounded number of di�erent



computations, and also use it for an unbounded number of steps
within a computation without having to resupply it. This interface
is valuable for Acme, whose input database contains information of
a large number of merchants and spans several GBs. FPCC allows
any (malicious) party to carry out the computation on behalf of the
computation’s input providers (e.g. a cloud compute provider), but
the properties of policy compliance and fairness are ensured.

Next, we present LucidiTEE, a hybrid TEE-blockchain system
that exploits enclave-ledger interactions to provide a practical

implementation of the abstractions provided by FPCC. We as-
sume a method that computes on encrypted data — for instance,
MPC protocols or TEE-based systems such as VC3 [8], Opaque [9],
StealthDB [10], Ryoan [11], Felsen et al. [12], etc. — and instead
describe methods to enforce history-based policies and fair out-
put delivery. While a variety of advanced cryptographic methods
exist to enable con�dentiality of computations [13–15], enclaves
provide perhaps the most practical method for achieving this. Pure
cryptographic methods also fall short of guaranteeing fair output
delivery [16], or enforcing policies across computations involving
di�erent sets of parties. Also, secure computation does not apply to
settings where participants are not known in advance or are o�ine
or where con�dentiality is required when di�erent sets of users
contribute input to di�erent stages of a single computation [17, 18].

Improvements upon Related Work. While enclaves address
many of the problems above, they still su�er from other problems
such as rollback protection in a multiparty computation. Prior work
has employed blockchains for addressing state continuity, and also
to support more robust designs involving a distributed network
of TEE nodes [6, 19]. Our work continues in the same vein. How-
ever, in addition to rollback protection, we rely on enclave-ledger
interactions to (1) enforce policy compliance, and (2) guarantee fair
output delivery. In the following, we �rst discuss how we extend
ideas from Kaptchuk et al. [5] (see also [20]) to use enclave-ledger
interactions to enforce policies in computations. After that, we
discuss how we improve upon the work of Choudhuri et al. [4]
to derive more practical protocols for fair output delivery and fair
exchange. The latter may be of independent interest.

Kaptchuk et al. [5] showed that enclave-ledger interactions can
enable applications such as one-time programs and “rate limited
mandatory logging.” To support applications such as one-time pro-
grams, [5]’s strategy is to record (the �rst) execution of the program
on the blockchain. Then, the enclave running the program would
�rst check the blockchain to see if the program was executed al-
ready (in which case it would abort), and if no record of program
execution exists on the blockchain, then continue execution of the
program. In the problem of rate limited mandatory logging, the
goal is to log access to sensitive �les before the necessary keys
for an encrypted �le can be accessed by the user. Here again, [5]’s
strategy is to �rst check the blockchain to log the �le access, and
only then let the enclave release the key. See [5] for more details.

Extending [5], we provide general techniques to enforce arbi-
trary history-based policies within and across several multistage
computations. At a high level, we implement such history-based
policies by allowing the enclave executing a step of a computation
to scan through the ledger to identify policies associated with the
computation, and �rst check if the inputs to the computation step
comply with the policies associated with the computation, and

only then proceed with the execution of the computation step. In
the following sections, we demonstrate several interesting practi-
cal applications which exploit the power of history-based policies.
We note that such an extension is not straightforward from the
“Enclave-Ledger Interaction” scheme suggested by [5]—among other
things, concretely, their ExecuteEnclave function takes only a sin-
gle ledger post, whereas our policies may involve multiple entries
on the blockchain. Furthermore, unlike [5], our abstraction FPCC,
and consequently LucidiTEE, can enforce policies across several
computations. As an example, consider a survey application where
one might wish to enforce a policy that only those users who have
participated in a prior survey may participate in the current one.

Next, we discuss our contributions to the design of practical fair
exchange and fair computation protocols. By fairness, we mean
that either all output recipients obtain the output of a computation
or none do. It is a well-known result [16] that fairness is impossible
to achieve in a setting where a majority of the participants are
corrupt. Faced with this result, several works have explored relaxed
notions of fairness over the last few years [21–23]. However, very
recently, Choudhuri et al. [4] showed that enclave-ledger interac-
tions can enable fair secure computation. (Note that it is not known
whether enclaves alone can enable the standard notion of fairness
in secure computation [24].) In a setting with n processors each of
which possesses a TEE, [4] show how to realize fair computation
tolerating up to t corrupt parties for any t < n. We improve upon
their result with a novel protocol which requires only t out of the
n processors to possess a TEE. When n = 2 and t = 1, this provides
practical fair computation in client-server settings, where clients
may not possess TEEs. This contribution is of independent interest.

System Design. LucidiTEE provides a practical and scalable
framework for privacy-preserving, policy-compliant computations.
In our example applications, the inputs span large databases (such
as Acme’s proprietary database in § 9.1.1). The inputs also arrive
from a large number of apriori-unknown users, such as in public
surveys (§ 9.1.2) and applications that provide a service based on
aggregate data of its growing consumer base (e.g., § 9.1.3). Finally,
the set of computations grow over time as parties enroll in new
computations that consume results from prior computations.

LucidiTEE supports history-based policies with the use of a
shared ledger or blockchain, which plays the role of the log in
FPCC — since rollback or tampering attacks on the log can violate
policy compliance and fairness, we use a shared ledger (accessible
by all parties) in lieu of a centralized database. LucidiTEE achieves
scalability by minimizing use of the ledger. To support the above
mentioned applications, we record only commitments (i.e., hash
digests, which support membership queries) of the inputs, outputs,
and the updated state on the ledger after each function evaluation.
We note that the recent works of Ekiden [6] and FastKitten [25] also
use enclave-ledger interactions to enable privacy-preserving smart
contracts. However, Ekiden and FastKitten store the contract’s in-
puts on-chain (during malicious behavior in the latter’s case). In
contrast, LucidiTEE stores inputs, outputs, and state o�-chain (re-
call only commitments to these go on-chain), using the blockchain
only to enforce history-based policies. Furthermore, we use remote
attestation [24, 26] to allow any party to act as a compute provider
by providing a genuine TEE-enabled processor. For these reasons,
we say that LucidiTEE embodies “bring-your-own-storage" and
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Figure 1: Transparent Personal Finance Application

“bring-your-own-compute" paradigms , lending �exibility to the
untrusted compute providers to manage their storage and compute.

In summary, we make the following contributions:
• de�nition of an ideal functionality FPCC for multi-party, concur-
rent, stateful computations, with enforcement of history-based
policies for o�ine parties and fairness for all output recipients
• LucidiTEE, a system that realizes this ideal functionality, using
TEEs and a shared ledger
• protocol for fairn-party output delivery, requiring a shared ledger
and t parties to allocate a TEE, for any corruption threshold t < n.
We also provide a formal proof of security in the UC framework.
• evaluation of several applications, including a personal �nance
application (serving millions of users), federated machine learn-
ing over crowdsourced data, and a private survey. We also imple-
ment one-time programs, digital lockboxes, and fair exchange.

2 OVERVIEW OF LUCIDITEE
In this section, we introduce the components of our system using an
example personal �nance application. The design principles behind
our system should be evident even when considering applications
from di�erent domains such as joint machine learning, etc.

2.1 Motivating Example: Personal Finance App

The open banking initiative [27] has fostered a variety of personal
�nancial applications. Figure 1 illustrates a sample �nancial ap-
plication by Acme, who provides a service for viewing aggregate
spending behavior (i.e., the proportion of spending across categories
for all transactions in a month), along with the feature to share this
aggregate report with third parties (such as lending institutions
who can provide mortgage o�ers).

To perform this joint computation, Acmemaintains a proprietary
database mapping merchant ids to category labels; Alice’s data
consists of a set of transaction records sorted by time, where each
record contains several sensitive �elds such as the merchant id,
the amount spent, and the timestamp. The aggregation function
(denoted by f ) is evaluated over inputs from Alice and Acme, and
the output is shared with Alice and two lending institutions, BankA

and BankB. Alice’s data is either imported manually by her, or
more conveniently, provided by Alice’s bank, via an OAuth-based
OFX API [27] that pushes transaction data one-by-one as they are
generated by her. Today, an application like Acme often hosts the
users’ raw data, and is trusted by them to adhere to a legalese policy.

2.2 Requirements of Acme

The application may be hosted by a malicious compute provider,
who may collude with any party to violate either Alice’s or Acme’s
privacy. Therefore, we discuss some concrete requirements of the
system to ensure guarantees of policy compliance and fairness.

Privacy through Transparency
We �nd that transparency and control — i.e., enforcing which func-
tions can be evaluated, and with whom the outputs are shared —
are necessary for enforcing any measure of privacy. Without this
basic enforcement, an attacker can proliferate arbitrary functions
of sensitive user data. In our example, Alice wishes that the ap-
proved output recipients only learn the output of function f (on
one months’ worth of transaction data), and nothing else about her
transaction data, such as her spending pro�le at daily granularity
or the location patterns. For this reason, f cannot be evaluated by
sharing Alice’s plaintext data with Acme, or vice versa as Acme
also wishes to maintain secrecy of its proprietary database.

Strawman Approach

Both parties �rst encrypt their data before uploading it
to a compute provider (such as Acme or a cloud service).
Next, to allow the agreed-upon evaluation of function f
on their data, both parties establish a TLS channel (based
on remote attestation) with an enclave program (loaded
with function f ) running on an untrusted host software
at the compute provider, and share the decryption keys to
the enclave. Then, the enclave evaluates f , encrypts the
output under the output recipients’ public keys, and asks
the compute provider to transmit the encrypted output.

As a �rst step towards transparency and control, this design
ensures that only f is computed on inputs from Alice and Acme,
and that no other party beyond Alice, BankA, and BankB can ob-
serve the output. Note that the input providers can go o�ine after
providing their inputs, and the output recipients come online only
to retrieve the outputs. There are several TEE-based systems that
�t this general design, such as VC3 [8], Opaque [9], StealthDB [10],
Ryoan [11], Felsen et al. [12], etc., which we can use to implement
the function f . To restrict scope, f is assumed to be safe (e.g., with-
out additional leaks via side channels), so we execute f as given.

History-based Policies
While this strawman ensures that only f can be evaluated on Alice’s
input, we illustrate how this is insu�cient for Alice’s privacy.

Recall that Alice’s bank (we can treat Alice and her bank as
one logical party) uploads encrypted transaction records to the
compute provider (using the OFX API [27]), one-by-one as they are
generated by Alice. The enclave’s host software is controlled by
an untrusted compute provider, who may perform attacks such as
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rewinding the persistent storage and launching multiple instances
of the enclave program. Hence, an adversarial compute provider
may repeat the computation with progressively smaller subsets of
Alice’s (encrypted) transaction data from that month (and collude
to send the output to a corrupt party) — note that each of these
computations is independently legal since it evaluates f on an
input containing Alice’s transactions that are timestamped to the
same calendar month. By comparing any pair of output reports,
the attacker infers more information about the transactions than
what is leaked by the monthly aggregate report; for instance, one
may learn that Alice tends to spend frivolously towards the end
of the month1. In general, this form of a rewind-and-fork attack is
detrimental for applications that maintain a privacy budget [28].

To counter such attacks, we enforce history-based policies, where
the decision to execute the next step in a computation depends on
that computation’s history (and the history of any other compu-
tations over the input data) which contains some metadata about
the inputs and outputs of a computation. In Acme’s example, Alice
uses the following history-based policy ϕ : all transactions must 1)
be fresh, in that they have never been used by a prior evaluation of
f , and 2) belong to the same month.

History-based policies �nd use in applications that maintain
state, have privacy budgets, or make decisions based on prior inputs.
We urge the reader to look at history-based policies in § 9.1, such as
private surveys amongst unknown participants with policies across
computations (e.g. survey only open to users who participated in
a previous survey, or only open to Acme users) — smart contracts
on Ekiden [6] or FastKitten [25] cannot read the ledger entries (of
other contracts), and therefore cannot implement such applications.

To our knowledge, this is the �rst work to study such policies
in a multi-party setting (where participants may be o�ine or act
maliciously), and enforcing them incurs the following challenges.
For instance, multiple parties may compute concurrently, and at-
tempt to append the computation’s history on the shared ledger —
there must be some con�ict resolution to enable concurrency across
computations, but also ensure policy compliance. Furthermore, we
must develop e�cient methods to check policies such as k-time
programs and accounting of all inputs.

Fairness
A policy also enforces the set of output recipients: Alice, BankA,
and BankB. Simply encrypting the output under their public keys
ensures that other parties cannot observe the results of the com-
putation (assuming con�dentiality of enclave execution). However,
a malicious compute provider can collude with a subset of out-
put recipients, and deliver the encrypted outputs to only those
parties — since all network communication is proxied via the com-
pute provider, an enclave cannot ensure that an outbound message
is sent, and therefore, must assume lossy links, making reliable
message delivery impossible [29].

Without having to trust Acme, Alice wishes to have her monthly
reports sent to a set of chosen banks, perhaps to get lucrative loan
o�ers. For Acme to be transparent, we argue that it must also ensure
fairness: if any party gets the output, then so must all honest parties.
Moreover, a protocol for fair output delivery should ideally not

1While metadata, such as authenticated batches of inputs, can remedy this attack,
banks may be unwilling to generate this data for each third-party app.

require Alice to possess a device with a TEE — the enclave-ledger
protocol in [4] requires all parties to possess a TEE.

2.3 Acme on LucidiTEE
Specifying and Creating Computations
A computation’s semantics is speci�ed by a string, which anyone
can post to the ledger for inspection by all parties. In Acme’s case:
computation { id: 42, /* unique id */

inp: [("txs": pk_Alice), ("db": pk_Acme)],
out: [("rprt": [pk_Alice, pk_BnkA, pk_BnkB])],
policy: 0xcoff..eeee, /* ∀r ∈ txs. ¬ consumed(r) */
func: 0x1337...c0de /* aggregate function */ }

Each computation on LucidiTEE has a unique id. The in �eld lists a
set of named inputs, along with the public key of the input provider
(who is expected to sign those inputs). Similarly, the out �eld lists
a set of named outputs, where each output has one or more re-
cipients. The evaluation function f and the policy function ϕ are
implemented as enclave programs, for con�dentiality and integrity,
and we uniquely identify them using the hash of the enclave binary.

A computation progresses via a potentially unbounded sequence
of stateful evaluations of f , guarded by ϕ, and it is said to be compli-
ant if all constituent steps use the function f and satisfy ϕ. Unlike
f , ϕ takes the entire ledger as input. In our example, ϕ encodes
the freshness property that no transaction within txs has been
consumed by a prior evaluation of f ; we can implement ϕ by per-
forming membership test for each transaction (in txs) within the
inputs consumed by prior evaluations of f in computation of id 42,
or more e�ciently, by maintaining state containing an accumulator
(e.g. a Merkle tree) of all transactions previously consumed by f .

Enforcing Policies and Performing Computation

History-based Policies via Shared Ledgers

We introduce an append-only ledger, which is shared at
least between Alice and Acme, but more generally, a global
set of users to enforce policies across multiple applications
that process some data. The ledger ful�lls a dual purpose.
First, a protocol (see § 7) forces the compute provider to
record the enclave’s evaluation of f on the ledger before
extracting the output — for each function evaluation, we
record a hash-based commitment of the encrypted inputs,
outputs, and intermediate state. Second, enclave programs
read the ledger to evaluate the policy ϕ.

The compute provider allocates a TEE machine, and downloads
Alice’s and Acme’s encrypted inputs onto the machine’s local stor-
age — this expense may be amortized across several function eval-
uations. Next, Acme must convince an enclave that the requested
function on Alice’s inputs is compliant. To that end, Acme launches
an enclave implementing the policy predicate ϕ, and provides it
with a view of the ledger. Note that a malicious compute provider
can provide a stale view of the ledger (by simply ignoring recent
ledger entries), and our protocol defends against such attacks by
requiring a proof that no relevant computation occurred since the
ledger height at which ϕ is evaluated. On approval from ϕ, Acme
launches an enclave to evaluate f , which gets the encrypted inputs’
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decryption keys from a key manager (also implemented as an en-
clave; see § 7), and produces an output encrypted under the public
keys of all output recipients. In § 7, we discuss practical methods
to enforce several classes of policies.

LucidiTEE is oblivious to how or where the encrypted data is
stored, and the ledger size is independent of the size of the inputs.
Therefore, we stress that LucidiTEE uses the ledger only to enforce
policies, and embodies a “bring-your-own-storage" paradigm. More-
over, since LucidiTEE uses trusted enclaves and an append-only
ledger to enforce the policy, any (malicious) compute provider can
bring TEE nodes and evaluate ϕ and f . Hence, we emphasize that
LucidiTEE also embodies a “bring-your-own-compute" paradigm.

Fair Reconstruction of Outputs
Since fairness is impossible to achieve in a setting where a majority
of the participants are corrupt [16], several works have explored
relaxed notions of fairness over the last few years [4, 21–23] —
speci�cally, Choudhuri et al. [4] showed that enclave-ledger inter-
actions can enable fair secure computation. Our work continues in
the same vein, and improves upon their result.

Inspired by [30, 31], we reduce fair computation to fair recon-
struction of an additive secret sharing scheme, as follows. The en-
clave’s evaluation of f encrypts the output under a fresh, random
key k. The enclave also emits shares of k for all output recipients:
Enc(pk_Alice, k1), Enc(pk_BankA, k2), and Enc(pk_BankB, k3), s.t.
k � k1⊕k2⊕k3, for random k1, k2, and k3. All output recipientsmust
engage in the reconstruction protocol with their key shares. For
best case security (static corruption model), we set the corruption
threshold t in Acme’s example to 2, thus withstanding byzantine
behavior from any 2 of the 3 parties. The protocol requires t = 2
parties to provide a TEE node (e.g., BankA and BankB).

Protocol for Fair N-Party Reconstruction

The protocol withstands an arbitrary corruption threshold
t < n, and it requires any t recipients to allocate a TEE
machine, and all n parties to access the shared ledger — in
contrast, [4] needs all n parties to allocate a TEE machine
and access the ledger, which is cumbersome for end users.

3 IDEAL FUNCTIONALITY OF LUCIDITEE
We de�ne an ideal functionality that performs concurrent, stateful
computations amongst arbitrary sets of parties. The universe of
parties is an unbounded set, denoted by P∗, of which any subset of
parties may engage in a computation. Each computation c involves
a set of input providers Pcin and a set of output recipients P

c
out, which

may overlap, such that (Pcin ∪ P
c
out) ⊆ P∗. We assume a polynomial-

time static adversaryA that corrupts any subset PA ⊆ P∗, who act
maliciously and deviate arbitrarily from the protocol. The attacker
selects the inputs and learns the output of each party in PA .

We introduce an ideal functionality for policy-compliant com-
puting, FPCC. Each step of a computation evaluates a transition
function f if allowed by the policy predicate ϕ (expressed over the
inputs and a ledger of all prior function evaluations). Each com-
putation is de�ned by a speci�cation c, which �xes f , ϕ, and the
identities of the input providers Pcin and the output recipients Pcout.

Due to compute chaining, c also speci�es the computations from
which it receives inputs (denoted Cc

in), and computations which
consume its outputs (denoted Cc

out). Since input providers may go
o�ine after binding their input to a computation c, they are not
required to authorize each step of c — an input may be used for
an unbounded number of steps of c (for instance, Acme’s input
is used to service multiple users for multiple months), as long as
c.ϕ approves each step and c has not been revoked. Moreover, an
input may be bound to several computations concurrently, avoiding
unnecessary duplication of the data. FPCC is de�ned as follows:

Policy-compliant Computing: FPCC
The functionality has a private storage db and a publicly readable
log ldgr, which are empty at initialization. db is indexed by han-
dles, and supports an add(x ) interface (which returns a unique
handle h from the set {0, 1}poly(λ)) and a update(h,x ) interface.
On parsing c, we get the set of input recipients P c

in, output recipi-
ents P c

out, and the set of chained computations Cc
in and Cc

out. The
ret statement returns a value to a party and terminates execution
of the enclosing command, whereas send continues the execution.
Let active(c) � (create‖c) ∈ ldgr ∧ (revoke‖c.id) < ldgr
Let data(h) � x if (x , _, _) ∈ db[h] else ⊥

• On command create_computation(c) from p ∈ P ∗

send (create ‖ c ‖ p) to A
if ∃c′ (create ‖ c′) ∈ ldgr ∧ c′.id = c.id { ret ⊥ to p }
ldgr.append(create ‖ c); ret > to [p , A]
• On command revoke_computation(c.id) from p ∈ Pcin
send (revoke ‖ c.id ‖ p) to A
if ¬active(c) { ret ⊥ to [p , A] }
ldgr.append(revoke ‖ c.id); ret > to [p , A]
• On command provide_input(x ) from p ∈ P ∗

h ← db.add((x , p , ∅))
send (provide_input ‖ | x | ‖ h ‖ p) to A; ret h to p
• On command bind_input(c.id, h) from p ∈ Pcin
send (bind_input ‖ p ‖ c.id ‖ h) to A
if (¬active(c) ∨ db[h] = ⊥) { ret ⊥ to [A, p] }
let (x , p′, C )← db[h]; if (p′ , p) { ret ⊥ to [A, p] }
db.update(h, (x , p , C ∪ {c}));
ldgr.append(bind ‖ c.id ‖ p ‖ h); ret > to [A, p]
• On command compute(c.id, Hin) from p ∈ P ∗

send (compute ‖ c.id ‖ Hin ‖ p) to A
if A denies or ¬active(c) then { ret ⊥ to [A, p] }
let hs be the handle to the latest state of c , based on the ldgr
let s ← data(hs ), and let X ← { data(h) }h∈Hin
let bound← ∀h ∈ Hin ∃(_, _,C) = db[h] ∧ c ∈ C
let owned← ∀p ∈ Pcin ∃(_, p

′, _) = db[Hin[p]] ∧ p′ = p
let compliant← c.ϕ(ldgr, Hin)
if ¬(bound ∧ owned ∧ compliant) then { ret ⊥ to [A, p] }

let (s′, Y )← c.f (s , X ; r ), where r
$
←− {0, 1}λ

let hs′ ← db.add((s′, ⊥, {c}))
let Hout ← { db.add((y, ⊥, ∅)) }y∈Y
for c ∈ Cc

out { db.update(Hout[c], (Y [c], ⊥, {c})) }
ldgr.append(compute ‖ c.id ‖ hs′ ‖ Hin ‖ Hout)
send { | y | }y∈Y ‖ | s′ | to A; ret > to p
• On command get_output(c.id, h) from p ∈ Pcin
send (output ‖ h ‖ p) to A; send > to p
if ∃p ∈ Pcin that hasn’t called get_output or A denies then { ret }
send data(h) to all p ∈ P c

out; ldgr.append(output ‖ c.id ‖ h)

5



FPCC maintains a publicly readable log ldgr and a private stor-
age db. db provides protected storage of inputs and outputs (includ-
ing chained outputs) and computational state, and is indexed by
unique handles — accesses to db produce ⊥ if the mapping does
not exist. ldgr is an append-only log of all function evaluations,
creation and revocation of computations, and binding of input han-
dles. Since the speci�cation c does not contain secrets, it can be
created (via create_computation) by any party. A computation can
be revoked (via revoke_computation) by any party listed as an input
provider in c.inp, preventing future evaluations of c. f .

A party p uploads an input x (using provide_input), which FPCC
persists internally and returns a unique handleh — at this point, x is
not bound to any computation. Next, using bind_input, p binds h to
a computation c, allowing that input x to be consumed by c. f . From
here on, x may be consumed by multiple stateful evaluations of c. f
without p having to resupply x at each step (though each step must
comply with c.ϕ). Party p may bind x to multiple computations con-
currently. We �nd that the abstraction provided by FPCC is useful
in settings where parties make dynamic decisions to participate in
new computations and become o�ine after providing their inputs,
or when parties compute over large inputs, or in applications that
provide a common service to many parties (e.g. Acme).

As only policy-compliant evaluations succeed, we allow any
party p ∈ P∗ to invoke a function evaluation (using compute),
by providing handles Hin referring to the inputs (from both input
providers Pcin and chained computations Cc

in). Since ldgr records
the handle for the state after each evaluation, FPCC uses ldgr to
retrieve the most recent state. Party p can provide any handles of
her choice, as FPCC checks the guard c.ϕ prior to evaluating c. f , in
addition to sanity checks that the inputs are existent and bound to
the computation c. Observe that c. f operates over the inputs, prior
state, and a random string r , and produces outputs (bound to output
recipients Pcout and chained computations Cc

out) — we create new
handles Hout for the outputs, and hs ′ for the next state. Outputs
to chained computations are not revealed to any party, and they
cannot be bound to other computations (as they are not owned by
any party). Before returning, FPCC records the evaluation on ldgr,
along with the relevant handles.

The output recipients invoke get_output for fair output delivery.
A may prevent sending the output; however, should any party get
the output, then all parties in Pcout get the output. Fair reactive com-
putation is out of scope, since A can deny executing the compute
command. That said, LucidiTEE uses a novel protocol enabling a
limited form of fair reactive computation: a party is always able to
advance a computation that requires input from only that party —
this is useful for collaborative machine learning (i.e. after training,
any party should be able to use the model for inference), for in-
stance, but does not apply to more general computation such as fair
Poker (which requires inputs from multiple parties at each step) as
the adversarial parties may go o�ine. In short, FPCC guarantees:

* A does not learn an honest party’s input, beyond its size and the
function evaluations which have used that input.

* In any computation c, f is evaluated only if ϕ is satis�ed.
* A learns the outcome of evaluating ϕ, and learns the outcome of
f only if it controls a party in Pcout.

* Parties in Pcout get the correct output with fairness.

4 BUILDING BLOCKS

4.1 Trusted Execution Environment (TEE)

An enclave program is an isolated region of memory, containing
both code and data, protected by the TEE platform (where trust is
only placed in the processor manufacturer). On TEE platforms such
as Intel SGX and Sanctum, the CPU monitors all memory accesses
to ensure that non-enclave software (including OS, Hypervisor, and
BIOS or SMM �rmware) cannot access the enclave’s memory —
SGX also thwarts hardware attacks on DRAM by encrypting and
integrity-protecting the enclave’s cache lines. In addition to isolated
execution, we assume that the TEE platform provides a primitive for
remote attestation. At any time, the enclave software may request
a signed message (called a quote) binding an enclave-supplied value
to that enclave’s code identity (i.e., its hash-based measurement).
We model the TEE hardware as an ideal functionality HW, adapted
from [32]. HW maintains the memory of each enclave program in
an internal variable mem, and has the following interface:

• HW.Load(prog) loads the enclave prog code within the TEE-
protected region. It returns a unique id eid for the loaded enclave
program, and sets the enclave’s private memory mem[eid] = −→0 .
• HW.Run(eid, in) executes enclave eid (from prior state mem[eid])
under input in, producing an output out while also updating
mem[eid]. The command returns the pair (out, quote), where
quote is a signature over µ(prog) ‖ out, attesting that out origi-
nated from an enclave with hash measurement µ(prog) running
on a genuine TEE.We alsowrite the quote as quoteHW(prog, out).
We assume no additional information leaks to the adversary.
• HW.�oteVerify(quote) veri�es the genuineness of quote and
returns another signatureσ (such thatVerifyHW(σ , quote) = true)
that is publicly veri�able. Any party can check VerifyHW without
invoking the HW functionality. For instance, SGX implements
this command using an attestation service, which veri�es the
CPU-produced quote (in a group signature scheme) and returns
a publicly veri�able signature σ over quote ‖ b, where b ∈ {0, 1}
denotes the validity of quote; then, any party can verify σ (using
Intel’s public key) without contacting Intel’s attestation service.

4.2 Shared, Append-only Ledger

We borrow the bulletin board abstraction of a shared ledger, de�ned
in [4], which lets parties get its contents and post arbitrary strings
on it. Furthermore, on successfully publishing the string on the
bulletin board, any party can request a (publicly veri�able) proof
that the string was indeed published, and the bulletin board guar-
antees that the string will never be modi�ed or deleted. Hence, the
bulletin board is an abstraction of an append-only ledger. We model
the shared ledger as an ideal functionality L, with internal state
containing a list of entries, implementing the following interface:

• L.getCurrentCounter returns the current height of the ledger
• L.post(e) appends e to the ledger and returns (σ , t), where t is the
new height and σ is the proof that e has been successfully posted
to the ledger. Speci�cally, σ is an authentication tag (also called
proof-of-publication in prior works [6]) over the pair t‖e such
that VerifyL(σ , t‖e) = true — here, VerifyL is a public veri�cation
algorithm (e.g., verifying a set of signatures).
• L.getContent(t) returns the ledger entry (σ , e) at height t.
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The bulletin board abstraction can be instantiated using fork-less
blockchains, such as permissioned blockchains [33], and potentially
by blockchains based on proof-of-stake [34].

4.3 Cryptographic Primitives and Assumptions

We assume a hash function H (e.g. SHA-2) that is collision-resistant
and pre-image resistant; we also assume a hash-based commitment
scheme com with hiding and binding properties.

We use a IND-CCA2 [35] public key encryption scheme PKE (e.g.
RSA-OAEP) consisting of algorithms PKE.Keygen(1λ), PKE.Enc(pk,
m), PKE.Dec(sk, ct). Moreover, for symmetric key encryption, we
use authenticated encryption AE (e.g. AES-GCM) that provides
IND-CCA2 and INT-CTXT [36], and it consists of polynomial-time
algorithms AE.Keygen(1λ), AE.Enc(k,m), AE.Dec(k, ct).

Finally, we use a EUF-CMA [37] digital signature scheme S (e.g.
ECDSA) consisting of polynomial-time algorithms S.Keygen(1λ),
S.Sig(sk,m), S.Verify(vk,σ ,m).

5 ADVERSARY MODEL

The attacker may corrupt any subset of the parties, in a static model
where a party is said to be corrupt if it deviates from the protocol
at any time. A corrupt party exhibits byzantine behavior, which
includes aborts, and dropping or tampering any communication
with other parties or the ledger. We discuss speci�c threats below.

TEE Threats

TEE machines can be operated by malicious parties, who can abort
the TEE’s execution, and delay, tamper, or drop its inputs and out-
puts (including the communicationwith the ledger).We assume that
the remote attestation scheme is existentially unforgeable under
chosen message attacks [32]. Though side channels pose a realistic
threat, we consider their defenses to be an orthogonal problem.
This assumption is discharged in part by using safer TEEs such as
RISC-V Sanctum, which implement defenses for several hardware
side channels, and in part by compiling f and ϕ using software
defenses (e.g., [38], [39], [40], [41], [42]).

Blockchain Threats

We draw attention to the subtlety of blockchain instantiations.
While our fair delivery protocol tolerates an arbitrary corruption
threshold of t < n, the ledger admits a weaker adversary (e.g. less
than 1/3rd corruption in PBFT-based permissioned blockchains,
or honest majority of collective compute power in permissionless
blockchains). In permissioned settings, this means that the n par-
ties cannot instantiate a shared ledger amongst themselves, and
expect to achieve fairness — they need a larger set of participants
on the ledger, and require more than 2/3rd of that set to be honest.
With that said, [4] also has the same limitation. Fundamentally,
forks on proof-of-work blockchains can violate policies, as compu-
tation records can be lost. Even the proof-of-publication scheme
in Ekiden [6], which uses a trusted timeserver to enforce the rate
of production of ledger entries, o�ers a probabilistic guarantee of
rollback prevention, which worsens as the attacker’s computational
power increases. We restrict our scope to forkless ledgers (provid-
ing the bulletin-board abstraction L), such as HyperLedger [33] and
Tendermint [43], and even blockchains based on proof-of-stake [34].

6 FAIR OUTPUT DELIVERY

For a computation to be fair, all honest parties must get the output
if any party gets the output. We encounter several challenges in
designing such a protocol. Foremost, fair delivery is non-trivial in
the presence of adversaries, as the physical network cannot ensure
simultaneous message delivery to two nodes, giving the attacker
an opportunity to prevent one party from getting a message that
is delivered to another party — this is often modeled as a rushing
adversary. Moreover, even a TEE does not address the problem
of fair delivery, as the enclave’s I/O is controlled by a (malicious)
host party. While an append-only ledger ensures persistence of its
contents, it alone does not provide fairness, as a corrupt party can
bypass the ledger and share secrets with other colluding parties.

We develop a protocol for fair delivery (or fair exchange), which
defends against malicious behavior from any subset of the parties.
Although fairness is impossible in the standard setting with dishon-
est majority [16], our protocol makes additional assumptions by
using TEE and ledger functionalities, requiring t (≤ n − 1) out of
n output recipients to possess a TEE machine — in contrast, prior
work by Choudhuri et al. [4] requires all n parties to possess a TEE
and interact with the ledger. By reducing the TEE requirement over
prior work, LucidiTEE enables novel use cases, such as bilateral
service relationship between a B2C provider and an end user (who
may only have a mobile device), and collaboration between enter-
prises (where some enterprises may be technically or �nancially
incapable of providing compute). Our protocol also requires con-
stant ledger space overhead (i.e., the size of the ledger contents is
independent of the output size), which makes it practical on current
blockchain deployments; however, it incurs two writes to the ledger,
as opposed to one write in [4].

Inspired by [30, 31], we reduce fair evaluation of any function to
fair reconstruction of an additive secret sharing scheme. First, using
a functionality for multiparty computation, we produce an output y
that is encrypted under a fresh key k � kp1 ⊕ . . . ⊕ kpn , where each
party pi ∈ Pcout is given kpi (in addition to commitments to ensure
integrity during the protocol). Speci�cally, each party is given:

AE.Enc(
⊕
p ∈P c

out

kp ,y)

‖ { com(kp ;ωp ) ‖ PKE.Enc(pkp , kp ‖ ωp ) }p ∈P c
out

Since this step is unfair, any party (and therefore the protocol) can
abort if they do not receive this ciphertext — note that fairness is
preserved if no party gets the output. Next, we have the parties use
their shares and commitments in a protocol for fair reconstruction,
such that if any party gets the key k, then so do all honest parties.

The reconstruction protocol works as follows. First, we introduce
an enclave program containing the reconstruction logic, called the
reconstruction enclave Er (speci�ed in Appendix B), and we make
the t parties with TEE nodes launch a local instance of Er . Next,
each party pi in Pcout transmits her secret key kpi to each Er , thus
placing k in each Er . The protocol aborts if any party does not
perform this step. Finally, we need a way to transmit k out of Er to
all parties in Pcout.

Our key insight is a construct that “simultaneously" allows all
parties to attain the key, which is accomplished by posting on
the ledger L a value that serves a dual purpose: 1) it contains
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the encryption of k under the public keys of the non-TEE par-
ties {pt+1, . . . ,pn }, and 2) it triggers the t Er enclaves to release k
to their local parties {p1, . . . ,pt }. Similar to [4], our use of TEE is
akin to the cryptographic primitive of witness encryption, where a
value is decrypted only upon a proof of publication on the ledger —
the proof is veri�ed within the enclave for computational integrity.
As we show below, our protocol is designed to avoid cases where
we have two corrupt parties, one with and one without TEE, who
can abort and collude to get k in a way that leaves honest parties
defenseless. Figure 2 illustrates our protocol for Acme’s example.

6.1 Two-party Fair Reconstruction

We start with a simpler protocol (i.e., with fewer posts to the ledger)
for the 2-party setting, where corruption threshold t ≤ 1. The sim-
plicity is valuable as bilateral relationships are common in practice
— examples include services provided by B2C companies to their
end users, data-sharing collaboration between two enterprises, etc.

Consider parties pi and pj , where pi hosts a TEE machine run-
ning the Er enclave. First, partypj sends a signature σj (using secret
key skpj ) con�rming her receipt of the encrypted output — either
party aborts the protocol if they do not receive the encrypted output
from the compute provider. Party pi provides σj to its local instance
of the Er enclave, causing it to return the output-encrypting key
k encrypted under pj ’s public key (i.e., PKE.Enc(pkpj , k)). A mes-
sage m containing this encrypted key is posted by pi on the ledger
(which returns a proof σL on a successful post), allowingpj to attain
the key k from the ledger. Moreover, pi provides the proof σL to its
enclave, who asserts VerifyL(σL,m) and returns k to its host pi .

6.2 Multi-party Fair Reconstruction

A trivial generalization of the 2-party protocol to n parties does not
work, as the TEE party, instead of posting to the ledger, sends the
ledger-bound message to a colluding non-TEE party who can de-
crypt to attain the output’s key. For instance, consider extending the
protocol to 3 partiespi ,pj , andpk , wherepi hosts a TEEmachine; in-
stead of posting a message with PKE.Enc(pkpj , k) ‖ PKE.Enc(pkpk ,
k) to the ledger, pi forwards it to pk , leaving pj cheated. The fol-
lowing secure protocol defends against such collusions.

1 Signature for Receipt of Encrypted Output. As a �rst step, we
must ensure that alln output recipients have received the encrypted
output AE.Enc(k,y), as the key k is useless without the ciphertext.
We must also ensure that the t parties with TEEs have received all
key shares {kp1 , . . . , kpn } within their local instance of Er . Parties
also send their openings to the commitments to the Er instances,
to aid the correctness veri�cation of the key shares — both the
key shares and openings are placed in enclave memory. To that
e�ect, each party sends a signature to other parties con�rming
their receipt of the expected values — a signature over the output’s
hashes Hout is su�cient. This step constitutes two rounds:

pi → pj : quoteHW(Er , c.id ‖ pk), where pk← PKE.Keygen

pj → pi : PKE.Enc(pk, S.Sig(skpj ,Hout) ‖ kpj ‖ ωpj )

2 Posting Signatures on the Ledger. Alln signatures are required
to ensure that all parties can decrypt the output once the protocol
terminates with fair delivery of the key k. However, a corrupt party
can choose to not send his signature to another party. We use the

Ledger
…

= Epk_Alice(ky){   }out

Figure 2: Fair reconstruction using TEEs and a shared ledger

shared ledger to broadcast the n signatures to all parties. Any party
can collect signatures from step 1 and post them on the ledger.

p : L.post(π1), which returns (σ1, _)
π1 � { S.Sig(skpi , c.id ‖ Hout) }i ∈[n]

The n signatures are computed on the same message, and can be
aggregated (using an enclave or a scheme such as [44]).

3 Posting Encryption of Key k on Ledger. Any of the t parties
with a TEE, on seeing π1 on the ledger, can advance the protocol to
the next phase using the proof σ1 (produced by L upon posting π1).
On providing σ1 as input, Er emits π2, containing an encryption of
k under the public keys of n − t parties {pt+1, . . . ,pn }. That party
then posts the ciphertext on L.

p∈{p1, . . . ,pt } : L.post(π2), which returns (σ2, _)
π2 � quoteHW(Er , c.id ‖ Hout ‖ {PKE.Enc(pkpi , k)}i ∈[t+1...n])

4 Decrypting the Output. Each of the n parties can now attain
k to decrypt the output. The t parties with Er provide the proof σ2
(produced by L upon posting π2, or by invoking L.getContent) to
their local Er enclaves, allowing those enclaves to emit k. The n − t
parties without TEE simply retrieve π2 from L, and decrypt using
their private key skpi to attain k.

Correctness Argument. The adversary may corrupt upto t
parties, giving us 3 cases: 1) all corrupt parties have a TEE; 2) all
corrupt parties do not have a TEE; 3) corrupt parties include both
TEE and non-TEE parties. In the �rst two cases, the mechanism
that the attacker uses to get the secret key also allows the honest
parties to extract the key. In the third case, collusions do help the
attacker learn secret key before the honest parties, but there exists
at least one honest party with a TEE who can carry out the steps,
and distribute the key to all honest parties. We formalize and prove
the protocol in the Ga�-hybrid model [4, 24] within Appendix C.

7 POLICY-COMPLIANT COMPUTATION

We gave a protocol for fair output delivery in § 6, which implements
the get_output interface of FPCC. In this section, we describe how
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Figure 3: Policy enforcement using TEEs and a shared ledger

computations are setup, how inputs are bound to computations,
and how policies are evaluated during the computation.

Figure 3 illustrates the primary components of LucidiTEE. Each
entry on the shared ledger records either the creation or revocation
of a computation (along with its speci�cation), or a function eval-
uation containing hashes of inputs, outputs, and state. We stress
that the ledger does not store the inputs or state, and its entries
only help us to enforce policies. Computation involves three types
of enclave programs: 1) a key manager enclave Ek (responsible for
handling keys that protect the computation’s state and the o�ine
users’ input); 2) a policy checker enclave Eϕ (responsible for check-
ing whether a requested evaluation f is compliant with the policy
ϕ); 3) a compute enclave Ef (responsible for evaluating f ). These
enclaves are run on one or more physical TEE machines, managed
by any untrusted party — hereon called the compute provider pc
— yet our protocols guarantee policy compliance and fairness to
all parties (who may also act maliciously). Computation happens
o�-chain, and is decoupled from the ledger’s consensus mechanism.

7.1 Specifying and Creating a Computation

A computation’s speci�cation has the following grammar:
Name n ::= [a − zA − Z0 − 9]+
Par ty p ::= {0, 1}∗

Input i ::= (n : p) | (n : ρ?) | (n : (z, n))
Output o ::= (n : [p, . . . , p]) | (n : (z, n))
Hash h ::= {0, 1}∗

Comp c ::= computation { id : {0, 1}∗, policy : h,
func : h, inp : [i, . . . , i], out : [o, . . . , o] }

A computation is identi�ed by a unique 64-bit number z. Each
input and output data structure is named by an alphanumeric con-
stant n. Each party p is cryptographically identi�ed by their public
keymaterial (e.g. RSA or ECDSA public key), which is a �nite length
binary string. An input is denoted by the tuple (n : p), containing its
name n and the cryptographic identity of the input provider p — if
the set of input providers is unknown at the time of specifying the
computation (e.g. surveys), we write (n : ρ?). Similarly, an output is

denoted by the tuple (n : [p, . . . , p]), containing its name n along
with the list of all output recipients. An output may also be fed
as an input to a di�erent future computation. We call this com-
pute chaining, and write it as (n : (z, n)), where z is the destination
computation’s identi�er and the latter n is the input’s name in the
destination computation. We use a hash h to encode the expected
measurement of enclaves containing the code of f and ϕ. Finally,
we combine these �elds to specify a computation c: an id, hash of
Ef (func) that implements f , hash of Eϕ (policy) that implements
ϕ, input description inp, and output description out.

A party p can create a new multi-party computation, as speci�ed
by the string c, using the create_computation(c) command in FPCC,
which LucidiTEE implements by having p execute:

p → Ek : c ‖ σ , where (σ , t) = L.post(create ‖ c)

Having posted the speci�cation c, p contacts the compute provider
pc , who forwards the request to its local instance of the keymanager
enclave Ek . Ek generates a key ks , used to protect the computa-
tion’s state across all function evaluations, using the TEE’s entropy
source (such as rdrand on SGX). Since c does not contain any se-
crets, any party can post it on the ledger, and it is up to the input
providers to examine c and choose to bind their inputs to it.

Any input provider p ∈ Pcin can revoke a computation by in-
voking revoke_computation(c.id), which LucidiTEE implements by
having p execute L.post(revoke ‖ c.id).

7.2 Providing Inputs

Aparty submits data to a computation by invoking provide_input(x ),
which returns a unique handle to the input data. FPCC maintains
privacy of that data, and guarantees that the data is unmodi�ed
when later used by a computation. To that end, LucidiTEE’s imple-
mentation must store the data on an untrusted storage accessible by
the compute provider, while also protecting the data — the attacker
can always delete the data, but that is akin to denying compute.

The cryptographic protection must not only ensure con�dential-
ity, integrity, and authenticity of the data, but also cryptographically
bind it to its unique handle. To that end, the input provider chooses
a random key k, and computes AE.Enc(k, x) — the encryption pro-
tects inputs that are derived from low-entropy distributions. We
derive the handle h by computing a cryptographic digest over the
ciphertext, using hash functions or accumulators such as a Merkle
tree, and return h to the calling party. Accumulators enable mem-
bership queries, which we later show to be useful when enforcing
policies such as one-time programs and accounting of all votes.

7.3 Binding Inputs to Computations

Recall the bind_input(c.id, h) command in FPCC, which makes the
user-provided input x (referred by h) accessible by computation c.
We have two requirements: 1) x must only be used for evaluating
c.f , for each computation c that the user has bound x to; and, 2) the
input provider must be able to commit to the value of x , in order to
prevent any tampering by the compute provider.

By encrypting the input with user-chosen key k, LucidiTEE re-
duces this problem to ensuring that the key k is only provisioned to
enclaves identi�ed within the computation’s speci�cation. Binding
the use of key k to a computation c is carried out via a protocol
between the input provider p , ledger L, and the compute provider
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pc (who is running an instance of the key manager enclave Ek ):

p : L.post( bind ‖ c.id ‖ h ‖ S.Sig(skp , c.id ‖ h) )
pc → p : quoteHW(Ek , pk),where pk← PKE.Keygen

p → pc : PKE.Enc(pk, c.id ‖ k ‖ n ‖ S.Sig(skp , c.id‖k‖n))

First, p creates a ledger entry binding the data handleh (returned by
bind_input) to computation c. Next, p contacts pc , whose instance
of Ek produces a fresh public key pk along with a quote attesting
to the genuineness of Ek . Upon verifying the attestation quote, p
(with signing key skp ) signs and encrypts c.id and k, along with n
which speci�es the name of the input (from the list c.inp). Ek will
later reveal the key k only to that enclave which is evaluating c.f .

By binding handles to computations, we reuse inputs across
function evaluations and computations, without having to clone
the data or require users to store a local copy of the data.

7.4 Enforcing Policy-Compliance

Any party pc ∈ P∗ can act as a compute provider, and invoke
compute(c.id, Hin) on chosen inputs (referenced by handles Hin).
Hence, we implement a protocol to ensure policy compliance even
when other parties are o�ine and pc acts maliciously, as follows.

Before evaluating f , pc must �rst launch Eϕ to evaluate ϕ. Next,
Eϕ must check whether the requested evaluation of f is compliant
withϕ, which requires checking three conditions (recall from FPCC):

(1) active: c is created on the ledger, and not yet revoked
(2) bound: data for each h ∈ Hin is bound to computation c
(3) compliant: predicate ϕ(ledger, Hin) over ledger’s contents
To perform these checks, pc must provide Eϕ with a read-only

view of L, by downloading the ledger’s contents locally, in which
case the enclave-ledger interaction is mediated by the host software
controlled by pc . Although using VerifyL allows Eϕ to detect arbi-
trary tampering of L’s contents, an adversarial pc may still present
a stale view (i.e., a pre�x) of L to Eϕ . We mitigate this attack in § 7.6.
For now, we task ourselves with deciding compliance with respect
to a certain (potentially stale) view or height of L.

The policy ϕ is an arbitrary predicate. As an example, consider
the policy ϕ from the Acme application: transactions in the input
must not have been consumed by a prior evaluation of c. f . Crypto-
graphic accumulators, such as Merkle trees, play an important role
in e�ciently evaluating ϕ, as they support e�cient membership
queries — recall from § 7.2 that we use such accumulators to com-
pute digests of encrypted inputs and outputs that are recorded on
the ledger. In Acme’s case, we scan the ledger to construct an accu-
mulator over the input handles from all prior evaluations of c. f , and
check absence of each input transaction within the accumulator.

7.4.1 Performance Optimizations. It is not practical to process the
entire ledger for each evaluation of c.ϕ. Speci�cally, if the ledger
L is naively stored as a sequence of entries, it would force us to
perform a linear scan for evaluating the three compliance checks.

Instead, our implementation stores L locally as an authenticated
key-value database [45], whose index is the computation’s id c.id.
Each computation appends the ledger entry to the current value at
c.id. Now, instead of scanning through the entire ledger, the �rst
compliance check asserts the presence of key c.id, while the second
check queries the list of records at key c.id. Finally, to evaluate ϕ,
we maintain an accumulator as state, and update it on each entry

of c.id — we let ϕ rely on an enclave that persists state, in the form
of an authenticated key-value store [45], across several evaluations
of ϕ. Note that this optimization does not impact security, as Eϕ ’s
view of L is still controlled by pc , and therefore potentially stale.

Consider other history-based policies used in apps from § 9.1. In
the survey app (§ 9.1.2), we check that the input includes all votes
for which we �nd commitments on the ledger (produced by the
user’s invocation of bind_input); accumulators again su�ce for this
policy. Both the machine learning app (§ 9.1.3) and PSI apps (§ 9.1.4)
compare handles (i.e., equality check on hashes) for their policies.

7.5 Producing Encrypted Output

The compute provider launches the compute enclave Ef , who then
asks Ek for the keys to c’s state and all parties’ input. Ek transmits
these keys upon verifying that Ef has the correct hash c.func.

The computation can be performed using any enclave-based
data processing system, such as Opaque [9], Ryoan [11], etc. A
randomized f needs an entropy source. Recall that Ek generated
a key ks to protect the computation’s state. Using this key ks , f
can internally seed a pseudo-random generator (e.g. PRF with key
H(t ‖ ks)) to get a fresh pseudo-random bitstream at each step of
the computation. (Note that t uniquely identi�es the step.) This
ensures that the random bits are private to Ef , yet allows replaying
computation from the ledger during crash recovery, for instance.

7.6 Recording Computation on Ledger

Recall that Eϕ checked compliance of ϕ with respect to a certain
height of the ledger. Since a malicious compute provider pc can
present a stale view of the ledger to Eϕ , we discuss how we defend
against this attack at the time we record the computation on the
ledger, which is a precursor to extracting the output. (Recall that
the ledger record is also used to enforce history-based policies.)

The protocol works as follows. We �rst request the instance of
Eϕ (from § 7.4) for the ledger height t and input handles Hin with
which it evaluated c.ϕ; Eϕ sends these values as part of a quote.

Eϕ → Ef : quoteHW(Eϕ , t ‖ Hin)

Next, to extract the encrypted output, the compute provider pc
must record Ef ’s execution on L by posting the following message:

quoteHW(Ef , compute‖c.id ‖ hs ′ ‖ Hout) ‖ quoteHW(Eϕ , t ‖ Hin)

The use of quoteHW ensures that the computation evaluated the
function c.f within a genuine TEE, consuming inputs with handles
Hin, and producing outputs with handles Hout and next state with
handle hs ′ . Moreover, we append the quote returned by Eϕ .

However, by the time L receives the post command, it may have
advanced by several entries from t to t′. This can be caused by a
combination of reasons including: 1) ledger entries from concur-
rent evaluations of c and other computations on LucidiTEE; and,
2) malicious pc providing a stale view of L to Eϕ . This potentially
invalidates Eϕ ’s check, but instead of rejecting the computation,
which would unnecessarily limit concurrency during honest behav-
ior, we assert a validity predicate on the ledger’s contents:

∀t, t′, t∗. t′ = L.getCurrentCounter ∧ t < t∗ < t′ ⇒

¬((σ , e) = L.getContent(t∗) ∧ VerifyL(σ , t
∗‖e) ∧

(∃a ∈ {compute, bind, revoke}. e = a ‖ c.id ‖ . . .))
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Here, we check that the computation c is still active and that no
new function evaluation or bind for c.id is performed in between t
and the current height t′. The computation is rejected if the check
fails, and no entry is recorded on L. This validity predicate may be
checked by the ledger’s participants before appending any entry,
but that would be outside the scope of the bulletin-board abstrac-
tion; instead, we rely on our trusted enclaves, Eϕ and Ef (and Er
from § 6) to assert the validity predicate, and abort any further
computation or protocol execution atop an invalid ledger.

8 IMPLEMENTATION

We implement LucidiTEE with a heavy focus on modularity and
minimality of the trusted computing base. If the ledger is naively
stored as a sequence of entries, it would force us to perform a linear
scan for evaluating policy compliance. Instead, our implementation
stores the ledger locally as an authenticated key-value database [45],
whose index is the computation’s id. We instantiate the shared
ledger with a permissioned blockchain, and evaluate using both
Hyperledger [33] and Tendermint [43]. The ledger participant’s
logic is implemented as a smart contract (in 200 lines of Go code),
which internally uses RocksDB [46].

To help developers write enclave-hosted applications (speci�-
cally, the compute enclave Ef and policy checker enclave Eϕ for
each application), we developed an enclave programming library
libmoat, providing a narrow POSIX-style interface for commonly
used services such as �le system, key-value databases, and channel
establishment with other enclaves. libmoat is statically linked with
application-speci�c enclave code, ϕ and f , which together form the
enclaves, Eϕ and Ef respectively — note that the developer is free
to choose any other library which respects LucidiTEE’s protocol for
interacting with the shared ledger L, and enclaves Ek and Er . lib-
moat transparently encrypts and authenticates all operations to the
�les and databases, using the scheme from § 7.2 — it uses the keys
provisioned by the key manager enclave Ek for encryption, and
implements authenticated data structures (e.g. Merkle tries) to au-
thenticate all operations. LucidiTEE provides �xed implementations
of Er and Ek , whose measurements are hard-coded within libmoat.
Furthermore, libmoat implements the ledger interface L, which
veri�es signatures (VerifyL) and TEE attestation of ledger entries.
libmoat contains 3K LOC, in addition to Intel’s SGX SDK [47].

9 EVALUATION

9.1 Case Studies

We demonstrate applications which demonstrate novel history-
based policies, and require fairness of output delivery. In addition,
we build micro-benchmarks (not described here for space reasons)
such as one-time programs [2], digital lockbox with limited pass-
code attempts, and 2-party fair information exchange.

9.1.1 Personal FinanceApplication. We implement Acme’s per-
sonal �nance application, which Alice uses to generate a monthly
report. The application uses a history-based policy that transaction
records are fresh, i.e., they are not used in a prior evaluation of
Acme’s function (which would otherwise violate Alice’s privacy).
Acme’s input is encoded as a key-value database indexed by the
merchant id — with over 50 million merchants worldwide, this data-
base can grow to a size of several GBs (we use a synthetic database

of 50 million records, totaling 1.6 GB in size). We also implemented
a client that uses the OFX API [27] to download the user’s transac-
tions from their bank, and encrypt and upload the �le to a public
AWS S3 storage. This encrypted �le is later fetched to perform the
computation, by decrypting the contents within enclave memory.

9.1.2 Private Survey. Acme would like to conduct a privacy-
preserving survey, such that Acme only learns the aggregate sum-
mary of the survey rather than individual responses. However, to
maintain the integrity of the survey, we use a history-based policy
consisting of two predicates. First, the survey is open only to users
of their personal �nance application (from § 9.1.1), as opposed to
allowing arbitrary input providers to provide fake reviews — specif-
ically, the user (identi�ed by her public key) that participates in the
survey must have a ledger entry of type bind_input, destined for
Acme’s personal �nance application above. Second, the survey’s
result must aggregate all submitted votes, until Acme closes the
survey with its own bind_input ledger entry. The policy function
is evaluated on the contents of the ledger, using authenticated data
structures that support membership queries, as described in ??.

9.1.3 Federated Machine Learning. A hospital sets up a ser-
vice for any user to avail the prediction of a model (speci�cally the
ECG class of a patient), in exchange for submitting their data for use
in subsequent retraining of the model — we require a fair exchange
of user’s ECG data and the model’s output, which our protocol (§ 6)
achieves while only requiring the hospital to provision a TEE node.
The service is split into two chained computations: training and
inference. Retraining happens on successive batches of new users’
data, so when a user submits their ECG data, they wish to use the
output model from the latest evaluation of the retraining function
— this acts as our history-based policy. For the experiment, we use
the UCI Machine Learning Repository [48], and the side-channel
resistant k-means clustering algorithm from [49].

9.1.4 One-time Private Set Intersection. Two hospitals share
prescription records about their common patients using private set
intersection. Moreover, they require a guarantee of fair output deliv-
ery, and use a one-time program policy to prevent data misuse. We
implement oblivious set intersection by adapting Signal’s private
contact discovery service [50]. Our experiment uses a synthetic
dataset with 1 million records for each hospital (totalling 15GB).

9.2 Performance Measurement

We study the performance of our applications, and compare to a
baseline version where the application runs without a ledger, and
without our policy compliance and fairness protocols. The baseline
versions of Acme, survey, ML, and PSI apps take 0.02, 0.41, 0.006,
and 8.24 seconds, respectively, for each function evaluation of f
(including ϕ), using the aforementioned inputs for each application.

9.2.1 End-to-end Latency and Throughput. Figure 4 reports the
latency and throughput (results aggregated over 100 runs) on both
HyperLedger [33] and Tendermint [43] ledgers (running with 4
peers), with 500 enclave clients concurrently querying and posting
ledger entries — we use a 4 core CPU to run the ledger, and a cluster
with 56 CPU cores to run the enclaves. We measure end-to-end
latency, from launching Eϕ to terminating Er . Recall that each
evaluation on LucidiTEE performs at least one read query (often
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more in order to evaluate ϕ) and two writes (to record the compute
and deliver entry) to the ledger. We found throughput to be bound
by the performance of the ledger, which was highly dependent on
parameters such as the batch size and batch timeout [33], with the
exception of the PSI application which was compute bound (as each
function evaluation took roughly 8.2 secs). The latency also su�ered
by several seconds, as the ledger faced a high volume of concur-
rent read and write requests. We also evaluate on a “centralized"
ledger, implemented as trusted key-value store, thus demonstrating
performance with an ideally-performant ledger.

9.2.2 Storage. Figure 4 shows the o�-chain and on-chain ledger
storage cost on each function evaluation; the ledger storage includes
entries due to bind_input, get_output, and compute. Observe that
the survey amongst 1 million participants incurred 1 million calls
to bind_input, incurring a high on-chain storage cost. In other
applications, inputs are orders of magnitude larger than the ledger
storage. Since, Ekiden [6] stores inputs and state on the ledger,
LucidiTEE has orders of magnitude improvement in ledger storage.

10 RELATEDWORK

TEEs, such as Intel SGX, are �nding use in systems for outsourced
computing, such as M2R [51], VC3 [8], Ryoan [11], Opaque [9],
EnclaveDB [52], etc. Felsen et al. [12] use TEEs for secure function
evaluation in the multi-party setting. We �nd these systems to be

complementary, in that they can be used to compute over encrypted
data within enclaves, while LucidiTEE handles policies and fairness.

ROTE [19], Ariadne [53], Memoir [54], and Brandenburger et
al. [55] address rollback attacks on TEEs. Similarly, Kaptchuk et
al. [28] address rollback attacks by augmenting enclaveswith shared
ledgers. We extend their ideas to general history-based policies.

Ekiden [6], FastKitten [25], CCF [56], and Private Data Objects
(PDO) [20] are closest to our work. FastKitten [25] provides fair
distribution of coins in multi-round contracts such as poker and
lotteries. Ekiden and PDO execute smart contracts within SGX en-
claves, connected to a blockchain for persisting the contract’s state.
CCF provides a framework (based on executing smart contracts
within SGX) for enterprises to deploy decentralized applications
for their consumers. To our knowledge, none of these systems ([6],
[25], [57], [20]) provide complete fairness [4] or the expressivity of
history-based policies — FastKitten only provides �nancial fairness.
On the practical front, LucidiTEE improves e�ciency by not placing
inputs or state on the ledger, which is used only to enforce policies,
and therefore scales with the size of their inputs. In addition to the
performance improvements, the ideal functionalities of Ekiden and
LucidiTEE di�er in: 1) history-based policies are expressed over
the entire ledger, spanning multiple computations, whereas Eki-
den only supports contract-speci�c state; 2) Ekiden’s attacker can
prevent sending the output to any party, while we ensure fairness.

Hawk [58] and Zexe [59] enable parties to perform o�-chain com-
putation with privacy, while proving correctness by posting zero
knowledge proofs on the ledger. As mentioned in [6], they support
limited types of computation, and Hawk only provides �nancial
fairness. On that note, several works prior to Hawk, speci�cally
[60, 61], [62], [63], and [64], use Bitcoin [65] to ensure �nancial fair-
ness in MPC applications. Goyal et al. [66] show how blockchains
can implement one time programs using cryptographic obfuscation.

MPC [67] [13] [68] protocols implement a secure computation
functionality, but require parties to be online or trust one or more
third parties. Choudhuri et al. [4] proposed a fair MPC protocol
based on witness encryption (instantiated using a TEE at each of
the n participants) and a shared ledger. We improve their protocol
by requiring t (corruption threshold) out of n output recipients
to possess TEE machines. Moreover, [4] requires all parties to be
online, and only considers one-shot MPC as opposed to stateful
computation with policies. Pass et al. [24] develop a protocol for
2-party fair exchange in the ∆-fairness model.

11 CONCLUSION

We de�ned an ideal functionality FPCC for policy-based, fair multi-
party computation, and built LucidiTEE, a TEE-blockchain system
that implements FPCC. We show that LucidiTEE scales to big data
applications and large number of users who need not be online.
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A DISCUSSION ON MODELING TEE

Broadly speaking, there are two di�erent approaches to model
attested executions. The “theoretical/abstract” variant is via Ga� [4,
24] and the “practical/concrete” variant is via HW [23] algorithms
as outlined in the main body of the paper. In the appendix of the
paper, we also consider the Ga�-hybrid model to formally present
and prove our fairness result. The justi�cation for using Ga�-hybrid
model there is because it provides an “apples-to-apples” comparison
with [4, 24]. That is, our theorem statement can be comparedwith [4,
24] on concrete metrics such as (1) number of enclaves required (t
for us, n for [4], (2) type of fairness realized (“∆-fairness” for [24],
perfect fairness for us and [4]), (3) whether a blockchain is required
(no dependence for [24]), and if so, number of “on-chain” rounds (1
for [4], and 2 for us).

From a systems perspective, the closest paper to ours would
be Ekiden [6]. While they describe their protocol in the
(Ga�, Fblockchain)-hybrid model, we believe that our objectives
di�er—we support, say explicit history-based policy checkingwhich
is not their focus, and sometimes unachievable when the history
dependency is a priori unknown. Thus, following their style in the
presentation would likely yield a so to speak “apples-to-oranges”
comparison. That said, we do follow their style in the UC modeling

Compute Provider’s Protocol Protcompute[c]

(1) Launch the Ek , Eϕ , and Ef enclaves.

let ek ← HW.Load(progkeymgr)

let eϕ ← HW.Load(progpolicy[c])
let ef ← HW.Load(progcompute[c])

(2) Send keys from Ek to Eϕ , and evaluate c.ϕ within Eϕ .

let qϕ ← HW.Run(eϕ , (“keygen”))
let qk ← HW.Run(ek, (“sendkeys”, qϕ ))
let cts , ctx1 , . . . , ctxm ← download from untrusted storage
let t← L.getCurrentCounter
let ldgr← [(σ , π , t∗) | t∗ < t, (σ , π ) ← L.getContent(t∗)]
assert HW.Run(eϕ , (“eval”, qk , ldgr, cts , ctx1 , . . . , ctxm ))

(3) Send keys from Eϕ to Ef , and compute c.f within Ef .

let qf ← HW.Run(ef , (“keygen”))
let qϕ ← HW.Run(eϕ , (“sendkeys”, qf ))
(qf , cts′ , cty ) ← HW.Run(ef , (“eval”, qϕ , cts , ctx1 , . . . , ctxm ))

(4) Send output to parties

foreach p ∈ c.out: send qf ‖ cty to p
L.post(qf )

of our main functionality FPCC, as we bene�t from the resulting
succinct description of our objectives. Similarly, we also use the
abstraction of Fblockchain to which we augment the bulletin board
abstractions of [4]. In the following, we address and justify another
consequence of our modeling choices.

Technically speaking, one of the technical foci of [24] is in ensur-
ing deniability (of say participation in a certain protocol). This in
turn motivates various aspects of [24] given their choice to model
TEEs via Ga�—a globally available functionality which provides
attestations that are publicly veri�able and consequently attesta-
tions provided in one protocol may yield a proof of participation of
an honest party that may be presented to a third party. This issue
surfaces since [24] do not assume that all parties have a secure
processor (i.e., in Ga�’s registry). (Such an issue is not discussed
in [4] as their fairness result assumes that all parties have a secure
processor.) Recall that we provide an implementation of a fair proto-
col that works even when n−t parties (t is the corruption threshold)
do not have a secure processor. Thus, in our formal presentation
of our fairness protocol we address all the subtleties involved a
la [24]. On the other hand, one of the goals of LucidiTEE is to pro-
vide transparency, and is in some sense orthogonal to the notion of
deniability—consider for example an history based policy where
participation in a previous protocol is a necessary precondition for
participation in a future protocol (e.g., in the survey application
discussed earlier). While ideas from systems such as Zexe [59] (i.e.,
zero-knowledge proofs) may help towards this goal (i.e., addressing
the twin notions of policy compliance while allowing deniability), it
is not the focus of this work, and we leave its careful consideration
to future work.

B THE LUCIDITEE PROTOCOL

We formalize the protocol between the compute provider pc (who
runs the key manager, policy checking, and the computation) and
the output recipients Poutc = {p1, . . . ,pn } (who participate in the
fair exchange protocol). pc executes Protcompute[c] (where c is the
computation’s speci�cation), which runs the enclave programs
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Key Manager Enclave progkeymgr (also denoted by Ek )

• On input (“keygen”)
let (epk, esk) ← S.Keygen(1λ )
ret HW.�ote(c.id ‖ epk)

• On input (“savekeys”, msg)
c ‖ name ‖ k ‖ σ ← PKE.Dec(esk,msg)
assert S.Verify(c.in[name], σ , c ‖ name ‖ k)
let kseal ← HW.GenSealKey()
keydb[c.id, name] := AEAD.Enc(kseal, k, c)

• On input (“sendkeys”, qϕ )
let ( µ , c ‖ pk, _ )← qϕ
assert HW.�oteVerify(qϕ ) ∧ µ = c.ϕ
let kseal ← HW.GenSealKey()
ks ← AEAD.Dec(kseal, keydb[c.id, “state”], c)
foreach ( ni : _ ) ∈ c.in:

kxi ← AEAD.Dec(kseal, keydb[c.id, ni ], c)
ret HW.�ote(PKE.Enc(pk, ks ‖ kx1 , . . . , kxm ))

Policy Enclave progpolicy[c] (also denoted by Eϕ )

• On input (“keygen”)
let (epk, esk) ← S.Keygen(1λ )
ret HW.�ote(c.id ‖ epk)

• On input (“eval”, qk, ldgr, cts , ctx1 , . . . , ctxm )
assert “keygen" has successfully executed
let (µ , data, σ )← qk
assert HW.�oteVerify(qk) ∧ µ = µ(Ek )
let ks , kx1 , . . . , kxm ← PKE.Dec(esk, data)
let s ← AE.Dec(ks , cts )
let x1, . . . , xm ← AE.Dec(kx1 , ctx1 ) . . . AE.Dec(kxm , ctxm )
ret c.ϕ(ldgr, H(cts ), s , H(ctx1 ), x1, . . ., H(ctxm ), xm )

• On input (“sendkeys”, qf )
assert “eval” has successfully executed
let ( µ , cid ‖ epk, _ )← qf
assert HW.�oteVerify(qf ) ∧ µ = c.f ∧ cid = c.id
let k̂← PKE.Enc(epk, ks , kx1 , . . . , kxm )
let data← len(ldgr) ‖ k̂ ‖ H(cts ), H(ctx1 ), . . . , H(ctxm )
ret HW.�ote(data)

progkeymgr (also referred to as Ek ), progpolicy[c] (also referred to
as Eϕ ), and progcompute[c] (also referred to as Ef ). Each output
recipient in {p1, . . . ,pn } executes Protreconstruction[c, sk, i] (where
i ∈ {1, . . . ,n} is its identi�er, and sk is its secret signing key). Each
output recipient in {p1, . . . ,pt } must launch the enclave program
progrec[c, sk] (also referred to as Er ). Note that fairness and policy
compliance are ensured even when any subset of parties are corrupt,
though the enclave programs are trusted in LucidiTEE.

B.1 Ensuring Termination

Since the compute phase, as described in Protcompute[c], is carried
out entirely by the compute provider, its non-termination is simply
an act of denial of service, and is therefore not relevant to our
discussion on termination. Instead, we focus our attention on the
multi-party protocol for fair output delivery, where any subset of
the parties may act maliciously. The protocol sketch described in § 6

Compute Enclave progcompute[c] (also denoted by Ef )

• On input (“keygen”)
let (epk, esk) ← S.Keygen(1λ )
ret HW.�ote(c.id ‖ epk)

• On input (“eval”, qϕ , cts , ctx1 , . . . , ctxm )
assert “keygen" has successfully executed
let ( µ , data, _ )← qϕ
assert HW.�oteVerify(qϕ ) ∧ µ = c.ϕ
let t ‖ k̂ ‖ hs , hx1 , . . . , hxm ← data
let ks ‖ kx1 , . . . , kxm ← PKE.Dec(esk, k̂)
assert H(cts ) = hs
assert H(ctx1 ) = hx1 ∧ . . . ∧ H(ctxm ) = hxm
let s ← Dec(ks , cts )
let x1, . . . , xm←AE.Dec(kx1 , ctx1 ), . . . , AE.Dec(kxm , ctxm )
let { (kp , ωp ) }p∈P c

out
← { HW.GenRnd(256) }p∈P c

out
let (s′, y) := c.f (s , x1, . . . , xm ; r )
let (cts′ , cty ) ← (Enc(ks , s′), Enc(kp1 ⊕ . . . ⊕ kpn , y))
let shares← { com(kp ;ωp ) ‖ PKE.Enc(pkp , kp ‖ωp ) }p∈P c

out
let rprt← comp‖c.id‖t ‖ hx1 , . . . , hxm , hy , H(s′) ‖ shares
ret HW.�ote(rprt) ‖ cts′ ‖ cty

Reconstruction Enclave progrec[c,h, sk] (also denoted Er )

• On input (“keygen”)
let (epk, esk) ← S.Keygen(1λ )
ret HW.�ote(c.id ‖ epk ‖ S.Sig(sk, epk))

• On input (“receive”, {ctp }p∈P c
out

)
let { (kp , ωp ) }p∈P c

out
← { PKE.Dec(esk, ctp ) }p∈P c

out
assert opening of each com(kp ;ωp ) in { (kp , ωp ) }p∈P c

out
let ky ←

⊕
p∈P c

out
kp

ret >

• On input (“advance”, π 1
L , σ

1
L , t

1
L)

let “del1” ‖ hy ‖ cid ‖ (σ 1
y , . . . , σ

n
y ) ← π 1

L
assert VerifyL(σ 1

L , t
1
L ‖ π

1
L )

assert hy = h ∧ cid = c.id
assert S.Verify(vkp1 , σ

1
y , hy ) ∧ . . . ∧ S.Verify(vkpn , σ

n
y , hy )

let enc_keys← { PKE.Enc(pkpi , ky ) }i∈[t+1, . . .,n]
let π 2

L ← HW.�ote(“del2” ‖ hy ‖ cid ‖ enc_keys)
ret π 2

L
• On input (“reveal”, π 2

L , σ
2
L , t

2
L)

assert VerifyL(σ 2
L , t

2
L ‖ π

2
L )

let ( µ , data, _ )← π 2
L

assert µ = µ(Er )
let “del2” ‖ h′ ‖ c′id ‖ _← data,
assert c′id = c.id ∧ h′ = h
ret ky

ensures correctness (i.e. all parties receive the same output) and
fairness (i.e. if any party gets the output, then all honest parties must
also get the output) — the guarantee holds even when the compute
provider is malicious and t < n out of n output recipients act
maliciously. However, we have not yet discussed how termination
(i.e. adversary cannot force the honest parties to wait forever) can
be guaranteed.
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Output Recipient’s Protocol Protreconstruct[c,h, sk, i]

(1) Receive encrypted output

recv encrypted output cty , and assert H(cty ) = h
if i ≤ t { send S.Sig(sk, H(cty )) to P c

out; goto step (5) }
(2) Launch the Er enclave (only for TEE party i ≤ t )

let e← HW.Load(progrec[c, h, sk])
let qd ← HW.Run(e, (“keygen”))
send qd to each p ∈ P c

out; recv ctp from each p ∈ P c
out

assert HW.Run(e, (“receive”, {ctp }p∈P c
out
)) = >

send S.Sig(sk, H(cty )) to p ∈ P c
out

(3) Post signatures on ledger (only for TEE party i ≤ t )
recv σp from each p ∈ P c

out
let π 1

L ← “del1” ‖ H(cty ) ‖ c.id ‖ {σp }p∈P c
out

L.post(π 1
L )

(4) Post encrypted key on ledger (only for TEE party i ≤ t )
let t′ ← L.getCurrentCounter
let t1L ← head [t∗ | t∗ < t′, L.getContent(t∗) = (_, h ‖ c.id ‖ _)]
assert t1L , ⊥; let (σ

1
L , π

1
L ) ← L.getContent(t1L)

let π 2
L ← HW.Run(e, (“advance”, π 1

L , σ
1
L , t

1
L))

L.post(π 2
L )

(5) Retrieve key ky and decrypt cty
let t′ ← L.getCurrentCounter
let f ← λπ . π = (_, “del2” ‖ h ‖ c.id ‖ _)
let es← [(σ , π , t̂) |̂t < t′, (_, π ) ← L.getContent(̂t), f (π )]
assert size(es) = 1
let π 2

L , σ
2
L , t

2
L ← es[0]

if i ≤ t { let ky ← HW.Run(e, (“reveal”, π 2
L , σ

2
L , t

2
L)) }

else { extract ky from π 2
L }

ret Dec(ky , cty )

To ensure progress, parties must place time bounds, as opposed
to blocking waits or receives, when receiving messages from other
parties andwhen polling the shared ledger for a desired ledger entry.
First, the protocol participants use a synchronous network model
when sending and receiving messages with each other, where each
round of the protocol has a �xed time period. This ensures that
parties do not perform blocking receive on network messages. Next,
to ensure progress when interacting with the ledger, we extend our
fair reconstruction protocol in two ways: 1) setting timeout when
polling the ledger for a desired entry (where timeout is expressed in
the number of ledger entries), and 2) ensuring the ledger is always
making progress (increasing in the number of ledger entries). The
former is implemented by having parties abort when a protocol-
speci�ed number of entries are posted on the ledger, and the latter
is ensured by having parties post dummy clock messages on the
ledger (where at least one honest party will ensure progress).

C FAIR RECONSTRUCTION

In this section, we formally present and prove security of an im-
plementation of fair secure computation when only t parties have
access to a secure processor. Here, t refers to the number of corrupt
parties. Recall that fairness is impossible when t ≥ n/2, and that the
previous best result [4] required n secure processors. Since this con-
tribution is of independent interest, in the following presentation
we follow the standard notation of n parties P1, . . . , Pn interested
in fair reconstruction of a “secret shared” value. It is well known

that this fair reconstruction primitive is complete for fair secure
computation [3, 4]. Furthermore (and following [4]), we assume
that parties begin with commitments to their secret shares as public
input (this distribution of correlated randomness can be generated
via an unfair MPC or via a secure compute enclave). Note that only
party Pi is aware of the opening to the i-th commitment.

C.1 Technicalities and formalization

For formalization, we use the Ga� abstraction proposed in [24],
and used in [4, 24] to construct fair protocols. The Ga� abstraction
has the concept of a registry (variable Reg), which indicates which
parties have access to Ga�. This allows easy modeling of parties
that possess TEE (i.e., those that are registered) vs. parties that do
not have access to a TEE.

Since Ga� is a global functionality, we will need to allow S
to “program” the output via trapdoors in the enclave program.
Note that in [4], all parties had access to Ga�, and where attested
messages were only used locally or exchanged between enclaves. In
our case, parties that are not registered withGa� will need to rely on
attested outputs produced by Ga� to obtain their outputs. Therefore,
we rely on techniques introduced in [24], speci�cally the use of
Gacrs [24, 69], for output programming. Input extraction, on the
other hand is typically trivial for corrupt parties that are registered
to Ga� (as S can read these inputs directly). In cases where corrupt
parties (say that are not registered to Ga�) send encrypted inputs to
Ga�, input extraction will rely on Gacrs (again following techniques
in [24]). Also, we will need to rely on techniques introduced in [24]
for ensuring that parties have deniability (again via Gacrs [24]).

We also heavily borrow techniques from [4], starting from the
use of Fblockchain (which they model as a bulletin board since they
achieve only standalone security). Speci�cally, following [4] we
augment Fblockchain to provide L.getContentwhich includes a (pub-
licly) veri�able authentication tag (which can act as a release token
for the enclave), L.post which returns an authentication tag along
with the height.We also use their technique of using bulletin board’s
authentication tags as release tokens to activate the enclave.

In more detail, our formal protocol results from combining ideas
from (1) the single secure processor (one server with enclave and
n remote clients) outsourced computation protocol of [24], and (2)
the fair MPC protocol from [4]. From (1) we borrow simulation
techniques (speci�cally backdoors via Gacrs) to handle parties that
do not possess a secure processor. From (2) we borrow techniques
for correct handling of ledger posts and release tokens (speci�cally
backdoors for one-way permutations). We now state our theorem:

Theorem C.1. Assume the existence of one-way permutations,
a signature scheme that is existentially unforgeable under chosen
message attacks, an authentication scheme that satis�es the stan-
dard notion of unforgeability, an encryption scheme that is IND-
CCA2-secure, an authenticated encryption scheme that is perfectly
correct and satis�es standard notions of INT-CTXT and semantic se-
curity, a proof system that satis�es computational soundness and
witness indistinguishability. Furthermore, let Ga�,Gacrs be as de-
�ned in [24], and let Fblockchain be as de�ned in [6] supporting bul-
letin board abstractions as de�ned in [4]. Then, for every n > 0 and
t < n, there exists an n-party protocol that UC-realizes Ffairmpc in
the (Gacrs,Ga�, Fblockchain)-hybrid model in the presence of a static
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Enclave Program progfairmpc

Initial state. Set E ← ⊥.

• On input (init), run PKE.KeyGen to generate {(pki ,
ski )}i∈[n]. Return PK = (pk1, . . . , pkn ).

• On input (input, {ctj }j∈[n]): Let (pubj =

(comj , Regj , Yj ,Tj ), kj , x j , ωj ) ← PKE.Dec(skj , ctj ). Re-
turn ⊥ if ∃i , i′ s.t. pubi , pubi′ . Parse com1 = (c1, . . . , cn ).
Return ⊥ if ∃i , the value (xi , ωi ) is not a valid opening of ci .
Return “ok”.

• On input (proceed, t , σL,S , S ): Assert getParams already
called. If proceed already called, return E . Return ⊥ if
VerifyL(σL,S , t ‖S ) = 0 or if t > T1 + ∆t . Parse S =
{(j , ρ j )}j∈Reg1 and Y1 = {(j , yj )}j∈Reg1 . Return ⊥ if ∃j :
f (ρ j ) , yj . Compute ej ← AE.Enckj (

⊕
i∈[n] xi ) for j <

Reg1 . Return E ← {(j , ej )}j<Reg1 .

• On input (output, t , σL,E′ , E′): Assert proceed is already
called. Return ⊥ if VerifyL(σL,E′ , t ‖E′) = 0 or E < E′ or if
t > T1 + 2∆t . Return outpi =

⊕
i∈[n] xi .

Simulator programming.
• On input (extract, {idki }i∈[n]): for i ∈ [n]: if
check(Gacrs .mpk , Pi , idk ) = 1,vi = ski ,else vi = ⊥;
return {vi }i∈[n].

• On input (program, {idki , ui }i∈[n]): for i ∈ [n]: if
check(Gacrs .mpk , Pi , idk ) = 1, set outpi = ui .

• On input (getParams, v): assert init, input have been called. if
v = ⊥, send Y1, else return v .

adversary that can corrupt at most t out of the n parties, and where
at least t out of the n parties are contained in Ga�’s registry.

Next, we present the protocol along with the enclave description.
At a high level, where we di�er from [4] is we use a “two-phase”
release protocol as follows. In the 1st phase (marked by a ledger
entry), all enclaves (run by registered parties) are assured to have
the necessary inputs to reconstruct the output. Now the enclaves
post (on the blockchain) the reconstructed output encrypted un-
der the non-registered parties’ keys. This proof of publication on
the blockchain acts as a release token for the enclaves to release
the reconstructed outputs to the registered parties. The intuition
is that when all enclaves agree that they have the necessary in-
puts to reconstruct the output, the following holds: (1) all honest
enclaves can obtain the output by simply following the protocol
(i.e., irrespective of the actions of malicious parties); this actually
ensures that non-registered honest parties also obtain the outputs,
and (2) if no enclave is honest, then for the adversary to obtain the
output, it must provide a release token which corresponds to post-
ing encrypted outputs under non-registered parties’ keys; since all
honest parties are non-registered, they obtain the output by simply
scanning the ledger for the encrypted outputs.

C.2 Description of the simulator

We describe the simulator S who will simulate Fblockchain toA and
interact with Ga� to A, and receive messages from Z on behalf

Fair reconstruction in (Gacrs, Fblockchain,Ga�)-hybrid
model

Public input. Time interval ∆t . Commitments com =

(c1, . . . , cn ) where ci = com(xi ;ωi ).
Inputs. Each party Pi has private input (xi , ωi ).
Outputs. Each party receives x =

⊕
i∈[n] xi or none receive x .

Preliminaries. Let Reg denote the set of parties registered with
Ga�. Let f be a one-way permutation, PKE be a CCA-2 secure en-
cryption scheme, AE be an authenticated encryption scheme. Let
L denote the interface to Fblockchain. In the following, we assume
that Pi ∈ Reg contacts its local enclave only and prevents other
parties from contacting its enclave (i.e., all messages to its local
enclave go via Pi ). In the following: (1) whenever Pi is required
to output an attested message, it sends the message along with a
ciphertext and a NIWI proof that the ciphertext either encrypts a
valid attestation on the message, or encrypts the recipients “iden-
tity key” (managed by Gacrs), and (2) when a recipient checks for
a valid attestation, it veri�es the NIWI proof.

Protocol. Party Pi executes the following:

Enclave initialization. If Pi ∈ Reg:
• Send install(sid , progfairmpc) to Ga� to receive eidi . Send
eidi to each Pj ∈ Reg.
• Receive eidj from each Pj ∈ Reg \ {Pi }. If eidj was not
received from some Pj ∈ Reg, terminate the protocol, and
output ⊥.

Input submission.

(1) Samples ki , ρi ← {0, 1}λ and broadcasts yi = f (ρi ) to all
parties. Let Yi denote the set of all received yj ’s.

(2) If Pi ∈ Reg: Send Ga� .resume(eidi , init) to receive PKi =
(pki ,1, . . . , pki ,n ). Broadcast PKi to all parties.

(3) For every Pj ∈ Reg: Pi waits to receive PKj . Then compute
cti , j ← PKE.Enc(pkj ,i , (pubi = (com, Reg, Yi ,Ti ), ki , xi ,
ωi )), where Ti equals L.getCurrentCounter at the start of the
protocol.

(4) If Pi ∈ Reg:
• Collect all ctj ,i received from each Pj , and send
Ga� .resume(eidi , {ctj ,i }j∈[n]). Wait to receive “ok”.

• If “ok” received, then broadcast ρi to all parties. Collect Si =
{j , ρ j }j∈Reg, where for all j ∈ Reg it holds that f (ρ j ) = yj .

• Once Si is collected with |Si | = |Reg |, execute L.post(Si )
to Fblockchain (if Si is not already on the ledger) to obtain
σL,S , tL,S (possibly via L.getContent(tL,S)).

• Send Ga� .resume(proceed, σL,S , tL,S ) to obtain Ei .

• Broadcast Ei to all parties. Collect Ej received from all
parties in Reg to form E′. Proceed even if not all Ej ’s are
collected.

• Execute L.post(E′) to Fblockchain (if E′ is not already
on the ledger) to obtain σL,E′ , tL,E′ (possibly via
L.getContent(tL,E′ )).

• Send Ga� .resume(output, tL,E′ , σL,E′ , ) to obtain x .

(5) If Pi < Reg: Scan the ledger to obtain t < Ti + ∆t such that
L.getContent(t) = (σL,E′ , E′), where E′ has valid attestation
undermpk , and for some E ∈ E′, we have (i , ei ) ∈ E . Output
AE.Decki (ei ) and terminate.
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of A. The extraction of corrupt inputs is trivial via simulation of
Ga�, whereA needs to send input encrypted under a public key for
which the secret key is known toS (which equivocates via Gacrs the
public keys s.t. it knows the corresponding secret keys to decrypt)
(irrespective of whether the corrupt party is in Reg or not), and S
will simply verify whether the decryption is a valid opening to the
corresponding commitments speci�ed in the public input. During
this phase, on behalf of the honest parties, S will send encryp-
tions of 0 (instead of xi ,ωi ), which will remain indistinguishable to
A due to the semantic security of the (authenticated) encryption
scheme. Also, S chooses ρi uniformly at random to generate yi
values corresponding to honest parties. If some corrupt party Pi
in Reg never contacted S to provide inputs then S terminates the
simulation and outputs ⊥com.

Once S receives correct encryptions from all corrupt
parties, it generates the NIWI proof for the message
(sid, eidi , progfairmpc, “ok”) using the corrupt party’s identity
key as the witness (i.e., as opposed to the attestation). For every
simulated honest party for which S generates the NIWI proof, it
broadcasts the corresponding simulated ρ value. (If there is no
corrupt party in Reg, then S sends the corresponding encryption
which can be monitored by A.) If S did not broadcast simulated
ρ values for all honest parties in Reg (before T + ∆t ), then S
terminates the simulation and outputs ⊥f . S waits to receive
the corresponding ρ values from corrupt parties in Reg. Next S
proceeds to act as Fblockchain. We now consider two cases. If all ρ
values for parties in Reg are obtained by any particular simulated
honest party in Reg, then acting as that party, S simulates the
posting of message S = {i, ρi }i ∈Reg on Fblockchain by notifying A.
During this round, S accepts any message from A, and simulates
expected behavior of Fblockchain. The other case is when no
simulated honest party in Reg received all ρ values. Now S (acting
as Fblockchain) waits to receive a message S ′ from A containing
all the preimages. If no such message was received (within some
speci�ed timeout), then S terminates the simulation and outputs
⊥L. Else, S simulates the expected behavior of Fblockchain, and
simulates posting of S ′, to return a valid tag σL,S ′ to A.

At this point, we are assured that S acting as Fblockchain has
received all valid preimages of the y values. Now, we split the simu-
lation again in two cases. We deal with the �rst case: Suppose some
honest Pj ∈ Reg. In this case, the output needs to be delivered to all
parties. Therefore, S contacts Ffairmpc to obtain the �nal output x ,
and then upon receiving a valid programs Ga�’s output (using Gacrs
identity key for the corrupt party) delivers E which consists of the
encryptions of the output x under the shared symmetric keys of all
parties not in Reg. After this, S simulates the expected behavior
of Fblockchain (say, to continue posting messages on behalf of the
corrupt parties) till the protocol completes, and then simulates the
expected behavior of Ga� by programming the output (via Gacrs) to
deliver encrypted outputs that can be decrypted by the correspond-
ing corrupt parties, and �nally terminates the simulation. Thus, in
this case, all (honest) parties receive the �nal output.

Finally, we deal with the second case where no honest Pj ∈ Reg.
(Note: Since we have |Reg| ≥ t , it follows that all corrupt parties
are in Reg.)

In this case, S acting as Ga� waits to receive σL,S ′ . If a valid
tag (valid wrt Fblockchain) is received from A corrupt Pi , then S

prepares Ei consisting of encryptions of 0 (i.e., not the output which
is still unknown to S) for each party not in Reg (recall all of them
are honest). Then, acting as Fblockchain waits to receive posting
of a message Ej (for some Ej that was programmed by S in the
previous step). If no such Ej was received, then S outputs ⊥sig and
terminates. If a correct message was posted by a corrupt Pi ∈ Reg,
then S contacts Ffairmpc to receive the �nal output x , which it then
sends the output x (again by programming the output via Gacrs) to
each corrupt Pi ∈ Reg, and terminates the simulation.

If no valid tag was received from A (within T + 2∆t ), then S
terminates the simulation and sends ⊥L to Ffairmpc.

This completes the description of the simulator.
Our strategy to show indistinguishability of real and ideal world

follows closely to that of [4] (the main di�erence being we need
to rely on Gacrs for extraction and equivocation (like in [24]), and
we also use CCA-2 secure public key encryption scheme since
not all parties are registered, and the enclave can be queried with
say incorrect decommitments). Like in [4], we need a backdoor
getParams for the hybrid step involving the one-way permutation.
In the description of the simulation above, we noted points of
failure along with the associated primitive. Following this, it is a
straightforward exercise to write out the hybrid steps in the order
of the failure steps in which they appear. We defer the full proof to
the full version of the paper.
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