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Abstract. The approximate greatest common divisor problem (ACD)
and its variants have been used to construct many cryptographic prim-
itives. In particular, variants of the ACD problem based on Chinese re-
mainder theorem (CRT) are exploited in the constructions of a batch
fully homomorphic encryption to encrypt multiple messages in one ci-
phertext.
Despite the utility of the CRT-variant scheme, the algorithms to solve its
security foundation have not been studied well compared to the original
ACD based scheme.
In this paper, we propose two algorithms for solving the CCK-ACD prob-
lem, which is used to construct a batch fully homomorphic encryption
over integers. To achieve the goal, we revisit the orthogonal lattice at-
tack and simultaneous Diophantine approximation algorithm. Both two

algorithms take the same time complexity 2
Õ( γ

(η−ρ)2
)
up to a polynomial

factor to solve the CCK-ACD problem for the bit size of samples γ, secret
primes η, and error bound ρ. Compared to Chen and Nguyen’s algorithm
in Eurocrypt’ 12, which takes Õ(2ρ/2) complexity, our algorithm gives
the first parameter condition related to η and γ size.
We also report the experimental results for our attack upon several pa-
rameters. From the results, we can see that our algorithms work well
both in theoretical and experimental terms.
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1 Introduction

The approximate greatest common divisor (ACD) problem was defined and stud-
ied by Howgrave Graham [15]. The ACD problem and its variant problems have
been used to construct cryptographic schemes such as fully homomorphic en-
cryption (FHE) and cryptographic multilinear map [4,6, 8, 18].

In the paper [4], a variant of the ACD problem was introduced to suggest
a new FHE scheme, which is called CCK-FHE scheme, over the integers. This
scheme exploits Chinese remainder theorem to encrypt multiple messages in
one ciphertext. Informally, for integers γ, n, η, and ρ such that γ � n · η and
? A preliminary version of this paper was submitted to the EUROCRYPT 2018.



η � ρ, the γ-bit ciphertext integer b of this scheme is characterized by satisfying
modulo equations b ≡ ri mod pi for 1 ≤ i ≤ n, where ri’s are ρ-bit integers and
pi’s are η-bit fixed secret primes. We call the problem of distinguishing between
ciphertexts of CCK-FHE scheme and uniform samples of γ-bit integer, when the
γ-bit integer N =

∏n
i=0 pi which is the product of secret primes is given, the

CCK-ACD problem.1
On the other hand, algorithms to directly solve the CCK-ACD problem have

received a little attention. Galbraith, Gebregiyorgis and Murphy said that an
algorithm to solve the CCK-ACD problem exploiting CRT structure is an open
problem [12]. In fact, there have been no algorithms for solving the CCK-ACD
problem so far except for the method of Chen and Nguyen [3], which depends
only on ρ. Instead, to give the evidence of the security of the CCK-FHE, authors
in [4] suggested a reduction from PACD to CCK-ACD.

However, while the current CCK-FHE parameters are set to be secure for
the Chen and Nguyen’s attack, the authors in [4] did not use the parameter
settings obtained from the reduction for known PACD parameters. Therefore it
is necessary to determine whether the CCK-FHE parameters satisfies the desired
security even under the current conditions of η and γ. In sum, one can naturally
pose the following question:

Is it possible to present time complexity for solving CCK-ACD
by using a mathematical algorithm that depends on η and γ?

Previous works. To solve the CCK-ACD problem, several naive methods are
suggested. Their main idea is to exploit the feature of the problem that the error
terms are relatively small and the product of the secret primes is given. More
precisely, one can try a brute-force attack to recover a secret prime pi from a
multiple N =

∏n
i=0 pi and an sample of CCK-ACD represented by b = pi · qi+ ri

for some fixed i, where an integer ri ∈ (−2ρ, 2ρ) except i = 0. The method is
to compute the greatest common divisor between (GCD) b − a and N for all
integers a ∈ (−2ρ, 2ρ). It would have time complexity Õ(2ρ), so ρ should be set
to Ω(λ) for the security parameter λ. Furthermore, the methods of [CN12] and
[CNT12], which were proposed as variants of exhaustive search to solve (P)ACD
in Õ(2ρ/2) time complexity, can be applied to solve the CCK-ACD problem due to
the feature mentioned previously. In addition, one can also use the factorization
with the elliptic curve method to find a factor of N in 2Õ(

√
η) time complexity,

where η is the log-size of pi. Thus, η should be set to Ω(λ2) for the security
parameter λ.

As another trial to solve CCK-ACD, authors in [13] considered well-known
algorithms for solving PACD such as orthogonal lattice attack method (OLA)
and simultaneous Diophantine approximation (SDA) [6,11,15,18] in the context
of CCK-ACD. The SDA and OLA make use of a lattice reduction algorithm for a
specific lattice whose entries consist of given PACD samples and a multiple N =∏n
i=0 pi. If one can obtain a short vector from the lattice by the lattice reduction

1 We describe formal definition of the CCK-ACD problem in Section 2.
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algorithm, it leads to solve the PACD problem utilizing the coordinates of the
vector. Since these algorithms for (P)ACD have the time complexity depending
on η and γ, one can expect an expansion of the algorithms to the CCK-ACD
problem will provide answers for our main question.

However, if one constructs a lattice as similar to SDA and OLA to solve
CCK-ACD, there exist several short vectors of similar length in the lattice due to
the symmetry of pi. Thus if short vector from the lattice by a lattice reduction
algorithm is a short linear combination of several of these vectors, one cannot
extract information about a certain prime pi from the vector.

Independent work. Recently, Coron and Pereira [9] proposed an algorithm
for solving multi-prime ACD problem which is exactly the same as the ‘search’
CCK-ACD problem in this paper. The main idea of the attack is also the same
as our SDA-style algorithm that combines the SDA with algebraic steps from
the Cheon et al. [5]. In this paper, we also propose another OLA-style algorithm
for solving ‘decisional’ CCK-ACD problem using OLA with a new distinguisher
determinant.

1.1 Our Work

In this paper, we propose two mathematical algorithms to solve the CCK-ACD
problem by extending the OLA and SDAmethods that are well-known for solving
the ACD problem using lattice technique. Both algorithms take the same time

complexity 2
O
(

γ

(η−ρ)2

)
up to polynomial factor for the bit-size of samples γ,

secret primes η and error ρ. Our algorithms are the first algorithms related to η
and γ to solve the CCK-ACD problem.

Let bj be a CCK-ACD sample of bj ≡ rij mod pi for 1 ≤ j ≤ k and 0 ≤ i ≤ n.
Technically, the classical OLA algorithm on input bj outputs a lattice which
includes a short vector ri = (ri1, . . . , rik) for 1 ≤ i ≤ n, while the algorithm on
γ-bit random integers gives a random lattice. Then, the next step is to recover
the short vector ri from the lattice and pi by computing the GCD between
bj − rji and N =

∏n
i=0 pi. If the last step reveals a non-trivial factor of N , we

can conclude that the bj ’s are CCK-ACD samples. Unfortunately, it is a hard
task to recover the vector ri except for small n since a short vector from the
lattice can be a short linear combination of several ri’s. Instead, we employ a
determinant of the lattice as a new distinguisher to solve the decision CCK-ACD
problem. We show that a sub-lattice of the output lattice of the classic OLA has
a different-sized determinant depending on the type of inputs. Then, computing
determinant enables us to avoid the obstacle to find the exact vector ri. The
overall time complexity heavily depends on the cost of a lattice reduction to find
a short vector.

We also propose a SDA-style algorithm to find all secret parameters in the
CCK-ACD problem beyond the decision problem. It consists of two steps; find
a short vector using a lattice reduction algorithm and then recover the factors
p1, · · · , pn by employing the Cheon et al.’s technique [5]. More precisely, we build
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a lattice as similar to the SDA approach on the ACD problem, and obtain an
integer of the form

∑n
i=1 ci · N/pi for some small integers ci, which is called

dual instance. The dual instance allows us to apply the similar method to the
Choen et al.’s technique, which converts modulo equations into integer equations
by exploiting the CRT properties of CCK-ACD samples and its relation to dual
instance. The complexity of the new algorithm heavily depends on the first step,
so it takes time complexity as stated above.

We provide experimental results to guarantee that our algorithms work well
both in theoretical and experimental terms under the various parameters of CCK-
ACD. We observe the OLA is more practical than SDA while the asymptotic
complexities are the same.

Organization. In Section 2, we introduce preliminary information related to the
lattice. Next, we revisit the OLA to solve the CCK-ACD problem in Section 3.
Also, we extend the SDA algorithm in the context of CCK-ACD and propose the
first algorithm which recovers all secret primes pi’s of the CCK-ACD problem in
Section 4. In addition, we present some experimental results for our algorithms
in Section 5.

2 Preliminaries

Notation. Throughout this paper, we use a← A to denote the operation of uni-
formly choosing an element a from a finite set A or generating a sample according
to a distribution A. We let Zq denote the set Z∩(−q/2, q/2] for the positive inte-
ger q. We use the notation [t]p to denote the integer in Zp congruent to t mod p.
We define CRT(p1,p2,...,pn)(r1, r2, . . . , rn) (or abbreviated as CRT(pi)(ri)) for pair-
wise co-prime integers p1, p2, . . . , pn as the integer in

(
− 1

2

∏n
i=1 pi,

1
2

∏n
i=1 pi

]
congruent to ri in the modulus pi for each i ∈ {1, 2, . . . , n}.

We use bold letters to denote vectors or matrices and denote the set of all
m × n matrices over Z by Zm×n. For matrix A, we denote the transpose of A
by AT and denote the i-th row vector of A by [A]i. When A = (ai,j) ∈ Zm×n is
given, we define the infinite norm ‖A‖∞ as max

1≤j≤n

∑n
i=1|ai,j | and use the notation

A mod N to denote the matrix ([ai,j ]N ) ∈ Zm×n. We denote by diag(a1, . . . , an)
the diagonal matrix with diagonal coefficients a1, . . . , an. When B is an integral
matrix, we define size(B) as the logarithm of the largest entries of B.

For a vector v = (v1, . . . , vn), we define the `2-norm ‖v‖2 (or abbreviated as
‖v‖) and `1-norm ‖v‖1 as

√∑n
i=1 vi

2 and
∑n
i=1|vi|, respectively.

2.1 Lattices

A lattice Λ is a discrete additive subgroup of Rn. We call a set of linearly
independent vectors B = {b1, b2, · · · , bm} ⊂ Rn a basis of a lattice Λ if Λ is the
set of all Z-linear combinations of the vectors b1, b2, · · · , bm. We denote such
lattice Λ generated by the basis B by Λ(B). We sometimes use the notation
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Λ instead of Λ(B). Especially, when a lattice Λ is a subset of Zn, it is called
an integral lattice. Throughout this work, we only consider the integral lattice
and regard a lattice as an integral lattice without special mention. If we regard
a basis B = {b1, b2, · · · , bm} of lattice Λ as a matrix whose column vectors
consist of vectors bi for 1 ≤ i ≤ m, B is called a basis matrix of Λ. The rank and
determinant of lattice Λ is defined as m and det(Λ) =

√
det(BTB) for any basis

matrix B, respectively. When n = m, this lattice is called a full-rank lattice and
det(Λ) = det(B) holds. Throughout this paper, we denote lattice Λ whose basis
vectors are b1, b2, · · · , bm as Λ = 〈b1, b2, · · · , bm〉.

It is known that for a lattice Λ = Λ(B) ∈ Rn with basisB = {b1, b2, · · · , bm},
the following holds

det(Λ) ≤
m∏
i=1

‖bi‖

In addition, when a set of column vectors U = {u1,u2, · · · ,uk} ⊂ Zn is
given, we define the orthogonal lattices

Λ⊥(U) := {v ∈ Zn | 〈v,uj〉 = 0 for all 1 ≤ j ≤ k}.

Λ⊥q (U) := {v ∈ Zn | 〈v,uj〉 ≡ 0 mod q for all 1 ≤ j ≤ k}.

Successive Minima. Let Λ be a lattice of rank n. The successive minima of Λ
are λ1, · · · , λn ∈ R such that, for any 1 ≤ i ≤ n, λi is minimal such that there
exist i linearly independent vectors v1, . . . ,vi ∈ Λ with ‖vj‖ ≤ λi for 1 ≤ j ≤ i.

There is a useful result, which is called the Gaussian Heuristic [1] to reduce
the size of successive minima.

Gaussian Heuristic. Let Λ be a rank-n lattice. The Gaussian Heuristic states
that the size of successive minima of Λ is approximately as follows.

λi(Λ) ≈
√

n

2πe
det(Λ)1/n for all i ∈ {1, 2, · · · , n}.

Ajtai showed that the above equation holds for a random lattice with overwhelm-
ing probability [1].

Finding a short vector of a lattice is essential in our attack. There are some
algorithms to find a short vector of a lattice, called lattice reduction algorithms.

Lattice Reduction Algorithm. The LLL algorithm [16] and the BKZ al-
gorithm [14] are well-known lattice reduction algorithms. We mainly use BKZ
algorithms to find an approximately short vector of a lattice. According to [14],
the block size β of the BKZ algorithm determines how short the output vector
of the BKZ algorithm is. With the BKZ algorithm to the rank-n lattice Λ with
basis matrix B, we can get a short vector v in poly(n, size(B)) · CHKZ(β) times
which satisfies the following

‖v‖ ≤ min{2(γβ)
n−1

2(β−1)
+ 3

2 · (detΛ)1/n, 4(γβ)
n−1
β−1+3 · λ1(Λ)},
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where γβ ≤ β is the Hermite constant of a rank-β lattice and CHKZ(β) denotes
the time spent to get the shortest vector of a rank-β lattice and can be regarded
as 2O(β).

In the case of LLL algorithm, according to [16], the LLL algorithm upon the
rank-n lattice Λ with basis matrix B gives an LLL-reduced basis {b1, · · · , bn}
in poly(n, size(B)) times which satisfies the following

‖b1‖ ≤ 2
n−1
4 · (detΛ)1/n, ‖bi‖ ≤ 2

n−1
2 · λi(Λ) for 1 ≤ i ≤ n.

In particular, it is known that a LLL-reduced basis {b1, b2, · · · , bm} ⊂ Rn
with δ = 1/4 + 1/

√
2 ≈ 0.957 for a lattice Λ, the following holds

‖bj‖ ≤ 2i/4 · ‖bi∗‖ for 1 ≤ j ≤ i ≤ m. (1)

when we let {b1∗, · · · bm∗} be the Gram-Schmidt orthogonalization.
For convenience of calculation, throughout this paper, we use Aδ to denote

a lattice reduction whose output contains a short vector v with Euclidean norm
less than δn · det(Λ)1/n or δ2n · λ1(Λ) for an n-dimensional lattice Λ instead
of 2(γβ)

n−1
2(β−1)

+ 3
2 · (detΛ)1/n or 4(γβ)

n−1
β−1+3 · λ1(Λ), respectively. In this case,

the root Hermite factor δ is achieved in time 2O(1/ log δ) · poly(k) by the BKZ
algorithm with block size β = Θ( 1

log δ ).

Now we given the formal definition of the CCK-ACD problem, our main con-
cern in this paper.

Definition 1. (CCK-ACD) Let γ, n, η, ρ be positive integers such that χρ be an
uniform distribution over Z ∩ (−2ρ, 2ρ). For given η-bit primes p1, · · · , pn, the
sampleable distribution Dγ,η,ρ,n(pi) is defined as

Dγ,η,ρ,n(pi) = {T ·
n∏
i=1

pi+CRT(pi)(ri) | T ← Z∩[2γ−1/
n∏
i=1

pi, 2
γ/

n∏
i=1

pi), ri ← χρ}.

The (γ, η, ρ)-CCK-ACD problem is: For given N = p0 ·
n∏
i=1

pi for uniformly cho-

sen p0 ∈ Z ∩ [2γ−1/
n∏
i=1

pi, 2γ/
n∏
i=1

pi) and polynomially many samples from

Dγ,η,ρ,n(pi) or χγ , distinguish CCK-ACD samples from random samples.

In the CCK-ACD problem, we use r0,j to denote bj mod p0 for each j ∈
{1, · · · , k}, where bj ∈ Dγ,η,ρ,n(pi)’s are given as CCK-ACD samples. We remark
that r0,j may not be small, unlike other ri,j for i ∈ {1, · · · , n}.

3 OLA for the CCK-ACD Problem

In this section, we revisit the orthogonal lattice attack method (OLA) and ex-
plain how to guarantee the upper bound of the OLA proposed in [8] for the

CCK-ACD problem in time 2
O
(

γ

(η−ρ)2

)
using determinant of lattice.
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Our orthogonal lattice attack for the CCK-ACD problem consists of two steps.
The first step of our algorithm is exactly the same as the previous OLA approach
for solving the ACD problem. Next we compute a determinant of the orthogonal
lattice in the second step.

We find the upper bound of determinant exploiting CRT-structure of CCK-
ACD samples and it can be a distinguisher of CCK-ACD and random samples.
In this section, for the CCK-ACD samples, we show that the size of determinant
is bounded by 2

n+1
4 +n(ρ+log k), where k denotes the optimized number of CCK-

ACD samples, under the Gaussian Heuristic. In the case of random elements, our
algorithm outputs a determinant larger than the value. From the results, we can
solve the CCK-ACD problem.

Algorithm 1 Algorithm for the CCK-ACD problem
Input: γ-bit integer N =

∏n
i=0 pi

Input: Root Hermite factor δ
Input: b = (b1, b2, · · · , bk), where k = n+

⌊√
γ

2 log δ

⌉
Output: distinguish whether bi’s are sampled from Dγ,η,ρ,n(pi) or a χγ .

1: Construct a lattice Λ⊥N (b) with basis matrix U =


N [−b2/b1]N · · · [−bk/b1]N
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

.

2: u1,u2, · · · ,uk−n−1 ← Aδ(Λ⊥N (b))
3: Construct an orthogonal lattice Λ⊥(Ũ) for Ũ = (u1 | · · · | uk−n−1) and its basis B.
4: B← LLL-reduced basis of Λ(B) and remove the largest column vector of B.
5: if log(det(Λ(B))) ≤ n+1

4 + n(ρ+ log k) then
6: return Dγ,η,ρ,n(pi)
7: else
8: return χγ .
9: end if

OLA for the CCK-ACD problem. Assume that we have k CCK-ACD samples
{bj = CRT(pi)(ri,j)}1≤j≤k with N =

∏n
i=0 pi, and let b = (b1, · · · , bk)T , ri =

(ri,1, · · · , ri,k)T for 0 ≤ i ≤ n.
The first step of OLA, which is described in [8, Section 5.1], is to find the set

of short vectors {u1, · · · ,uk−n−1} in a k-dimensional lattice

Λ⊥N (b) = {u ∈ Zk | 〈u, b〉 ≡ 0 mod N}.

Since bj ≡ ri,j mod N , we observe the relations using the CRT structure
r0,1 r1,1 · · · rn,1
r0,2 r1,2 · · · rn,2
...

...
. . .

...
r0,k r1,k · · · rn,k

 ·

(p̂−10 mod p0) · p̂0
(p̂−11 mod p1) · p̂1

...
(p̂−1n mod pn) · p̂n

 ≡

b1
b2
...
bk

 mod N.
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If a vector u ∈ Zk satisfies 〈u, ri〉 = 0 in integers for all i = 0, · · · , n, then
〈u, b〉 ≡ 0 mod N because of the above relations. Thus, it holds that

Λ⊥({r0, · · · , rn}) ⊂ Λ⊥N (b)

Moreover, we observe λi(Λ⊥N (b)) ≤ λi(Λ
⊥({r0, · · · , rn})) by the definition of

successive minima for all 1 ≤ i ≤ k − n− 1.
We assume the Gaussian heuristic holds on the lattice Λ⊥({r0, · · · , rn}) since

all components of ri with 0 ≤ i ≤ n are uniformly chosen from in each set.
Therefore, it holds that

log |λi(Λ⊥({r0, · · · , rn}))| ≈
γ − nη + nρ

k − n− 1

for all i = 1, 2, · · · , k−n− 1. Note that we omit the small values including log k
for the convenience of writing.

To obtain such short vectors uj ’s, we run a lattice reduction algorithm Aδ
with root Hermite factor δ on the lattice Λ⊥N (b). By the approximate factor of
a lattice reduction algorithm Aδ, the j-th output vector wj of Aδ on the lattice
Λ⊥N (b) satisfies ‖wj‖ ≤ δ2k · λj(Λ⊥N (b)). Thus, for all j = 1, 2, · · · , k− n− 1, wj

is bounded as follows

‖wj‖ ≤ δ2k · λj(Λ⊥N (b)) ≤ δ2k · λi(Λ⊥({r0, · · · , rn}))

≤ δ2k · 2
γ−nη+nρ
k−n−1 .

By the Cauchy-Schwartz inequality, it holds for 1 ≤ i ≤ n, 1 ≤ j ≤ k− n− 1

|〈wj , ri〉| ≤ ‖wj‖ · ‖ri‖

< (δ2k · 2
γ−nη+nρ
k−n−1 ) · (k · 2ρ)

≈ 22k log δ+ γ−nη+nρ
k−n−1 · 2ρ

Since pi’s are η-bit primes, we can ensure the vector wj ∈ Λ⊥N (b) obtained
from Aδ satisfies |〈wj , ri〉| < pi/2 under the following condition

2k · log δ + γ − nη + nρ

k − n− 1
+ ρ ≤ η, (2)

2(k − n− 1) · log δ + γ

k − n− 1
≤ (k − 1)(η − ρ)

k − n− 1
− 2(n+ 1) log δ.

When we choose k−n− 1 =
√

γ
2 log δ and apply the AM-GM inequality, it is

enough to satisfy log δ as following inequality

2
√
2γ log δ ≤ η − ρ.

Therefore, when we obtain k ≈ n+
√

γ
2 log δ CCK-ACD samples and choose δ

satisfying log δ < (η−ρ)2
8γ − ε for some small ε, |〈wj , ri〉| ≤ pi/2 is established for
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any 1 ≤ i ≤ n. Thus, {wj}1≤j≤k−n−1 are the set of short vectors what we want,
renamed by {uj}1≤j≤k−n−1, and the overall time complexity to compute small

wj ’s is 2
O
(

γ

(η−ρ)2

)
· poly(k) ≈ 2

O
(

γ

(η−ρ)2

)
up to polynomial factor.

As the second step, we construct an orthogonal lattice to the lattice generated
by {uj}, instead of computing ri directly. More precisely, let Ũ denote a matrix
(u1 | · · · | uk−n−1) and consider the orthogonal lattice

Λ⊥(Ũ) = {v ∈ Zk | 〈v,uj〉 = 0 for all 1 ≤ j ≤ k − n− 1}.

Due to the CRT-structure of CCK-ACD samples, {ri}1≤i≤n are short linearly
independent vectors that belong to Λ⊥(Ũ).2 The lattice Λ⊥(Ũ) ⊂ Zk has rank
n + 1 so there exists a basis B = {b1, · · · , bn+1}. We apply the LLL algorithm
on the basis B of Λ⊥(Ũ) to obtain B′ = {b′1, · · · , b

′
n+1}, the LLL-reduced basis

of B. In this case, the required time complexity is poly(n, size(Λ⊥(Ũ))), which

is dominated by 2
O
(

γ

(η−ρ)2

)
.

Since {ri}1≤i≤n are n linearly independent vectors in Λ⊥(Ũ), there exists
a vector b′j such that {r1, · · · , rn, b′j} are n + 1 linearly independent vectors
in Λ⊥(Ũ). Additionally, ‖ri‖ is smaller than k · 2ρ for all i, we note that
λn(Λ

⊥(Ũ)) ≤ 2ρ+log k. Let B̃′ = {b′∗1 , · · · , b
′∗
n+1} be Gram-Schmidt basis of

B′. Then we calculate the determinant of lattice Λ′ spanned by {b′1, · · · , b
′
n}.

det(Λ′) =

n∏
i=1

‖b′∗i ‖ =
∏n+1
i=1 ‖b

′∗
i ‖

‖b′∗n+1‖

=
det(Λ⊥(Ũ))

‖b′∗n+1‖
≤
‖b′j‖ ·

∏n
i=1‖ri‖

‖b′∗n+1‖

≤ ‖b′j‖ ·
n∏
i=1

‖ri‖ ·
2
n+1
4

‖b′j‖
(By inequality (1))

≤ 2
n+1
4 +n(ρ+log k)

According to the analysis above, the log-size of determinant of the rest n
column vectors after LLL algorithm is smaller than n+1

4 + n(ρ + log k) with
k − n − 1 ≈

√
γ

2 log δ ≈
2γ
η−ρ . Then we guess that the determinant of the rest n

column vectors after LLL algorithm is small when b is a CCK-ACD instance.

Heuristic analysis of random instance. To analyze the size of determinant
heuristically, we first assume that the logarithm of determinant of rank-n lattice
is approximately n logB, when each entry of a basis matrix is uniformly sampled
from [−2B , 2B ]. This approximation agrees the bound from Hadamard inequality,
and for square matrix it is known to hold up to difference Θ(n log n) assuming
2 We can assume that {ri : 1 ≤ i ≤ n} are n linearly independent vectors because
their entries are randomly chosen in χρ.
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that entries are uniform [17]. In our case, n log n is negligibly small compared to
other term.

– Random instances: We assume that the expected size of uj , a j-th output
of the lattice reduction algorithm, are δk · N1/k for all 1 ≤ j ≤ k − n − 1,
which agrees to the expected size of the shortest output of lattice reduc-
tion algorithm. We may suppose that these vectors are random since given
instances are random. Then, the logarithm of the determinant of Λ(Ũ) is
approximately

k − n− 1

k
logN + (k − n− 1)k log δ ≈ k − n− 1

k
· γ,

since the second term is relatively small to the first term. The assump-
tion that the basis vector of Λ(Ũ) is random also allows us to assume that
det(Λ(Ũ)) and det(Λ⊥(Ũ)) are the same. Then we obtain the desired result
that the logarithm of determinant of Λ⊥(Ũ) is approximately γ · k−n−1k .
Under the same assumption, the expected size of vectors obtained as a re-
sult of the LLL algorithm are 2n/4 · det(Λ⊥(Ũ))

1
n+1 . Then the logarithm of

determinant of the matrix composed by n short vectors is approximately

n

n+ 1
· k − n− 1

k
· γ +

n2

4
≈ n

n+ 1
· k − n− 1

k
· γ,

since the second term is relatively small. The experimental result shows that
this approximation roughly holds.

In summary, under Gaussian Heuristic and assumption from Hadamard in-
equality, we show that the logarithm of the determinant is less than n+1

4 +n(ρ+
log k) if the given instances are the CCK-ACD instances whereas it is approxi-
mately γ · k−n−1k · n

n+1 for the random instances. We will see that the experimental
results fit this approximation well in Section 5.

4 SDA Algorithm for the CCK-ACD problem

In this section, we first describe a lattice-based algorithm to solve the CCK-
ACD problem by applying the Simultaneously Diophantine approximation (SDA)
algorithm which has been served as a useful method to solve the ACD problem.

In the paper [13], Galbraith et al. try to apply the SDA algorithm in the
context of CCK-ACD and comment that this attack is not directly applicable to
the CCK-ACD problem. Reviewing this work, one can consider a column lattice
Λ generated by a matrix B

B =


1 0 0 · · · 0
b1 N 0 · · · 0
b2 0 N · · · 0
...

...
...
. . .

...
bk 0 0 · · · N
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with given CCK-ACD samples bj = CRT(pi)(ri,j) for each 1 ≤ j ≤ k and N =∏n
i=0 pi. It follows that the lattice contains the short vectors

vi = p̂i · (1, ri,1, ri,2, · · · , ri,k)T .

for all 1 ≤ i ≤ n and these all have similar lengths. Once we compute p̂i from
the first entry of the vector, we can recover the prime factors pi = N/p̂i. But if
u = (u0, u1, · · · , uk) ∈ Λ is a short linear combination of several these vectors,
i.e., u =

∑n
i=1 ei · vi, we cannot expect that bN/u0e is one of the primes of N ,

where u0 =
∑n
i=1 ei · p̂i.

However, an instance of the form d =
∑n
i=1 di · p̂i with small dis has a special

property. More precisely, if we can ensure that di’s are sufficiently small, the
instance d =

∑n
i=1 di · p̂i enables the below modular equations to be established

without modulus N due to CRT-structure of CCK-ACD samples.

[d · bj ]N = [

n∑
i=1

di · bj · p̂i]N =

n∑
i=1

di · ri,j · p̂i ∈ Z

[d · bj · bl]N =

n∑
i=1

di · ri,j · ri,l · p̂i ∈ Z

This property plays the crucial role when solving the CCK-ACD problem and
even recovering the secret primes in our algorithm. In Section 4.1, we define
a dual instance to give a standard for how small di’s should be in an instance
d =

∑n
i=1 di · p̂i. Once we obtain such dual instances, we modify Cheon et al.’s

algorithm in [5] to solve the CCK-ACD problem using the dual instances, which
is the second step of our algorithm for solving the CCK-ACD problem.

The first step of our algorithm to solve the CCK-ACD problem is to obtain a
dual instance. To do so, we build the (k+1)-dimensional lattice Λ = Λ(B), where
B is the same basis matrix as above. We will later show that if v is a sufficiently
short vector in Λ, its first entry can be regarded as a dual instance. To understand
a lattice vector v of Λ, we note that any integer d can be written as the form

of d =
n∑
i=0

di · p̂i for some integers di’s since gcd(p̂0, p̂1, · · · , p̂n) = 1. Using this

property, if we denote the first entry of the vector v from Λ by d =
n∑
i=0

di · p̂i,

the following modular equations hold.

v ≡


d

[d · b1]N
[d · b2]N

...
[d · bk]N

 ≡



n∑
i=0

di · p̂i
n∑
i=0

di · ri,1 · p̂i
n∑
i=0

di · ri,2 · p̂i
...

n∑
i=0

di · ri,k · p̂i


(mod N)
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Using the above modular equation, we investigate the condition of the length

of vector v which enables an instance d =
n∑
i=0

di · p̂i, the first entry of v, to be a

dual instance in Section 4.2.

4.1 Revisiting the Algorithm of Cheon et al.

In this section, we revisit the Cheon et al.’s algorithm in [5] to solve the CCK-
ACD problem. In the original paper, the authors presented an algorithm when
an auxiliary input CRT(pi)(p̂i) =

∑n
i=1 p̂i is given.

However, in order to use an instance d =
∑n
i=1 di · p̂i in Cheon et al.’s

algorithm, all of di’s need not be 1. If di’s are sufficiently small, d =
∑n
i=1 di · p̂i

can also play the same role as an auxiliary input. From this, we define a dual
instance for the CCK-ACD problem, which is a generalization of an auxiliary input
and introduce a polynomial-time algorithm to solve the CCK-ACD problem when
two dual instances are given instead of one auxiliary input by slightly modifying
Cheon et al.’s algorithm.

Definition 2 (Dual Instance). Let n, η, ρ be positive integers. For given η-bit

primes p1, · · · , pn and p0 ∈ Z ∩ [2γ−1/
n∏
i=1

pi, 2
γ/

n∏
i=1

pi) in CCK-ACD, define

N =
∏n
i=0 pi and p̂i = N/pi, for 0 ≤ i ≤ n. We define a dual instance d as the

integer which can be written as d =
n∑
i=0

di · p̂i for some integers di’s satisfying

|di| ≤ pi · 2−2ρ−logn−1 for each 1 ≤ i ≤ n and d0 = 0.

An algorithm to generate a dual instance when given polynomially many CCK-
ACD samples will be described in Section 4.2.

For an integer d =
n∑
i=0

di · p̂i and CCK-ACD samples bj = CRT(pi)(ri,j) and

bl = CRT(pi)(ri,l), one can check the followings

[d]N ≡
n∑
i=0

di · p̂i (mod N), (3)

[d · bj ]N ≡
n∑
i=0

di · ri,j · p̂i (mod N), (4)

[d · bj · bl]N ≡
n∑
i=0

di · ri,j · ri,l · p̂i (mod N). (5)

Under the condition that each size of di is sufficiently small for 1 ≤ i ≤ n and
d0 = 0, the above equations hold over the integers, not moduloN . In other words,
for a dual instance d =

∑n
i=1 di · p̂i defined as above, the following inequalities

12



hold

|di · p̂i| = |di| ·
N

pi
< N · 2−2ρ−logn−1,

|
n∑
i=0

di · ri,j · ri,k · p̂j | ≤
n∑
i=1

|ri,j | · |ri,k| · |di · p̂i| ≤
n∑
i=1

N · 2− logn−1 ≤ N/2.

Thus, we observe right sides of the three equations (3), (4) and (5) have the size
less than N/2 so that those equations hold over the integer.

Now we show how to solve the CCK-ACD when given polynomially many
CCK-ACD samples and two distinct dual instances d =

∑n
i=0 di · p̂i and d′ =∑n

i=0 d
′
i · p̂i. More precisely, we are 2n CCK-ACD samples: bj = CRT(pi)(ri,j)

and b′` = CRT(pi)(r
′
i,`) for 1 ≤ j, ` ≤ n. Then we can check the following integer

equations hold.

[d · bj · b′`]N =
n∑
i=1

di · ri,j · r′i,` · p̂i ∈ Z

[d′ · bj · b′`]N =
n∑
i=1

d′i · ri,j · r′i,` · p̂i ∈ Z

We denote wj,` and w′j,` as [d · bj · b′`]N and [d′ · bj · b′`]N , respectively. Using the
above properties, we get the following matrix equations

wj,` =

n∑
i=1

ri,j · (di · p̂i) · r′i,`

=
(
r1,j r2,j · · · rn,j

)

d1 · p̂1 0 · · · 0

0 d2 · p̂2 · · · 0
...

...
. . .

...
0 0 · · · dn · p̂n



r′1,`
r′2,`
...
r′n,`

 ,

w′j,` =

n∑
i=1

ri,j · (d′i · p̂i) · r′i,`

=
(
r1,j r2,j · · · rn,j

)

d′1 · p̂1 0 · · · 0

0 d′2 · p̂2 · · · 0
...

...
. . .

...
0 0 · · · d′n · p̂n



r′1,`
r′2,`
...
r′n,`

 .

By collecting the above values of several 1 ≤ j, ` ≤ n, we can construct two
matrices W = (wj,`) and W′ = (w′j,`) ∈ Zn×n, which can be written as

W = RT · diag(d1 · p̂1, · · · , dn · p̂n) ·R′

W′ = RT · diag(d′1 · p̂1, · · · , d′n · p̂n) ·R′

13



for R = (rj,i) and R′ = (r′i,`) ∈ Zn×n. By computing (W′)−1 over Q, we obtain
the matrix Y as following form

Y = W · (W′)−1 = RT · diag(d1/d′1, · · · , dn/d′n) · (RT )−1

whose eigenvalues are exactly the set {d1/d′1, · · · , dn/d′n} ⊂ Q. We can compute
those rational eigenvalues in polynomial-time of η, n and ρ from Y. Since the
modular equations d ≡ di · p̂i (mod pi) and d′ ≡ d′i · p̂i (mod pi) hold, one can
check that pi divides d · d′i− d′ · di for each i. Thus, by computing gcd(N, d · d′i−
d′ · di), we can find the pi for each 1 ≤ i ≤ n. Considering the overall cost of the
computations required, we obtain the following theorem.

Theorem 1. (Adapted from [5, Section 3.2]) For given O(n) CCK-ACD samples

from Dη,ρ,n(pi) with N =
n∏
i=1

pi and two distinct dual instances, one can recover

secret primes p1, · · · , pn in Õ(n2+ω ·η) time with ω ≤ 2.38 and and overwhelming
probability to ρ.

4.2 Generating a Dual Instance from SDA

In this section, we present an algorithm to generate a dual instance from poly-

nomially many given CCK-ACD samples bj = CRT(pi)(rij) and N =
n∏
i=0

pi.

Consider the column lattice Λ generated by the following basis matrix.

B =


1 0 0 · · · 0
b1 N 0 · · · 0
b2 0 N · · · 0
...

...
...
. . .

...
bk 0 0 · · · N

 .

We confirm that any lattice vector c ∈ Λ with ‖c‖ ≤ N
2 can be written in the

form of ([d]N , [d · b1]N , · · · , [d · bk]N )T , where d =
n∑
i=0

di · p̂i for some di’s and the

modular equation [d · bj ]N ≡
n∑
i=0

ri,j · [di]pi · p̂i (mod N) holds for each j. In the

next theorem, we prove that if c ∈ Λ is a sufficiently short vector for a proper
integer k, and the size of each [di]pi is small. It implies that the first entry of the
vector c,

∑n
i=1[di]pi · p̂i is a dual instance.

Theorem 2. Let n, η, ρ be parameters of the CCK-ACD problem. When O(γ/η)

CCK-ACD samples are given, one can find a dual instance in 2
O
(

γ

(η−ρ)2

)
time up

to polynomial factors.

Proof. Suppose that k > n CCK-ACD samples bj = CRT(pi)(ri,j) and N =
n∏
i=0

pi

are given. We denote r0,j as [bj ]p0 . Consider the column lattice Λ generated by
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Algorithm 2 SDA algorithm for the CCK-ACD problem
Input: N =

∏n
i=0 pi

Input: Root Hermite factor δ0
Input: CCK-ACD samples bj = CRT(pi)(ri,j) for 1 ≤ j ≤ 2k with k = b

√
γ

2 log δ0
e.

Output: prime factors pi’s of N
1: m← 0
2: while m ≤ 1 do
3: Set b← (b1+mk, b2+mk, · · · , bk+mk)

4: Construct a lattice Λ = Λ(B) with a basis matrix B =

(
1 0

bT N · Ik

)
5: v = (v0, v1, · · · , vk)← Aδ0(Λ)
6: if 2(k + 1) log δ0 +

1
k+1 logN < η − ρ− log 2

√
2πe then

7: d(m) ← v0
8: m← m+ 1
9: end if

10: end while
11: Construct matrices W = ([d(0) · bi · bn+j ]N ) ∈ Zn×n and W′ = ([d(1) · bi · bn+j ]N ) ∈ Zn×n.
12: Calculate (W′)−1 over Q and Y = W · (W′)−1 ∈ Qn×n
13: Compute eigenvalues {λ1, λ2, · · · , λn} ⊂ Q of Y

14: Compute pairs of integers (d(0)i , d
(1)
i ) from λi =

d
(0)
i

d
(1)
i

for 1 ≤ i ≤ n.

15: pi ← gcd(N, d(0) · d(1)i − d(1) · d
(0)
i ) for 1 ≤ i ≤ n

16: return pi’s.

the following basis matrix B

B =


1 0 0 · · · 0
b1 N 0 · · · 0
b2 0 N · · · 0
...

...
...
. . .

...
bk 0 0 · · · N

 ,

where bj ’s are given CCK-ACD samples and N =
n∏
i=0

pi. Note that any vector v

in the lattice Λ can be expressed as the following form

v ≡ a0 · p̂0


1
r0,1
r0,2
...
r0,k

+ a1 · p̂1


1
r1,1
r1,2
...
r1,k

+ · · ·+ an · p̂n


1
rn,1
rn,2
...

rn,k

 (mod N).

for some integers ai’s. We denote p̂i · (1, ri,1, ri,2, · · · , ri,k)T by vi for each i.
Then, vi’s are linearly independent and ‖vi‖ ≤ B :=

√
k + 1 · N · 2−η+ρ+1 for

all i 6= 0, so λi(Λ) ≤ B holds for 1 ≤ i ≤ n.
We apply Gaussian Heuristic to estimate λn+1(Λ) which is approximately√
k+1
2πe · (detΛ)

1
k+1 . Suppose the size of a vector c ∈ Λ obtained by the lat-

tice reduction algorithm Aδ is shorter than δ2(k+1) · λ1(Λ) ≤ δ2(k+1) · B <
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√
k+1
2πe · (detΛ)

1
k+1 ≈ λn+1(Λ). Then, we conclude c ∈ 〈v1, · · · ,vn〉 and p0 di-

vides gcd(N, d), where d is the first entry of the vector c. Hence, we require
that the length of vector c, the first output of the lattice reduction algorithm, is
shorter than

√
k+1
2πe · (detΛ)

1
k+1 . It can be written as

‖c‖ ≤ δ2(k+1) · λ1(Λ) < δ2(k+1) ·B <

√
k + 1

2πe
· (detΛ)

1
k+1 .

Taking logarithm to both sides of the inequality, we obtain as follows:

2(k + 1) log δ + logN − η + ρ+ 1 ≤ k

k + 1
logN − 1

2
log 2πe

2(k + 1) log δ +
1

k + 1
logN < η − ρ− log 2

√
2πe (6)

In particular, when applying the AM-GM inequality for the left side of (6), we
obtain the following inequality

2
√

2 log δ · logN ≤ η − ρ−O(1)

where equality holds if and only if (k + 1)2 ≈ γ
2 log δ and γ · log δ ≈ (η−ρ)2

8 .

Thus, when we choose δ satisfying log δ < (η−ρ)2
8γ − ε for some small ε and

k ≈ 2γ
η−ρ = O(γη ), we can conclude that output vector c of Aδ can be written as

c =
n∑
i=1

di ·vi for some di’s. If we denote the first entry of c as d, the vector c is the

form of (d, [d·b1]N , · · · , [d·bk]N )T . Then d =
n∑
i=1

di ·p̂i and [d·bj ]N =
n∑
i=1

ri,j ·di ·p̂i
hold for each j. In this case, d is a multiple of p0 so that one can recover the
factor p0 by computing gcd(d,N). Since the root Hermite factor δ is achieved
in time poly(k) ·2O(β) times by the BKZ algorithm with β = Θ(1/ log δ), we

conclude that one can recover the factor p0 in 2
O
(

γ

(η−ρ)2

)
time up to polynomial

factor using the BKZ algorithm with β ≈ O
(

γ
(η−ρ)2

)
.

Next, we propose the condition for terms di’s to be sufficiently bounded
so that it can be regarded as a dual instance. We denote c̃ as k-dimensional
vector which can be obtained by removing the first coordinate of c (i.e. c̃ =

([d · b1]N , · · · , [d · bk]N )T ). Using the property [d · bj ]N =

n∑
i=1

ri,j · di · p̂i for each

j, c̃ can be decomposed as follows:

c̃ = (d1 · p̂1, · · · , dn · p̂n) ·


r1,1 r1,2 · · · r1,k
r2,1 r2,2 · · · r2,k
...

...
. . .

...
rn,1 rn,2 · · · rn,k


= d · P̂ ·R,
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where d = (d1, · · · , dn), P̂ = diag(p̂1, . . . , p̂n), and R = (ri,j) ∈ Zn×k.
We will show later that there is a right inverse R∗ ∈ Zk×n such that R ·R∗ =

In, where In is the n×n identity matrix. Then, for each i, |di · p̂i| can be bounded
as follows

|di · p̂i| ≤ ‖d · P̂ ‖∞ = ‖c̃ ·R∗ ‖∞ ≤ ‖c̃‖ · ‖R∗‖∞.

If there is a matrix R∗ which satisfies ‖c‖ · ‖R∗‖∞ ≤ N · 2−2ρ−logn−1, it
implies that each di is smaller than N · 2−2ρ−logn−1/p̂i. Thus, under the above

condition, the integer d =
n∑
i=1

di · p̂i, the first entry of output vector c, can be

regarded as a dual instance.
Thus, it is enough to show the existence of matrix R∗ which ensures that the

size of ‖c‖·‖R∗‖∞ is less than N · 2−2ρ−logn−1 with ‖c‖ ≤ δ2(k+1) ·
√
k + 1 ·N ·

2−η+ρ+1 to obtain a dual instance by using the lattice reduction algorithm.

Construction of R∗. Now, we construct the right inverse matrix R∗ and esti-
mate the size of ‖R∗‖∞ using Babai’s nearest plane algorithm [2] and Gaussian
Heuristic assumption.

More precisely, let q1 be a prime integer, which is independent from
n∏
i=1

pi, and

z1 ∈ Zk be any vector with R · z1 ≡ e1 (mod q1), where e1 is a n-dimensional
standard vector. Consider a full rank lattice Λ1 = {x ∈ Zk : R ·x ≡ 0 (mod q1)}
whose determinant is qn1 and the set of linearly independent vectors {xi}1≤i≤k ⊂
Zk such that ‖xi‖ ≤ λk(Λ1) for each i. We accept Gaussian heuristic to estimate

λk(Λ1) ≈
√

k

2πe
· det(Λ1)

1/k
=

√
k

2πe
· q1n/k so that we can bound ‖xi‖ ≤√

k

2πe
· q1n/k for each i.

Using the Babai’s nearest plane algorithm on vector z, we obtain the vector
k∑
i=1

ui · xi so that ‖z −
k∑
i=1

ui · xi‖ ≤

√√√√1

4

k∑
i=1

‖x∗i ‖2 holds, where each x∗i is

Gram-Schmidt vector of xi. We denote z1
′ as z1 −

k∑
i=1

ui ·xi and we obtain the

following:

‖z1
′‖ = ‖z1 −

k∑
i=1

ui · xi‖ ≤

√√√√1

4

k∑
i=1

‖x∗i ‖2 ≤
1

2

√√√√ k∑
i=1

‖xi‖2 ≤
k

2
· q1n/k.

For the modular equation

0 ≡ R · z1
′ − e1 ≡ ([R]1 · z1

′ − 1, [R]2 · z1
′, · · · , [R]n · z1

′)
T

(mod q1),

if |[R]i · z1
′| ≤ ‖[R]i‖ · ‖z1

′‖ ≤
√
k · 2ρ · k2 · q1

n
k is less than 1

2q1 for all i (i.e.
q1 > (k

3
2 · 2ρ)

k
k−n ), the equation R · z1

′ = e1 holds over the integers.
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By setting the size of prime q1 to be similar to (k
3
2 · 2ρ)

k
k−n , we can conclude

that there exists a vector z1
′ which satisfies the equation R · z1

′ = e1 and the
following condition

‖z1
′‖1 ≤

√
k · ‖z′1‖2 ≤

1

2
· k 3

2 · q1
n
k ≈ 1

2
· k

3k
2(k−n) · 2

n
k−nρ.

Similarly, we can also apply it to other zi’s to construct R∗ = (z1
′, · · · , zk′)

with the vectors zi′ satisfying R · zi′ = ei, so we can bound ‖R∗‖∞ as follows

‖R∗‖∞ = max
1≤i≤k

‖zi′‖1 ≤
1

2
· k

3k
2(k−n) · 2

n
k−nρ.

Hence, we can obtain the upper bound of ‖c‖ · ‖R∗‖∞ as follows

‖c‖ · ‖R∗‖∞ ≤ δ′
2(k+1) ·

√
k + 1 ·N · 2−η+ρ+1 · 1

2
· k

3k
2(k−n) · 2

n
k−nρ.

We remind that the size of ‖c‖ · ‖R∗‖∞ needs to be less than N · 2−2ρ−logn−1.
Therefore the following inequality should be satisfied

δ2(k+1) ·
√
k + 1 ·N · 2−η+ρ · k

3k
2(k−n) · 2

n
k−nρ ≤ N · 2−2ρ−logn−1

Taking logarithm to both sides of the inequality, we obtain as follows

2(k + 1) log δ ≤ η − 3ρ− n

k − n
ρ− 3k

2(k − n)
log k − log(2n

√
k + 1) (7)

Since we set k ≈ 2γ
η−ρ > 2n, the condition k

k−n = O(1) holds so we can
rewrite the above equality and obtain the following condition for n, k, η, and ρ

2(k + 1) log δ ≤ η − 3ρ− n

k − n
ρ−O(log k).

The left side of the above inequality 2(k + 1) log δ is approximated as 4γ
η−ρ ·

(η−ρ)2
8γ ≈ η−ρ

2 so that the equality holds with our optimized parameters k ≈ 2γ
η−ρ

and log δ < (η−ρ)2
8γ − ε for the condition (6). Thus we can conclude that when

we use the lattice reduction Aδ with log δ < (η−ρ)2
8γ − ε for some small ε > 0

and about 2γ
η−ρ CCK-ACD samples to construct the lattice Λ, the conditions (6)

and (7) are satisfied. In other words, we can obtain a dual instance from the first

entry of output vector in 2
O
(

γ

(η−ρ)2

)
time up to polynomial factor. �

Remark 1. The time 2O
(

γ

(η−ρ)2

)
up to polynomial factor required for the above

algorithm does not depend on the number of secret primes n and bit-length of
the multiple of n secret primes n · η but depends on the bit-length of CCK-ACD
samples γ.
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5 Experiments

In this section, we provide the experimental results of OLA, SDA for the CCK-
ACD problem. All experiments were implemented on a single Intel Core i5 run-
ning at 2.1GHz processor and 16GB memory.

We remark that we use a few simplifications for the experiments to run our
algorithm; we run fplll algorithm [10] instead of BKZ algorithm. For efficient ex-
periment, we choose the number of samples, k, to satisfy the required conditions
for attack instead of the asymptotic optimum.

OLA
CCK-ACD

Experimental parameters Expeimental Det Expected Det
n k η ρ γ/104 time(min) CCK-ACD Random CCK-ACD Random
20 65 1500 500 6 3 10022 38707 10000 38682
30 90 1000 100 8 14 3040 50804 3000 50753
40 120 600 120 5.4 21 5661 34785 5600 34683
50 150 1000 300 10 128 15085 64871 15000 64706
80 150 400 70 4.7 36 5727 21530 5600 21354
80 240 400 100 6.7 615 8162 44239 8000 43840
90 270 200 40 3.8 490 3790 25433 3600 24916
100 240 400 50 8 790 5199 46306 5000 45875
*10 320 988 26 29 14600 284 254770 260 254574
**10 325 988 80 29 15540 824 254813 800 254713

Table 1: Experiments about OLA on the CCK-ACD problem. Random means
that we do the OLA with random instances whose size is γ−bits. Parameters* is
the toy parameters in [7] with λ = 42 and our attack cost is 247. Parameters** is
increasing the size of ρ to withstand the GCD attack in [3], although our attack
cost is almost the same.

According to our experiments in Table 1, from various parameters, we can see
that the determinant of the orthogonal lattice is very similar to our prediction.
Thus, our several assumptions of OLA are reasonable for CCK-ACD and random
instances. Especially, in actual use of parameters, the difference of determinant
between CCK-ACD and random is more pronounced because n and ρ are very
smaller than γ.

Experimental results of OLA say that our expectation of the condition for
OLA is very accurate because OLA failed if we were not satisfied with our
condition (2) a little bit. OLA works well even when the ρ is quite large as long
as the condition (2) is satisfied.

We also experimented with a toy parameter in [7]. OLA is slower than conven-
tional attacks, GCD attack in [3], in toy parameters. Since conventional attacks,
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the GCD algorithms, in [3] is Õ(2ρ/2) polynomial-time operation, they depend
a lot on the size of ρ unlike OLA. If ρ is larger than current parameters, then
OLA can be the faster than other direct algorithms for the CCK-ACD problem.

When the number of secret primes, n, is small, OLA can even find the exact
some ri through LLL algorithm on Λ⊥(Ũ). But if n is more than 100, the outputs
of the LLL algorithm are linear combinations of ri’s with a high probability. For
the above reason, we find it difficult to get an exact ri when n is large.

SDA
CCK-ACD

n k η ρ γ/104 time(min)
20 60 1500 500 6 59
30 90 1000 100 8 550
40 120 600 120 5.4 692
50 150 1000 300 10 3650
80 150 400 70 4.7 760
80 240 400 100 6.7 9300
90 270 200 40 3.8 5900
100 300 120 10 2.5 8870
100 250 400 50 8 13950

Table 2: Experiments about SDA on the CCK-ACD problem.

In Table 2, we can see SDA experimental results on the CCK-ACD problem.
According to our results, we have confirmed that experimental results of SDA are
better than we expected, even in parameters that do not satisfy our condition.
In SDA, we can not only distinguish them from a uniform distibution but also
find the factor of N and recover the secret primes.

In the CCK-ACD problem, OLA is much faster than SDA like the ACD prob-
lem. It is not surprising considering the size of the determinant of lattice applying
lattice reduction algorithm.
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