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Abstract. In this paper, we consider the setting where a party uses
correlated random tapes across multiple executions of a cryptographic
algorithm. We ask if the security properties could still be preserved in
such a setting. As examples, we introduce the notion of correlated-tape
zero knowledge, and, correlated-tape multi-party computation, where, the
zero-knowledge property, and, the ideal/real model security must still
be preserved even if a party uses correlated random tapes in multiple
executions.

Our constructions are based on a new type of randomness extractor
which we call correlated-source extractors. Correlated-source extractors
can be seen as a dual of non-malleable extractors, and, allow an adversary
to choose several tampering functions which are applied to the random-
ness source. Correlated-source extractors guarantee that even given the
output of the extractor on the tampered sources, the output on the orig-
inal source is still uniformly random. Given (seeded) correlated-source
extractors, and, resettably-secure computation protocols, we show how
to directly get a positive result for both correlated-tape zero-knowledge
and correlated-tape multi-party computation in the CRS model. This is
tight considering the known impossibility results on cryptography with
imperfect randomness.

Our main technical contribution is an explicit construction of a correlated-
source extractor where the length of the seed is independent of the num-
ber of tamperings. Additionally, we also provide a (non-explicit) existen-
tial result for correlated source extractors with almost optimal parame-
ters.

1 Introduction

Randomness is known to be crucial for cryptography. It is known that several
basic tasks in cryptography become impossible in the absence of randomness
[GO94,DOPS04]. Given this, a natural and well motivated direction is to develop
an understanding of the extent to which randomness is necessary. Towards that
end, we study the following natural question.
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Suppose that a party uses correlated random tapes in multiple executions
of a cryptographic algorithm. Can the security still be preserved? As a con-
crete example, suppose that the prover uses correlated random tapes in multiple
executions with an adversarial verifier. Can the zero-knowledge property still
be preserved? What about encrypting multiple times (under a randomized en-
cryption scheme) using correlated random tapes? The above question can be
motivated by, e.g., a scenario where a party has a defective random number gen-
erator which outputs correlated tapes under multiple invocations (even though
each individual tape may have high min-entropy or even be close to uniform).

The well-known line of research on resettable security can be seen as a
special case of our general problem. In resettable zero-knowledge [CGGM00],
the prover uses the same random tape across multiple executions. By vary-
ing the set of parties whose random tape is fixed, one can get various variants
such as resettably-sound zero-knowledge [BGGL01], simultanous resettable zero-
knowledge [DGS09], and, resettably secure computation [GS09,GM11].

In this work, we initiate a systematic study of the above question. The cen-
tral object of our study will be a new notion of randomness extractors which we
call correlated-source extractors. Very informally, a (seeded) correlated source ex-
tractor csExt on input a seed s, and a source X produces an output csExt(X, s)
which is guaranteed to be close to uniform even given csExt(X1, s), ..., csExt(Xt, s)
where for all i, Xi 6= X and Xi could be arbitrarily correlated with X. One could
also view Xi as a result of tampering the original source X. Correlated-source
extractors can be seen as a dual of non-malleable extractors [DW09], where the
adversary is allowed to tamper the seed instead of the source. Non-malleable
extractors have played an important role in cryptography and complexity in
problems such as privacy amplification [DW09], designing two-source extrac-
tors [CZ16], and in designing non-malleable codes [CG14a,CGL16]. Correlated-
source extractors are also closely related to two-source non-malleable extractors
[CG14a,CGL16].

1.1 Our Results.

We introduce the notion of correlated-tape zero-knowledge. We model correla-
tions among the different random tapes by consider an adversary which may
have limited control over the random tape of the honest parties. In correlated-
tape zero-knowledge, the adversary is able to specify t tampering functions
f1, f2, ..., ft at the beginning of the protocol such that in the i−th execution,
the prover uses fi(X) as its random tape (where X is uniformly random and
can be viewed as the original random tape). Other notions like correlated-tape
secure multi-party computation (MPC) and correlated-tape secure encryption
schemes could also be defined analogously. We also define the the main object
of our study: correlated-source extractors. Specifically,

Definition 1 (Seeded Correlated-Source Extractor). A function csExt :
{0, 1}∗×{0, 1}d → {0, 1}m is a seeded correlated-source extractor if the following
holds: There exists a polynomial k(·, ·, ·) and a negligible function ε(·), such that
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for any polynomial t(·), t = t(d) arbitrary functions A1,A2, ...,At, whose output
has the same length as the input, with no fixed points, and, a source X with
min-entropy k(t,m, d),

|csExt(X,Ud)◦{csExt(Ai(X), Ud)}ti=1◦Ud−Um◦{csExt(Ai(X), Ud)}ti=1◦Ud| < ε(d)

where Um and Ud are uniform strings of length m and d respectively.

Jumping ahead, in our cryptographic applications, the seed will serve as the
CRS while the source X will be the local random tape generated by the party. We
require the output length, and, the source length (and hence the min-entropy)
to be (unbounded) polynomial in the length of the seed. Thus, fixing the CRS
(i.e., the seed) doesn’t necessarily fix the number of executions (represented by
t). One could also define a weaker notion of correlated-source extractors where
the seed fixes a bound on the number of executions. Specifically,

Definition 2 (Weak t-Correlated-Source Extractor). A function wcsExt :
{0, 1}n × {0, 1}d → {0, 1}m is a weak t-correlated-source extractor for min-
entropy k and error ε if the following holds: If X is a source in {0, 1}n with
min-entropy k, and, A1,A2, ...,At are arbitrary functions whose output has the
same length as the input, with no fixed points, then

|wcsExt(X,Ud)◦{wcsExt(Ai(X), Ud)}ti=1◦Ud−Um◦{wcsExt(Ai(X), Ud)}ti=1◦Ud| < ε

where Um and Ud are uniform strings of length m and d respectively.

Our first main result is a construction of a correlated-source extractor:

Theorem 1. There exists an explicit correlated-source extractor csExt with

k(t,m, d) = Θ(t3d+ t2m)

ε(d) = Θ(2−
√
d)

where m is the length of the output.

Note that it is necessary for the entropy of the source to grow with the
number of executions t if the tampered sources may be arbitrarily correlated
with the original source. This is because the entropy of the original source may
reduce given the output of the extractor on a tampered source. In section 5.4 we
generalize the entropy requirements on the sources. In particular, we define what
we call closed-set correlated sources and show correlated set extractors for such
sources. For closed-set correlated source, the entropy of each individual source
does not necessarily grow with the number of invocations t. Hence, this would
allow us to get constructions where neither the seed length, nor the source length
or its entropy grows with the number of invocations.
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Going to Correlated-Tape Zero-Knowledge and Secure Computation. We note
that correlated-source extractors can only allow us to handle the random tapes
where each random tape differs from every other one. We relax this constraint
by relying on techniques from resettable zero-knowledge [CGGM00] [BGGL01],
and, resettably secure computation [GS09]. In resettable zero-knowledge, the
prover uses the same random tape across multiple executions. In our setting,
the random tape could either be the same or arbitrarily correlated with another
random tape. Very informally, relying on resettable security would allow us to
achieve security in case the random tape is the same as another one, and, relying
on correlated source extractor would guarantee security in case the random tape
is different from every other tape but maybe arbitrarily correlated.

This allows us to obtain positive results for correlated-tape zero-knowledge
and multi-party computation in the CRS model where the only (necessary) re-
quirement on the random tape would be sufficient min-entropy; otherwise each
random tape could be arbitrarily correlated to or even the same as other random
tapes. The seed required for the correlated source extractor would be a part
of the CRS. Each party in the protocol would first apply correlated-source ex-
tractor on its (potentially tampered) random tape, and, use the resulting string
as the random tape to execute a resettable secure MPC (or zero-knowledge)
protocol. We note that correlated-tape zero-knowledge and similar primitives
such as correlated-tape encryption are impossible to obtain in the plain model.
This holds even for a single execution and follows from the known impossibility
results on cryptography with imperfect and tamperable randomness [DOPS04]
[ACM+14] (see section 4 for more details). We also give stronger impossibility
results in Section 4.

Weak Correlated-Source Extractors. Note that basic positive result for weak
correlated-source extractor follows from the construction of two-source non-
malleable extractors in [CGL16]. In fact, two-source non-malleable extractors
allow the adversary to also tamper the second source (the random seed) and
only requires the second source (the random seed) to have enough min-entropy.
However, directly using two-source non-malleable extractor or similar techniques
cannot give a positive result for correlated source extractor. This is because two-
source non-malleable extractor will require the seed length to be either as long
as that of the source or linear in t. Note that this would give a positive result
only for bounded correlated-tape zero-knowledge and secure computation where
the number of executions must be fixed before choosing the CRS. We note that
obtaining a construction where the seed length is independent of the number
of tamperings has been a challenging problem in this line of research. In par-
ticular, obtaining such an explicit construction for non-malleable extractors still
remains an open problem. An existential result has however been shown very
recently [BACD+18].

Correlated-Source Extractors with Almost Optimal Parameters. Next, we turn
our attention to the following natural question: what is the optimal entropy and
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source length that a correlated-source extractor requires? Towards that end, we
prove the following existential result:

Theorem 2 (Existence of Correlated-Source Extractor). There exists a
correlated-source extractor csExt as long as

k(t,m, d) = Θ(tm+ d) (1)

ε(d) = Θ(2−d) (2)

where m is the length of the output.

For an overview of our techniques, please refer to Section 2.

Related Works. Designing randomness extractors has been a rich line of works.
Most relevant to our work are non-malleable extractors [DW09], and, two source
non-malleable extractors [CG14a,CGL16]. After the initial constructions, a num-
ber of works have focused on improving the entropy requirements and the seed
length [Li12a,Li12b,DLWZ14,Li15,CL16,Coh16b,Coh16c,Coh16a,Li16,Li17]. How-
ever, all known explicit constructions of non-malleable and two-source non-
malleable extractors require the length of the seed to grow with the number
of tamperings t. Two-source non-malleable extractors from [CGL16] were used
crucially in a recent breakthrough on constructing two-source extractors [CZ16].

A number of works have studied simulating randomized algorithms using
weak sources with small min-entropy [VV85,CG88,Zuc96,SSZ95,ACRT97]. An-
dreev et al. [ACRT97] gave a simulation of any BPP algorithm with an (n, nO(1))-
source. In contrast, we focus on multiple executions with correlated random tapes
and have weaker entropy requirements.

A rich line of works have studied resettable secure protocols [CGGM00],
[BGGL01,DGS09,GM11,BP13,CPS16,COPV13,COP+14], where a party may
use the same random tape in multiple executions. The class of correlations we
handle is more general. Kalai et al. [KLRZ08] introduced network extractor
protocols where there are a number of parties each having independent (but im-
perfect) random tapes. Their result required a strong variant of the Decisional
Diffie-Hellman Assumption, and, a polylogarithmic number of parties.

Goldreich and Oren [GO94] showed that constructing zero-knowledge ar-
guments where the prover is deterministic is impossible. Dodis et al. [DOPS04]
showed that a number of basic cryptographic primitives like encryption and zero-
knowledge are impossible with imperfect randomness. Austrin et al. [ACM+14]
similarly showed a number of impossibility results (including for zero-knowledge)
in the setting of tampering randomness. These results focus on the plain model
and in the setting of a single execution. Moving to the CRS model allows us
to bypass these negative results. A line of research also explores cryptography
with related keys and related inputs (see [ABP15] and the references therein),
typically for a special class of tampering functions (such as affine functions).
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2 Technical Overview

Explicit Construction with Fixed Seed Length. In this section, we will give a high
level idea of our construction of correlated-source extractors. We use X for the
original source and Xi for the tampered source. We use Y for the random seed.

Why existing techniques fail. All the construction ideas related to two-source
non-malleable extractors (which imply the existence of weak correlated-source
extractors) somehow separate the original seed into several independent and
uniformly random “slices”. A general framework to constructing non-malleable
extractors (and two-source non-malleable extractors) followed by several works
is based on alternating extraction [DW09] and generating an advice (which is
unique w.h.p. across all the tampered executions). A critical step in such con-
structions is to view the original seed as a second source. In the beginning, a
slice of the seed is used to extract from the source. Next, the result is used
as a seed to extract from the original seed. Next, the result is again used as a
seed to extract from the source, and so on. This technique relies on the length
of the original seed to be long enough. In particular, during the analysis, each
tampering would “fix” a part of the random seed. This means that, the effective
entropy of the seed reduces as the number of tampered executions increase. By
using alternating extraction where the seed plays the role of one of the source,
it seems that the seed length must be linear in t.

Overview of the construction. Our idea is to generate two (or multiple) in-
dependent sources from the original source itself. A straightforward idea is to
generate (X1, X2) from X, such that the distribution of {X1, X1

1 , ..., X
1
t } is inde-

pendent of {X2, X2
1 , ..., X

2
t } (here Xi is the i−th tampering source and (X1

i , X
2
i )

are generated from Xi). Then we may discard the original seed and use a two-
source non-malleable extractor on X1 and X2. However, we don’t know how
to prove the joint distributions of two sets are independent. Our starting idea
would be to use the given random seed in obtaining such a “decomposition” of
the original source. We use one part of the seed Y1 to generate X1 = Ext(X,Y1)
and another part of the seed Y2 to generate X2 = Ext(X,Y2). By assuming the
source X has enough entropy, we can guarantee that, given {X2, X2

1 , ..., X
2
t },

X1 is uniformly random. Note that the joint distribution of {X1, X1
1 , ..., X

1
t }

may be dependent on that of {X2, X2
1 , ..., X

2
t }, while two-source non-malleable

extractors require the adversary tampers both sources separately. Thus, it is not
sufficient to use two-source non-malleable extractors.

We first generate an advice adv from the source X (and advi from Xi) such
that it is unique w.h.p. across all the tampered executions. Let ` denote the
length of the advice. Then, instead of just generating (X1, X2) from X, we
generate 2` sources (X1, X2, ..., X2`) from X such that, for every i ∈ {1, ..., 2`},
Xi is uniformly random given {Xj , Xj

1 , ..., X
j
t }j 6=i.

Let advi denote the i−th bit of adv. Each bit advi corresponds to a pair of
sources (X2i−1, X2i). The extractor first uses one piece of the original seed as the
seed and extracts randomness from one source of the first pair (X1, X2) decided
by the value of adv1, then uses the result as the seed and extracts randomness
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from one source of the second pair (X3, X4) and so on. Specifically, in the i−th

iteration, we choose X2i−1+advi . This process can be described by a function
F = F (advi, X2i−1, X2i, Y, Zi−1), where Zi−1 is the result in the last iteration
and initially, Z0 is one piece of the original seed.

Note that, in the case that adv is different from all tampered adv1, ..., advt,
for all j ∈ {1, ..., t}, there exists at least one iteration (denoted by the i−th
iteration) such that the i−th bits of adv and advj are different. We note that

X2i−1+advi is in fact independent of X
2i−1+advij
j . Thus, hopefully, we can break

the correlation between X and Xj in this iteration, i.e., Zi is independent of Zij .
We also need this independence to be preserved in all later iterations. Therefore,
in the end, since adv is different from all tampered advice, Z` is independent of
Z`1, ..., Z

`
t .

Now we are ready to state our construction overview in more detail. It can
be divided into two steps.

Step 1: Generating advice adv and limited correlated parts X1, ..., X2`

In the beginning, we generate an advice adv for the source X such that, with
high probability, adv is different from adv1, ..., advt (the advice of X1, X2, ..., Xt).
This idea is not new and is widely used in the constructions of non-malleable
extractors (e.g. in [Coh15,CGL16]).

Recall that ` is the length of adv. We generate X1, X2, ..., X2` by using a fresh
seed Y i1 for each part Xi. Specifically, Xi = Ext(X,Y i1 ) (and Xi

j = Ext(Xj , Y
i
1 )).

Note that the random seeds in all executions are the same.
These sources X1, X2, ..., X2` directly satisfy our requirement, i.e., for ev-

ery i ∈ {1, ..., 2`}, Xi is uniformly random given {Xj , Xj
1 , ..., X

j
t }j 6=i. To see

this, let X i = {Xi, Xi
1, ..., X

i
t}. In the case that X has enough min-entropy and

X1, ..., X2` are comparatively short, X still has enough min-entropy when fixing
X 1, ...,X i−1,X i+1, ...,X 2`. Also, Y i is a fresh piece from the seed. Thus, by the
property of Ext,Xi is uniformly random and independent of X 1, ...,X i−1,X i+1, ...,X 2`.

Step 2: Breaking correlation between sources by induction
Let SAMEi be the set of indices of sources whose advice is different from adv in

at least one bit of the first (i−1) bits but is the same in the i−th bit, and DIFFi

be the set of indices of sources whose advice is different from adv in the i−th bit.
Then after the (i−1)−th iteration, Zi−1 should have been uniformly random and
independent of {Zi−1j }j∈SAMEi . So for j ∈ SAMEi, we want this independence to
be preserved in the i−th iteration. And we want to further break the correlation
with the j−th tampered result where j ∈ DIFFi in the i−th iteration.

In the (i− 1)−th iteration, we should have already achieved that

|Zi−1 ◦ {Zi−1j }j∈SAMEi−1
⋃

DIFFi−1 − Uz ◦ {Zi−1j }j∈SAMEi−1
⋃

DIFFi−1 | < ε

where z is the length of Zi−1. A critical fact is that the above inequality still holds
even given X 2i−1 and X 2i. Because what we need to prove the above property
is that Xj is uniformly random when given {X k}k 6=j for every j ∈ {1, ..., 2i−2}.
Fixing X 2i−1 and X 2i does not break this condition by the way how we generated
X1, ..., X2i−2.
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For a series of correlated sources X,X1, ..., Xt, there are two ways to break
the correlation. If the random seeds are independent and uniformly random for
different sources, then the output is uniformly random and independent of others
in the case that X has enough min-entropy. If X given X1, X2, ..., Xt still has
enough min-entropy, then even if the seeds are not independent, the output of
extractor is still uniformly random and independent of others. This idea is also
used in the recent construction of non-malleable extractors (e.g. in [CL16]).

We note that, for the executions whose indices j ∈ SAMEi, they will use

X
2i−1+advij
j where 2i−1+advij = 2i−1+advi. It means that {X2i−1+advij

j }j∈SAMEi
may be highly correlated withX2i−1+advi . However, since SAMEi ⊆ SAMEi−1

⋃
DIFFi−1,

Zi−1 is uniformly random and independent of {Zi−1j }j∈SAMEi . If we use Zi−1 as

the seed to do extraction on X2i−1+advi , the result is independent of those of
executions whose indices j ∈ SAMEi. Specifically,

Sub-Step 2.1: Breaking correlation with sources in SAMEi

Let Ext be a strong seeded extractor. Compute W i = Ext(X2i−1+advi , Zi−1)
(andW i

j for the result in the j−th tampered execution). Then, given {W i
j}j∈SAMEi ,

W i is uniformly random.

Now, we want to further break the correlation with the j−th tampered result
where j ∈ DIFFi. Currently, W i may be correlated with {W i

j}j∈DIFFi . However,

We note that we can fix X 2i−1+(1−advi) in Sub-Step 2.1 without breaking the

property of the result. Since, for j ∈ DIFFi, W i
j only depends on X

2i−1+advij
j and

Zi−1j , and X
2i−1+advij
j has already been fixed (because advij = 1−advi), W i will

have enough min-entropy even fixing {Zi−1j }j∈DIFFi if we choose the length of

W i to be much longer than that of Zi. It also means that W i given {W i
j}j∈DIFFi

still has enough min-entropy. Therefore, we can simply use a fresh piece of the
original seed as the seed to do extraction on W i. The result will be independent
of those of executions whose indices are in SAMEi

⋃
DIFFi. Specifically,

Sub-Step 2.2: Breaking correlation with sources in DIFFi

We use a fresh piece Y i2 from the original random seed Y . Compute Zi =
Ext(W i, Y i2 ) as the output of the i−th iteration.

3 Preliminaries

We use capital letters to denote random variables. We use Ur to denote the
uniform distribution over {0, 1}r. For random variable X, we use x ∼ X to
denote that x is sampled from the distribution of X.
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3.1 Statistical Distance, Convex Combination of Distributions and
Probability Lemma

Definition 3 (Statistical Distance). Let D1 and D2 be two distributions on
a set S. The statistical distance between D1 and D2 is defined to be:

|D1 −D2| = max
T⊆S
|D1(T )−D2(T )| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

D1 is ε−close to D2 if |D1 −D2| ≤ ε.

Definition 4 (Convex Combination). A distribution D on a set S is a con-
vex combination of distributions D1, D2, ..., D` on S if there exists non-negative
constants (called weights) w1, w2, ..., w` with

∑l
i=1 wi = 1 such that Pr[D = s] =∑`

i=1 wi Pr[Di = s] for all s ∈ S. We use the notation D =
∑`
i=1 wiDi to de-

note the fact that D is a convex combination of the distributions D1, ..., D` with
weights w1, ..., w`.

3.2 Min-entropy and Flat Distribution

The min-entropy of a source X is defined as

H∞(X) = − log( max
x∈support(X)

(1/Pr[X = x]))

A distribution D is a flat distribution (source) if it is uniformly random over a
set S. An (n, k)-source is a distribution over {0, 1}n with min-entropy at least
k. It is well known that any (n, k)-source is a convex combination of flat sources
supported on sets of size 2k.

3.3 Seeded Extractors, Non-malleable Extractors, Two-source
Non-malleable Extractors and Previous Construction

Definition 5 (Strong seeded Extractor). A function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is called a strong seeded extractor for min-entropy k and error ε if for
any (n, k)−source X and an independent uniformly random string Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

where Um is independent of Ud and m is the output length of Ext.

The following definition of t−non-malleable extractors is from [CRS14], which
generalizes the definition in [DW09].

Definition 6 (Non-malleable Extractor). A function snmExt : {0, 1}n ×
{0, 1}d → {0, 1}m is a seeded t−non-malleable extractor for min-entropy k and
error ε if the following holds: If X is a source on {0, 1}n with min-entropy k and
A1,A2, ...,At are arbitrary (tampering) functions defined on {0, 1}n → {0, 1}n
with no fixed points, then

|snmExt(X,Ud) ◦ {snmExt(X,Ai(Ud))}ti=1 − Um ◦ {snmExt(X,Ai(Ud))}ti=1| < ε,

where Um is independent of Ud and X.
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The following definition of two-source non-malleable extractors is from [CGL16],
which generalizes the definition in [CG14b].

Definition 7 (Two-source Non-malleable Extractor). A function nmExt :
{0, 1}n × {0, 1}n → {0, 1}m is a two-source t−non-malleable extractor for min-
entropy k and error ε if the following holds: If X,Y are independent sources on
{0, 1}n with min-entropy k and A1 = (f1, g1),A2 = (f2, g2), ...,At = (ft, gt) are
arbitrary 2-split-state tampering functions where fi, gi are defined on {0, 1}n →
{0, 1}n such that for any i, at least one of fi, gi has no fixed points, then

|nmExt(X,Y ) ◦ {nmExt(fi(X), gi(X))}ti=1 − Um ◦ {nmExt(fi(X), gi(X))}ti=1| < ε

Theorem 3 ([GUV09]). For any constant α > 0, and all integers n, k > 0
there exists a polynomial time computable strong seeded extractor Ext : {0, 1}n×
{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)) and m = (1− α)k.

3.4 Conditional Min-entropy

Definition 8. The average conditional min-entropy is defined as

H̃∞(X|W ) = log
(
Ew∼W [max

x
Pr[X = x|W = w]]

)
= − log

(
Ew∼W [2−H∞(X|W=w)]

)
The following result on conditional min-entropy was proved in [MW97].

Lemma 1. Let X,Y be random variables such that the random variable Y takes
at most l values. Then

Pr
y∼Y

[H∞(X|Y = y) ≥ H∞(X)− log l − log(
1

ε
)] > 1− ε

We recall some results on conditional min-entropy from [DRS04].

Lemma 2 ([DRS04]). If a random variable B can take at most 2` values, then
H̃∞(A|BC) ≥ H̃∞(A|C)− `.
Lemma 3 ([DRS04]). For any δ > 0, if Ext is a (k, ε)−extractor then it is
also a (k + log(1/δ), ε+ δ) average case extractor.

4 Our Model

In this section, we introduce a new model of cryptographic protocol where a party
may be involved in multiple executions with correlated random tapes. We first
focus on zero-knowledge and later generalize to secure multi-party computation.
This captures the setting where an honest party may have a defective random
number generator G which may output highly correlated strings in different
executions. In the worst case, the output of G after the first execution may fully
depend on the output in the first execution. Then an adversary may use the
messages it received in the first execution to get information about the random
tape of the honest parties in the subsequent executions.

We will formalize the above setting by considering an experiment where an
adversary is given limited control of the random tape of the honest party and
can interact with the honest party in multiple sessions.
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Correlated-Tape Zero-Knowledge. For every {(xi, wi)}ti=1 where wi ∈ RL(xi),
the verifier V ∗ will sequentially interact with the actual prover P . V ∗ can spec-
ify t tampering functions f1, f2, ..., ft. To overcome known impossibility results
[DOPS04] as discussed later, we also assume the existence of common random-
ness modeled as a non-programmable common random string (simply called
CRS). In the beginning, P has a private random tape X distributed uniformly
at random. In the j−th execution, P uses fj(X) as its random tape. We use
τ(P, V ∗, CRS, {(xi, wi)}ti=1) to denote the transcripts of t consecutive executions
and the total view of V ∗ where in the j−th execution, P takes (xj , wj), CRS
as input and uses fj(X) as random tape, and V ∗ takes xj , CRS, all previous
transcripts and its previous view as input.

Definition 9. A pair of algorithms (P, V ) is a correlated-tape zero-knowledge
proof system for language L, if there exist polynomials len(·), k(·, ·) such that for
any polynomial t(·), the following conditions hold:

– Completeness: For every security parameter κ, x ∈ L,w ∈ RL(x),

Pr[< P (w,X), V > (x, Ulen(κ)) = 1] = 1

Here w is the private input for P and X is the private random tape of P .
By < P, V > (x, Ulen(κ)), we denote the output of V when P and V interact
on the common input x and a common reference string distributed uniformly
random over {0, 1}len(κ).

– Soundness: For every algorithm A and every x 6∈ L, there exists a negligible
function µ(·) such that for every security parameter κ,

Pr[< A, V > (x, Ulen(κ)) = 1] < µ(κ)

– Correlated-Tape Zero Knowledge: There exists a simulator S, such that
for any t = t(κ) functions f1, f2, ..., ft, whose output has the same length
as input, such that H∞(fi(X)) ≥ k(t(κ), κ), any V ∗ and (xi, wi) where
wi ∈ RL(xi) and i ∈ [t] the following two distributions are computation-
ally indistinguishable:

{CRS ∼ Ulen(κ) : CRS ◦ τ(P, V ∗, CRS, {(xi, wi)}ti=1)}

{CRS ∼ Ulen(κ) : CRS ◦ S(CRS, {xi}ti=1, V
∗)}1

One could consider a variant of the above definition where there is no CRS.
One could also define the complementary setting where the random number
generator of the verifier (rather than the prover) is defective (and one would like
to ensure soundness in the correlated tape setting).

1 Here we consider a weaker CRS model, where the CRS is simply a uniform string
and the simulator does not have control over the CRS. Similar choice is made in the
following definition for Correlated-Tape Secure Multi-Party Computation.
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Correlated-Tape Secure Multi-Party Computation. Now let us consider the case
of a multi-party computation protocol. We use Pi to denote the i−th party and
A to denote the adversary. Suppose there are n parties in total. We use F to
represent the desired functionality. Let T ⊆ [n] to be the set of indices of parties
that are corrupted.

Our ideal model will be the same as that in a standard definition of MPC
except that a uniform string as CRS is provided to the adversary in the ideal
world. Specifically,

Ideal Model. There is a trusted party which computes the desired functional-
ity based on the inputs of all parties. An execution in the ideal model proceeds
as follows:

– Inputs All parties (including the corrupted parties) will send their inputs
to the trusted party. An honest party always sends its real input. A corrupted
party may send modified value depending on the strategy of the adversary.
We use xi to denote the input sent by Pi.

– Trusted Party Computes the Result The trusted party will use the in-
puts from all parties to compute the desired functionality. Let (y′1, y

′
2, ..., y

′
n) =

F (x1, x2, ..., xn)
– Trusted Party Sends out the result For i = 1, 2, ..., n, the trusted party

asks A whether it wants to abort. If A does not abort, then the trusted party
will send y′i to Pi. Otherwise, for all j ≥ i, Pj will receive nothing from the
trusted party.

– Outputs An honest party Pi always outputs the response it received from
the trusted party (it will output ⊥ if it receives nothing) together with its
input xi. The adversary A outputs an arbitrary function of its entire view
so far (including the views in the previous executions).

We use IDEALF,A(CRS)({xji : i 6∈ T}tj=1) to represents the outputs of t consecutive
sequential executions in the ideal world with functionality F , adversary A with
auxiliary input CRS and input xji for honest party Pi in the j−th execution.

Real Model. In the real model, the adversary A is allowed to specify t tam-
pering functions for each honest party. We use f ji to represent the j−th tam-
pering function for Pi. Then there will be a trusted party generating a uni-
form string as CRS. In the beginning, each party has a private random tape
distributed uniformly random. Denote Xi to be the initial random tape of
Pi. In the j−th execution in the real model, an honest party Pi uses f ji (Xi)
as its random tape. The outputs of a protocol π in the real model include
the inputs and outputs of all honest parties together with the full view of
the adversary so far (including the view in the previous executions). We use
REALπF,A({xji : i 6∈ T}tj=1, {X

j
i : i 6∈ T}tj=1, CRS) to represents the outputs of π

in t consecutive sequential executions in the real world for functionality F , ad-
versary A, common reference string CRS and input xji for honest party Pi with

random tape Xj
i in the j−th execution.

Definition 10. A protocol π is a secure correlated-tape multi-party computation
protocol for functionality F of n parties, if there exist polynomials len(·), k(·, ·)
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such that for any polynomial t(·), adversary A which corrupts (n−`) parties with
the set of indices T ⊂ [n] and security parameter κ, there exists an ideal attacker

A′ such that, for all inputs {xji : i 6∈ T}t(κ)j=1 and functions {f ji : i 6∈ T}t(κ)j=1 ,whose

output has the same length as input, such that H∞(f ji (Xi)) ≥ k(t(κ), κ), the
following two distributions are computationally indistinguishable:

{CRS ∼ Ulen(κ) : CRS ◦ REALF,A({xji : i 6∈ T}t(κ)j=1, {f
j
i (Xi) : i 6∈ T}t(κ)j=1, CRS)}

{CRS ∼ Ulen(κ) : CRS ◦ IDEALF,A′(CRS)({xji : i 6∈ T}t(κ)j=1)}

Note that in the above definitions, we use the min-entropy condition to con-
strain the tampering functions that the adversary may choose to avoid known
impossibility results on deterministic zero-knowledge [GO94].

Impossibility without CRS. We stress that a common public random string as
auxiliary input is necessary for our construction. In the work [DOPS04] of Dodis,
Ong, Prabhakaran and Sahai, they studied the model which uses imperfect ran-
dom tape in a zero knowledge protocol without CRS. The result is negative.
Note that in Definition 9 and when we set t = 1, one can view f1(X) as an im-
perfect random tape and f1(X) can be all possible flat source with min-entropy
k(t(κ), κ). Thus, if there is no CRS as auxiliary input, it is also impossible to
construct a protocol satisfying Definition 9.

Notice that even in the weaker CRS model we considered in Definition 9 and
Definition 10, the (tampering) functions f1, f2, ..., ft must not depend on the
CRS to allow for a positive result. We give a proof sketch as following. The idea
is very similar to that in [DOPS04].

We focus on the case where t(·) = 1. Without loss of generality, we can
assume that the length of random tape N ≥ k(1, κ) + κ (It can be achieved by
simply padding κ random bits and never use them). Suppose the length of the
transcript is bounded by q(κ) where q is a polynomial. Consider a distinguisher
Di which just outputs the i−th bit of the transcript. Now for a fixed CRS and
a fixed random tape of V ∗, we want to show one of the following cases happens:

– There exists two tampering functions f and f ′ such that f(UN ) and f ′(UN )
are both (N, k(1, κ))−flat sources but two distributions of the transcripts
can be distinguished by some Di with noticeable probability.

– The distribution of the transcript is deterministic except for a negligible
probability.

Now consider the distribution of the transcript where the prover just uses the
uniform random tape X. If it is deterministic except for a negligible probability,
then we are done. Otherwise, there exists some i such that the i−th bit in the
transcript is not almost deterministic. Then we may find two sets S, S′ of size
2k(1,κ) such that for every X ∈ S, the i−th bit of the transcript is always 0,
and for every X ∈ S′, the i−th bit of the transcript is always 1. Let f and f ′

be functions such that f(UN ) is a flat distribution over S and f ′(UN ) is a flat
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distribution over S′. Note that Di can distinguish these two distributions with
probability 1.

Then, we fix the random tape of V ∗ and consider all possible CRS. We may
construct f(·, CRS) and f ′(·, CRS) such that one of the above cases happens. We
say a CRS is good if the second case happens, i.e. the distribution of the tran-
script is deterministic except for a negligible probability. We say a CRS is bad
otherwise. Note that, for a bad CRS, there exists some Di such that it will al-
ways output 0 when using f and output 1 when using f ′. It means that each
bad CRS corresponds to one distinguisher. Since there are in total q(k) distin-
guisher, then there exists Di∗ where over 1/q(k) bad CRS corresponds to it. If
a noticeable portion of CRS is bad, then Di∗ can distinguish two distributions
with a noticeable probability, which implies that correlated-tape zero-knowledge
is impossible. Otherwise, the transcript is determined by the CRS and the ran-
dom tape of V ∗ with all but a negligible probability. Note that the CRS is
sampled uniformly and not controlled by the simulator. By using the same idea
as that for deterministic prover in the plain model in [GO94], correlated-tape
zero-knowledge is impossible for a non-trivial language L.

We note that in the standard CRS model, where the CRS is not constrained
to be a uniform string and the simulator can generate the CRS itself, the above
argument does not work. In fact, in [SW14], Sahai and Waters gave a construc-
tion of NIZK based on one-way function and indistinguishable obfuscation, where
the prover is deterministic. Since the tampered random tape is never used by
the prover, this protocol is indeed a correlated-tape zero-knowledge even if the
tapering functions depend on the CRS.

Correlated-Source Extractors. The construction of correlated tape secure proto-
cols is closely related to the question of designing what we call correlated-source
extractors. Informally, correlated-source extractors csExt have power to break
correlations between sources with a unique random seed, i.e.,

|csExt(fi(X), Y )◦{csExt(fj(X), Y )}j 6=i◦Y −U ◦{csExt(fj(X), Y )}j 6=i◦Y | < ε,

where U is the uniform distribution and we use Y to refer the CRS. With this
object and CRS, the prover can obtain a fresh uniformly random tape in each
execution. Formally, we define the notion correlated-source extractor as follow-
ing:

Definition 1 (Seeded Correlated-Source Extractor). A function csExt :
{0, 1}∗×{0, 1}d → {0, 1}m is a seeded correlated-source extractor if the following
holds: There exists a polynomial k(·, ·, ·) and a negligible function ε(·), such that
for any polynomial t(·), t = t(d) arbitrary functions A1,A2, ...,At, whose output
has the same length as the input, with no fixed points, and, a source X with
min-entropy k(t,m, d),

|csExt(X,Ud)◦{csExt(Ai(X), Ud)}ti=1◦Ud−Um◦{csExt(Ai(X), Ud)}ti=1◦Ud| < ε(d)

where Um and Ud are uniform strings of length m and d respectively.
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5 Explicit Construction of Correlated-Source Extractor

In this section, we will describe our construction of correlated-source extractors.
To this end, we first give an explicit construction of a weak t-correlated source
extractor in section 5.1 and 5.2. Then we show that it is indeed a correlated-
source extractor in section 5.3. In section 5.4, we introduce a special kind of
sources which we can further lower the requirement of min-entropy.

5.1 Explicit Construction of Weak Correlated-Source Extractor

We will frequently use the following lemma in the proof.

Lemma 4. Suppose X,X ′, Y, Y ′ are random variables such that |X ◦ Y −X ′ ◦
Y ′| ≤ ε. Then, for any function f(x, y),

|f(X,Y ) ◦ Y − f(X ′, Y ′) ◦ Y ′| ≤ ε

Especially, when Y is an empty string, we have |f(X)−f(X ′)| ≤ ε. A formal
proof can be found in the supplementary material in section A

Before we give our construction, we need to point out an important fact
about weak correlated-source extractor:

Theorem 4. If wcsExt is a weak t-correlated-source extractor for min entropy
k and output length m, then (t+ 1)m ≤ k.

We give a formal proof in the supplementary material in section B.
In Theorem 4, it gives us an upper bound of t, i.e. t < n. We will use this

fact in our construction.

Theorem 5. There exists an explicit weak t−correlated-source extractor wcsExt
for min-entropy k ≥ O(t3(log2 n + log2(1/ε))), seed length d = O(log2 n +
log2(1/ε)) and output length m = O(log n+ log(1/ε)).

Proof. Suppose the length of adv is `. We separate Y into several parts. Specif-
ically, let

Y = Yadv ◦ Y 1
1 ◦ Y 2

1 ◦ ... ◦ Y 2`
1 ◦ Y 1

2 ◦ Y 2
2 ◦ ... ◦ Y `2 ◦ Ystart

The first part Yadv is used to generate adv for X. Then we will use Y 1
1 , Y

2
1 , ..., Y

2`
1

to generate X1, X2, ..., X2`. Y 1
2 , Y

2
2 , ..., Y

`
2 and Ystart will be used in the construc-

tion of function F . Let dadv = |Yadv|, d1 = |Y i1 |, d2 = |Y i2 | and dstart = |Ystart|.
Step 1: Construction of adv.
We separate X into n/dadv parts such that each part is of length dadv. Suppose

X = X1 ◦X2 ◦ ... ◦Xn/dadv . Construct a polynomial in the field GF (2dadv):

FX(n) =

n/dadv∑
i=1

Xini−1
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Let adv = FX(Yadv) as the advice of X. Then,

|adv| = ` = dadv. (3)

For different sources X and X ′, FX(n) and FX′(n) are different. Then,
FX(n)− FX′(n) 6≡ 0. It is known that, FX(n)− FX′(n) = 0 has at most n/dadv
roots. Since Yadv is uniformly random and independent of sources X,X ′, with
probability at most n/(dadv2

dadv), FX(Yadv) = FX′(Yadv).
Let advi = FXi(Yadv) be the advice of the i−th tampering source. By union

bound, with probability at least 1−tn/(dadv2dadv), adv is different from adv1, ..., advt.
We set

dadv = log(tn/ε1) (4)

Then ε1 = tn/2dadv > tn/(dadv2
dadv). Thus, with probability 1 − ε1, we can suc-

cessfully generate a unique advice for source X.
Let ADV = {adv, adv1, ..., advt, Yadv}. By lemma 1, we have

Pr[H∞(X|ADV) ≥ H∞(X)− (t+ 2)dadv − log
1

ε2
] > 1− ε2

Thus, by union bound, with probability at least 1− ε1 − ε2,

H∞(X|ADV) ≥ H∞(X)− (t+ 2)dadv − log
1

ε2
(5)

and adv is different from adv1, ..., advt. We say such ADV is good.
Now, we fix a good ADV. For simplicity, we omit the condition ADV.
Step 2: Generating X1, X2, ..., X2`.
The idea is very simple, we just apply a strong-seeded extractor with seed

Y i1 to generate Xi. Let q be the length of Xi. According to Theorem 3, there
exists a strong-seeded extractor Ext1 for min-entropy 2q, d = c(log n + log 1

ε3
)

and ε3, where c is some constant. We set

d1 = c(log n+ log
1

ε3
). (6)

By lemma 3, Ext1 is also a (2q + log(1/ε3), 2ε3) average case extractor. Let

Xi = Ext1(X,Y i1 )

Recall that X i = {Xi, Xi
1, ..., X

i
t}. For every i, when we fix X 1, ...,X i−1,X i+1, ...,X 2`

and the seeds Y 1
1 , ..., Y

i−1
1 , Y i+1

1 , ..., Y 2`
1 , by lemma 1, (let Seti = {X j , Y j1 }j 6=i)

H̃∞(X|Seti) ≥ H∞(X)− (2`− 1)(t+ 1)q − (2`− 1)d1

Here we need

H∞(X)− (2`− 1)(t+ 1)q − (2`− 1)d1 ≥ 2q + log(1/ε3). (7)

Thus,
|Ext1(X,Y i1 ) ◦ Y i1 ◦ Seti − Uq ◦ Y i1 ◦ Seti| ≤ 2ε3
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Step 3: Construction of F .
Now we will construct a suitable function F . Recall that, we use advi for the

i−th bit of adv. Let Z0 = Ystart and Zi = F (advi, X2i−1, X2i, Y i2 , Z
i−1).

The function F include two parts. First, we will apply a strong-seeded extrac-
tor on the source X2i−1+advi and seed Zi−1. We use W i to denote the output of
the extractor. Then, we apply another strong-seeded extractor on the source W i

and seed Y i2 . The output will be the final output of F (advi, X2i−1, X2i, Y i2 , Z
i−1).

Let z be the length of Zi. Then z = |Z0| = |Ystart| = dstart. Let w be the length
of W i.

According to Theorem 3, there exists a strong-seeded extractor Ext2 for min-
entropy 2w, d = c(log n+log 1

ε4
) and ε4, where c is some constant. Similarly, there

exists a strong-seeded extractor Ext3 for min-entropy 2z, d = c(log n + log 1
ε5

)
and ε5. (For simplicity, we use the same constant in Ext1, Ext2, Ext3. One can
choose the largest constant.) By lemma 3, Ext2 is also a (2w + log(1/ε4), 2ε4)
average case extractor, Ext3 is also a (2z+log(1/ε5), 2ε5) average case extractor.
We set

dstart = z = c(log n+ log
1

ε4
) (8)

and

d2 = |Y i2 | = c(log n+ log
1

ε5
). (9)

Then

F (advi, X2i−1, X2i, Y i2 , Z
i−1) = Ext3(Ext2(X2i−1+advi , Zi−1), Y i2 )

To show correctness, we will use induction on the length of adv. Note that,
we only consider the case that adv is different from adv1, adv2, ..., advt. We have
already fixed all advice and Yadv.

We need the following lemma:

Lemma 5. Suppose we have the following conditions:

– For random variables X (of length n) and W , |X ◦W − Un ◦W | ≤ ε1
– Random variable Z of length z is correlated with X and W
– Y is uniformly random and independent of X,W,Z.

Then, if Ext is a (k, ε2) average case extractor with output length m where k ≤
n− z and d ≤ |Y |, we have that

|Ext(X,Y ) ◦ Y ◦W ◦ Z − Um ◦ Y ◦W ◦ Z| < 2ε1 + ε2

We give a formal proof in the supplementary material in section C.
Before we state the main lemma, we need to define a class of sets. Let DIFF0 =

SAME0 = ∅. For i ≥ 1,

DIFFi = {j|advij 6= advi}

SAMEi = (DIFFi−1
⋃

SAMEi−1)/DIFFi
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Actually, DIFFi is the set of indices of the advice whose i−th bit is different
from that of the advice of X. And SAMEi is the set of indices of the advice whose
first i− 1 bits are different from that of the advice of X, but the i−th bit is the
same.

Recall that,W i = Ext2(X2i−1+advi , Zi−1) and F (advi, X2i−1, X2i, Y i2 , Z
i−1) =

Ext3(W i, Y i2 ). In the i−th step, we want to show that Zi is uniformly random
and independent of {Zij}j∈(DIFFi⋃ SAMEi). By induction hypothesis, we have that

Zi−1 is uniformly random and independent of {Zi−1j }j∈SAMEi . We hope we can

keep this property after computing W i, i.e., to show that W i is uniformly ran-
dom and independent of {W i

j}j∈SAMEi . Then, in the second extraction, we want

to break the correlation with Zi and {Zij}j∈DIFFi .
We have the following main lemma:

Lemma 6. Suppose DIFFi and SAMEi are the same as above. Let ηi = 4i−1
3 (8ε3+

4ε4 + 2ε5). Then we have

|Z0 ◦ {Xs}2`s=1 ◦ {Y s1 }2`s=1 − Uz ◦ {Xs}2`s=1 ◦ {Y s1 }2`s=1| = 0

and for every 1 ≤ i ≤ `, we have

|Zi ◦ {Zij}j∈(DIFFi⋃ SAMEi) ◦ {Xs}2`s=2i+1 ◦ {Y s1 }2`s=1 ◦ Z0 ◦ {Y s2 }is=1

−Uz ◦ {Zij}j∈(DIFFi⋃ SAMEi) ◦ {Xs}2`s=2i+1 ◦ {Y s1 }2`s=1 ◦ Z0 ◦ {Y s2 }is=1| ≤ ηi

Proof. We prove the lemma by induction. When i = 0, DIFF0
⋃
SAME0 = ∅. We

want to show that

|Z0 ◦ {Xs}2`s=1 ◦ {Y s1 }2`s=1 − Uz ◦ {Xs}2`s=1 ◦ {Y s1 }2`s=1| = 0

Note that Z0 = Ystart and Ystart is uniformly random and independent of X
and {Y s1 }2`s=1. Thus, given {Xs}2`s=1 and {Y s1 }2`s=1, Z0 is uniformly random. The
statement holds.

For i = 1, we want to show that

|Z1 ◦ {Z1
j }j∈(DIFF1 ⋃

SAME1) ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1 ◦ Z0 ◦ Y 1
2

−Uz ◦ {Z1
j }j∈(DIFF1 ⋃

SAME1) ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1 ◦ Z0 ◦ Y 1
2 | ≤ η1

Without loss of generality, assume adv1 = 0. Then, for j ∈ DIFF1, adv1j = 1

and SAME1 = ∅.
In step 2, we have

|X1 ◦ X2 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1 − Uq ◦ X2 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1| ≤ 2ε3

Note that Z0 is uniformly random and independent of X2◦{Xs}2`s=3◦{Y s1 }2`s=1.
By lemma 5, (here X is X1, W is X2 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1, Z is empty, Y is Z0

and Ext2 is a (2w + log(1/ε4), 2ε4) average case extractor),

|W 1 ◦Z0 ◦X2 ◦{Xs}2`s=3 ◦{Y s1 }2`s=1−Uw ◦Z0 ◦X2 ◦{Xs}2`s=3 ◦{Y s1 }2`s=1| < 4ε3 +2ε4
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Here, we require that

|X1| = q ≥ 2w + log(1/ε4). (10)

Since for every j ∈ DIFF1, W 1
j = Ext2(X2

j , Z
0) is a deterministic function of

Z0 and X2. Thus

|W 1 ◦ Z0 ◦ {W 1
j }j∈DIFF1 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1

−Uw ◦ Z0 ◦ {W 1
j }j∈DIFF1 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1| < 4ε3 + 2ε4

Note that Y 1
2 is uniformly random and independent ofW 1 and Z0◦{W 1

j }j∈DIFF1◦
{Xs}2`s=3◦{Y s1 }2`s=1. By lemma 5, (here X is W 1, W is Z0◦{W 1

j }j∈DIFF1◦{Xs}2`s=3◦
{Y s1 }2`s=1, Z is empty, Y is Y 1

2 and Ext3 is a (2z + log(1/ε5), 2ε5) average case
extractor),

|Z1 ◦ Y 1
2 ◦ Z0 ◦ {W 1

j }j∈DIFF1 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1

−Uz ◦ Y 1
2 ◦ Z0 ◦ {W 1

j }j∈DIFF1 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1| < 8ε3 + 4ε4 + 2ε5

Here, we require that

|W 1| = w ≥ 2z + log(1/ε5). (11)

Since for every j ∈ DIFF1, Z1
j = Ext3(W 1

j , Y
1
2 ) is a deterministic function of

Y 1
2 and {W 1

j }j∈DIFF1 . Thus

|Z1 ◦ Y 1
2 ◦ Z0 ◦ {Z1

j }j∈DIFF1 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1

−Uz ◦ Y 1
2 ◦ Z0 ◦ {Z1

j }j∈DIFF1 ◦ {Xs}2`s=3 ◦ {Y s1 }2`s=1| < 8ε3 + 4ε4 + 2ε5

Note that SAME1 = ∅. It is exactly what we want to prove in the case i = 1.
Now suppose the lemma is correct for i−1, consider the case for i. According

to induction hypothesis, we have that

|Zi−1 ◦ {Zi−1j }j∈SAMEi ◦ {Xs}2`s=2i−1 ◦ {Y s1 }2`s=1 ◦ Z0 ◦ {Y s2 }i−1s=1

−Uz ◦ {Zi−1j }j∈SAMEi ◦ {Xs}2`s=2i−1 ◦ {Y s1 }2`s=1 ◦ Z0 ◦ {Y s2 }i−1s=1| ≤ ηi−1

For simplicity, we define

Xi = {Xs}2`s=2i+1, T = {Y s1 }2`s=1 ◦ Z0, Yi = {Y s2 }is=1

Thus, we may rewrite the induction hypothesis for the case i− 1 by

|Zi−1 ◦ {Zi−1j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1 − Uz ◦ {Zi−1j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1| ≤ ηi−1

Let Z ′ be a uniformly random string over {0, 1}z and independent ofX,X1, ..., Xt

and Y . Then, we may use Z ′ instead of Uz, i.e.,

|Zi−1 ◦ {Zi−1j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1 − Z ′ ◦ {Zi−1j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1| ≤ ηi−1
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Without loss of generality, assume advi = 0. Then, advij = 1 for j ∈ DIFFi

and advij = 0 for j ∈ SAMEi. We have

W i = Ext2(X2i−1, Zi−1)

Note that, in step 2, we have

|X2i−1 ◦ X2i ◦ Xi ◦ {Y s1 }2`s=1 − Uq ◦ X2i ◦ Xi ◦ {Y s1 }2`s=1| ≤ 2ε3

Also note that Yi−1 is independent of X2i−1 ◦ X2i ◦ Xi ◦ {Y s1 }2`s=1. Therefore,

|X2i−1 ◦ X2i ◦ Xi ◦ {Y s1 }2`s=1 ◦ Yi−1 − Uq ◦ X2i ◦ Xi ◦ {Y s1 }2`s=1 ◦ Yi−1| ≤ 2ε3

Since Z ′ is independent of X and Y , it is independent of X2i−1 ◦ X2i ◦ Xi ◦
{Y s1 }2`s=1 ◦ Yi−1 and {W i

j}j∈SAMEi ◦ {Z
i−1
j }j∈SAMEi ◦ Z0. By lemma 5, (here X is

X2i−1, W is X2i ◦Xi ◦ {Y s1 }2`s=1 ◦ Yi−1, Z is {W i
j}j∈SAMEi ◦ {Z

i−1
j }j∈SAMEi ◦Z0, Y

is Z ′ and Ext2 is a (2w + log(1/ε4), 2ε4) average case extractor),

|Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Uw ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1| < 4ε3 + 2ε4

Here, we require that

|X2i−1| − |{W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Z0|

≥ q − (tw + tz + z) ≥ 2w + log(1/ε4) (12)

Recall that,

|Zi−1 ◦ {Zi−1j }j∈SAMEi ◦ Xi−1 ◦ T ◦ Yi−1 − Z ′ ◦ {Zi−1j }j∈SAMEi ◦ ◦Xi−1 ◦ T ◦ Yi−1| ≤ ηi−1

Notice that {W i
j}j∈SAMEi is a deterministic function of {Zi−1j }j∈SAMEi and

X2i−1. Also, W i = Ext2(X2i−1, Zi−1).
Thus, by reordering the composition parts, we have

|W i ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

≤ ηi−1

Still, since {W i
j}j∈SAMEi is a deterministic function of {Zi−1j }j∈SAMEi and X2i−1,

we have

|Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

≤ |Z ′ ◦ Xi−1 ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Zi−1 ◦ Xi−1 ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|
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= |Z ′ ◦ Xi−1 ◦ T ◦ {Zi−1j }j∈SAMEi ◦ Yi−1
−Zi−1 ◦ Xi−1 ◦ T ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

< ηi−1

In total, we have

|W i ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Uw ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

≤ |W i ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

+|Ext2(X2i−1, Z ′) ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Uw ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

+|Uw ◦ Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Uw ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

< ηi−1 + 4ε3 + 2ε4

+|Z ′ ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1

−Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi ◦ Yi−1|

≤ 2ηi−1 + 4ε3 + 2ε4

Note that Y i2 is uniformly random and independent of W i and Zi−1 ◦ X2i ◦
Xi ◦ T ◦ {W i

j}j∈SAMEi ◦ {Z
i−1
j }j∈SAMEi⋃ DIFFi ◦ Yi−1. By lemma 5, (here X is W i,

W is Zi−1 ◦X2i ◦Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Z

i−1
j }j∈SAMEi ◦ Yi−1, Z is {Zi−1j }j∈DIFFi ,

Y is Y i2 and Ext3 is a (2z + log(1/ε5), 2ε5)), we have

|Zi ◦ Y i2 ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi⋃ DIFFi ◦ Yi−1

−Uz ◦ Y i2 ◦ Zi−1 ◦ X2i ◦ Xi ◦ T ◦ {W i
j}j∈SAMEi ◦ {Zi−1j }j∈SAMEi⋃ DIFFi ◦ Yi−1|

< 4ηi−1 + 8ε3 + 4ε4 + 2ε5 = ηi

Here, we need

|W i| − |{Zi−1j }j∈DIFFi | ≥ w − tz ≥ 2z + log(1/ε5). (13)

Note that {Zij}j∈SAMEi is a deterministic function of Y i2 and {W i
j}j∈SAMEi . And

{Zij}j∈DIFFi is a deterministic function of Y i2 , {Zij}j∈DIFFi and X2i. Thus, we have

(We will discard {W i
j}j∈SAMEi and Zi−1)

|Zi ◦ Y i2 ◦ {Zij}j∈SAMEi⋃ DIFFi ◦ Xi ◦ T ◦ Yi−1
−Uz ◦ Y i2 ◦ {Zij}j∈SAMEi⋃ DIFFi ◦ Xi ◦ T ◦ Yi−1| < ηi

It is exactly what we want. Thus the statement is true for the case i. ut
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By assumption, all advice are different. Then DIFF`
⋃
SAME` include all in-

dices of advice. Therefore,

|Z` ◦ {Z`j}tj=1 ◦ {Y s1 }2`s=1 ◦ {Y s2 }`s=1 ◦ Z0 − Uz ◦ {Z`j}tj=1 ◦ {Y s1 }2`s=1 ◦ {Y s2 }`s=1 ◦ Z0|

<
4` − 1

3
(8ε3 + 4ε4 + 2ε5)

So far, we are in the condition that ADV is good. Make everything together,

|Z` ◦ {Z`j}tj=1 ◦ {Y s1 }2`s=1 ◦ {Y s2 }`s=1 ◦ Z0 ◦ ADV
−Uz ◦ {Z`j}tj=1 ◦ {Y s1 }2`s=1 ◦ {Y s2 }`s=1 ◦ Z0 ◦ ADV|

< Pr[ADV is bad] + Pr[ADV is good] · 4` − 1

3
(8ε3 + 4ε4 + 2ε5)

< ε1 + ε2 +
4` − 1

3
(8ε3 + 4ε4 + 2ε5)

The total error is ε1 + ε2 + 4`−1
3 (8ε3 + 4ε4 + 2ε5). Let

ε1 = ε2 =
ε

e2
= O(ε).

By (3), (4) and the fact that t < n, we have

` = dadv = log(tn/ε1) = O(log n+ log(1/ε))

Let

ε3 = ε4 = ε5 =
ε

14e2`
= O(

ε3

t2n2
)

Then we have

ε1 + ε2 +
4` − 1

3
(8ε3 + 4ε4 + 2ε5) < ε

By (6), (8), (9) and the fact that t < n, we have

d1 = d2 = dstart = O(log n+ log(1/ε))

Therefore, the length of the seed

|Y | = dadv + 2`d1 + `d2 + dstart = O(`(log n+ log(1/ε))) = O(log2 n+ log2(1/ε))

All requirements for the min-entropy of X|ADV are (7), (10), (11), (12), (13), i.e.

H∞(X|ADV)− (2`− 1)(t+ 1)q − (2`− 1)d1 ≥ 2q + log(1/ε3)

q ≥ 2w + log(1/ε4)

w ≥ 2z + log(1/ε5)

q − (tw + tz + z) ≥ 2w + log(1/ε4)

w − tz ≥ 2z + log(1/ε5)
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Therefore, we have

z = O(log n+ log(1/ε))

w = O(t(log n+ log(1/ε)))

q = O(t2(log n+ log(1/ε)))

H∞(X|ADV) ≥ O(t3(log2 n+ log2(1/ε)))

Note that in (5), for a good ADV, we have

H∞(X|ADV) ≥ H∞(X)− (t+ 2)dadv − log(1/ε2)

Thus, we set

H∞(X) = O(t3(log2 n+ log2(1/ε))) + (t+ 2)dadv + log(1/ε2)

= O(t3(log2 n+ log2(1/ε)))

Note that the final output is Z`. Then, the output length m = z = O(log n+
log(1/ε)).

Thus, there exists an explicit construction of wcsExt for

H∞(X) ≥ O(t3(log2 n+ log2(1/ε)))

|Y | = O(log2 n+ log2(1/ε))

m = O(log n+ log(1/ε))

ut
Also, we may generalize our result to an average case weak t-correlated-source

extractor.

Definition 11 (Average Case weak t-Correlated-Source Extractor). A
function wcsExt : {0, 1}n×{0, 1}d → {0, 1}m is an average case weak t-correlated-
source extractor for average conditional min-entropy k and error ε if the fol-
lowing holds: If X is a source in {0, 1}n, W is some random variable such
that H̃∞(X|W ) ≥ k, A1,A2, ...,At are arbitrary tampering functions defined
on {0, 1}n → {0, 1}n with no fixed points, then

|wcsExt(X,Ud) ◦ {wcsExt(Ai(X), Ud)}ti=1 ◦ Ud ◦W
−Um ◦ {wcsExt(Ai(X), Ud)}ti=1 ◦ Ud ◦W | < ε

where Um is independent of Ud and X.

We have the following lemma.

Lemma 7. For any δ, if wcsExt is a weak t−correlated-source extractor for
min-entropy k and error ε, then it is also an average case t-correlated source
extractor for average conditional min-entropy k + log 1/δ and error ε+ δ.

The proof can be easily generalized from Lemma 2.3 in [DRS04].
Therefore, combining Theorem 5 and Lemma 7 by setting δ = ε, we have

Theorem 6. There exists an explicit average case weak t-correlated source ex-
tractor wcsExt for average conditional min-entropy k ≥ O(t3(log2 n+log2(1/ε))),
seed length d = O(log2 n+log2(1/ε)) and output length m = O(log n+log(1/ε)).
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5.2 Boosting the Output Length

In the above construction, a major limitation is that the output length is only
O(log n+ log 1/ε). To boost the output length, we separate X into 2`+ 1 parts
instead of 2` parts in Theorem 5. We may set the length of the last part to be
long enough. It can be viewed as the case that we append 0 to all advice. Then
the length of the advice becomes ` + 1. Since the last bit is 0, we will never
choose X2`+2. Thus, we only need one more part.

In Lemma 6, we have shown that, for every i, W i given {W i
j}j∈SAMEi is uni-

formly random. When i = ` + 1, SAME`+1 = [t]. Thus, W `+1 given {W i
j}j∈[t] is

uniformly random. W `+1 will be the final output of our extractor.
Denote the length ofW `+1 to bem. We need the length ofX2`+1 to beO(tm).

Then, the min-entropy requirement for the original source becomes O(t3(log2 n+
log2(1/ε)) + t2m).

We have the following theorem.

Theorem 7. There exists an explicit weak t−correlated-source extractor wcsExt
where k ≥ O(t3(log2 n+ log2(1/ε)) + t2m) and d = O(log2 n+ log2(1/ε)), where
m is the output length.

A formal proof can be found in the supplementary material in section D

5.3 Explicit Construction of Correlated-Source Extractor

We show that, our explicit construction in Theorem 7 is indeed a correlated-
source extractor.

To see this, we set

ε(d) = Θ(2−
√
d)

and
k(t,m, d) = Θ(t3d+ t2m)

Clearly, ε(·) is a negligible function and k(·, ·, ·) is a polynomial. Then, we only
need to show that d ≥ O(log2 n + log2(1/ε)) and k(t,m) ≥ O(t3(log2 n +
log2(1/ε)) + t2m). Note that the source length is bounded by a polynomial of
d, and log2(1/ε) = Θ(d). Therefore, d ≥ O(log2 n+ log2(1/ε)). Further, we have
k(t,m, d) = Θ(t3d+ t2m) ≥ O(t3(log2 n+ log2(1/ε)) + t2m).

Thus, we have the following theorem.

Theorem 1. There exists an explicit correlated-source extractor csExt with

k(t,m, d) = Θ(t3d+ t2m)

ε(d) = Θ(2−
√
d)

where m is the length of the output.

We can also define what we call an average case correlated-source extractor
in a similar way.
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Definition 12 (Average Case Correlated-Source Extractor). A function
csExt : {0, 1}∗×{0, 1}d → {0, 1}m is an average case correlated-source extractor
if the following holds: There exists a polynomial k(·, ·, ·) and a negligible function
ε(·), such that for any polynomial t(·), t = t(d) arbitrary functions A1,A2, ...,At,
whose output has the same length as the input, with no fixed points, a source X
and a random variable W such that H̃∞(X|W ) ≥ k(t,m, d),

|csExt(X,Ud) ◦ {csExt(Ai(X), Ud)}ti=1 ◦ Ud ◦W
−Um ◦ {csExt(Ai(X), Ud)}ti=1 ◦ Ud ◦W | < ε(d)

where Um is independent of Ud and X.

If we are using an average case weak t-correlated source extractor, then we
will get an average case correlated source extractor.

Theorem 8. There exists an explicit average case correlated-source extractor
csExt with

k(t,m, d) = Θ(t3d+ t2m)

ε(d) = Θ(2−
√
d)

where m is the length of the output.

5.4 Generalizing the Entropy Requirements

In our construction, the min-entropy requirement on the source (denoted by k)
grows with t. This is inherent since the total entropy of all the sources together
may only be k (since each source may have zero min-entropy given any other
source) which must be at least t ·m where m is the size of the output of the ex-
tractor. A natural question is: could we place a stronger independence condition
on the different sources which allows us to obtain a construction requiring the
sources to have lower min-entropy? We outline such an extension in this section.

Definition 13 (Closed-Set Correlated Sources). We say a sequence of
sources X1, X2, ..., X` is a (t, k)−closed-set correlated sources if for every Xi,

– There exists a set of sources Si such that Xi ∈ Si and |Si| ≤ t

– When given all sources outside Si, Xi still has enough min-entropy, i.e.,

H̃∞(Xi|{Xj}`j=1/Si) ≥ k

For a (t, k)−closed-set correlated sources, we can use an average case cor-
related source extractor on the set Si, viewing Xi as the original source and
Xj ∈ Si as the tampering source. Thus, we have the following corollary.

Corollary 1. Let csExt be an average case correlated-source extractor con-
structed in Theorem 6. Let Y be a random seed of length specified in Theorem
8. For a closed-set correlated sources X1, X2, ..., X`,

|csExt(Xi, Y ) ◦ {csExt(Xj , Y )}j 6=i − Um ◦ {csExt(Xj , Y )}j 6=i| < ε
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6 Constructing Secure Correlated-Tape Multi-Party
Computation Protocol

We use correlated-source extractor and resettable multi-party computation pro-
tocol based on [GS09] as building blocks. Suppose csExt is a correlated-source
extractor, π′ is a resettably secure multi-party computation protocol for ideal
functionality F (in the standard setting). We construct a correlated-tape secure
MPC π as follows:

In the protocol π, each party will first run csExt with its secret random tape
and CRS. Then use the output of csExt as the new random tape and follow the
steps in π′. We have the following theorem.

Theorem 9. Let π, π′ be defined as above. For every security parameter κ,
suppose q(κ) is the length of the random tape that π′ needs. Let csExt be a
correlated-source extractor in Theorem 1 with d = κ,m = q(κ) and polynomials
k′(·, ·, ·), ε′(·). Let len(κ) = κ and k(t, κ) = k′(t, q(κ), κ) + tκ. Then π is a
correlated-tape multi-party computation protocol.

Proof. Let T be the set of corrupted parties which controlled by the adversary.
We define a pattern S = (s1, s2, ..., st) where sj ∈ [t]. If for two patterns S,S′,
there exists a permutation p : [t]→ [t] such that sj = p(s′j) for every j ∈ [t], we
view them as the same pattern. We say an input Xi is consistent with S respect
to {f ji }tj=1, if for every j1, j2 ∈ [t], f j1i (Xi) = f j2i (Xi) if and only if sj1 = sj2 .
Let

Pattern[S, i] = {Xi| Xi is consistent with S respect to {f ji }
t
j=1}

Note that there are at most tt = 2t log t = 2o(tκ) patterns in total. Let ratio[S, i] ∈
[0, 1] be the ratio of Xi which is consistent with S respect to {f ji }tj=1. Indeed
{Pattern[S, i]}S is a partition of all Xi and thus∑

S

ratio[S, i] = 1

After sampling Xi for Pi, we will reveal the pattern information to the ad-
versary. Let

BADi = {S : ratio[S, i] ≤ 1

2tκ
}

Then, we show that, for every {Si : Si 6∈ BADi}i6∈T , there exists an adversary
A′ in π′ such that the following two distributions are computationally indistin-
guishable:

{CRS ∼ Ulen(κ) : REALF,A′({xji : i 6∈ T}tj=1, {X
j
i : i 6∈ T}tj=1, CRS)}

{CRS ∼ Ulen(κ) : REALF,A({xji : i 6∈ T}tj=1, {f
j
i (Xi) : i 6∈ T}tj=1, CRS)}

where {Xj
i : i 6∈ T}tj=1 is sampled based on the strategy of A′ we will mention

later.
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We design A′ to follow the strategy: After receiving {Si : Si 6∈ BADi}i 6∈T , for
party Pi, in the j−th round, if there exists j∗ ∈ [j−1] such that (Si)j = (Si)j∗ ,
then let Pi use the same random tape as the j∗−th round, otherwise let Pi use
a fresh random tape.

Since the random tapes of each parties are independent, we only need to
show that, for Si, we have:

{Xi ∼ Pattern[Si, i], CRS ∼ Ulen(κ) : {csExt(f ji (Xi), CRS)}tj=1} =c {Xj
i }
t
j=1

Let Index(S) = {j : ∀j′ ∈ [j− 1], sj 6= sj′}. Then it is sufficient to show that

|{csExt(f ji (Xi), CRS)}j∈Index(Si) − Uq(κ)|Index(S)|| ≤ µ(κ)

where µ(·) is a negligible function. Note that, for every possible output y of f ji ,

Pr[f ji (Xi) = y] ≥ Pr[f ji (Xi) = y and Xi ∈ Pattern[Si, i]]

= Pr[f ji (Xi) = y| Xi ∈ Pattern[Si, i]] Pr[Xi ∈ Pattern[Si, i]]

≥ 1

2tκ
Pr[f ji (Xi) = y| Xi ∈ Pattern[Si, i]]

By condition, H∞(f ji (Xi)) ≥ k(t, κ). Thus Pr[f ji (Xi) = y] ≤ 1
2k(t,κ)

. We have

Pr[f ji (Xi) = y| Xi ∈ Pattern[Si, i]] ≤
1

2k(t,κ)−tκ
=

1

2k′(t,q(κ),κ)

Therefore, given Xi ∈ Pattern[Si, i], f
j
i (Xi) still has enough min-entropy to use

correlated-source extractor csExt. For every j ∈ Index(Si),

|csExt(f ji (Xi), CRS) ◦ {csExt(f j
′

i (Xi), CRS)}j′ 6=j,j′∈Index(Si)

−Uq(κ) ◦ {csExt(f j
′

i (Xi), CRS)}j′ 6=j,j′∈Index(Si)| ≤ ε
′(κ)

By union bound,

|{csExt(f ji (Xi), CRS)}j∈Index(Si) − Uq(κ)|Index(S)|| ≤ |Index(Si)|ε′(κ) ≤ tε′(κ)

Therefore, if Si 6∈ BADi, the error is bounded by some negligible probability
and further, A′ satisfies our requirement.

Note that

Pr[Xi ∈ Pattern[S, i] where S ∈ BADi] ≤
2t log(t)

2tκ
=

1

2O(tκ)

Thus, the distinguishable advantage is bounded by the sum of the probability
that some Si ∈ BADi and the probability that one can distinguish the two dis-
tributions generated by A′ and A given all Si 6∈ BADi, which is still a negligible
probability over security parameter κ. ut
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Correlated-Source Extractors with Almost Optimal Parameters. We give a non-
explicit construction of correlated-source extractors with almost optimal param-
eters. For lack of space, this result can be found in the supplementary material
in section E.
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A Proof of Lemma 4

In this section, we give a formal proof of Lemma 4.

Lemma 4. Suppose X,X ′, Y, Y ′ are random variables such that |X ◦ Y −X ′ ◦
Y ′| ≤ ε. Then, for any function f(x, y),

|f(X,Y ) ◦ Y − f(X ′, Y ′) ◦ Y ′| ≤ ε

Proof. By definition,

|X ◦ Y −X ′ ◦ Y ′|

=
1

2

∑
x,y

|Pr[X = x, Y = y]− Pr[X ′ = x, Y ′ = y]|

=
1

2

∑
u,y

∑
x:f(x,y)=u

|Pr[X = x, Y = y]− Pr[X ′ = x, Y ′ = y]|

≥ 1

2

∑
u,y

|
∑

x:f(x,y)=u

(Pr[X = x, Y = y]− Pr[X ′ = x, Y ′ = y])|

=
1

2

∑
u,y

|Pr[f(X,Y ) = u, Y = y]− Pr[f(X ′, Y ′) = u, Y ′ = y]|

= |f(X,Y ) ◦ Y − f(X ′, Y ′) ◦ Y ′|

Thus |f(X,Y ) ◦ Y − f(X ′, Y ′) ◦ Y ′| ≤ |X ◦ Y −X ′ ◦ Y ′| ≤ ε. ut

B Proof of Theorem 4

In this section, we give a formal proof of Theorem 4.

Theorem 4. If wcsExt is a weak t-correlated-source extractor for min entropy
k and output length m, then (t+ 1)m ≤ k.

Proof. Let X be a (n, k)-source. Suppose the seed length of wcsExt is d. We
choose f1, f2, ..., ft such that fi : {0, 1}n → {0, 1}n is a permutation with no
fixed-point and for every i, j ∈ [t], x ∈ {0, 1}n, fi(x) 6= fj(x). By definition, for
a uniformly random seed Y ∼ Ud, we have

|wcsExt(X,Y )◦Y ◦{wcsExt(fi(X), Y )}ti=1−Um◦Y ◦{wcsExt(fi(X), Y )}ti=1| < ε

Note that, for every i, fi is a permutation. Then we may view Xi = fi(X)
as the original source. We have

|wcsExt(fi(X), Y ) ◦ Y ◦ wcsExt(X,Y ) ◦ {wcsExt(fj(X), Y )}j 6=i
−Um ◦ Y ◦ wcsExt(X,Y ) ◦ {wcsExt(fj(X), Y )}j 6=i| < ε

Thus, |wcsExt(X,Y ) ◦ {wcsExt(Xi, Y )}ti=1 ◦ Y − U(t+1)m ◦ Y | < (t+ 1)ε.
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Now, we construct a strong seeded extractor Ext with min-entropy k and
output length (t+ 1)m. Let

Ext(X,Y ) = wcsExt(X,Y ) ◦ {wcsExt(Xi, Y )}ti=1

We have

|Ext(X,Y ) ◦ Y − U(t+1)m ◦ Y | < (t+ 1)ε

We choose ε such that (t+ 1)ε < 1/2.
We pick X a flat (n, k)-source. Then, for x ∈ support(X), Pr[X = x] = 1/2k.

Now suppose (t + 1)m > k. Denote Dom(y) to be the domain of Ext(·, y). Then
|Dom(y)| ≤ support(X) = 2k. For every s ∈ Dom(y), Pr[Ext(X, y) = s] ≥ 1/2k >
1/2(t+1)m. We have

|Ext(X,Y ) ◦ Y − U(t+1)m ◦ Y |

=
∑
y

Pr[Y = y]|Ext(X, y) ◦ y − U(t+1)m ◦ y|

=
∑
y

Pr[Y = y]

 ∑
s∈Dom(y)

(Pr[Ext(X, y) = s]− 1

2(t+1)m
)


=
∑
y

Pr[Y = y]

1−
∑

s∈Dom(y)

1

2(t+1)m


≥
∑

yPr[Y = y](1− 2k

2(t+1)m
)

≥ 1

2
> (t+ 1)ε

It leads to a contradiction. Thus, (t+ 1)m ≤ k. ut

C Proof of Lemma 5

In this section, we give a formal proof of Lemma 5.

Lemma 5. Suppose we have the following conditions:

– For random variables X (of length n) and W , |X ◦W − Un ◦W | ≤ ε1
– Random variable Z of length z is correlated with X and W
– Y is uniformly random and independent of X,W,Z.

Then, if Ext is a (k, ε2) average case extractor with output length m where k ≤
n− z and d ≤ |Y |, we have that

|Ext(X,Y ) ◦ Y ◦W ◦ Z − Um ◦ Y ◦W ◦ Z| < 2ε1 + ε2
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Proof. Let X ′ be a uniformly random string over {0, 1}n and independent of W
and Y . Then, by condition,

|X ◦W −X ′ ◦W | ≤ ε1

Since Z is correlated with X and W , it can be written as a function of
distribution Z(X,W ). Let Z ′ = Z(X ′,W ). Thus,

|X ◦W ◦ Z −X ′ ◦W ◦ Z ′|

=
1

2

∑
x,w

∑
z

|Pr[X = x,W = w,Z = z]− Pr[X ′ = x,W = w,Z ′ = z]|

=
1

2

∑
x,w

∑
z

|Pr[Z(X,W ) = z|X = x,W = w] Pr[X = x,W = w]

−Pr[Z(X ′,W ) = z|X ′ = x,W = w] Pr[X ′ = x,W = w]|

=
1

2

∑
x,w

|Pr[X = x,W = w]− Pr[X ′ = x,W = w]|
∑
z

Pr[Z(x,w) = z]

=
1

2

∑
x,w

|Pr[X = x,W = w]− Pr[X ′ = x,W = w]|

= |X ◦W −X ′ ◦W |
≤ ε1

Note that X ′ is uniformly random and independent of W . For any W , X ′|W
is uniformly random. Since the length of Z ′ is z, by lemma 2, H̃∞(X ′|W ◦Z ′) ≥
H̃∞(X ′|W )− z = n− z.

By condition, Y is uniformly random and independent of X,X ′,W,Z, Z ′.
Thus |X ◦Y ◦W ◦Z−X ′◦Y ◦W ◦Z ′| ≤ ε1. Note that Ext(X,Y ) is a deterministic
function of X and Y . Then, we have

|Ext(X,Y ) ◦ Y ◦W ◦ Z − Ext(X ′, Y ) ◦ Y ◦W ◦ Z ′|
≤ |Ext(X,Y ) ◦X ◦ Y ◦W ◦ Z − Ext(X ′, Y ) ◦X ′ ◦ Y ◦W ◦ Z ′|
= |X ◦ Y ◦W ◦ Z −X ′ ◦ Y ◦W ◦ Z ′|
≤ ε1

Since Ext is a (k, ε2) average case extractor, we have that

|Ext(X ′, Y ) ◦ Y ◦W ◦ Z ′ − Um ◦ Y ◦W ◦ Z ′| < ε2

Recall that Y is independent of X,Z,Z ′. Then

|Y ◦W ◦Z ′ − Y ◦W ◦Z| = |W ◦Z ′ −W ◦Z| ≤ |X ′ ◦W ◦Z ′ −X ◦W ◦Z| ≤ ε1

Thus

|Ext(X,Y ) ◦ Y ◦W ◦ Z − Um ◦ Y ◦W ◦ Z|
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≤ |Ext(X,Y ) ◦ Y ◦W ◦ Z − Ext(X ′, Y ) ◦ Y ◦W ◦ Z ′|
+|Ext(X ′, Y ) ◦ Y ◦W ◦ Z ′ − Um ◦ Y ◦W ◦ Z ′|+ |Um ◦ Y ◦W ◦ Z ′ − Um ◦ Y ◦W ◦ Z|

< ε1 + ε2 + |Y ◦W ◦ Z ′ − Y ◦W ◦ Z|
< 2ε1 + ε2

ut

D Proof of Theorem 7

In this section, we give a formal proof of Theorem 7

Theorem 7. There exists an explicit weak t−correlated-source extractor wcsExt
where k ≥ O(t3(log2 n+ log2(1/ε)) + t2m) and d = O(log2 n+ log2(1/ε)), where
m is the output length.

Proof. By Theorem 6, suppose wcsExt′ is an average case weak t−correlated-
source extractor with k′ = c1t

3(log2 n+ log2(1/ε1)), d′ = c2(log2 n+ log2(1/ε1))
and output length m′ = c3(log n+log(1/ε1)). By Theorem 3 and Lemma 3, there
exists a (6tm + 2d′, c3(log n + log(1/ε2))) average case strong-seeded extractor
Ext1 for seed length c3(log n+log(1/ε2)) and output length 3tm+d′. (Note that
in Theorem 5, m′ is also a seed length for some strong-seeded extractor. We may
set the constant large enough in the proof of theorem to fit our need here.)

We set k ≥ k′ + (t + 1)(6tm + 2d′) and d = d′ + c3(log n + log(1/ε2)). Let
Y = Y1 ◦ Y2 where |Y1| = c3(log n + log(1/ε2)). We first use Y1 to extract
X by using Ext1. Denote Xs = Ext1(X,Y1). For tampered source Xi, we set
Xs
i = Ext1(Xi, Y1).

By Lemma 2, H̃∞(X|Xs ◦ {Xs
i }ti=1 ◦ Y1) ≥ H∞(X)− (t+ 1)|Xs| − |Y1| ≥ k′.

Note that |Y2| = d′. Let Zs = wcsExt′(X,Y2) and Zsi = wcsExt′(Xi, Y2). Since
wcsExt′ is an average case t−correlated source extractor, we have that

|Zs ◦ {Zsi }ti=1 ◦ Y ◦Xs ◦ {Xs
i }ti=1 − Um′ ◦ {Zsi }ti=1 ◦ Y ◦Xs ◦ {Xs

i }ti=1| < ε1

Still by Theorem 3 and Lemma 3, there exists an average case strong-seeded
extractor Ext2 for min-entropy 2m, seed length c3(log n+ log(1/ε2)) and output
length m.

The final output W = Ext2(Xs, Zs). Denote Wi = Ext2(Xs
i , Z

s
i ).

Note that H̃∞(X|Zs ◦ {Zsi }ti=1 ◦ Y2) ≥ H∞(X)− (t+ 1)m′ − d′ ≥ 6tm+ 2d′.
Thus

|Xs ◦ Y ◦ Zs ◦ {Zsi }ti=1 − U3tm+d′ ◦ Y ◦ Zs ◦ {Zsi }ti=1| < ε2

Then |Xs ◦ Y − U3tm+d′ ◦ Y | < ε2.
We also have that |Xs| − |W1 ◦W2 ◦ ... ◦Wt ◦Y2| = 3tm+ d′− tm− d′ ≥ 2m.
Let Z ′ be a uniformly random string of length m′ and independent of X,Y .

By Lemma 5, (here X is Xs, W is Y , Z is {W s
i }ti=1, Y is Z ′ and Ext2 is a

(2m, ε2) average case extractor),

|Ext2(Xs, Z ′) ◦ Z ′ ◦ Y ◦ {W s
i }ti=1 − Um ◦ Z ′ ◦ Y ◦ {W s

i }ti=1| < 3ε2

35



Recall that

|Zs ◦ {Zsi }ti=1 ◦ Y ◦Xs ◦ {Xs
i }ti=1 − Z ′ ◦ {Zsi }ti=1 ◦ Y ◦Xs ◦ {Xs

i }ti=1| < ε1

Since W, {Wi}ti=1 are determined by Zs, {Zsi }ti=1 and Xs, {Xs
i }ti=1, we have

|Zs ◦ {Wi}ti=1 ◦ Y ◦W − Z ′ ◦ {Wi}ti=1 ◦ Y ◦ Ext2(Xs, Z ′)| < ε1

Thus |W ◦ Zs ◦ Y ◦ {Wi}ti=1 − Ext2(Xs, Z ′) ◦ Z ′ ◦ Y ◦ {Wi}ti=1| < ε1.
Therefore

|W ◦ {Wi}ti=1 ◦ Y − Um ◦ {Wi}ti=1 ◦ Y |
≤ |W ◦ {Wi}ti=1 ◦ Y − Ext2(Xs, Z ′) ◦ {Wi}ti=1 ◦ Y |

+|Ext2(Xs, Z ′) ◦ {Wi}ti=1 ◦ Y − Um ◦ {Wi}ti=1 ◦ Y |
≤ |W ◦ Zs ◦ {Wi}ti=1 ◦ Y − Ext2(Xs, Z ′) ◦ Z ′ ◦ {Wi}ti=1 ◦ Y |

+|Ext2(Xs, Z ′) ◦ Z ′ ◦ {Wi}ti=1 ◦ Y − Um ◦ Z ′ ◦ {Wi}ti=1 ◦ Y |
< ε1 + 3ε2

Let ε1 = ε2 = ε/5. Then it gives us an explicit construction for weak
t−correlated-source extractor for

k ≥ k′ + (t+ 1)(6tm+ 2d′) = O(t3(log2 n+ log2(1/ε)) + t2m)

d = d′ + c3(log n+ log(1/ε2)) = O(log2 n+ log2(1/ε))

ut

E Existence of Correlated Source Extractor

In this section, we give a sufficient and almost optimal condition on the existence
of correlated-source extractor.

E.1 Overview of the Existential Proof

Our existential proof generalizes the result in [DW09]. The similar idea is also
used in [BACD+18] for the existential result of non-malleable extractors. In [DW09],
Dodis et al. gave a sufficient condition for the existence of non-malleable extrac-
tor.

The basic idea is to first fix distinguisherD, support of the source support(X)
and tampering function f . Then compute the probability that a random func-
tion R(·, ·) is a non-malleable extractor. Finally, use union bound on all possible
distinguisher, supports of the source and tampering functions to show that a
random function R is a non-malleable extractor with non-zero probability.

The main technique is to construct a directed graph G and match each ran-
dom variable of R(x, y) to a vertex in G. For each edge in G, it connects one
random variable R(x, y) with R(x, f(y)). Then break G into two equal parts
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with no cycle. They showed that if a subgraph G′ has no cycle, then the random
variables have limited correlation. To compute the probability, they use Azuma’s
Inequality. Note that to break G into equal parts, they relied on the property
that each vertex has at most one outgoing edge. And the sizes of those two parts
are also important since the quality of the bound given by Azuma’s Inequality
fully depends on the number of vertices (variables) in each part. It fails when
each vertex has more outgoing edges (more tamperings) since we cannot easily
divide the graph into several disjoint parts with no cycle and guarantee that
each part has enough vertices.

A critical point in our proof is that we show that if the degree of each vertex
in G can be bounded by t, then we can divide G into t + 1 disjoint parts such
that in each part, there is no edge between any two of the vertices. Since we
cannot guarantee that each part has enough vertices, we set a threshold u and
apply Azuma’s Inequality for a part only if it has more than u vertices. With a
careful analysis, we give a sufficient (and necessary) condition for the existence of
weak two-source non-malleable extractors and weak correlated-source extractors.
Further, it implies the existence of correlated-source extractors.

E.2 Proof of the Existential Result

We first introduce a new kind of extractors called weak two-source non-malleable
extractor, which generalizes non-malleable extractors and weak correlated source
extractors. Then we give a formal proof on the existence of weak two-source non-
malleable extractor. Finally, we will show that it in fact implies the existence of
correlated source extractor.

One may view weak correlated-source extractor as a dual definition of non-
malleable extractor, where the adversary can tamper the random seed instead of
the source. We may also combine two notions and define weak two-source non-
malleable extractor, where the adversary can tamper the seed and the source
separately. A similar notion called two-source non-malleable extractor also allows
the adversary to tamper each source separately. But in weak two-source non-
malleable extractor, we require the seed to be uniformly random, while in two-
source non-malleable extractor, it only requires that both sources have enough
min-entropy.

Definition 14 (Weak Two-Source t-Non-Malleable Extractor). A func-
tion ssnmExt : {0, 1}n × {0, 1}d → {0, 1}m is a weak two-source t-non-malleable
extractor for min-entropy k and error ε if the following holds: If X is a source
in {0, 1}n with min-entropy k and A1 = (f1, g1),A2 = (f2, g2), ...,At = (ft, gt)
are arbitrary 2-split-state tampering functions where fi is defined on {0, 1}n →
{0, 1}n and gi is defined on {0, 1}d → {0, 1}d such that, for every 1 ≤ i ≤ t, at
least one of fi, gi has no fixed points, then

|ssnmExt(X,Ud) ◦ {ssnmExt(Ai(X,Ud))}ti=1 ◦ Ud
−Um ◦ {ssnmExt(Ai(X,Ud))}ti=1 ◦ Ud| < ε

where Um is independent of Ud and X.
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Now we will prove the existence of weak two-source non-malleable extractor.
Our idea generalize the proof of existence of non-malleable extractor in [DW09]
with some modifications, where the original proof only deal with one tampering
function on the seed. In our model, the adversary can tamper the seed and the
source separately for many times (t times).

We have the following theorem.

Theorem 10 (Existence of Weak Two-Source t-Non-Malleable Extrac-
tor). There exists a weak two-source t-non-malleable extractor ssnmExt as long
as

k > (t+ 1)m+ 3 log
1

ε
+ 2 log t+ log d+ 10 (14)

d > 3 log n+ 3 log
1

ε
+ 11 (15)

Proof. We use probabilistic method to show that a random function R is a
weak two-source t-non-malleable extractor with overwhelming probability. By
definition, a random function R : {0, 1}n × {0, 1}d → {0, 1}m is a weak two-
source t-non-malleable extractor, if for any 2-split-state tampering functions
A1,A2, ...,At, all distinguisher D : {0, 1}d × {0, 1}m × ({0, 1}m)t → {0, 1} and
all (n, k)−source X:

Pr[D(Y,R(X,Y ), {R(Ai(X,Y ))}ti=1) = 1]−Pr[D(Y, Um, {R(Ai(X,Y ))}ti=1) = 1] < ε,

where Y is uniformly random over {0, 1}d.
Since every (n, k) source X is a convex combination of several flat sources

X1, X2, ..., Xl, without loss of generality, we can assume that |support(X)| = 2k

and for any x ∈ support(X), Pr[X = x] = 2−k.
We first fix some distinguisher D, all tampering functions A1,A2, ...,At and

the support of X. Denote R to be a random variable distributed uniform and
random over all possible functions R : {0, 1}n × {0, 1}d → {0, 1}m.

For each x ∈ X and y ∈ {0, 1}d, define following random variables (Notice
that R is a random variable):

Left(x, y) = D(y,R(x, y), {R(Ai(x, y))}ti=1)

Right(x, y) = Ez∼Um [D(y, z, {R(Ai(x, y))}ti=1)] =

∑
z D(y, z, {R(Ai(x, y))}ti=1)

2m

Q(x, y) = Left(x, y)−Right(x, y)

Q̄ = Ex∼X,y∼Y [Q] =

∑
x,y Q(x, y)

2k+d

Note that Ex∼X,y∼Y [Left(x, y)] is a random variable which maps each choice
of R← R to the value

Pr[D(Y,R(X,Y ), {R(Ai(X,Y ))}ti=1) = 1]

Similarly, Ex∼X,y∼Y [Right(x, y)] maps each choice of R← R to the value

Pr[D(Y, Um, {R(Ai(X,Y ))}ti=1) = 1]
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Thus Q̄ = Ex∼X,y∼Y [Left(x, y)] − Ex∼X,y∼Y [Right(x, y)] maps each choice of
R← R to

p(R) := Pr[D(Y,R(X,Y ), {R(Ai(X,Y ))}ti=1) = 1]−Pr[D(Y,Um, {R(Ai(X,Y ))}ti=1) = 1]

Therefore, we want to upper bound

Pr[Q̄ > ε] = Pr
R←R

[p(R) > ε]

Consider a directed graph G = (V,E), where each random variable Q(x, y)
corresponds a vertex in G. We have |V | = 2k+d. For two vertices v = Q(x, y) and
v′ = Q(x′, y′), there is an edge from v′ to v if and only if there exists some Ai
such that (x′, y′) = Ai(x, y). Then each node has exactly t in-degree. Note that
Ai has no fix point. Thus there is no self loop in G. We have following lemma.

Lemma 8. For V ′ ⊆ V , assume that for any two vertices v1, v2 ∈ V ′, there is
no edge e = (v1, v2) or e = (v2, v1) in E. Then for all random variables in V ′,
denoted by Q1,Q2, ...,Qs where Qi = Q(xi, yi), we have

E[Qi|Q1,Q2, ...,Qi−1] = 0,E[Qi] = 0

for all 1 ≤ i ≤ s.

Proof. We only need to show that

E[Qi|Q1,Q2, ...,Qi−1,Qi+1, ...,Qs] = 0,E[Qi] = 0

By symmetry, we only need to show that E[Qs|Q1,Q2, ...,Qs−1] = 0 and
E[Qs] = 0. (It is because that we do not stress the order of {Qi} in the
lemma.) Notice that Qi = Q(xi, yi) can be determined by fix R(xi, yi) and
{R(Aj(xi, yi))}tj=1. Thus Q1,Q2, ...,Qs−1 are determined when we fix

F = {R(x, y)| ∃i, j, s.t. (x, y) = (xi, yi) or (x, y) = Aj(xi, yi)}

Note that for any R(x, y) ∈ F , we have either Q(x, y) is some Qi or there
is an edge from Q(x, y) to some Qi. Thus, R(xs, ys) 6∈ F . Since R is randomly
chosen from all possible functions, R(xs, ys) is uniformly random even given all
value in F .

Additionally, we fix

S = {R(x, y)| ∃j, s.t. (x, y) = Aj(xs, ys)}

By fix the values in F
⋃
S, R(xs, ys) is still uniformly random. Note that the only

difference between Left(xs, ys) and Right(xs, ys) is that we change R(xs, ys)
by a uniformly random variable z. Thus we have

E[Qs|Q1, ...,Qs−1,F
⋃
S] = 0
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Since it is true for all possible assignments of F
⋃
S, we have

E[Qs|Q1, ...,Qs−1] = 0

Similarly, it is true for all possible assignments of Q1,Q2, ...,Qs−1. Thus

E[Qs] = 0

ut

Lemma 8 actually shows that Q1,Q2, ...,Qs forms a martingale. Thus we
may use Azuma’s Inequality to upper bound the probability that

∑s
i=1 Qi > s·ε.

To get the upper bound of
∑
x,y Q(x, y) ≥ 2k+dε, we are going to divide V

into several disjoint partitions V1, V2, ..., Vr such that V =
⋃r
i=1 Vi. For each Vi,

there is no edge between any vertices v, v′ ∈ Vi. Then by lemma 8 and Azuma’s
Inequality, we can get the upper bound for each partition and use the union
bound for all partitions. We have following lemma.

Lemma 9. For any directed graph G = (V,E), such that each v ∈ V has at
most t in-degree and no self-loop, V can be divided into 2t+ 1 disjoint partitions
V1, V2, ..., V2t+1 such that, for each partition Vi, there is no edge between any
vertices v, v′ ∈ Vi.

Proof. We prove the lemma by induction on the size of V . When |V | = 1, the
statement trivially holds. Suppose the statement is true for |V | = s − 1. Now
consider the case where |V | = s. Since each vertex has at most t in-degree,
thus |E| ≤ t · |V | = ts. We use in-deg(v) to represent the in-degree of v, and
use out-deg(v) for out-degree. Define deg(v) = in-deg(v) + out-deg(v). Then∑
v deg(v) = 2 · |E| ≤ 2ts. By pigeonhole principle, there exists a vertex v∗ such

that deg(v∗) ≤ 2t.
We remove v∗ and all edges related to v∗. Denote the new graph to be

G′ = (V ′, E′). We have |V ′| = s − 1 and each v ∈ V ′ has at most t in-degree
and no self-loop. By induction hypothesis, we can divide V ′ into 2t+ 1 disjoint
partitions V1, V2, ..., V2t+1. Note that there are at most 2t vertices in G which
have edges with v∗. Thus there exists one partition Vi∗ such that no vertex
v ∈ Vi∗ has an edge with v∗. We can then put v∗ into Vi∗ . ut

So far, we successfully divide V into 2t + 1 disjoint partitions V1, ..., V2t+1

such that, in each partition, we can use Azuma’s Inequality to upper bound
the summation of Q(x, y). Note that Q(x, y) is bounded by [−1, 1]. For each
partition Vi, by Azuma’s Inequality, we have

Pr[
∑

vj=Qj∈Vi

Qj > |Vi|ε] < exp(
−|Vi|2ε2

2 · (4|Vi|)
) = exp(

−|Vi|ε2

8
)

Note that, the above upper bound becomes useless when |Vi| is small. Thus,
we want to find a suitable threshold u and ε′. We only use Azuma’s Inequality
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and set ε to be ε′ if |Vi| ≥ u. For |Vi| < u, we know that
∑
vj=Qj∈Vi Qj ≤ |Vi|

always holds.
Let ε′ = ε − ((2t + 1)u)/2k+d. Then in the case that

∑
vj=Qj∈Vi Qj ≤ |Vi|ε′

holds for all Vi such that |Vi| ≥ u, we have∑
x,y

Q(x, y) =
∑
|Vi|<u

∑
vj=Qj∈Vi

Qj +
∑
|Vi|≥u

∑
vj=Qj∈Vi

Qj

≤ (2t+ 1)u+ |V |ε′

= (2t+ 1)u+ 2k+dε′

= 2k+dε

Thus
∑
x,y Q(x, y) > 2k+dε only if there exists some i such that one of the

following two conditions holds:

– |Vi| < u and
∑
vj=Qj∈Vi Qj > |Vi|

– |Vi| ≥ u and
∑
vj=Qj∈Vi Qj > |Vi|ε′.

By union bound, we have

Pr[
∑
x,y

Q(x, y) > 2k+dε] <
∑
|Vi|<u

Pr[
∑

vj=Qj∈Vi

Qj > |Vi|] +
∑
|Vi|≥u

Pr[
∑

vj=Qj∈Vi

Qj > |Vi|ε′]

=
∑
|Vi|≥u

Pr[
∑

vj=Qj∈Vi

Qj > |Vi|ε′]

<
∑
|Vi|≥u

exp(
−|Vi|(ε′)2

8
)

<
∑
|Vi|≥u

exp(
−u · (ε′)2

8
)

≤ (2t+ 1) exp(
−u · (ε′)2

8
)

= (2t+ 1) exp(
−u · (ε− ((2t+ 1)u)/2k+d)2

8
)

Let u = 2k+dε
2(2t+1) . We have

Pr[
∑
x,y

Q(x, y) > 2k+dε] < (2t+ 1) exp(
−2k+dε3

64(2t+ 1)
)

Thus,

Pr[Q̄ > ε] < (2t+ 1) exp(
−2k+dε3

64(2t+ 1)
)

Now we apply union bound for all possible distinguisher D, tampering func-
tions A1,A2, ...,At and support(X). Let K = 2k, D = 2d, N = 2n,M =
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2m. Then there are 2DM
t+1

possible distinguishers D : {0, 1}d × {0, 1}m ×
({0, 1}m)t → {0, 1}. There are

(
N
K

)
possible support(X). For tampering func-

tion Ai = (fi, gi), where fi : {0, 1}n → {0, 1}n and gi : {0, 1}d → {0, 1}d,
there are NN possible fis and DD possible gis. But for fi, we only care the
input x ∈ support(X). Thus, only NK fis make difference. Therefore, there
are NK · DD possible Ai. In total, there are (NK · DD)t possible tampering
functions.

Thus, by union bound,

Pr[R is not a weak two-source t-non-malleable extractor ssnmExt]

<

(
N

K

)
· (NK ·DD)t · 2DM

t+1

· (2t+ 1) exp(
−KDε3

64(2t+ 1)
)

≤ exp(K(1 + ln(
N

K
)) + t(K ln(N) +D ln(D)) +DM t+1 ln 2 + ln(2t+ 1) +

−KDε3

64(2t+ 1)
)

To show existence, we only need the above probability to be strictly less than
1. It is sufficient to show that

K(1 + ln(
N

K
)) + tK ln(N) <

KDε3

128(2t+ 1)
(16)

tD ln(D) +DM t+1 ln 2 + ln(2t+ 1) <
KDε3

128(2t+ 1)
(17)

By theorem 4, we have t ≤ n. One can verify that when

k > (t+ 1)m+ 3 log
1

ε
+ 2 log t+ log d+ 10 (18)

d > 3 log n+ 3 log
1

ε
+ 11 (19)

both two requirements are satisfied. ut

Note that weak correlated-source extractor is a special kind of weak two-
source non-malleable extractor. We have the following theorem.

Theorem 11 (Existence of Weak Correlated-Source Extractor). There
exists a t-correlated-source extractor wcsExt as long as

k > (t+ 1)m+ 3 log
1

ε
+ 2 log t+ log d+ 10 (20)

d > 3 log n+ 3 log
1

ε
+ 11 (21)

Remark 1. One interesting result we get is that we always need the seed length to
be O(log n), even if there is only one tampered source, no matter what the min-
entropy of the source is. It is not the case in non-malleable extractors. Imagine
that the source is uniformly random and the adversary can only tamper the seed.
Since tampered seeds are different from the original seed, we may directly use
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the source to sample a (t+ 1)−wise independent hash function (if the source is
uniformly random). Then, we only need the length of seed to be log(t) (to make
sure the tampered seeds are different from the original seed).

It is not hard to show that O(log n) is necessary. By theorem 4, the min-
entropy of the source should not be shorter than (t+1)m. Thus, our result gives
the exact bound for the existence of weak correlated-source extractor and weak
two-source non-malleable extractor.

By setting ε(d) = Θ(2−d) and k(t,m, d) = Θ(tm+d), it is indeed a correlated
source extractor:

Theorem 2 (Existence of Correlated-Source Extractor). There exists a
correlated-source extractor csExt as long as

k(t,m, d) = Θ(tm+ d) (1)

ε(d) = Θ(2−d) (2)

where m is the length of the output.

E.3 Matching the Optimal Bound for Min-entropy

In this section, we give a simple construction to achieve the optimal bound of
min-entropy for weak correlated-source extractor. However, we need O(t log n)
bits for random seed. To break the correlation between sources, we want to use
different and uniformly random seed for each source. The construction idea is to
break the seed into t+ 1 independent parts. Then, we may use different parts as
the seeds to extract different sources.

To this end, we first use one piece Y1 of the seed Y to generate a short advice
for each source such that with high probability, for any two different sources,
they will have different advice. Then, we use the other part of the seed Y2 to
generate a (t + 1)−wise independent hash function. The hash value of advice
will be the new random seed. It is easy to argue that the new seed is uniformly
random and independent of all sources and Y1. Also, given all tampering results
and all advice, the original source still has enough min-entropy. Finally, we do
extraction on the original source with the new seed.

To generate a (t + 1)−wise independent hash function, we need |Y2| =
O(t log n). However, the min-entropy requirement for the source is just O(tm+
t log n) where m is the output length. It is due to that we need the original source
to have enough min-entropy given all advice (O(t log n) bits) and all tampering
results (O(tm)) bits.

When m ≥ log n, the min-entropy requirement is O(tm), which is the optimal
bound.

Specifically, we have the following theorem.
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Theorem 12. There exists an explicit weak t−correlated-source extractor wcsExt
where k ≥ O(t(log n + log 1

ε + m)) and d = O(t(log n + log 1
ε )). Specifically, for

some constant c,

k ≥ (t+ 2)m+ ((c+ 3)t+ 6) log n+ ((c+ 1)t+ 3) log
1

ε
+ (2t+ 6)

d = (c(t+ 1) + 3) log n+ (c(t+ 1) + 1) log
1

ε
+ 2

Proof. We will use X as the original source and Y as the random seed. Let
Xi = Ai(X) be the i−th tampering source.

The final error rate comes from three parts, we will use ε1 = ε2 = ε3 = ε/3
to represent the error probability (or distance) in each part.

Step 1: We use the first d1 bits of the random seed Y to generate an advice.
Suppose Y = Y1 ◦ Y2, where |Y1| = d1.

We separate X into n/d1 parts such that each part is of length d1. Suppose
X = X1 ◦X2 ◦ ... ◦Xn/d1 . Construct a polynomial in the field GF (2k):

FX(n) =

n/d1∑
i=1

Xini−1

Let adv = FX(Y1) be the advice of X.

For different sources X and X ′, FX(n) and FX′(n) are different polynomials.
Then, FX(n)− FX′(n) is not a constant. It is known that, FX(n)− FX′(n) = 0
has at most n/d1 roots. Since Y1 is uniformly random and independent of sources
X,X ′, with probability at most n/(d12d1), FX(Y1) = FX′(Y1).

Let advi = FXi(Y1) be the advice of the i−th tampering source. By union
bound, with probability at least 1 − t(t + 1)n/(d12d1), no two sources (include
the original source and the tampering sources ) have the same advice.

Since t < n, let d1 = 3 log n + log 1
ε + 2. Then t(t + 1)n/(d12d1) ≤ t(t +

1)n/2d1 ≤ ε1. Thus, with probability at least 1−ε1, we can successfully generate
a unique advice for each source.

Step 2: Now, we use Y2 to sample a (t+ 1)-wise independent hash function.
To this end, separate Y2 into t + 1 parts with equal length. Suppose Y2 = Y 1

2 ◦
Y 2
2 ◦ ... ◦Y t+1

2 . For each 1 ≤ i ≤ t+ 1, |Y i2 | = d2/(t+ 1). Construct a polynomial
in the field GF (2d2/(t+1)) as following:

GY2(n) =

t+1∑
i=1

Y i2n
i−1

Note that Y2 is uniformly random and independent of Y1 and all sources
X,X1, ..., Xt. Therefore, Y2 is independent of all advice adv, adv1, ..., advt. It
is well known that GY2

(n) is a (t + 1)−wise independent hash function. Let
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GY2
(adv) be the random seed that we are going to use in the strong-seeded

extractor. Denote S = GY2
(adv) and Si = GY2

(advi).

Step 3: Finally, we apply a strong-seeded extractor on the original source X
with random seed S generated in the second step. According to Theorem 3, there
exists a strong-seeded extractor Ext for min-entropy 2m, d = c(log n + log 1

ε )
and ε3, where c is some constant. We set d2 = (t+ 1) · c(log n+ log 1

ε ). Let

wcsExt(X,Y ) = Ext(X,S) = Ext(X,GY2(FX(Y1)))

The total length of the seed is d = d1 + d2 = (c(t+ 1) + 3) log n+ (c(t+ 1) +
1) log 1

ε + 2.

Now, we are going to prove that wcsExt(X,Y ) is a t−correlated-source ex-
tractor, i.e.,

|wcsExt(X,Y )◦{wcsExt(Ai(X), Y )}ti=1◦Y−Um◦{wcsExt(Ai(X), Y )}ti=1◦Y | < ε

To this end, we prove a stronger statement. We will add all advice in the
conditions, i.e.,

|wcsExt(X,Y ) ◦ {wcsExt(Ai(X), Y )}ti=1 ◦ adv ◦ {advi}ti=1 ◦ Y
−Um ◦ {csExt(Ai(X), Y )}ti=1 ◦ adv ◦ {advi}ti=1 ◦ Y | < ε

Let W be the string {wcsExt(Ai(X), Y )}ti=1 ◦ adv ◦ {advi}ti=1 ◦ Y1 (Note
here we only append Y1). Denote W be the distribution of W . Then, the above
statistical distance can be rewritten by

EW∼W [|wcsExt(X,Y ) ◦ Y2| W − Um ◦ Y2| W |]

We say W is good if and only if all advice adv, adv1, ..., advt are different. In
Step 1, we showed that, with probability at least 1− ε1, all advice are different.
Thus Pr[W is good] ≥ 1− ε1. Otherwise, we say W is bad.

When W is good, since all advice are different, there exists exactly one poly-
nomial with degree at most t in the field GF (2d2/(t+1)). And it can be determined
by (adv, S), (adv1, S1), ..., (advt, St). Thus, we may use S, S1, ..., St instead of Y2.
We may rewrite the statistical distance |wcsExt(X,Y ) ◦Y2| W −Um ◦Y2| W | by

|wcsExt(X,Y ) ◦ S ◦ {Si}ti=1| W − Um ◦ S ◦ {Si}ti=1| W |

Let Sadv(W ) be the distribution of {Si}ti=1|W . Then, it can be written by

E{Si}ti=1∼Sadv(W )[|wcsExt(X,Y ) ◦ S| W ◦ {Si}ti=1 − Um ◦ S| W ◦ {Si}ti=1|]

Note that the length of W ◦ {Si}ti=1 is tm + (t + 1)d1 + d1 + td2/(t + 1) =
t(m+ d2/(t+ 1)) + (t+ 2)d1. According to Lemma 1, we have that

Pr[H∞(X|W ◦{Si}ti=1) ≥ H∞(X)−t(m+d2/(t+1))−(t+2)d1−log
1

ε2
] > 1−ε2
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We say W ◦ {Si}ti=1 is good, if and only if W is good and H∞(X| W ◦
{Si}ti=1) ≥ H∞(X)− t(m+ d2/(t+ 1))− (t+ 2)d1− log

1

ε2
. We say W ◦ {Si}ti=1

is bad otherwise. Now, we prove that, in the case that W ◦ {Si}ti=1 is good,

|wcsExt(X,Y ) ◦ S| W ◦ {Si}ti=1 − Um ◦ S| W ◦ {Si}ti=1| < ε3

Note that wcsExt(X,Y ) = Ext(X,S). Then, we need to prove that |Ext(X,S)◦
S| W ◦ {Si}ti=1 − Um ◦ S| W ◦ {Si}ti=1| < ε3.

It is sufficient to show that

– H∞(X| W ◦ {Si}ti=1) ≥ 2m

– Given X,W, {Si}ti=1, S is uniformly random.

Note that H∞(X) ≥ (t+2)m+((c+3)t+6) log n+((c+1)t+3) log 1
ε +(2t+6)

and ε2 = ε/3. Recall that, we set d1 = 3 log n+log 1
ε+2, d2 = c(t+1)(log n+log 1

ε )
Then, the first one holds because, by condition, we have

H∞(X| W ◦ {Si}ti=1) ≥ H∞(X)− t(m+ d2/(t+ 1))− (t+ 2)d1 − log
1

ε2
≥ 2m

For the second condition, we want to show that S|X, {wcsExt(Xi, Y )}ti=1 ◦
adv ◦ {advi}ti=1 ◦ {Si}ti=1 is uniformly random. Note that adv, adv1, ..., advt
can be computed by X,X1, ..., Xt and Y1. wcsExt(X1, Y ), ..., wcsExt(Xt, Y ) can
be computed by X1, ..., Xt and S1, ..., St. Thus, it is sufficient to show that
S|X,X1, ..., Xt, Y1, S1, ..., St is uniformly random. Note that Y2 is independent
of X,X1, ..., Xt and Y1. Then, Y2|X,X1, ..., Xt, Y1 is uniformly random.

Since GY2
is a (t+ 1)−wise hash function, we have that

Pr[GY2
(FX(Y1)) = S,GY2

(FX1
(Y1)) = S1, ..., GY2

(FXt(Y1)) = St| X,X1, ..., Xt, Y1]

= Pr[GY2
(FX(Y1)) = S| X,X1, ..., Xt, Y1] Pr[GY2

(FX1
(Y1)) = S1, ..., GY2

(FXt(Y1)) = St| X,X1, ..., Xt, Y1]

Thus, the second condition holds.

In total,

|wcsExt(X,Y ) ◦ {wcsExt(Ai(X), Y )}ti=1 ◦ Y − Um ◦ {wcsExt(Ai(X), Y )}ti=1 ◦ Y |
= EW∼W |wcsExt(X,Y ) ◦ Y2| W − Um ◦ Y2| W |
=

∑
W is bad

Pr[W ]|wcsExt(X,Y ) ◦ Y2| W − Um ◦ Y2| W |

+
∑

W is good

Pr[W ]|wcsExt(X,Y ) ◦ Y2| W − Um ◦ Y2| W |

≤ Pr[W is bad] +
∑

W is good

Pr[W ]|wcsExt(X,Y ) ◦ Y2| W − Um ◦ Y2| W |

= Pr[W is bad]
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+
∑

W is good but
W ◦ {Si}ti=1 is bad

Pr[W ◦ {Si}ti=1]|wcsExt(X,Y ) ◦ S| W ◦ {Si}ti=1 − Um ◦ S| W ◦ {Si}ti=1|

+
∑

W ◦ {Si}ti=1 is good

Pr[W ◦ {Si}ti=1]|wcsExt(X,Y ) ◦ S| W ◦ {Si}ti=1 − Um ◦ S| W ◦ {Si}ti=1|

≤ Pr[W is bad] + Pr[W is good but W ◦ {Si}ti=1 is bad] + Pr[W ◦ {Si}ti=1 is good]ε3

≤ ε1 + (1− ε1)ε2 + (1− ε1)(1− ε2)ε3

≤ ε

ut
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