
4-Round Luby-Rackoff Construction is a qPRP:
Tight Quantum Security Bound

Akinori Hosoyamada1,2 and Tetsu Iwata2

1 NTT Secure Platform Laboratories, Tokyo, Japan
akinori.hosoyamada.bh@hco.ntt.co.jp

2 Nagoya University, Nagoya, Japan
{hosoyamada.akinori,tetsu.iwata}@nagoya-u.jp

Abstract. The Luby-Rackoff construction, or the Feistel construction, is one of
themost important approaches to construct secure block ciphers from secure pseu-
dorandom functions. The 3-round and 4-round Luby-Rackoff constructions are
proven to be secure against chosen-plaintext attacks (CPAs) and chosen-ciphertext
attacks (CCAs), respectively, in the classical setting. However, Kuwakado and
Morii showed that a quantum superposed chosen-plaintext attack (qCPA) can
distinguish the 3-round Luby-Rackoff construction from a random permutation
in polynomial time. In addition, Ito et al. showed a quantum superposed chosen-
ciphertext attack (qCCA) that distinguishes the 4-round Luby-Rackoff construc-
tion. Since Kuwakado and Morii showed the result, a problem of much interest
has been how many rounds are sufficient to achieve provable security against
quantum query attacks. This paper answers this fundamental question by showing
that 4-rounds suffice against qCPAs. Concretely, we prove that the 4-round Luby-
Rackoff construction is secure up to O(2n/6) quantum queries. We also prove
that the bound is tight by showing an attack that distinguishes the 4-round Luby-
Rackoff construction from a random permutation with O(2n/6) quantum queries.
Our result is the first to demonstrate the tight security of a typical block-cipher con-
struction against quantum query attacks, without any algebraic assumptions. To
give security proofs, we use an alternative formalization of Zhandry’s compressed
oracle technique.

Keywords: symmetric-key cryptography · post-quantum cryptography · provable
security · quantum security · the compressed oracle technique · quantum chosen
plaintext attacks · Luby-Rackoff constructions.

1 Introduction

Post-quantum public-key cryptography has been one of the most actively researched
areas in cryptography since Shor developed the polynomial-time integer factoring quan-
tum algorithm [31]. NIST is working on a standardization process for post-quantum
public-key schemes such as public-key encryption, key-establishment, and digital sig-
nature schemes [28].

On the other hand, for symmetric key cryptography, it was said that the security of
symmetric-key schemes would not be much affected by quantum computers. However,
a series of recent results has shown that some symmetric key schemes are also broken



in polynomial time by using Simon’s algorithm [32] if quantum adversaries have access
to quantum circuits that implement keyed primitives [20,21,9,7,22,30,14,13,12,19], al-
though they are proven or assumed to be secure in the classical setting. These examples
illustrate the need of evaluating the post-quantum security of symmetric-key schemes.

Although many quantum query attacks on symmetric-key schemes have been pro-
posed, only a little progress has been made on the post-quantum provable security
of symmetric-key schemes. There are two possible post-quantum security notions for
symmetric-key schemes: standard security and quantum security [34]. The standard
security assumes adversaries have quantum computers, but have access to keyed oracles
in a classical manner. On the other hand, the quantum security assumes adversaries can
make queries to keyed primitives in quantum superpositions. If a scheme is proven to
have quantum security, then it will remain secure even in a far future where all com-
putations and communications are done in quantum superpositions. Therefore, it is a
problem of much interest whether a classically secure symmetric-key scheme also has
quantum security.

The Luby-Rackoff construction. The Luby-Rackoff construction, or the Feistel con-
struction, is one of the most important approaches to construct efficient and secure
block ciphers, which are pseudorandom permutations (PRPs), from efficient and secure
pseudorandom functions (PRFs). A significant number of block ciphers including com-
monly used ones such as DES [26] and Camellia [4] were designed on the basis of this
construction.

For families of functions f i := { f i,k : {0, 1}n/2 → {0, 1}n/2}k∈K that are param-
eterized by k in a key space K (1 ≤ i ≤ r), the r-round Luby-Rackoff construction
LRr ( f1, . . . , fr ) is defined as follows: First, keys k1, . . . , kr are chosen independently and
uniformly at random fromK . For each input x0 = x0L ‖x0R, where x0L, x0R ∈ {0, 1}n/2,
the state is updated as

x (i−1)L ‖x (i−1)R 7→ xiL ‖xiR := x (i−1)R ⊕ f i,ki (x (i−1)L )‖x (i−1)L (1)

for i = 1, . . . , r in a sequential order (see Fig. 1). The output is the final state xr =
xrL ‖xrR. Then the resulting function becomes a keyed permutation over {0, 1}n with
keys in (K )r .

Fig. 1. The i-th round state update.

In the classical setting, if each f i is a secure PRF, LRr becomes a secure PRP against
chosen-plaintext attacks (CPAs) for r ≥ 3 and a secure PRP against chosen-ciphertext
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attacks (CCAs) for r ≥ 4 [24], i.e., LRr becomes a strong PRP. However, in the quantum
setting, Kuwakado and Morii showed that LR3 can be distinguished in polynomial time
from a truly random permutation by a quantum superposed chosen-plaintext attack [21]
(qCPA).3 Moreover, Ito et al. showed that LR4 can be distinguished in polynomial time
by a quantum superposed chosen-ciphertext attack (qCCA) [19]. On the other hand, for
any r , no post-quantum security proof of LRr is known. A very natural question is then
whether such a proof is feasible for some r , and if so, to determine the minimum number
of r such that we can prove the post-quantum security of LRr .

1.1 Our Contributions

As the first step to giving post-quantum security proofs for the Luby-Rackoff construc-
tions, this paper shows that the 4-round Luby-Rackoff construction LR4 is secure against
qCPAs. In particular, we give a security bound of LR4 against qCPAs when all round
functions are truly random functions. We also prove that the bound is tight by showing
a matching attack. Concretely, we show the following theorems.

Theorem 1 (Lower bound and upper bound, informal). If all round functions are
truly random functions, then the following claims hold.

1. LR4 cannot be distinguished from a truly random permutation by qCPAs up to
O(2n/6) quantum queries.

2. A quantum algorithm exists that distinguishes LR4 from a truly random permutation
with a constant probability by making O(2n/6) quantum chosen-plaintext queries.

Theorem 2 (Construction of qPRP from qPRF, informal). Suppose that each f i is a
securePRFagainst efficient quantumquery attacks, for1 ≤ i ≤ 4. ThenLR4( f1, f2, f3, f4)
is a secure PRP against efficient qCPAs.

See Table 1 for a summary of security proofs and attacks for LR4. Observe that the
provable security bound of O(2n/6) quantum queries is tight in that we have a matching
attack, and our result fills the gap to obtain complete characterization of LR4 against
quantum query adversaries.

Technical details. To give a quantum security proof for LR4 in the case that all round
functions are truly random, we use the compressed oracle technique developed by
Zhandry [39]. To be precise, we give an alternative formalization of the technique and
use it in our proofs.

One challenging obstacle to giving security proofs against quantum superposed
query adversaries is that we cannot record transcripts of quantum queries and answers.
Although it is trivial to store query-answer records in the classical setting, it is highly
non-trivial to store them in the quantum setting, since measuring or copying (parts of)
quantum states will lead to perturbing them, which may be detected by adversaries.

3 Strictly speaking, the attack by Kuwakado and Morii works only when all round functions are
keyed permutations. Kaplan et al. [20] showed that the attack works for more general cases.
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Attack
setting

Classical
CPA

Classical
CCA

Quantum
CPA

Quantum
CCA

Security
proof

Secure up to
O(2n/4) queries

[24]

Secure up to
O(2n/4) queries

[24]

Secure up to
O(2n/6) queries
[Ours] (Section 4)

No proofs
(Insecure)

Distinguishing
attack

O(2n/4) queries
[29]

O(2n/4) queries
[29]

O(2n/6) queries
[Ours] (Section 5)

O(n) queries
[19]

Table 1. Summary of security proofs and attacks for the 4-round Luby-Rackoff construction LR4
when all round functions are truly random. In the quantum CPA/CCA settings, adversaries can
make quantum superposed queries.

Zhandry’s compressed oracle technique enables us to overcome the obstacle when
oracles are truly random functions. The technique is so powerful that it can be used to
show quantum indifferentiability of the Merkle-Damgård domain extender and quantum
security for the Fujisaki-Okamoto transformation [39], in addition to the (tight) lower
bounds for the multicollision-finding problems [23]. His crucial observation is that
we can record queries and answers without affecting quantum states by appropriately
forgetting previous records. In addition, he observed that transcripts of queries can be
recorded in an compressed manner, which enables us to simulate random functions
(random oracles) extremely efficiently.

The compressed oracle technique is a powerful tool, although the formalization of
the technique is (necessarily) somewhat complex. A simpler alternative formalization
would be better to have when we apply the technique to complex schemes that use
multiple random functions, such as the Luby-Rackoff construction.

Zhandry’s formalization enables us to both record transcripts and compress recorded
data. We need the compression to efficiently simulate random functions but not when
we focus on information theoretic security of cryptographic schemes.

With this in mind, we modify the construction of Zhandry’s compressed standard
oracle and give an alternative formalization of Zhandry’s techniquewithout compression
of the database. Moreover, we scrutinize the properties of our modified oracle and
observe that its behaviors can be described in an intuitively clear manner by introducing
some error terms. We also explicitly describe error terms, which enables us to give
mathematically rigorous proofs. We name our alternative oracle the recording standard
oracle with errors, because it records transcripts of queries and its behavior is described
with error terms. We believe that our alternative formalization and analyses for our
oracle’s behavior help us understand Zhandry’s technique better, which will lead to the
technique being applied even more widely. See Section 3 for details on our alternative
formalization.

By heavily using our recording standard oracle with errors, we complete the security
proof of LR4 against quantum superposed query attacks, taking advantage of classical
proof intuitions to some extent. First, we consider LR3, the 3-round Luby-Rackoff
construction, which is easy to distinguish from a truly random permutation, and a
slightly modified version of it, where the last-round state update of LR3 is modified.
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Our observation is that even quantum (chosen-plaintext) query adversaries seem to have
difficulty noticing the modification, and we are actually able to show that this is indeed
the case. Intuitively, the proof is possible since even quantum query adversaries cannot
feasibly produce collisions on the input of the third round. Second, we prove that a
modified version of the 2-round Luby-Rackoff construction is hard to distinguish from
a truly random permutation. Intuitively, we show the hardness by proving it is hard even
for quantum adversaries to produce collisions on the input of the second round of the
modified 2-round Luby-Rackoff construction. To show the hardness results, we use our
recording standard oracle with errors. Once we prove these two hardness results, the
rest of the proof follows easily without any argument specific to the quantum setting.
Our proof is much more complex than the classical one, though, we give rigorous and
careful analyses. See Section 4 for details on the security proof of LR4.

In contrast to the high complexity of the provable security result, our quantum
distinguishing attack is a simple quantum polynomial speed-up of existing classical
attacks. See Section 5 for details on the quantum distinguishing attack.

1.2 Related Works

Other than the ones introduced above, security proofs against quantum query adversaries
for symmetric key schemes include a proof for standard modes of operations by Targhi
et al. [3], one for the Carter-Wegman message authentication codes (MACs) by Boneh
and Zhandry [6], one for NMAC by Song and Yun [33], and one for Davies-Meyer and
Merkle-Damgård constructions by Hosoyamada and Yasuda [18]. Zhandry showed the
PRP-PRF switching lemma in the quantum setting [36] and demonstrated that quantum-
secure PRPs can be constructed from quantum-secure PRFs by using a technique of
format preserving encryption [37]. Czajkowski et al. showed that the sponge construction
is collapsing (collapsing is a quantum extension of the classical notion of collision-
resistance) when round functions are one-way random permutations or functions [10].4
Alagic and Russell proved that polynomial-time attacks against symmetric-key schemes
that use Simon’s algorithm can be prevented by replacing XOR operations with modular
additions on the basis of an algebraic hardness assumption [1]. However, Bonnetain and
Naya-Plasecia showed that the countermeasure is not practical [8]. For standard security
proofs (against quantum adversaries that make only classical queries) for symmetric-
schemes, Mennink and Szepieniec proved security for XOR of PRPs [25]. Czajkowski
et al. [11] recently showed that the compressing technique can be extended to quantum
oracles with non-uniform distributions such as a random permutation, and showed
quantum indifferentiability of the sponge construction.

1.3 Updates from the Conference Version

The preliminary version of this paper was presented at Asiacrypt 2019 [15,16]. The
security was proven only up to O(2n/12) quantum queries in the preliminary version,
while the current version proves the tight bound of O(2n/6). Roughly speaking, the

4 Note that the condition in which the round function of the sponge construction is one-way is
unusual in the context of classical symmetric-key provable security.
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previous version showed the main proposition in Section 4.2 (Proposition 6 in the
current version) by using previous proof techniques. On the other hand, the current
version shows the proposition by using the recording standard oracle with errors, which
leads to the tight security bound. Section 4.3 is changed accordingly because it uses the
result in Section 4.2.

We emphasize that obtaining tight security bounds is very important in the symmetric
key setting: The security parameter n is often fixed to a concrete value, and unlike in the
public key setting, n cannot be scaled easily. For instance, we cannot increase the block
length of the Advanced Encryption Standard (AES), and even if we can define a block
cipher with a larger block length as in Rijndael, the deployment is often impractical.
More concretely, when n = 128 (which is a usual concrete parameter used for instance
in the Camellia block cipher [4]), the O(2n/12) bound does not exclude the possibility
of an attack with (for instance) 2128/12 < 211 quantum complexity, which could be a
real threat in the foreseeable future. Given the current stage of development in quantum
computers, clarifying the (non-)existence of such an attack is a very interesting problem
from a practical view point as well.

In addition, the previous version contains an error in Section 4.1 (see Section A in
Appendix for the details on the error in the preliminary version). The current version
fixes the error, and we changed details on the proof strategy of Proposition 4. The
contents of Section 4.1 before Proposition 5 are not significantly changed, while most of
the remaining parts of Section 4.1 in the preliminary version are modified and integrated
as Proposition 5. The proof of Proposition 5 is written from scratch. To correct the error,
we showed an additional proposition, which are added into Section 3 as Proposition 3.

Proposition 2 in the preliminary version contains an additional claim, but it is
removed in this version since it is not used in security proofs.

1.4 Paper Organization

Section 2 gives basic notations and definitions used throughout the paper. Section 3
gives an overview on Zhandry’s compressed oracle technique and our alternative for-
malization. Section 4 gives the security proof, and Section 5 shows the matching upper
bound. Section 6 concludes the paper.

2 Preliminaries

This section describes notations and definitions. In this paper, all algorithms (or adver-
saries) are assumed to be quantum algorithms, and make quantum superposed queries
to oracles. For any finite sets X and Y , let Func(X,Y ) denote the set of all functions
from X to Y . For any n-bit string x, we denote the left-half n/2-bits of x by xL and the
right-half n/2-bits by xR, respectively. We identify the set {0, 1}m with the set of the
integers {0, 1, . . . , 2m − 1}.

2.1 Quantum Computation

Throughout this paper, we assume that readers have basic knowledge about quantum
computation and finite dimensional linear algebra (see textbooks such as [27] for an
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introduction). We use the quantum circuit model for the model of quantum computation.
We measure complexity of quantum algorithms by the number of queries they make and
the number of quantum gates required to implement the algorithms. When we take the
number of gates into account as the complexity of a quantum algorithm, we assume that
quantum circuits are composed of quantum gates that are chosen from a fixed universal
gate set (e.g., Clifford+T gates). If a quantum adversaryA is allowed to make quantum
queries to an oracle O, we assume that a special oracle gate to make queries to O is
available to A in addition to Clifford+T gates. Let ‖ · ‖ and ‖ · ‖tr denote the norm of
vectors and the trace norm of operators, respectively. In addition, let td(·, ·) denote the
trace distance. For Hermitian operators ρ, σ on a Hilbert spaceH , td(ρ, σ) = 1

2 ‖ρ−σ‖tr
holds. For a mixed state ρ of a joint quantum systemHA ⊗HB, let trB (ρ) (resp., trA(ρ))
denote the partial trace of ρ over HB (resp., HA). For an integer n ≥ 1, In and H ⊗n

denote the identity operator on n-qubit systems and the n-qubit Hadamard operator,
respectively. If n is clear from the context, we just write I instead of In, for concision. By
abuse of notation, for an operator V , we sometimes use the same notation V to denote
V ⊗ I or I ⊗V for simplicity, when it will cause no confusion. In addition, for a vector |φ〉
and a positive integer m, we sometimes use the same notation |φ〉 to denote |φ〉 ⊗ |0m〉
or |0m〉 ⊗ |φ〉 for simplicity, when it will cause no confusion.

Quantum oracle query algorithms. Following previous works (see [5], for example),
any quantum oracle query algorithm A that makes at most q queries to oracles is
modeled as a sequence of unitary operators (U0, . . . ,Uq), where each Ui is a unitary
operator on an `-qubit quantum system, for some integer `. Here, U0 can be regarded as
the initialization process, and for 1 ≤ i ≤ q− 1, Ui is the process after the i-th query. Uq

can be regarded as the finalization process. We only consider quantum algorithms that
take no inputs and assume that the initial state of A is |0`〉.

Stateless oracles. For a function f : {0, 1}m → {0, 1}n, the quantum oracle of f is
defined as the unitary operator O f : |x, y〉 7→ |x, y ⊕ f (x)〉 . When we run A relative
to the oracle O f , the unitary operators U0,O f , . . . ,Uq−1,O f ,Uq act sequentially on the
initial state |0`〉, the resulting quantum state UqO fUq−1 · · ·O fU0 |0`〉 is measured, and
finally A returns the measurement result as the output. f may be chosen in accordance
with a distribution at the beginning of each game. We consider that O f acts on the first
(m+n)-qubits ofA’s quantum states. In other words, we assume thatA’s quantum state
is a vector of a Hilbert spaceHA = Hquery⊗Hanswer⊗Hwork such that dimHquery = 2m,
dimHanswer = 2n, and dimHwork = 2`−m−n, andO f acts onHquery⊗Hanswer. (We regard
thatHquery,Hanswer, andHwork correspond to A’s register to send queries to the oracle
O f , receive answers from O f , and perform offline computations, respectively.) Let us
denote the event that A runs relative to the oracle O f and returns an output α by
α ← AO f () or by AO f () → α.
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Stateful oracles. In this paper, we also consider more general cases in which quantum
oracles are stateful, i.e., oracles have `′-qubit quantum states for an integer `′ ≥ 0.5 In
these cases, an oracle O is modeled as a sequence of unitary operators (O1, . . . ,Oq)
that acts on the first (m + n)-qubits of A’s quantum states in addition to O’s quantum
states. That is, we assume that each Oi acts onHquery ⊗Hanswer ⊗HO , whereHO is the
Hilbert space of the oracle O’s quantum states. The entire quantum state ofA and O is
a vector of HA ⊗ HO =

(
Hquery ⊗ Hanswer ⊗ Hwork

)
⊗ HO . When we run A relative

to the oracle O, the unitary operators (U0 ⊗ I`′ ),O1, . . . , (Uq−1 ⊗ I`′ ),Oq, (Uq ⊗ I`′ )
act in a sequential order on the initial state |0`〉 ⊗ |initO〉, where |initO〉 ∈ HO is the
initial state of O. Finally,A measures the resulting quantum state (Uq ⊗ I`′ )Oq (Uq−1 ⊗
I`′ ) · · · O1(U0 ⊗ I`′ ) |0`〉 ⊗ |initO〉, and returns the measurement result as the output. If
O has no state and Oi = O f holds for each i, the behavior of A relative to O precisely
matches that ofA relative to the stateless oracle O f . Thus, our model of stateful oracles
is an extension of the typical model of stateless oracles described above. O may be
chosen in accordance with a distribution at the beginning of each game. We denote the
event that A runs relative to the oracle O and returns an output α by α ← AO () or by
AO () → α.

Quantum distinguishing advantages. Let A be a quantum algorithm that makes at
most q queries and outputs 0 or 1 as the final output, and let O1 and O2 be some oracles.
We consider the situation in which O1 and O2 are chosen randomly in accordance with
some distributions. We define the quantum distinguishing advantage of A by

Advdist
O1,O2

(A) :=
�����
Pr
O1

[
AO1 () → 1

]
− Pr
O2

[
AO2 () → 1

] �����
. (2)

When we are interested only in the number of queries and do not consider other com-
plexities such as the number of gates (i.e., we focus on information theoretic adversaries),
we use the notation

Advdist
O1,O2

(q) := max
A

{
Advdist

O1,O2
(A)

}
, (3)

where the maximum is taken over all quantum algorithms that make at most q quantum
queries.

Quantum PRF advantages. Let RF denote the quantum oracle of random functions,
i.e., the oracle such that a function f ∈ Func({0, 1}m, {0, 1}n) is chosen uniformly at
random, and adversaries are given oracle access to O f .

Let F = {Fk : {0, 1}m → {0, 1}n}k∈K be a family of functions. Let us use the
same symbol F to denote the oracle such that k is chosen uniformly at random, and
adversaries are given oracle access to OFk

. In addition, let A be an oracle query
algorithm that outputs 0 or 1. Then we define the quantum pseudorandom-function

5 Here we do not mean that our model captures all reasonable stateful quantum oracles. We use
our model of stateful quantum oracles just for intermediate arguments to prove our main results,
and the claims of the main results are described in the typical model of stateless oracles.
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(qPRF) advantage by AdvqPRF
F

(A) := Advdist
F ,RF(A). Similarly, we define AdvqPRF

F
(q)

byAdvqPRF
F

(q) := maxA
{
AdvqPRF

F
(A)

}
,where themaximum is taken over all quantum

algorithms A that make at most q quantum queries.

Quantum PRP advantages. By RP we denote the quantum oracle of random permu-
tations, i.e., the oracle such that a permutation P ∈ Perm({0, 1}n) is chosen uniformly
at random, and adversaries are given oracle access to OP .

Let P = {Pk : {0, 1}n → {0, 1}n}k∈K be a family of permutations. We use the
same symbol P to denote the oracle such that k is chosen uniformly at random, and
adversaries are given oracle access to OPk

. Let A be an oracle query algorithm that
outputs 0 or 1, andwe define the quantum pseudorandom-permutation (qPRP) advantage
by AdvqPRP

P
(A) := Advdist

P,RP(A). Similarly, we define AdvqPRP
P

(q) by AdvqPRP
P

(q) :=
maxA

{
AdvqPRP

P
(A)

}
, where the maximum is taken over all quantum algorithms A

that make at most q quantum queries.
The following lemma is a quantum version of the PRP-PRF switching lemma.

Proposition 1 (Theorem 2 in of [36]). For any quantum query adversary A that
makes at most q quantum queries, AdvqPRF

RP (A) ≤ O(q3/2n) holds. (Here we consider
a random permutation over {0, 1}n.)

Security against efficient adversaries. An algorithm A is called efficient if it can be
realized as a quantum circuit that has a polynomial number of quantum gates in n. A
set of functions F (resp., a set of permutations P) is a quantumly secure PRF (resp., a
quantumly secure PRP) if the following properties are satisfied:

1. Uniform sampling f
$
←− F (resp., P

$
←− P) and evaluation of each f (resp., each P)

can be implemented on quantum circuits that have a polynomial number of quantum
gates in n.

2. AdvqPRF
F

(A) (resp., AdvqPRP
P

(A)) is negligible (i.e., for any positive integer c, it is
upper bounded by n−c for all sufficiently large n) for any efficient algorithm A.

2.2 The Luby-Rackoff Constructions

The Luby-Rackoff construction [24] is a construction of n-bit permutations from n/2-bit
functions by using the Feistel network.

Fix r ≥ 1, and for 1 ≤ i ≤ r , let f i := { f i,k : {0, 1}n/2 → {0, 1}n/2}k∈K be a
family of functions parameterized by key k in a key space K . Then, the Luby-Rackoff
construction for f1, . . . , fr is defined as a family of n-bit permutations LRr ( f1, . . . , fr ) :={
LRr ( f1,k1, . . . , fr,kr )

}
k1,...,kr ∈K

with the key space (K )r . For eachfixed key (k1, . . . , kr ),
LRr ( f1,k1, . . . , fr,kr ) is defined by the following procedure: First, given an input x0 ∈
{0, 1}n, divide it into n/2-bit strings x0L and x0R. Second, iteratively update n-bit states
as

(x (i−1)L, x (i−1)R) 7→ (xiL, xiR) := (x (i−1)R ⊕ f i,ki (x (i−1)L ), x (i−1)L ) (4)

for 1 ≤ i ≤ r . Finally, return the final state xr := xrL ‖xrR as the output (see Fig. 2).
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𝑓1

𝑓2

𝑓3

Fig. 2. The 3-round Luby-Rackoff construction.

The resulting function LRr ( f1,k1, . . . , fr,kr ) : x0 7→ xr becomes an n-bit permutation
owing to the property of the Feistel network. Each f i,ki is called the i-th round function.
When we say that an adversary is given oracle access to LRr ( f1, . . . , fr ), we consider
the situation in which keys k1, . . . , kr are first chosen independently and uniformly at
random, and then the adversary runs relative to the stateless oracle OLRr ( f1,k1,..., fr,kr ) :
|x〉 |y〉 7→ |x〉 |y ⊕ LRr ( f1,k1, . . . , fr,kr )(x)〉. When each round function is chosen from
Func({0, 1}n/2, {0, 1}n/2) uniformly at random (i.e., each f i is the set of all functions
Func({0, 1}n/2, {0, 1}n/2) for all i), we use the notation LRr for short.

3 An Alternative Formalization for the Compressed Oracle
Technique

Many security proofs in the classical random oracle model (ROM) implicitly rely
on the fact that transcripts of queries and answers can be recorded. However, such
proofs do not necessarily work in the quantum random oracle model (QROM) [5],
since recording transcripts may significantly perturb quantum states, which might be
detected by adversaries. To solve this issue, Zhandry introduced the “compressed oracle
technique” [39] to enable us to record transcripts of queries and answers even in QROM.
In addition to recording transcripts, Zhandry’s technique enables us to simulate the
random oracle extremely efficiently by compressing databases of transcripts.

Zhandry’s technique was originally developed for QROM, in which adversaries can
make direct queries to random functions, but it can also be applied when adversaries
can make queries to random functions only indirectly. In particular, one may think that
the technique is applicable to giving a security proof for the Luby-Rackoff constructions
when all round functions are truly random.

The compressed oracle technique is very insightful and promising, but its formal
description is somewhat (necessarily) complex. A simpler formalization would be better
to have when we want to apply the technique to complex schemes that use multiple
random functions, such as the Luby-Rackoff construction.

Security proofs of symmetric-key mode of operations often involve the analysis of
information theoretic adversaries. When we are interested in such information theoretic
security, we do not care about efficient simulation of a random oracle, and thus do
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not have to compress databases. With this in mind, we modify the construction of
Zhandry’s compressed standard oracle and give an alternative formalization of his
technique without compressing databases that can be used when we focus on (quantum)
information theoretic security.

We also study the behavior of our oracle in detail and show that its properties can be
described intuitively by introducing the notion of error terms. Since our oracle records
transcripts of queries and its behavior is described with error terms, we call our oracle
recording standard oracle with errors and denote it by RstOE.

In Section 3.1we give an overview of the original technique byZhandry, and describe
which part of it can be improved. Then, in Section 3.2 we describe our alternative
formalization for the technique.

3.1 An Overview of the Original Technique

First, Zhandry observed that the oracle O f can be implemented with an encoding
of f and an operator stO that is independent of f . In this subsection, we consider
that each function f : {0, 1}m → {0, 1}n is encoded into the (n2m)-qubit state | f 〉 =
| f (0)‖ f (1)‖ · · · ‖ f (2m − 1)〉. The operator stO is the unitary operator that acts on
(n + m + n2m)-qubit states defined as

stO : |x〉 |y〉 ⊗ |α0〉 · · · |α2m−1〉 7→ |x〉 |y ⊕ αx〉 ⊗ |α0〉 · · · |α2m−1〉 , (5)

where αx ∈ {0, 1}n for each 0 ≤ x ≤ 2m−1. We can easily confirm that stO |x〉 |y〉 | f 〉 =
|x〉 |y ⊕ f (x)〉 | f 〉 holds. Here, we consider that |x〉 |y〉 corresponds to the first (m + n)-
qubits of adversaries’ registers.

When f is chosen uniformly at random and A runs relative to stO and | f 〉 (i.e.,
A runs relative to the quantum oracle of a random function), the whole quantum state
before A makes the (i + 1)-st quantum query becomes

|φ f ,i+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I) |0`〉 | f 〉 (6)

with probability 1/2n2m . Here, we assume that A has `-qubit quantum states.
Random choice of f can be implemented by first making the uniform superposition

of functions
∑

f
1√

2n2m
| f 〉 = H ⊗n2m |0n2m 〉 and then measuring the state with the

computational basis. So far we have considered that a random function f is chosen at
the beginning of games, but the output distribution ofA will not be changed even if we
measure the | f 〉 register at the same time as we measure A’s register. Thus, below we
consider that all quantum registers including those of functions are measured only once
at the end of each game.

Then the whole quantum state beforeA makes the (i+1)-st quantum query becomes

|φi+1〉 =
∑
f

|φ f ,i+1〉 = (Ui ⊗ I)stO · · · stO(U0 ⊗ I) *.
,
|0`〉 ⊗

∑
f

1
√

2n2m
| f 〉+/

-
. (7)

Next, we change the basis of the y register and αi registers in (5) from the standard
computational basis {|u〉}u∈{0,1}n to one called the Fourier basis {H ⊗n |u〉}u∈{0,1}n 6 by

6 Note that the Hadamard operator H⊗n corresponds to the Fourier transformation over the group
(Z/2Z)⊕n.
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Zhandry [39]. Inwhat follows, we use the symbol “̂” to denote the encoding of classical
bit strings into quantum states by using the Fourier basis instead of the computational
basis, and we ambiguously denote H ⊗n |u〉 by |û〉 for each u ∈ {0, 1}n. Then, it can be
easily confirmed that

stO |x〉 | ŷ〉 ⊗ |α̂0〉 · · · |Fα2m−1〉 = |x〉 | ŷ〉 ⊗ |α̂0〉 · · · |Fαx ⊕ y〉 · · · |Fα2m−1〉 (8)

holds. Intuitively, the direction of data writing changes when we change the basis: When
we use the standard computational basis, data is written from the function registers to
adversaries’ registers as in (5). On the other hand, when we use the Fourier basis, data is
written in the opposite direction as in (8). With the Fourier basis, |φi+1〉 can be written
as

|φi+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I)
(
|0`〉 ⊗ |E0n2m 〉

)
. (9)

Here, note that
∑

f | f 〉 = H ⊗n2m |0n2m 〉 = |E0n2m 〉 holds. In particular, the register of the
functions are initially set as |E0n2m 〉, and at most one data is written (in superpositions)
when an adversary makes a query. Thus

|φi+1〉 =
∑
xyzD̂

a′
xyzD̂

|xyz〉 ⊗ |D̂〉 (10)

holds for some complex numbers a′
xyzD̂

such that
∑

xyzD̂ |a
′

xyzD̂
|2 = 1, where each x is

an m-bit string that corresponds to A’s register to send queries to oracles, y is an n-bit
string that corresponds to A’s register to receive answers from oracles, z corresponds
toA’s remaining register to perform offline computations, and D̂ = α̂0‖ · · · ‖Fα2m−1 is a
concatenation of 2m many n-bit strings.

Zhandry’s key observation is that, since stO adds at most one data to the D̂-register
in each query, α̂x , 0n holds for at most i many x, and thus D̂ can be regarded as a
database with at most i many non-zero entries. (Note that D̂ may contain fewer than i
non-zero entries. For example, if a state |x〉 | ŷ〉 is successively queried to stO twice, then
the database will remain unchanged since stO · stO = I.) We use the same notation D̂ to
denote the database and call it the Fourier database since now we are using the Fourier
basis for D̂. Each entry of the database D̂ has the form (x, α̂x ), where x ∈ {0, 1}m,
α̂x ∈ {0, 1}n, and α̂x , 0n.

Intuitively, if the Fourier database D̂ contains an entry (x, α̂x ), it means that A has
queried x to a random function f and holds some information about the value f (x).
Hence D̂ can be seen as a record of transcripts for queries and answers. However, it is
still not clear what kind of information A has about the value f (x), since we are now
using the Fourier basis. To clarify this information, let the Hadamard operator H ⊗n act
on each α̂x in D̂ and obtain another (superposition of) database D. Then, intuitively, D
satisfies the condition in which “(x, αx ) ∈ D corresponds to the condition that A has
queried x to the oracle and received the value αx in response.” We call D a standard
database.

In summary, Zhandry observed that the quantum random oracle can be described
as a stateful quantum oracle CstO. The whole quantum state of an adversary A and the

12



oracle just before the (i + 1)-st query is

|φi+1〉 =
∑
xyzD

axyzD |xyz〉 ⊗ |D〉 , (11)

where each D is a standard database that contains at most i entries. Initially, the database
D is empty. Intuitively, when A makes a query |x, y〉 to the oracle, CstO does the fol-
lowing three-step procedure7.

The three-step procedure of CstO.

1. Look for a tuple (x, αx ) ∈ D. If one is found, respond with |x, y ⊕ αx〉.
2. If no tuple is found, create new registers initialized to the state 1√

2n
∑
αx
|αx〉. Add

the registers (x, αx ) to D. Then respond with |x, y ⊕ αx〉.
3. Finally, regardless of whether the tuple was found or added, there is now a tuple

(x, αx ) in D, which may have to be removed. To do so, test whether the registers
containing αx contain 0n in the Fourier basis. If so, remove the tuple from D.
Otherwise, leave the tuple in D.

Intuitively, the first and second steps correspond to the classical lazy sampling, which
do the following procedure: When an adversary makes a query x to the oracle, look for
a tuple (x, αx ) in the database. If one is found, respond with αx (this part corresponds to
the first procedure of CstO). If no tuple is found, choose αx uniformly at random from
{0, 1}n (this part corresponds to creating the superposition 1√

2n
∑
αx
|αx〉 in the second

step of CstO), respond with αx , and add (x, αx ) to the database.
The third “test and forget” step is crucial and specific to the quantum setting. In-

tuitively, the third step forgets data that is no longer used by the adversary from the
database. By appropriately forgetting information, we can record transcripts of queries
and answers without perturbing quantum states.

Formalization with compression. On the basis of above clever intuitions, Zhandry
gave a formalized description of the compressed standard oracle CstO (although we do
not give the explicit description here). Note that, since each database D has at most i
entries before the (i + 1)-st query, D can be encoded in a compressed manner by using
only O(i(m + n)) qubits. With this observation, CstO is formalized in such a way that
it has O(i(m + n))-qubit states before the (i + 1)-st query for each i, which enables us
to simulate a random oracle very efficiently on the fly, without an a priori bound on the
number of queries (which required computational assumption before Zhandry’s work).

3.2 Our Alternative Formalization

Next we give our alternative formalization. The original oracle CstO maintains only an
O(i(m + n))-qubit state by compressing databases. On the other hand, in our alternative

7 Note that this three-step procedure is a quoted verbatim from a preliminary full version of the
original paper [38] on IACR Cryptology ePrint archive, except that the symbol y′ and 0 are
used instead of αx and 0n, respectively, in the original procedure.
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formalization, we do not consider any compression to focus on recording transcripts of
queries, and our oracle always has (n + 1)2m-qubit states.

From now on, we represent each function f : {0, 1}m → {0, 1}n as an (n + 1)2m-bit
string (0‖ f (0))‖(0‖ f (1))‖ · · · ‖(0‖ f (2m−1)). Remember that the whole quantum state
after A makes the i-th query is described as

|φ̃i〉 = stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I) *.
,
|0`〉 ⊗

∑
f

1
√

2n2m
| f 〉+/

-
. (12)

At each query, unlike the original technique that adds/deletes at most one entry to/from
each database, we first “decode” superpositions of databases to superpositions of func-
tions when an adversary makes a query, then respond to the adversary, and finally
“encode” again superpositions of functions to superpositions of databases. Below we
describe our encoding.

Encoding functions to databases: Intuitive descriptions. Modifying the idea of
Zhandry, we apply the following operations to the | f 〉-register of |φ̃i〉 (i.e., just after
the i-th query).

1. Let the Hadamard operator H ⊗n act on the f (x) register for all x. Now the state
becomes ∑

xyzD̃

a′
xyzD̃

|xyz〉 ⊗ |D̃〉 (13)

for some complex numbers a′
xyzD̃

, where each D̃ = (0‖α̂0)‖ · · · ‖(0‖α̂2m−1) is a
concatenation of 2m many (n + 1)-bit strings, and α̂x , 0n at most i-many x.

2. For each x, if α̂x , 0n, flip the bit just before α̂x . Now each D̃ changes to the bit
string (b0‖α̂0)‖ · · · ‖(b2m−1‖α̂2m−1), where bx ∈ {0, 1}, and bx = 1 if and only if
α̂x , 0n.

3. For each x ∈ {0, 1}n, let the n-bit Hadamard transformation H ⊗n act on |α̂x〉 if and
only if bx = 1. Then the quantum state becomes

|ψ̃i〉 :=
∑
xyzD

axyzD |xyz〉 ⊗ |D〉 (14)

for some complex numbers axyzD , where each D is a concatenation of 2m many
(n + 1)-bit strings (b0‖α0)‖ · · · ‖(b2m−1‖α2m−1) such that bx , 0 holds for at most
i many x, and intuitively bx , 0 means that A has queried x to a random function
f and has information that f (x) = αx .

Encoding functions to databases: Formal descriptions. The above three operations
can be formally realized as actions of unitary operators on | f 〉-registers. The first one is
realized as IH := (I1⊗H ⊗n)⊗2m . The second one is realized asUtoggle := (I1⊗ |0n〉 〈0n |+
X ⊗ (In − |0n〉 〈0n |))⊗2m , where X is the 1-qubit operator such that X |0〉 = |1〉 and
X |1〉 = |0〉. The third one is realized by the operator CH := (CH ⊗n)⊗2m , where
CH := |0〉 〈0| ⊗ In + |1〉 〈1| ⊗ H ⊗n.
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We call the action of unitary operator Uenc := CH · Utoggle · IH and its conjugate
U∗enc encoding and decoding, respectively. By using our encoding and decoding, the
recording standard oracle with errors is defined as follows.

Definition 1 (Recording standard oracle with errors). The recording standard oracle
with errors is the stateful quantum oracle such that queries are processed with the
unitary operator RstOE defined by RstOE := (I ⊗ Uenc) · stO · (I ⊗ U∗enc).

Note that |ψ̃i〉 = RstOE(Ui−1 ⊗ I)RstOE · · ·RstOE(U0 ⊗ I)( |0`〉 ⊗ |0(n+1)2m 〉) and
|φ̃i〉 = (I ⊗ U∗enc) |ψ̃i〉 hold for each i.

Next, we introduce notations related to our recording standard oracle with errors
that are required to describe properties of RstOE.

Notations related to RstOE. We call a bit string D = (b0‖α0)‖ · · · ‖
(b2m−1‖α2m−1), where bx ∈ {0, 1} and αx ∈ {0, 1}n for each x ∈ {0, 1}m, is a valid
database if αx , 0n holds only if bx = 1. We call D an invalid database if it is not a valid
database. Note that, in a valid database, bx can be 0 or 1 if αx = 0n. We identify a valid
database D with the partially defined function from {0, 1}m to {0, 1}n of which the value
on x ∈ {0, 1}m is defined to be y if and only if bx = 1 and αx = y. We use the same nota-
tion D for this function. If x is in the domain of D, wewrite D(x) ,⊥, and otherwisewrite
D(x) =⊥. Moreover, we identify D with the set {(x, D(x))}x∈dom(D) ⊂ {0, 1}m× {0, 1}n,
and we use the notations D ∪ (x, α) and D \ (x ′, α′) to denote the insertion of (x, α)
into D and the deletion of (x ′, α′) from D. For a valid database D that corresponds
to the bit string (b0 | |α0) | | · · · | |(b2m−1 | |α2m−1) such that D(x) =⊥ (i.e., bx = 0 and
αx = 0n) and γ , 0n, we denote the invalid database that corresponds to the bit string
(b0 | |α0) | | · · · | |(bx−1 | |αx−1) | |(1| |γ) | |(bx+1 | |αx+1) | | · · · | |(b2m−1 | |α2m−1) by D ∪ ~x, γ�.
Unless otherwise noted, we always assume that D is valid.

The following proposition describes the core properties of RstOE.

Proposition 2 (Core Properties). Let D be a valid database and suppose that n is
sufficiently large (n ≥ 6 suffices). Then, the following properties hold.

1. Suppose that D(x) = ⊥. Then, for any y and α, there exists a vector |ε〉 such that

RstOE |x〉 |y〉 ⊗ |D ∪ (x, α)〉 = |x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε〉

and ‖ |ε〉 ‖ ≤ 5/
√

2n. More precisely,

|ε〉 =
1
√

2n
|x, y ⊕ α〉 *.

,
|D〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1
2n
|x〉 |0̂n〉 ⊗ *.

,
2

∑
δ∈{0,1}n

1
√

2n
|D ∪ (x, δ)〉 − |D〉+/

-
(15)
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holds, where |Dinvalid
γ 〉 is a superposition of invalid databases defined by

|Dinvalid
γ 〉 :=

∑
δ,0n

(−1)γ ·δ
√

2n
|D ∪ ~x, δ�〉

for each γ, and |0̂n〉 = H ⊗n |0n〉.
2. Suppose that D(x) = ⊥. Then, for any y, there exists a vector |ε ′〉 such that

RstOE |x〉 |y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1
√

2n
|x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε ′〉

and ‖ |ε ′〉 ‖ ≤ 2/
√

2n. To be more precise,

|ε ′〉 =
1
√

2n
|x〉 |0̂n〉 ⊗ *.

,
|D〉 −

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-
(16)

holds, where |0̂n〉 = H ⊗n |0n〉.

An intuitive interpretation of Proposition 2. The proposition shows that, when the ad-
versary’s state is not superposed, we can intuitively capture time evolutions of databases
with only the (classical) lazy-sampling-like arguments by ignoring the error terms |ε〉
and |ε ′〉: When an adversary makes a query x to the oracle, RstOE looks for a tuple
(x, α) in the database. If one is found, respond with α (the first property in the above
proposition). If no tuple is found, create the superposition 1√

2n
∑
αx
|αx〉, respond with

αx , and add (x, αx ) to the database (the second property in the above proposition).
Note that this intuition for the classical lazy-sampling does not necessarily work

when the adversary’s state is superposed. In particular, the error term |ε〉 in the first
property may become non-negligible, which means that a record (x, α) in a database
may be deleted or overwritten by another record (x, γ) with non-negligible probability
(in a quantum sense) when a quantum query is made. When (x, α) is overwritten with
another record (x, γ), intuitively, the new value γ is chosen uniformly at random.

On the other hand, basically we can ignore invalid databases in security proofs since,
when we measure the database register while an adversary runs relative to the recording
standard oracle with errors, we always obtain a valid database.

Proof (of Proposition 2). Recall that RstOE is decomposed as

RstOE = (I ⊗ CH) · (I ⊗Utoggle) · (I ⊗ IH)stO(I ⊗ IH∗) · (I ⊗U∗toggle) · (I ⊗ CH∗), (17)

and that each D is described as a bit string (b0‖α0)‖ · · · ‖(b2m−1‖α2m−1), where bx ∈
{0, 1} and αx ∈ {0, 1}n for each x ∈ {0, 1}m.

We begin with showing the first property. Since now the operator RstOE does not
affect the registers of entry of x ′ in D for x ′ , x, it suffices to show that the claim holds
when D is empty. In addition, without loss of generality, we can assume that x = 0m.
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Now D ∪ (x, α) corresponds to the bit string (1‖α)‖(0‖0n)‖ · · · ‖(0‖0n). We have that
U∗enc = IH∗U∗toggleCH∗ = IHUtoggleCH and

U∗enc |D ∪ (x, α)〉 = IHUtoggle
*.
,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|1‖u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0‖0n〉+

-

= IH *.
,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|0‖u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0‖0n〉+

-

+ IH
(

1
√

2n
(|1‖0n〉 − |0‖0n〉)

)
⊗ *

,

2m−1⊗
i=1
|0‖0n〉+

-

= |0‖α〉 ⊗ *
,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ |ε1〉 , (18)

where |0̂n〉 := H ⊗n |0n〉 and |ε1〉 =
1√
2n

( |1〉 − |0〉) |0̂n〉 ⊗
(⊗2m−1

i=1 |0〉 |0̂n〉
)
. Thus, we

have that

stO
(
I ⊗ U∗enc

)
|x, y〉 ⊗ |D ∪ (x, α)〉

= |x, y ⊕ α〉 ⊗ |0‖α〉 ⊗ *
,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ stO( |x, y〉 ⊗ |ε1〉). (19)

Note that, from (18), it follows that

Uenc *
,
|0‖α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ |ε1〉+

-
= |D ∪ (x, α)〉 . (20)

Therefore,

(I ⊗ Uenc) stO
(
I ⊗ U∗enc

)
|x, y〉 ⊗ |D ∪ (x, α)〉

= (I ⊗ Uenc) *
,
|x, y ⊕ α〉 ⊗ |0‖α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ stO( |x, y〉 ⊗ |ε1〉)+

-

= (I ⊗ Uenc) *
,
|x, y ⊕ α〉 ⊗ |0‖α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ |x, y ⊕ α〉 ⊗ |ε1〉+

-
− (I ⊗ Uenc) (|x, y ⊕ α〉 ⊗ |ε1〉) + (I ⊗ Uenc)stO(|x, y〉 ⊗ |ε1〉)

= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε2〉 (21)

holds, where |ε2〉 = − (I ⊗ Uenc) (|x, y ⊕ α〉 ⊗ |ε1〉) + (I ⊗Uenc)stO(|x, y〉 ⊗ |ε1〉). Now
we have that

(I ⊗ Uenc)stO(|x, y〉 ⊗ |ε1〉)

= (I ⊗ CH ·Utoggle · IH)
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ ( |1〉 − |0〉)

17



⊗ |γ〉 ⊗ *
,

2m−1⊗
i=1
|0〉 |0̂n〉+

-

= (I ⊗ CH ·Utoggle)
1
√

2n
∑
γ,δ

(−1)γ ·δ

2n
|x, y ⊕ γ〉 ⊗ ( |1〉 − |0〉)

⊗ |δ〉 ⊗ *
,

2m−1⊗
i=1
|0〉 |0n〉+

-

= (I ⊗ CH)
1
√

2n
∑
γ,δ

(−1)γ ·δ

2n
|x, y ⊕ γ〉 ⊗ ( |0〉 − |1〉) ⊗ |δ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+ (I ⊗ CH)
2
√

2n
∑
γ

1
2n
|x, y ⊕ γ〉 ⊗ ( |1〉 − |0〉) ⊗ |0n〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|0〉 ⊗

(
H ⊗n |γ〉

)
− |1〉 ⊗ |γ〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
√

2n
∑
γ

1
2n
|x, y ⊕ γ〉 ⊗

(
|1〉 ⊗

(
H ⊗n |0n〉

)
− |0〉 ⊗ |0n〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

(
H ⊗n |γ〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
√

2n
∑
γ

1
2n
|x, y ⊕ γ〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗ *

,

∑
δ

(−1)γ ·δ
√

2n
|δ〉+

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
2n

∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗ *

,

∑
δ,0n

(−1)γ ·δ
√

2n
|δ〉+

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

(
1
√

2n
|0n〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
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−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
2n

∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |Dinvalid

γ 〉

+
1
2n

∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |D〉

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |D ∪ (x, γ)〉

+
2
2n
|x〉 |0̂n〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

= −
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1
2n
|x〉 |0̂n〉 ⊗ *

,
2
∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-
, (22)

where

|Dinvalid
γ 〉 = *

,

∑
δ,0n

(−1)γ ·δ
√

2n
|0〉 |δ〉+

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
∑
δ,0n

(−1)γ ·δ
√

2n
|D ∪ ~x, δ�〉

for each γ.
In addition, we have that

Uenc |ε1〉 = (CHUtoggleIH)
1
√

2n
( |1〉 − |0〉) |0̂n〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-

= CH
1
√

2n
( |1〉 − |0〉) |0n〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
(|1〉 |0̂n〉 − |0〉 |0n〉) ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
∑
γ

1
√

2n
|D ∪ (x, γ)〉 −

1
√

2n
|D〉 (23)
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holds. Thus,

(I ⊗ Uenc) |x, y ⊕ α〉 ⊗ |ε1〉 =
1
√

2n
|x, y ⊕ α〉 *.

,

*.
,

∑
γ

1
√

2n
|D ∪ (x, γ)〉+/

-
− |D〉+/

-
(24)

holds. Therefore,

RstOE |x, y〉 ⊗ |D ∪ (x, α)〉
= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1
√

2n
|x, y ⊕ α〉 *.

,
|D〉 − *.

,

∑
γ

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1
2n
|x〉 |0̂n〉 ⊗ *

,
2
∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-
(25)

holds, and this proves the first property.
Next, we show the second property. Since now the operator RstOE does not affect

the registers of entry of x ′ in D for x ′ , x, it suffices to show that the claim holds when
D has no entry. In addition, we can without loss of generality assume that x = 0m. Now
D corresponds to the bit string (0‖0n)‖(0‖0n)‖ · · · ‖(0‖0n), and we have that

U∗enc |D〉 = IHUtoggleCH |D〉

=
*.
,

∑
α∈{0,1}n

1
√

2n
|0〉 |α〉+/

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
. (26)

Hence, it holds that

stO(I ⊗ U∗enc) |x, y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |0〉 |α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
. (27)

In addition, we have that

(I ⊗ Uenc)stO(I ⊗ U∗enc) |x, y〉 ⊗ |D〉

= (I ⊗ (CHUtoggleIH)) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |0〉 |α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+/
-

= (I ⊗ (CHUtoggle)) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉

⊗
*.
,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|0〉 |u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
+/
-
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= (I ⊗ CH) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉

⊗
*.
,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|1〉 |u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
+/
-

+ (I ⊗ CH) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉

⊗

(
1
√

2n
(|0〉 − |1〉) ⊗ |0n〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
+
-

=
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |1〉 |α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗

(
1
√

2n
(|0〉 |0n〉 − |1〉 |0̂n〉)

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1
√

2n
|x〉 |0̂n〉 ⊗ *.

,
|D〉 −

∑
γ

1
√

2n
|D ∪ (x, γ)〉+/

-
(28)

holds. Therefore, the second property also holds. ut

Let RstOE be the recording oracle with errors for a random function f : {0, 1}m →
{0, 1}n. We also show the following lemma for later use.
Proposition 3. Let y be a fixed n-bit string, and

|ψ〉 =
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψx,α,D〉

+
∑

x∈{0,1}m,D
D(x)=⊥

c′x,D |x, y〉 ⊗ |D〉 ⊗ |ψ
′
x,D〉

be a vector such that ‖ |ψ〉 ‖ ≤ 1, ‖ |ψx,D〉 ‖ ≤ 1, and ‖ |ψ ′x,α,D〉 ‖ ≤ 1 for each x, α, and
D. Here, |x〉 and |y〉 are the registers to send queries to f and receive the responses,
respectively, and |ψx,α,D〉 , |ψ

′
x,D〉 correspond to an additional quantum system on which

RstOE does not affect. In addition, cx,α,D and c′x,D are complex numbers such that∑
x∈{0,1}m,α∈{0,1}n,D

D(x)=⊥

|cx,α,D |2 ≤ 1

and ∑
x∈{0,1}m,D
D(x)=⊥

|c′x,D |
2 ≤ 1.
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LetΠvalid be the orthogonal projection onto the vector space spanned by valid databases.
Then there exists a vector |ε〉 such that ‖ |ε〉 ‖ ≤ 10/

√
2n and

ΠvalidRstOE |ψ〉 =
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψx,α,D〉

−
∑

x∈{0,1}m,α,γ∈{0,1}n,D
D(x)=⊥

1
2n

cx,α,D |x, y ⊕ γ〉 ⊗ |D ∪ (x, γ)〉 ⊗ |ψx,α,D〉

+
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

c′x,D
1
√

2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψ ′x,D〉

+ |ε〉

hold.

An intuitive interpretation of Proposition 3. Intuitively, this proposition shows that,
when an adversary’s register to receive responses from the oracle (i.e., the |y〉 register)
is not superposed, we can ignore the effect that an existing record (x, α) will be deleted
from a database. (Nevertheless, we cannot ignore the effect that an existing record (x, α)
will be overwritten with another record (x, γ).)

Proof (of Proposition 3). Let

|φ0〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψx,α,D〉 ,

|φ1〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D
1
√

2n
|x, y ⊕ α〉

⊗
*.
,
|D〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-
⊗ |ψx,α,D〉 ,

|φ2〉 := −
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉

⊗
(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)
⊗ |ψx,α,D〉 ,

|φ3〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D
1
2n
|x〉 |0̂n〉

⊗
*.
,
2

∑
δ∈{0,1}n

1
√

2n
|D ∪ (x, δ)〉 − |D〉+/

-
⊗ |ψx,α,D〉 ,

|φ′0〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

c′x,D
1
√

2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψ ′x,D〉
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|φ′1〉 :=
∑

x∈{0,1}m,D
D(x)=⊥

c′x,D
1
√

2n
|x〉 |0̂n〉 ⊗ *.

,
|D〉 −

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-
⊗ |ψ ′x,D〉

Then
RstOE |ψ〉 =

∑
0≤i≤3

|φi〉 +
∑

0≤i≤1
|φ′i〉

follows from Proposition 2.

Upper bounding ‖ |φ1〉 ‖.
First, for distinct tuples (x, α, D) , (x ′, α′, D′) such that D(x) = ⊥ and D(x ′) = ⊥,

|x, y ⊕ α〉 ⊗ *.
,
|D〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-

is orthogonal to

|x ′, y ⊕ α′〉 ⊗ *.
,
|D′〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D′ ∪ (x ′, γ)〉+/

-

+/
-
.

Thus
‖ |φ1〉 ‖

2 ≤ (2/2n) ·
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

|cx,α,D |2 ≤ 2/2n (29)

holds.

Upper bounding ‖ |φ3〉 ‖.
We have that

‖ |φ3〉 ‖
2 ≤ 5 ·

∑
x∈{0,1}m,D
D(x)=⊥

*
,

∑
α

|cx,α,D |
2n

+
-

2

≤ 5 ·
∑

x∈{0,1}m,D
D(x)=⊥

∑
α

��cx,α,D ��2

2n

≤
5
2n

(30)

holds, where we used the convexity of the function X 7→ X2 for the second inequality.

Upper bounding ‖ |φ′1〉 ‖.
We have that

|φ
′
1〉


2
≤

2
2n

∑
x∈{0,1}m,D
D(x)=⊥

|c′x,D |
2 ≤

2
2n

(31)

holds.
Now the claim of the lemma holds by setting |ε〉 := |φ1〉 + |φ3〉 + |φ

′
1〉. ut
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4 Security Proofs

The goal of this section is to show the following theorem, which gives the quantum query
lower bound for the problem of distinguishing the 4-round Luby-Rackoff construction
LR4 from random permutationsRP, when all round functions are truly random functions.

Theorem 3. Let q be a positive integer. Let A be an adversary that makes at most q
quantum queries. Then, AdvqPRP

LR4
(A) is in O

(√
q3/2n/2

)
.

Since we can efficiently simulate truly random functions against efficient quantum
adversaries [35], the following corollary follows from Theorem 3.

Corollary 1. Let f i be a quantumly secure PRF for each 1 ≤ i ≤ 4. Then, the 4-round
Luby-Rackoff construction LR4( f1, f2, f3, f4) is a quantumly secure PRP.

In the rest of this section, we assume that all round functions in the Luby-Rackoff
constructions are truly random functions, and we focus on the number of queries when
we consider computational resources of adversaries. To have a good intuition on our
proof in the quantum setting, it would be better to intuitively capture how LR3 is proven
to be secure against classical CPAs, how the quantum attack on LR3 works, and what
problem will be hard even for quantum adversaries. Thus, before giving a formal proof
for the above theorem, in what follows we give some observations about these questions,
and then explain where to start.

An overview of a classical security proof for LR3. Here we give an overview of a
classical proof for the security of LR3 against chosen plaintext attacks in the classical
setting. For simplicity, we consider a proof for PRF security of LR3.

Letbad2 be the event that an adversarymakes twodistinct plaintext queries (x0L, x0R)
, (x ′0L, x ′0R) to the real oracle LR3 such that the corresponding inputs x1L and x ′1L to
the second round function f2 are equal, i.e., inputs to f2 collide. In addition, let bad3 be
the event that inputs to f3 collide, and define bad := bad2 ∨ bad3.

If bad2 (resp., bad3) does not occur, then the right-half (resp., left-half) n/2 bits of
LR3’s outputs cannot be distinguished from truly random n/2-bit strings. Thus, unless
the event bad occurs, adversaries cannot distinguish LR3 from random functions.

If the number of queries of an adversary A is at most q, we can show that the
probability that the event bad occurs when A runs relative to the oracle LR3 is in
O(q2/2n/2). Thus we can deduce that LR3 is indistinguishable from a random function
up to O(2n/4) queries.

Quantum chosen plaintext attack on LR3. Next, we give an overview of the quantum
chosen plaintext attack on LR3 by Kuwakado and Morii [21]. Note that we consider
the setting in which adversaries can make quantum superposition queries. The attack
distinguishes LR3 from a random permutation with only O(n) queries.

Fix α0 , α1 ∈ {0, 1}n/2 and for i = 0, 1, define gi : {0, 1}n/2 → {0, 1}n/2 by
gi (x) = (LR3(αi, x))R ⊕ αi , where (LR3(αi, x))R denote the right half n/2-bits of
LR3(αi, x). In addition, define G : {0, 1} × {0, 1}n/2 → {0, 1}n/2 by G(b, x) = gb (x).
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Then, g0(x) = g1(x ⊕ s) can be easily confirmed to hold for any x ∈ {0, 1}n/2, where
s = f1(α0) ⊕ f1(α1). Thus G(b, x) = G((b, x) ⊕ (1, s)) holds for any b and x, i.e., the
function G has the period (1, s).

If we can make quantum superposed queries to G, then we can find the period (1, s)
by using Simon’s period finding algorithm [32], making O(n) queries to G. In fact G
can be implemented on an oracle-aided quantum circuit CLR3 by making O(1) queries
to LR3.8

Roughly speaking, Simon’s algorithm outputs the periods with a high probability by
making O(n) queries if applied to periodic functions, and outputs the result that “this
function is not periodic” if applied to functions without periods.

Ifwe are given the oracle of a randompermutationRP, the circuitCRP will implement
an almost random function, which does not have any period with a high probability.
Thus, if we run Simon’s algorithm on CRP, with a high probability, it does not output
any period. Therefore, we can distinguish LR3 from RP by checking if Simon’s period
finding algorithm outputs a period.

Observation: Why the classical proof does not work? Here we give an observation
about why quantum adversaries can distinguish LR3 from random permutations even
though LR3 is proven to be indistinguishable from a random permutation in the classical
setting.

We observe that quantum adversaries can make the event bad2 occur: Once we find
the period 1‖s = 1‖ f1(α0)⊕ f2(α1) given the real oracle LR3, we can force collisions on
the input of f2. Concretely, take x ∈ {0, 1}n/2 arbitrarily and set (x0L, x0R) := (α0, x),
(x ′0L, x ′0R) := (α1, x ⊕ s). Then the corresponding inputs to f2 become f1(α0) ⊕ x for
both plaintexts. Thus the classical proof idea does not work in the quantum setting.

Quantum security proof for LR4: The idea. As we explained above, the essence of
the quantum attack on LR3 is finding collisions for inputs to the second round function
f2. On the other hand, finding collisions for inputs to the third round function f3 seems
difficult even for quantum (chosen-plaintext) query adversaries.

Having these observations, our idea is that even quantum adversaries would have
difficulty in noticing that the third state update (x2L, x2R) 7→ (x2R ⊕ f3(x2L ), x2L ) of
LR3 is modified as (x2L, x2R) 7→ (F (x2L, x2R), x2L ), where F : {0, 1}n/2 × {0, 1}n/2 →
{0, 1}n/2 is a random function. We denote this modified function by LR′3 (see Fig. 3) and
begin by showing that it is hard to distinguish LR′3 from LR3.

We will show this by combining the classical proof idea and our recording standard
oracle with errors. Roughly speaking, we define “bad” databases as the ones that con-
tain “collisions at left-half inputs to the third round function”. Then we show that the
probability that we measure bad databases is very small, and that adversaries cannot
distinguish LR′3 from LR3 when databases are not bad.

Next, let LR′′2 denote a modified version of the 2-round Luby-Rackoff construction
such that the first and second state update operations are modified as (x0L, x0R) 7→

8 Here we have to truncate outputs of O without destroying quantum states, which is pointed out
to be non-trivial in the quantum setting [20]. However, this “truncation” issue can be overcome
by using a technique described in [17].

25



𝑓1

𝑓2

𝐹

Fig. 3. LR′3

(F1(x0L, x0R), x0L ) and (x1L, x1R) 7→ (F2(x1L, x1R), x1L ), respectively, where F1, F2 :
{0, 1}n/2×{0, 1}n/2 → {0, 1}n/2 are independent random functions (see Fig. 4). Then, we
intuitively see that LR′′2 is hard to distinguish from a random function RF from {0, 1}n to
{0, 1}n. We also show this by combining a classical proof idea and the recording standard
oracle with errors. Roughly speaking, here we define “bad” databases as the ones that
contain “collisions at left-half inputs to F2”. Then we show that the probability that we
measure bad databases is very small, and that adversaries cannot distinguish LR′′2 from
RF when databases are not bad.

𝐹1

𝐹2

Fig. 4. LR′′2

Once we show the above two properties, i.e.,

1. LR′3 is hard to distinguish from LR3, and
2. LR′′2 is hard to distinguish from RF,

we can prove Theorem 3 with simple and easy arguments. In other words, those two
properties are technically the most difficult parts to show in our proof for Theorem 3.

Organization of the rest of Section 4. Section 4.1 shows that LR′3 is hard to distinguish
from LR3. Section 4.2 shows that LR′′2 is hard to distinguish from RF. Section 4.3 proves
Theorem 3 by combining the results in Sections 4.1 and 4.2.

4.1 Hardness of Distinguishing LR′
3
from LR3

Here we show the following proposition.
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Proposition 4. Let q be a positive integer. LetA be an adversary that makes at most q
quantum queries. Then, Advdist

LR3,LR′3
(A) is in O

(√
q3/2n/2

)
.

First, let us discuss the behavior of the quantum oracles of LR3 and LR′3.

Quantum oracle of LR3. Let O fi denote the quantum oracle of each round function f i .
In addition, let us define the unitary operator OUP.i that computes the state update of the
i-th round by

OUP.i : |x (i−1)L, x (i−1)R〉 |yL, yR〉

7→ |x (i−1)L, x (i−1)R〉 |(yL, yR) ⊕ ( f i (x (i−1)L ) ⊕ x (i−1)R, x (i−1)L )〉 .

OUP.i can be implemented by making one query to f i (see Fig. 5).

𝑓𝑖
|𝑦𝐿 ⊕ 𝑓𝑖(𝑥 𝑖−1 𝐿) ⊕ 𝑥 𝑖−1 𝑅⟩

|𝑥 𝑖−1 𝐿⟩ |𝑥 𝑖−1 𝐿⟩

|𝑥 𝑖−1 𝑅⟩ |𝑥 𝑖−1 𝑅⟩

|𝑦𝐿⟩

|𝑦𝑅⟩ |𝑦𝑅 ⊕𝑥 𝑖−1 𝐿⟩

Fig. 5. Implementation of OUP.i . fi will be implemented by using the recording standard oracle
with errors.

Now OLR3 can be implemented as follows by using {OUP.i }1≤i≤3:

1. Take |x〉 |y〉 = |x0L, x0R〉 |yL, yR〉 as an input.
2. Compute the state (x1L, x1R) by querying |x0L, x0R〉 |0n〉 to OUp.1, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 . (32)

3. Compute the state (x2L, x2R) by querying |x1L, x1R〉 |0n〉 to OUp.2, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (33)

4. Query |x2L, x2R〉 |yL, yR〉 to OUp.3, and obtain

|x〉 |y ⊕ LR3(x)〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (34)

5. Uncompute Steps 2 and 3 to obtain

|x〉 |y ⊕ LR3(x)〉 . (35)

6. Return |x〉 |y ⊕ LR3(x)〉.

The above implementation is illustrated in Fig. 6.
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𝑂UP.1
|0⟩

|𝑥⟩

|0⟩

|𝑦⟩

|0⟩

|𝑥⟩

|0⟩

|𝑦 ⊕ 𝐿𝑅3 𝑥 ⟩

𝑂UP.2

𝑂UP.3

𝑂UP.2

𝑂UP.1

Fig. 6. Implementation of LR3.

Quantum oracle of LR′
3
. The quantum oracle of LR′3 is implemented in the same way

as LR3, except that the third round state update oracle OUP.3 is replaced with another
oracle O′UP.3 defined as

O′UP.3 : |x2L, x2R〉 |yL, yR〉 7→ |x2L, x2R〉 |(yL, yR) ⊕ (F (x2L, x2R) ⊕ x2R, x2L )〉 .

O′UP.3 is implemented by making one query to OF , i.e., the quantum oracle of F (see
Fig. 7).

𝐹

𝑦𝐿 ⊕𝐹 𝑥2𝐿 , 𝑥2𝑅

|𝑥2𝐿⟩ |𝑥2𝐿⟩

|𝑥2𝑅⟩ |𝑥2𝑅⟩

|𝑦𝐿⟩

|𝑦𝑅⟩ |𝑦𝑅 ⊕𝑥2𝐿⟩

Fig. 7. Implementation of O′UP.3. F will be implemented by using the recording standard oracle
with errors.

In what follows, we consider that the oracles of the functions f i and F are imple-
mented as the recording standard oracle with errors, and we use D1, D2, D3, and DF to
denote (valid) databases for f1, f2, f3, and F, respectively. In particular, after the i-th
query of an adversary to LR3, the joint quantum states of the adversary and functions
can be described as ∑

x,y,z,D1,D2,D3

ax,y,z,D1,D2,D3 |x, y, z〉 ⊗ |D1〉 |D2〉 |D3〉 (36)

for some complex numbers ax,y,z,D1,D2,D3 such that
∑

x,y,z,D1,D2,D3 |ax,y,z,D1,D2,D3 |
2 =

1. Here, x, y, and z correspond to the adversary’s register to send queries to oracles,
receive answers from oracles, and perform offline computations, respectively. (If the
oracle is LR′3, then the register |D3〉, which corresponds to f3, is replaced with |DF 〉,
which corresponds to F.)

Next, we define good and bad databases for LR3 and LR′3. Intuitively, we say that
a tuple (D1, D2, D3) (resp., (D1, D2, DF )) for LR3 (resp., LR′3) is bad if and only if it
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contains the information that some inputs to f3 (resp., the left halves of some inputs to
F) collide. Roughly speaking, we define good and bad databases in such a way that a
one-to-one correspondence exists between good databases for LR3 and those for LR′3, so
that adversaries will not be able to distinguish LR′3 from LR3 as long as databases are
good.

Good and bad databases for LR3. Here we introduce the notion of good and bad for
each tuple (D1, D2, D3) of valid database for LR3. We say that (D1, D2, D3) is good if,
for each entry (x2L, γ) ∈ D3, there exists exactly one pair ((x0L, α), (x1L, β)) ∈ D1×D2
such that β ⊕ x0L = x2L . We say that (D1, D2, D3) is bad if it is not good.

Good and bad databases for LR′
3
. Next we introduce the notion of good and bad for

each tuple (D1, D2, DF ) of valid database for LR′3. We say that a valid database DF is
without overlap if each pair of distinct entries (x2L, x2R, γ) and (x ′2L, x ′2R, γ

′) in DF

satisfies x2L , x ′2L . We say that (D1, D2, DF ) is good if DF is without overlap, and
for each entry (x2L, x2R, γ) ∈ DF , there exists exactly one pair ((x0L, α), (x1L, β)) ∈
D1 × D2 such that β ⊕ x0L = x2L and x2R = x1L . We say that (D1, D2, DF ) is bad if it
is not good.

Compatibility of DF with D3. Let DF be a valid database for F without overlap and
D3 be a valid database for f3. We say that DF is compatible with D3 if the following
conditions are satisfied:

1. If (x2L, x2R, γ) ∈ DF , then (x2L, x2R ⊕ γ) ∈ D3.
2. If (x2L, γ) ∈ D3, there is a unique x2R such that (x2L, x2R, x2R ⊕ γ) ∈ DF .

For each valid DF without overlap, the unique valid database exists for f3, which we
denote by [DF ]3.

Remark 1. For each good database (D1, D2, D3) for LR3, a unique DF without overlap
exists such that [DF ]3 = D3 and (D1, D2, DF ) is a good database for LR′3, by the
definition of good databases. Similarly, for each good database (D1, D2, DF ) for LR′3,
(D1, D2, [DF ]3) becomes a good database for LR3. That is, there exists a one-to-one
correspondence between good databases for LR3 and those for LR′3.

Here we prove the following lemma for later use, which shows that the behavior of
O′UP.3 for DF without overlap is the same as that of OUP.3 for [DF ]3.

Lemma 1. It holds that

〈x ′2L, x ′2R, y
′
L, y

′
R | ⊗ 〈D

′
F |O

′
UP.3 |x2L, x2R, yL, yR〉 ⊗ |DF 〉

= 〈x ′2L, x ′2R, y
′
L, y

′
R | ⊗ 〈[D

′
F ]3 |OUP.3 |x2L, x2R, yL, yR〉 ⊗ |[DF ]3〉 (37)

for any x2L, x2R, yL, yR, x ′2L, x ′2R, y
′
L, y

′
R ∈ {0, 1}

n/2 and any valid databases DF and
D′F without overlap.
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Proof. It suffices to consider the case that x ′2L = x2L , x ′2R = x2R, and y′R = yR.
Since the database O′UP.3 affects only the entry of (x2L, x2R) in DF when it acts on
|x2L, x2R, yL, yR〉 ⊗ |DF 〉, it suffices to show the claim for the cases that (1) DF has only
a single entry (x2L, x2R, α), or (2) DF has no entry (i.e., DF = ∅).

First, we show the claim for the first case where DF = {(x2L, x2R, α)}. In this case,
by the first property of Proposition 2 we have that

O′UP.3 |x2L, x2R, yL, yR〉 ⊗ |DF 〉

= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |(x2L, x2R, α)〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|(x2L, x2R, γ)〉+/

-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n/2
|x2L, x2R, yL ⊕ γ, yR ⊕ x2L〉 ⊗ |(x2L, x2R, γ)〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|(x2L, x2R, δ)〉 − |∅〉+

-
+ |invalid〉 (38)

holds, where ∅ is the empty database and |invalid〉 is a vector containing invalid databases.
In addition, we have that [DF ]3 = {(x2L, α ⊕ x2R)}, and

OUP.3 |x2L, x2R, yL, yR〉 ⊗ |[DF ]3〉

= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |(x2L, α ⊕ x2R)〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|(x2L, γ)〉+/

-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n/2
|x2L, x2R, yL ⊕ γ ⊕ x2R, yR ⊕ x2L〉 ⊗ |(x2L, γ)〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|(x2L, δ)〉 − |∅〉+

-
+ |invalid′〉

= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, α)]3〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|[(x2L, x2R, γ ⊕ x2R)]3〉

+/
-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n
|x2L, x2R, yL ⊕ γ ⊕ x2R, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, γ ⊕ x2R)]3〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|[(x2L, x2R, δ ⊕ x2R)]〉 − |∅〉+

-
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+ |invalid′〉
= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, α)]3〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|[(x2L, x2R, γ)]3〉

+/
-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n/2
|x2L, x2R, yL ⊕ γ, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, γ)]3〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|[(x2L, x2R, δ)]3〉 − |∅〉+

-
+ |invalid′〉 , (39)

where |invalid′〉 is a vector containing invalid databases. From (38) and (39), the claim
immediately follows for the first case that DF = {(x2L, x2R, α)}.

We can similarly show that the claim holds for the second case where DF is empty
by straightforward calculations using the second property of Proposition 2. ut

Technical core to prove the indistinguishability of LR3 and LR′
3
. Let |ψi〉 and |ψ ′i 〉

be the joint quantum states of the adversary A and the oracle just before making the
i-th query when A runs relative to LR3 and LR′3, respectively. In addition, by |ψq+1〉
and |ψ ′

q+1〉 we similarly denote the states just before the final measurement, by abuse of
notation. Then

|ψ j〉 =
∑

x,y,z,D1,D2,D3
(D1,D2,D3) : valid database

cx,y,z,D1,D2,D3 |x, y, z〉 ⊗ |D1〉 |D2〉 |D3〉

holds for some complex number cx,y,z,D1,D2,D3 such that∑
x,y,z,D1,D2,D3

(D1,D2,D3) : valid database

|cx,y,z,D1,D2,D3 |
2 = 1.

Here, x = x0L ‖x0R, y = yL | |yR, and z correspond to A’s registers to send queries,
receive answers, and perform offline computations, respectively (x0L, x0R, yL, yR ∈
{0, 1}n/2). Note that |D1 |, |D2 | ≤ 2( j − 1) and |D3 | ≤ j − 1 hold for each summand of
|ψ j〉, since each query to the recording standard oracle with errors RstOE affects only
the qubits that correspond to a single entry of each database. |ψ ′j〉 can be decomposed
on the computational basis in the same way.

Showing the following proposition is the technical core to prove Proposition 4.

Proposition 5. For each j = 1, . . . , q + 1, there exist vectors |ψgood
j 〉, |ψbad

j 〉, |ψ
′good
j 〉,

|ψ
′bad
j 〉, and complex number a( j)

x,y,z,D1,D2,DF
such that

|ψ j〉 = |ψ
good
j 〉 + |ψbad

j 〉 , |ψ ′j〉 = |ψ
′good
j 〉 + |ψ

′bad
j 〉 ,
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|ψ
good
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 , (40)

|ψ
′good
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉 , (41)

the vector |D1, D2, DF 〉 in |ψ
′good
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood

j 〉) has non-zero
quantum amplitude only if |D1 | ≤ 2( j − 1), |D2 | ≤ 2( j − 1), and |DF | ≤ j − 1, and

‖ |ψbad
j 〉 ‖ ≤

|ψ
bad
j−1〉

 +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad
j 〉 ‖ ≤

|ψ
′bad
j−1 〉

 +O *
,

√
j

2n/2
+
-

(42)

hold (we set |ψbad
0 〉 = 0 and |ψ′bad

0 〉 = 0).

Proof intuition. Recall that a database (D1, D2, D3) for LR3 (resp., (D1, D2, DF ) for
LR′3) is defined to be bad if and only if inputs to D3 collide (resp., the left halves of
inputs to DF collide). Roughly speaking, “good” and “bad” vectors correspond to the
states with good and bad databases, respectively.

If we were in the classical setting, databases would correspond to transcripts, and we
would define the “good” and “bad” vectors to be the (classical) states with good and bad
transcripts, respectively. As long as transcripts are good, the behaviors of the oracles
LR3 and LR′3 are the same and they are indistinguishable. Basically we can also use a
similar intuition in the quantum setting for “good” states, and thus there exists complex
number a( j)

x,y,z,D1,D2,DF
that satisfies (40) and (41).

For the inequalities (42) on “bad” states, when a classical adversary A makes the
j-th query to LR3 (resp., LR′3), a good classical state (good transcript) changes to a bad
state (bad transcript) only if a new query is made to f1 or f2, and the input to f3 (resp.,
the left half of the input to F) collides with a previous input to f3 (resp., the left half
of a previous input to F). Such a “bad” event happens with a probability p in O( j/2n).
In the quantum setting, roughly speaking, the difference between the norms of the j-th
bad vector |ψbad

j 〉 (resp., |ψ
′bad
j 〉) and the ( j − 1)-th bad vector |ψbad

j−1〉 (resp., |ψ
′bad
j−1 〉)

corresponds to √p, which is in O(
√

j/2n). Thus we obtain (42).
A very rough proof intuitions is as stated. However, to be more precise, an existing

record (x, α) in a database will later be deleted or overwritten with a different record in
the quantum setting, and the effect of such deletion and overwriting is too large to be
ignored. Therefore we have to perform more careful and quantum-specific analysis by
using Proposition 2 and Proposition 3.

Proof (of Proposition 5). We show the proposition by induction on j. Remember that
the oracles of LR3 and LR′3 are decomposed asOLR3 = OUP.1 ·OUP.2 ·OUP.3 ·OUP.2 ·OUP.1
andOLR′3 = OUP.1 ·OUP.2 ·O′UP.3 ·OUP.2 ·OUP.1. We check how the quantum states change
when OUP.1, OUP.2, OUP.3 (resp., O′UP.3), OUP.2, and OUP.1 act on |ψ j〉 (resp., |ψ ′j〉) in
a sequential order. The claim obviously holds for j = 1 by setting |ψgood

1 〉 := |ψ1〉 and
|ψ
′good
1 〉 := |ψ ′1〉. Below we show the claim on |ψ j+1〉 and |ψ ′j+1〉 holds if the claim on
|ψk〉 and |ψ ′k〉 holds for k = 1, . . . , j.
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Recall that, in addition to database registers, the quantum oracle OLR3 uses ancillary
2n-qubit registers to compute the intermediate state after the first and second rounds (see
(33) and (34)). We say that a state vector |D1〉 |D2〉 |D3〉 ⊗ |x1〉 ⊗ |x2〉 for OLR3 , where
|x1〉 ⊗ |x2〉 is the ancillary 2n qubits, is regular if x1 = 0n, x2 = 0n and the database
is valid. We define regular states for OLR′3 similarly. Since the encoding operator Uenc
of RstOE for f i (1 ≤ i ≤ 3) and F does not act on the ancillary 2n-qubit registers, we
always obtain regular vectors when we measure |ψ j〉 and |ψ ′j〉. Similarly, we say that
a state vector |D1〉 |D2〉 |D3〉 ⊗ |x1〉 ⊗ |x2〉 for OLR3 is preregular if x2 = 0n and the
database is valid, and define preregular states for OLR′3 similarly. When we measure the
states just before the first action of OUP.2 or just after the second action of OUP.2, we
always measure preregular vectors. In this proof, for the sake of brevity, we do not write
(a part of) the ancillary qubits that are used to compute the intermediate states, as long
as they are |0m〉 for some m.

Let Πgood and Πbad denote the projections onto the vector space spanned by the
vectors that correspond to good databases and bad databases, respectively. Let Πreg and
Πprereg be the projections onto the spaces spanned by the vectors that correspond to
regular and preregular states, respectively.

Action of the first OUP.1.
Here we show the following claim.

Claim (Action of the first OUP.1). There exist vectors |ψgood,1
j 〉, |ψbad,1

j 〉, |ψ
′good,1
j 〉,

|ψ
′bad,1
j 〉 that satisfy the following properties.

1. OUP.1 |ψ j〉 = |ψ
good,1
j 〉 + |ψbad,1

j 〉 and OUP.1 |ψ
′
j〉 = |ψ

′good,1
j 〉 + |ψ

′bad,1
j 〉.

2. There exists complex number a( j),1
x,y,z,D1,D2,DF

such that

|ψ
good,1
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),1
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ,

|ψ
′good,1
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),1
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉

⊗ |x1L, x1R〉 .

3. The vector |D1, D2, DF 〉 in |ψ
′good,1
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,1

j 〉) has non-
zero quantum amplitude only if |D1 | ≤ 2( j−1)+1, |D2 | ≤ 2( j−1), and |DF | ≤ j−1.

4. ‖ |ψbad,1
j 〉 ‖ and ‖ |ψ

′bad,1
j 〉 ‖ are upper bounded as

‖ |ψbad,1
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,1
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.

Here, x1L = D1(xL ) ⊕ xR and x1R = xL for each summand of |ψgood,1
j 〉 and |ψ

′good,1
j 〉.

33



Proof. Since the response of the first OUP.1 is written into an auxiliary register that
is initially set to be |0n/2, 0n/2〉, by applying Proposition 3 to RstOE of f1 there exist
vectors |ε〉, |ε ′〉 such that ‖ |ε〉 ‖, ‖ |ε ′〉 ‖ ≤ O(

√
1/2n/2), and

ΠvalidOUP.1 |ψ
good
j 〉

=
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |xR ⊕ D1(xL ), xL〉

−
∑

x,y,z,γ,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

1
2n/2

a( j)
x,y,z,D1,D2,DF

|x, y, z〉

⊗ |D1 \ (xL, D1(xL )) ∪ (xL, γ), D2, [DF ]3〉

⊗ |xR ⊕ γ, xL〉

+
∑

x,y,z,D1,D2,DF ,α
(D1,D2,DF ) : good

D1 (xL )=⊥

√
1

2n/2
a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, α), D2, [DF ]3〉

⊗ |xR ⊕ α, xL〉

+ |ε〉 (43)

and

ΠvalidOUP.1 |ψ
′good
j 〉

=
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉

⊗ |xR ⊕ D(xL ), xL〉

−
∑

x,y,z,γ,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

1
2n/2

a( j)
x,y,z,D1,D2,DF

|x, y, z〉

⊗ |D1 \ (xL, D1(xL )) ∪ (xL, γ), D2, DF 〉

⊗ |xR ⊕ γ, xL〉

+
∑

x,y,z,D1,D2,DF ,α
(D1,D2,DF ) : good

D1 (xL )=⊥

√
1

2n/2
a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, α), D2, DF 〉

⊗ |xR ⊕ α, xL〉

+ |ε ′〉 (44)

hold.
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Now, put

|ψ
good,1
j 〉 := Πgood

(
ΠvalidOUP.1 |ψ

good
j 〉 − |ε〉

)
, |ψbad,1

j 〉 := OUP.1 |ψ j〉 − |ψ
good,1
j 〉 ,

|ψ
′good,1
j 〉 := Πgood

(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

)
, |ψ

′bad,1
j 〉 := OUP.1 |ψ

′
j〉 − |ψ

′good,1
j 〉 .

Then the first property of the claim holds by definition, and the second and third
properties immediately follow from (43) and (44) and the assumption on |ψ j〉 and |ψ ′j〉.

Next, on the first term of the right hand side of (44) we have

Πbad
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉

⊗ |xR ⊕ D1(xL ), xL〉

= 0. (45)

On the second term of the right hand side of (44) we have

Πbad
∑

x,y,z,γ,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

1
2n/2

a( j)
x,y,z,D1,D2,DF

|x, y, z〉

⊗ |D1 \ (xL, D1(xL )) ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉

=
∑

x,y,z,α,γ,D1,D2,DF
(D1∪(xL,α),D2,DF ) : good

D1 (xL )=⊥
(D1∪(xL,γ),D2,DF ) : bad

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉

⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉

=
∑

x,y,z,α,γ,D1,D2,DF
(D1∪(xL,α),D2,DF ) : good

D1 (xL )=⊥
(D1∪(xL,γ),D2,DF ) : bad
D2 (x1L ),⊥∧[DF ]3 (x2L ),⊥

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉

⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉 (46)

+
∑

x,y,z,α,γ,D1,D2,DF
(D1∪(xL,α),D2,DF ) : good

D1 (xL )=⊥
(D1∪(xL,γ),D2,DF ) : bad

D2 (x1L )=⊥∨(D2 (x1L ),⊥∧[DF ]3 (x2L )=⊥)

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉
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⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉 , (47)

where x1L := α ⊕ xR, and x2L := D2(x1L ) ⊕ xL when D2(x1L ) , ⊥.
Here we give an upper bound of the norm of the term(46). Note that, if a tuple

(x, (D1 ∪ (xL, γ), D2, DF )) satisfies the conditions

1. D1(xL ) = ⊥,
2. (D1 ∪ (xL, γ), D2, DF ) is bad,

then the number of α such that

1. (D1 ∪ (xL, α), D2, DF ) becomes good,
2. D2(x1L ) , ⊥ (here, x1L := α ⊕ xR), and
3. [DF ]3(x2L ) , ⊥ (here, x2L := D2(x1L ) ⊕ xL),

is at most |D2 | ≤ 2( j − 1). Hence



∑
x,y,z,α,γ,D1,D2,DF

(D1∪(xL,α),D2,DF ) : good
D1 (xL )=⊥

(D1∪(xL,γ),D2,DF ) : bad
D2 (x1L ),⊥∧[DF ]3 (x2L ),⊥

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉

⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉



2

=
∑

x,y,z,γ,D1,D2,DF
D1 (xL )=⊥

(D1∪(xL,γ),D2,DF ) : bad

1
2n

����������

∑
α:(D1∪(xL,α),D2,DF ) is good
D2 (x1L ),⊥∧[DF ]3 (x2L ),⊥

a( j)
x,y,z,D1∪(xL,α),D2,DF

����������

2

≤
∑

x,y,z,γ,D1,D2,DF
D1 (xL )=⊥

(D1∪(xL,γ),D2,DF ) : bad

1
2n
· 2( j − 1) ·

∑
α:(D1∪(xL,α),D2,DF ) is good
D2 (x1L ),⊥∧[DF ]3 (x2L ),⊥

���a
( j)
x,y,z,D1∪(xL,α),D2,DF

���
2

=
∑

x,y,z,α,γ,D1,D2,DF
(D1∪(xL,α),D2,DF ) : good

D1 (xL )=⊥
(D1∪(xL,γ),D2,DF ) : bad
D2 (x1L ),⊥∧[DF ]3 (x2L ),⊥

2( j − 1)
2n
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≤
∑
γ

2( j − 1)
2n

=
2( j − 1)

2n/2
(48)

holds, where we used the convexity of the function X 7→ X2 for the first inequality.
Next, we give an upper bound of the norm of the term(47). Note that, for each tuple

(x, α, (D1, D2, DF )) that satisfies

1. D1(xL ) = ⊥,
2. (D1 ∪ (xL, α), D2, DF ) is good, and
3. D2(x1L ) = ⊥ or D2(x1L ) , ⊥ ∧ [DF ]3(x2L ) = ⊥ (here, x1L := α ⊕ xR and

x2L := D2(x1L ) ⊕ xL),

the number of γ such that (D1 ∪ (xL, γ), D2, DF ) becomes bad is at most |DF | ≤ j − 1.
Thus we have


∑
x,y,z,α,γ,D1,D2,DF

(D1∪(xL,α),D2,DF ) : good
D1 (xL )=⊥

(D1∪(xL,γ),D2,DF ) : bad
D2 (x1L )=⊥∨(D2 (x1L ),⊥∧[DF ]3 (x2L )=⊥)

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉

⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉



2

.

=
∑

x,y,z,D1,D2,DF
D1 (xL )=⊥

∑
γ

(D1∪(xL,γ),D2,DF ) : bad

�����������

∑
α

(D1∪(xL,α),D2,DF ) : good
D2 (x1L )=⊥∨(D2 (x1L ),⊥∧[DF ]3 (x2L )=⊥)

a( j)
x,y,z,D1∪(xL,α),D2,DF

2n/2

�����������

2

≤
∑

x,y,z,D1,D2,DF
D1 (xL )=⊥

∑
γ

(D1∪(xL,γ),D2,DF ) : bad

∑
α

(D1∪(xL,α),D2,DF ) : good
D2 (x1L )=⊥∨(D2 (x1L ),⊥∧[DF ]3 (x2L )=⊥)

���a
( j)
x,y,z,D1∪(xL,α),D2,DF

���
2

2n/2

=
∑

x,y,z,D1,D2,DF
D1 (xL )=⊥

∑
α

(D1∪(xL,α),D2,DF ) : good
D2 (x1L )=⊥∨(D2 (x1L ),⊥∧[DF ]3 (x2L )=⊥)

���a
( j)
x,y,z,D1∪(xL,α),D2,DF

���
2 ∑

γ
(D1∪(xL,γ),D2,DF ) : bad

1
2n/2

≤
∑

x,y,z,D1,D2,DF
D1 (xL )=⊥

∑
α

(D1∪(xL,α),D2,DF ) : good
D2 (x1L )=⊥∨(D2 (x1L ),⊥∧[DF ]3 (x2L )=⊥)

���a
( j)
x,y,z,D1∪(xL,α),D2,DF

���
2
·

j − 1
2n/2

≤
j − 1
2n/2

, (49)
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where we used the convexity of the function X 7→ X2 for the first inequality.
From (46) - (49),


Πbad
∑

x,y,z,γ,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

1
2n/2

a( j)
x,y,z,D1,D2,DF

|x, y, z〉

⊗ |D1 \ (xL, D1(xL )) ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉



≤ O *
,

√
j

2n/2
+
-
, (50)

follows.
In addition, on the third term of the right hand side of (44) we have



Πbad
∑

x,y,z,D1,D2,DF ,α
(D1,D2,DF ) : good

D1 (xL )=⊥

√
1

2n/2
a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, α), D2, DF 〉

⊗ |xR ⊕ α, xL〉



2

=
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL )=⊥

|a( j)
x,y,z,D1,D2,DF

|2
∑

α:(D1∪(xL,α),D2,DF ) is bad

1
2n/2

≤
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL )=⊥

|a( j)
x,y,z,D1,D2,DF

|2 · O
(

j
2n/2

)

≤ O
(

j
2n/2

)
. (51)

From (45), (50), and (51),

Πbad
(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

) ≤ O *
,

√
j

2n/2
+
-

(52)
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follows. Since ΠvalidOUP.1 |ψ
′
j〉 = OUP.1 |ψ

′
j〉, we have

|ψ
′bad,1
j 〉

 =
OUP.1 |ψ

′
j〉 − |ψ

′good,1
1 〉


=

ΠvalidOUP.1
(
|ψ
′good
j 〉 + |ψ

′bad
j 〉

)
− |ψ

′good,1
1 〉


≤

ΠvalidOUP.1 |ψ
′good
j 〉 − |ψ

′good,1
1 〉

 +
ΠvalidOUP.1 |ψ

′bad
j 〉


=

ΠvalidOUP.1 |ψ
′good
j 〉 − Πgood

(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

) +
|ψ

′bad
j 〉


=

Πbad
(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

) +
|ψ

′bad
j 〉



≤ O *
,

√
j

2n/2
+
-
+

|ψ
′bad
j 〉

 .

Similarly we can also show |ψ
bad,1
j 〉

 ≤ O
(√

j

2n/2

)
+

|ψ
bad
j 〉

. Therefore the fourth
property of the claim also holds. ut

Action of the first OUP.2.
The following claim can be shown by applying Proposition 3 on f2 in the same way as
we showed the claim for the action of the first OUP.1 by applying Proposition 3 on f1.

Claim (Action of the first OUP.2). There exist vectors |ψgood,2
j 〉, |ψbad,2

j 〉, |ψ
′good,2
j 〉,

|ψ
′bad,2
j 〉 that satisfy the following properties.

1. OUP.2OUP.1 |ψ j〉 = |ψ
good,2
j 〉 + |ψbad,2

j 〉 and OUP.2OUP.1 |ψ
′
j〉 = |ψ

′good,2
j 〉 + |ψ

′bad,2
j 〉.

2. There exists complex number a( j),2
x,y,z,D1,D2,DF

such that

|ψ
good,2
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),2
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 ,

|ψ
′good,2
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),2
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 .

3. The vector |D1, D2, DF 〉 in |ψ
′good,2
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,2

j 〉) has non-
zero quantum amplitude only if |D1 | ≤ 2( j − 1) + 1, |D2 | ≤ 2( j − 1) + 1, and
|DF | ≤ j − 1.

4. ‖ |ψbad,2
j 〉 ‖ and ‖ |ψ

′bad,2
j 〉 ‖ are upper bounded as

‖ |ψbad,2
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,2
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.
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Here, x1L = D1(xL ) ⊕ xR, x1R = xL , x2L = D2(x1L ) ⊕ x1R, and x2R = x1L for each
summand of |ψgood,2

j 〉 and |ψ
′good,2
j 〉.

Action of OUP.3 and O′UP.3.
Here we show the following claim.

Claim (Action of OUP.3 and O′UP.3). Let |ψ
good,3
j 〉 := ΠvalidOUP.3 |ψ

good,2
j 〉, |ψbad,3

j 〉 :=
OUP.3OUP.2OUP.1 |ψ j〉 − |ψ

good,3
j 〉, |ψ

′good,3
j 〉 := ΠvalidOUP.3 |ψ

′good,2
j 〉, and |ψ

′bad,3
j 〉 :=

OUP.3OUP.2OUP.1 |ψ
′
j〉 − |ψ

′good,3
j 〉. Then the following properties hold.

1. There exists complex number a( j),3
x,y,z,D1,D2,DF

such that

|ψ
good,3
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),3
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 ,

|ψ
′good,3
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),3
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 .

2. The vector |D1, D2, DF 〉 in |ψ
′good,3
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,3

j 〉) has non-
zero quantum amplitude only if |D1 | ≤ 2( j − 1) + 1, |D2 | ≤ 2( j − 1) + 1, and
|DF | ≤ j.

3. ‖ |ψbad,3
j 〉 ‖ and ‖ |ψ

′bad,3
j 〉 ‖ are upper bounded as

‖ |ψbad,3
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,3
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.

Here, x1L = D1(xL ) ⊕ xR, x1R = xL , x2L = D2(x1L ) ⊕ x1R, and x2R = x1L for each
summand of |ψgood,3

j 〉 and |ψ
′good,3
j 〉.

Proof. First, for each summand |x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 of
|ψ
′good,2
j 〉, we have that

ΠbadΠvalidO′UP.3 |x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 = 0

by definition of good databases. Therefore, we have

Πbad |ψ
′good,3
j 〉 = ΠbadΠvalidO′UP.3 |ψ

′good,2
j 〉 = 0,

which implies
|ψ
′good,3
j 〉 = Πgood |ψ

′good,3
j 〉 .

Similarly,
|ψ

good,3
j 〉 = Πgood |ψ

good,3
j 〉
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holds. Now the first property of the claim follows from the second property in the claim
for the first action of OUP.2 and Lemma 1. The second property of the claim follows
from the third property in the claim for the first action of OUP.2.

Moreover, we have
|ψ

bad,3
j 〉

 =
OUP.3OUP.2OUP.1 |ψ j〉 − |ψ

good,3
j 〉


=

ΠvalidOUP.3OUP.2OUP.1 |ψ j〉 − ΠvalidOUP.3 |ψ
good,2
j 〉


=

ΠvalidOUP.3 |ψ
bad,2
j 〉


≤

|ψ
bad,2
j 〉



≤ ‖ |ψbad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
, (53)

where we used the fourth property in the claim for the first action of OUP.2 in the last
inequality. Similarly, |ψ

′bad,3
j 〉

 ≤ ‖ |ψ
′bad
j 〉 ‖ + O

(√
j

2n/2

)
follows. Therefore the third

property of the claim holds. ut

Action of the second OUP.2.
We show that the following claim holds.

Claim (Action of the secondOUP.2).Let |ψgood,4
j 〉 := ΠgoodΠpreregOUP.2 |ψ

good,3
j 〉, |ψbad,4

j 〉 :=
OUP.2OUP.3OUP.2OUP.1 |ψ j〉 − |ψ

good,4
j 〉, |ψ

′good,4
j 〉 := ΠgoodΠpreregOUP.2 |ψ

′good,3
j 〉, and

|ψ
′bad,4
j 〉 := OUP.2OUP.3OUP.2OUP.1 |ψ

′
j〉− |ψ

′good,4
j 〉. Then the following properties hold.

1. There exists complex number a( j),4
x,y,z,D1,D2,DF

such that

|ψ
good,4
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),4
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ,

|ψ
′good,4
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),4
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉

⊗ |x1L, x1R〉 .

2. The vector |D1, D2, DF 〉 in |ψ
′good,4
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,4

j 〉) has non-
zero quantum amplitude only if |D1 | ≤ 2( j − 1) + 1, |D2 | ≤ 2 j, and |DF | ≤ j.

3. ‖ |ψbad,4
j 〉 ‖ and ‖ |ψ

′bad,4
j 〉 ‖ are upper bounded as

‖ |ψbad,4
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,4
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.

Here, x1L = D1(xL ) ⊕ xR and x1R = xL for each summand of |ψgood,4
j 〉 and |ψ

′good,4
j 〉.
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Proof. The first property follows from the first property of Proposition 2 and the first
property in the claim on the actions of OUP.3 and O′UP.3. In addition, the second property
follows from the second property in the claim on the actions of OUP.3 and O′UP.3. Below,
we show the third property.

Let ΠD3: 6⊥ and ΠD3:⊥ be the projections onto the spaces spanned by the vectors
|x, y, z〉⊗|D1, D2, D3〉⊗|x1L, x1R〉⊗|x2L, x2R〉 such that D3(x2L ) , ⊥ and D3(x2L ) = ⊥,
respectively.

Then we have

ΠD3: 6⊥ |ψ
good,3
j 〉

=
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥,D2 (x1L ),⊥
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉

=
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 ,

where x1L := D1(xL ) ⊕ xR, x1R := xL , x2L := α ⊕ x1R, and x2R := x1L for each
summand in the right hand side. By applying the first property of Proposition 2 to f2
we have

ΠbadΠpreregOUP.2ΠD3: 6⊥ |ψ
good,3
j 〉

= ΠbadΠpreregOUP.2
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉

= ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
*.
,
|D2〉 −

∑
γ

1
√

2n/2
|D2 ∪ (x1L, γ)〉+/

-
|[DF ]3〉
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⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

− ΠbadΠprereg
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
(
|D2 ∪ (x1L, γ)〉 − |Dinvalid

γ 〉
)
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |α ⊕ γ, 0n/2〉

+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉 *
,
2
∑
δ

1
√

2n/2
|D2 ∪ (x1L, δ)〉 − |D2〉+

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0̂n/2, 0n/2〉

= Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (54)

+ Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (55)

− Πbad
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, γ), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (56)

− Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (57)
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+ Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
23n/2 a( j),3

x,y,z,D1,D2∪(x1L,α),DF
|x, y, z〉

⊗ |D1〉 *
,
2
∑
δ

1
√

2n/2
|D2 ∪ (x1L, δ)〉 − |D2〉+

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 . (58)

On the term (54), we have

Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉
= 0 (59)

since all databases are good.
On the term (55), we have



Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



2

=



∑
x,y,z,D1,D2,DF

D1 (xL ),⊥,D2 (x1L )=⊥

∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



2
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=
∑

x,y,z,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

1
2n/2

�����������

∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

�����������

2

.

Now, for each (x, y, z, D1, D2, DF ) such that D1(xL ) , ⊥ and D2(x1L ) = ⊥ (recall
that x1L := xR ⊕ D1(xL )), the number of α such that [DF ]3(x2L ) , ⊥ (recall that
x2L := xL ⊕ α) and (D1, D2 ∪ (x1L, α), DF ) becomes good is at most |DF | ≤ j. Hence,
from the convexity of the function X 7→ X2,

�����������

∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

�����������

2

≤

�����������

∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

���a
( j),3
x,y,z,D1,D2∪(x1L,α),DF

���

�����������

2

≤ j ·
∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

���a
( j),3
x,y,z,D1,D2∪(x1L,α),DF

���
2

holds, which implies that



Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



2

≤
∑

x,y,z,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

j
2n/2

∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

���a
( j),3
x,y,z,D1,D2∪(x1L,α),DF

���
2

≤ O
(

j
2n/2

)
(60)
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holds.
Here we give an upper bound of the norm of the term (56). Note that, if a tuple

(x, (D1, D2 ∪ (xL, γ), DF )) satisfies the conditions

1. D1(xL ) , ⊥,
2. (D1, D2 ∪ (x1L, γ), DF ) is bad,

then the number of α such that

1. (D1, D2 ∪ (x1L, α), DF ) becomes good,
2. D2(x1L ) = ⊥ (here, x1L := D1(xL ) ⊕ xR), and
3. [DF ]3(x2L ) , ⊥ (here, x2L := α ⊕ xL),

is at most |DF | ≤ j. Therefore we can show



Πbad
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, γ), [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



2

=



∑
x,y,z,α,γ,D1,D2,DF

D1 (xL ),⊥,D2 (x1L )=⊥
(D1,D2∪(x1L,α),DF ) : good

[DF ]3 (x2L ),⊥
(D1,D2∪(x1L,γ),DF ):bad

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, γ), [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



2

≤
j

2n/2
(61)

in the same way as we showed (48).
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On the term (57), we have

Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉
= 0, (62)

since all databases are good.
On the term (58),



Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
23n/2 a( j),3

x,y,z,D1,D2∪(x1L,α),DF
|x, y, z〉

⊗ |D1〉 *
,
2
∑
δ

1
√

2n/2
|D2 ∪ (x1L, δ)〉 − |D2〉+

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



≤ O *
,

√
j

2n/2
+
-

(63)

follows from (60) and (61).
From (54)–(63),

ΠbadΠpreregOUP.2ΠDF : 6⊥ |ψ
good,3
j 〉

 ≤ O *
,

√
j

2n/2
+
-

(64)

follows.
In the same way as we obtained (54)–(58), by applying the first property of Propo-

sition 2 to f2, we have

ΠbadΠpreregOUP.2ΠD3:⊥ |ψ
good,3
j 〉

= Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉
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⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (65)

+ Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (66)

− Πbad
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, γ), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (67)

− Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 (68)

+ Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
23n/2 a( j),3

x,y,z,D1,D2∪(x1L,α),DF
|x, y, z〉

⊗ |D1〉 *
,
2
∑
δ

1
√

2n/2
|D2 ∪ (x1L, δ)〉 − |D2〉+

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 . (69)

On the term (65), we have

Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉
= 0 (70)

since all databases are good.
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On the term (66), we have

Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

= 0 (71)

since all databases are good.
Next, we give an upper bound of the norm of the term (67). Note that, for each tuple

(x, α, (D1, D2, DF )) that satisfies

1. D1(xL ) , ⊥,
2. (D1, D2 ∪ (x1L, α), DF ) is good, and
3. [DF ]3(x2L ) = ⊥ (here, x1L := D1(xL ) ⊕ xR and x2L := α ⊕ xL),

the number of γ such that (D1 ∪ (xL, γ), D2, DF ) becomes bad is at most |DF | ≤ j.
Hence we have that


Πbad
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, γ), [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



2

=
∑

x,y,z,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

∑
γ

(D1,D2∪(x1L,γ),DF ) : bad

·

�����������

∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

2n/2

�����������

2

≤
∑

x,y,z,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

∑
γ

(D1,D2∪(x1L,γ),DF ) : bad
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·

*.....
,

1
2n/2

·
∑
α

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

���a
( j),3
x,y,z,D1,D2∪(x1L,α),DF

���
2

+/////
-

≤ O
(

j
2n/2

)
, (72)

holds, where we used the convexity of the function X 7→ X2 for the inequality.
On the term (68), we have

Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉
= 0, (73)

since all databases are good.
On the term (69),



Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
23n/2 a( j),3

x,y,z,D1,D2∪(x1L,α),DF
|x, y, z〉

⊗ |D1〉 *
,
2
∑
δ

1
√

2n/2
|D2 ∪ (x1L, δ)〉 − |D2〉+

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉



≤ O *
,

√
j

2n/2
+
-

(74)

follows from (71) and (72).
From (65)–(74),

ΠbadΠpreregOUP.2ΠDF :⊥ |ψ
good,3
j 〉

 ≤ O *
,

√
j

2n/2
+
-

(75)
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follows.
Therefore,

ΠbadΠpreregOUP.2 |ψ
good,3
j 〉


≤

ΠbadΠpreregOUP.2ΠDF : 6⊥ |ψ
good,3
j 〉

 +
ΠbadΠpreregOUP.2ΠDF :⊥ |ψ

good,3
j 〉



≤ O *
,

√
j

2n/2
+
-

(76)

follows from (64) and (75).
Since OUP.2OUP.3OUP.2OUP.1 |ψ j〉 = ΠpreregOUP.2OUP.3OUP.2OUP.1 |ψ j〉,

|ψ
bad,4
j 〉


=

OUP.2OUP.3OUP.2OUP.1 |ψ j〉 − ΠgoodΠpreregOUP.2 |ψ
good,3
j 〉


=

ΠpreregOUP.2OUP.3OUP.2OUP.1 |ψ j〉 − ΠgoodΠpreregOUP.2 |ψ
good,3
j 〉


=

ΠpreregOUP.2
(
|ψ

good,3
j 〉 + |ψbad,3

j 〉
)
− ΠgoodΠpreregOUP.2 |ψ

good,3
j 〉


≤

ΠbadΠpreregOUP.2 |ψ
good,3
j 〉

 +
ΠpreregOUP.2 |ψ

bad,3
j 〉



≤ O *
,

√
j

2n/2
+
-
+

|ψ
bad,3
j 〉



≤ O *
,

√
j

2n/2
+
-
+

|ψ
bad
j 〉



follows from the claim on the action of OUP.3 and O′UP.3. We can show

|ψ
′bad,4
j 〉

 ≤ O *
,

√
j

2n/2
+
-
+

|ψ
′bad
j 〉

 (77)

in the same way, and the third property of the claim also holds. ut

Action of the second OUP.1.
Let |ψgood

j+1 〉 := ΠgoodΠregOUP.1 |ψ
good,4
j 〉, |ψbad

j+1〉 := |ψ j+1〉−|ψ
good
j+1 〉, |ψ

′good
j+1 〉 := ΠgoodΠregOUP.1 |ψ

′good,4
j 〉,

and |ψ′bad
j+1 〉 := |ψ ′

j+1〉 − |ψ
′good
j+1 〉. Then we can show these |ψgood

j+1 〉, |ψ
bad
j+1〉, |ψ

′good
j+1 〉, and

|ψ
′bad
j+1 〉 satisfy the desired properties in Proposition 5, in the same way as we showed the

claim on the action of the second OUP.2. ut

Finishing the proof of Proposition 4.

Proof (of Proposition 4). Let |ψgood
j 〉, |ψbad

j 〉, |ψ
′good
j 〉, and |ψ′bad

j 〉 be the vectors as in
Proposition 5. Then

|ψ
bad
q+1〉

 ≤
∑

1≤ j≤q
O *

,

√
j

2n/2
+
-
≤ O *

,

√
j3

2n/2
+
-

(78)
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follows. Similarly,

|ψ
′bad
q+1〉

 ≤ O *
,

√
j3

2n/2
+
-

(79)

holds.
Let trD123 and trD123 denote the partial trace operations over the databases for LR3

and LR′3, respectively. Then

td
(
trD123

(
|ψ

good
q+1 〉 〈ψ

good
q+1 |

)
, trD123

(
|ψ
′good
q+1 〉 〈ψ

′good
q+1 |

))
= 0 (80)

follows from (40) and (41).
Therefore

Advdist
LR3,LR′3

(A) ≤ td
(
trD123

(
|ψq+1〉 〈ψq+1 |

)
, trD123

(
|ψ ′q+1〉 〈ψ

′
q+1 |

))
≤ td

(
trD123

(
|ψ

good
q+1 〉 〈ψ

good
q+1 |

)
, trD123

(
|ψ
′good
q+1 〉 〈ψ

′good
q+1 |

))
+ 2 |ψ

bad
q+1〉

 + 2 |ψ
′bad
q+1〉



≤ O *
,

√
j3

2n/2
+
-

(81)

holds, which completes the proof. ut

4.2 Hardness of Distinguishing LR′′
2
from RF

The goal of this subsection is to show the following proposition.

Proposition 6. For any quantum adversary A that makes at most q quantum queries,
Advdist

LR′′2,RF(A) ≤ O
(√

q3/2n/2
)
holds.

Let F1 : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 and F ′2 : {0, 1}n/2 × {0, 1}n/2 × {0, 1}n/2 →
{0, 1}n/2 be independent random functions. Let RF′ : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 ×
{0, 1}n/2 be the function defined by

RF′(xL, xR) := (F ′2 (x1L, x1R, xR), x1L ),

where (x1L, x1R) := (F1(xL, xR), xL ) (see Fig. 8). Note that RF′ is in fact a random
function since F1 and F ′2 are random functions. In what follows, we show

Advdist
LR′′2,RF′ (A) ≤ O

(√
q3/2n/2

)
instead of showing Advdist

LR′′2,RF(A) ≤ O
(√

q3/2n/2
)
.

We use the same proof strategy as in Section 4.1. That is, we define good and bad
databases for LR′′2 and RF′ in such a way that
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𝐹1

𝐹′2

Fig. 8. RF′

1. There exists a one-to-one correspondence between good databases for LR′′2 and
those for RF′.

2. The behavior of the oracle LR′′2 on a good database is almost the same as that of the
oracle RF′ on the corresponding good database.

3. “Good” states change to “bad” states with a small probability.

Intuitively, we define “bad” databases as those with collisions on the leftmost (n/2) bits
of the input to F2 or F ′2 , and “good” databases as those without such collisions.

Quantum oracle of LR′′
2
. Let OFi denote the quantum oracle of each round function

Fi . In addition, let us define the unitary operator OUP.i that computes the state update of
the first round by

OUP.i : |x (i−1)L, x (i−1)R〉 |yL, yR〉

7→ |x (i−1)L, x (i−1)R〉 |(yL, yR) ⊕ (Fi (x (i−1)L, x (i−1)R), x (i−1)L )〉 .

OUP.i can be implemented by making one query to Fi . Then OLR′′2 can be implemented
as follows by using OUP.1 and OUP.2:

1. Take |x〉 |y〉 = |x0L, x0R〉 |yL, yR〉 as an input.
2. Compute the state (x1L, x1R) by querying |x0L, x0R〉 |0n〉 to OUp.1, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 .

3. Query |x1L, x1R〉 |yL, yR〉 to OUP.2, and obtain

|x〉 |y ⊕ LR′′2 (x)〉 ⊗ |x1L, x1R〉 .

4. Uncompute Step 2 to obtain

|x〉 |y ⊕ LR′′2 (x)〉 .

5. Return |x〉 |y ⊕ LR′′2 (x)〉.
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Quantum oracle of RF′. The quantum oracle of RF′ is implemented in the same way
as LR′′2 , except that the second round state update oracle OUP.2 is replaced with another
oracle O′UP.2 defined as

O′UP.2 : |x0R, x1L, x1R〉 |yL, yR〉

7→ |x0R, x1L, x1R〉 |(yL, yR) ⊕ (F ′2 (x1L, x1R, x0R), x1L )〉 .

In what follows, we consider that the oracles of F1, F2, and F ′2 are implemented with
the recording standard oracle with errors, and we use D1, D2, and D′2 to denote (valid)
databases for F1, F2, and F ′2 , respectively.

Good and bad databases for LR′′
2
. Here we introduce the notion of good and bad for

each tuple (D1, D2) of valid database for LR′′2 . We say that a valid database D2 iswithout
overlap if each pair of distinct entries (x1L, x1R, β) and (x ′1L, x ′1R, β

′) in D2 satisfies
x1L , x ′1L . We say that (D1, D2) is good if D2 is without overlap, and for each entry
(x1L, x1R, β) ∈ D2, there exists exactly one entry (x0L, x0R, α) ∈ D1 such that α = x1L
and x1R = x0L . We say that (D1, D2) is bad if it is not good.

Good and bad databases for RF′. Next, we introduce the notion of good and bad
for each tuple (D1, D′2) of valid database for RF′. In addition, we say that a valid
database D′2 is without overlap if each pair of distinct entries (x1L, x1R, x0R, β) and
(x ′1L, x ′1R, x ′0R, β

′) in D′2 satisfies x1L , x ′1L . We say that (D1, D′2) is good if D′2 is
without overlap, and for each entry (x1L, x1R, x0R, β) ∈ D′2, there exists exactly one
entry (x0L, x0R, α) ∈ D1 such that α = x1L and x1R = x0L . We say that (D1, D′2) is bad
if it is not good.

In addition,we say that a valid database D′2 forF ′2 is normal if D′2(x1L, x1R, x0R) , ⊥,
then D′2(x ′1L, x1R, x0R) = ⊥ for all x ′1L , x1L . Note that, for each good database (D1, D′2)
for RF′, D′2 becomes normal by definition.

Compatibility of D′
2
with D2. Let D′2 be a valid and normal database for F ′2 without

overlap and D2 be a valid database for F2 without overlap. We say that D′2 is compatible
with D2 if the following conditions are satisfied:

1. If (x1L, x1R, x0R, β) ∈ D′2, then (x1L, x1R, β) ∈ D2.
2. If (x1L, x1R, β) ∈ D2, there is a unique x0R such that (x1L, x1R, x0R, β) ∈ D′2.

For each valid and normal D′2 for F ′2 without overlap, a unique valid database for F2
without overlap exists, which we denote by [D′2]2.

Remark 2. For each good database (D1, D2) for LR′′2 , a unique D′2 without overlap exists
such that [D′2]2 = D2 and (D1, D′2) is a good database for RF′, by the definition of good
databases. Similarly, for each good database (D1, D′2) for RF′, (D1, [D′2]2) becomes a
good database for LR′′2 . That is, there exists a one-to-one correspondence between good
databases for LR′′2 and those for RF′.
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The following lemma shows that the behavior of O′UP.2 on a valid and normal
databases D′2 for F ′2 without overlap is the same as that of OUP.2 on the corresponding
database [D′2]2 for F2.

Lemma 2. It holds that

〈x̃0R, x̃1L, x̃1R, ỹL, ỹR | ⊗ 〈D̃′2 |O
′
UP.2 |x0R, x1L, x1R, yL, yR〉 ⊗ |D′2〉

= 〈x̃0R, x̃1L, x̃1R, ỹL, ỹR | ⊗ 〈[D̃′2]2 |OUP.2 |x0R, x1L, x1R, yL, yR〉 ⊗ |[D′2]2〉

for any x0R, x1L, x1R, yL, yR, x̃0R, x̃1L, x̃1R, ỹL, ỹR ∈ {0, 1}n/2 and any valid and normal
databases D′2 and D̃′2 for F ′2 without overlap.

We omit to write the proof because the lemma can be shown in the same way as we
showed Lemma 1.

Let |ψ j〉 and |ψ ′j〉 be the joint quantum states of the adversary A and the oracle
just before making the j-th query when A runs relative to LR′′2 and RF′, respectively.
In addition, by |ψq+1〉 and |ψ ′q+1〉 we similarly denote the states just before the final
measurement, by abuse of notation. Then the following proposition holds.

Proposition 7. For each j = 1, . . . , q + 1, there exist vectors |ψgood
j 〉, |ψbad

j 〉, |ψ
′good
j 〉,

|ψ
′bad
j 〉, and complex number a( j)

x,y,z,D1,D
′
2
such that

|ψ j〉 = |ψ
good
j 〉 + |ψbad

j 〉 , |ψ ′j〉 = |ψ
′good
j 〉 + |ψ

′bad
j 〉 ,

|ψ
good
j 〉 =

∑
x,y,z,D1,D

′
2

(D1,D
′
2) : good

a( j)
x,y,z,D1,D

′
2
|x, y, z〉 ⊗ |D1, [D′2]2〉 ,

|ψ
′good
j 〉 =

∑
x,y,z,D1,D

′
2

(D1,D
′
2) : good

a( j)
x,y,z,D1,D

′
2
|x, y, z〉 |x, y, z〉 ⊗ |D1, D′2〉 ,

the vector |D1, D′2〉 in |ψ
′good
j 〉 (resp., |D1, [D′2]2〉 in |ψgood

j 〉) has non-zero quantum
amplitude only if |D1 | ≤ 2( j − 1) and |D′2 | ≤ j − 1, and

‖ |ψbad
j 〉 ‖ ≤

|ψ
bad
j−1〉

 +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad
j 〉 ‖ ≤

|ψ
′bad
j−1 〉

 +O *
,

√
j

2n/2
+
-
,

hold (we set |ψbad
0 〉 = 0 and |ψ′bad

0 〉 = 0).

The proposition can be shown in a similar way as we showed Proposition 5, and thus we
omit to write the entire proof. Since here only two random functions are involved in each
oracle while three random functions are involved in each oracle in Proposition 5, the
proof becomes simpler: When we prove Proposition 7, we can skip to show the claims
that correspond to those for the actions of OUP.2 in the proof of Proposition 5.

Now we can show that Advdist
LR′′2,RF′ (A) ≤ O

(√
q3/2n/2

)
follows from Proposition 7

in the same way as we showed that Proposition 4 follows from Proposition 5. Therefore
Proposition 6 holds.

55



4.3 Proof of Theorem 3
This subsection finishes our proof of Theorem3, by using the results given in Sections 4.1
and 4.2.
Proof (of Theorem 3). First, let us modify LR4 in such a way that the state up-
dates of the third and fourth rounds are replaced with (x2L, x2R) 7→ (x3L, x3R) :=
(F (x2L, x2R), x2L ) and (x3L, x3R) 7→ (x4L, x4R) := (F ′(x3L, x3R), x3L ), respectively,
where F, F ′ : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 are random functions. Let us denote the
modified function by LR′′4 . In addition, let LR′′′4 be the composition of LR2 with a random
function RF : {0, 1}n → {0, 1}n (see Fig. 9).

𝑓1

𝑓2

𝐹

𝐹′

𝑓1

𝑓2

RF

Fig. 9. LR′′4 and LR′′′4 .

Then, by applying Proposition 4 twice, we can show that

Advdist
LR4,LR′′4

(q) ≤ O *
,

√
q3

2n/2
+
-

(82)

holds. In addition,

Advdist
LR′′4,LR′′′4

(q) ≤ O *
,

√
q3

2n/2
+
-

(83)

follows from Proposition 6, and

Advdist
LR′′′4 ,RF(q) = 0 (84)

holds since LR2 is a permutation.
From Proposition 1, (82), (83), (84) we have

Advdist
LR4,RP(q)

≤ Advdist
LR4,LR′′4

(q) + Advdist
LR′′4,LR′′′4

(q) + Advdist
LR′′′4 ,RF(q) + Advdist

RF,RP(q)

≤ O *
,

√
q3

2n/2
+
-
,

which completes the proof of the theorem. ut
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5 Matching Upper Bound

Here we show that the query lower bound derived from Theorem 3 is tight by showing
the matching upper bound. Again, we consider the case that all round functions of LR4
are truly random functions, and show the following theorem.

Theorem 4. A quantum algorithm A exists that makes O(2n/6) quantum queries and
satisfies AdvqPRP

LR4
(A) = Ω(1).

Proof intuition. Intuitively, our distinguishing attack is just a quantum version of a clas-
sical collision-finding-based distinguishing attack [29]. A classical attack distinguishes
LR4 from a random permutation by finding a collision of a function that takes values in
{0, 1}n/2, which requires O(

√
2n/2) = O(2n/4) queries in the quantum setting. However,

finding a collision of the function requires onlyO( 3√2n/2) = O(2n/6) queries in the quan-
tum setting, which enables us to build a O(2n/6)-query quantum distinguisher. (Note
that we can generally find a collision of random functions from {0, 1}n/2 to {0, 1}n/2 with
O( 3√2n/2) = O(2n/6) quantum queries [36].)

5.1 Proof of Theorem 4

First, we describe an overview of a classical attack [29]. Let us denote the composition
of two independent random functions from {0, 1}n/2 to {0, 1}n/2 by RF ◦ RF.

An overview of a classical attack. Suppose that we are given an oracle access to O,
which is either the 4-round Luby-Rackoff construction LR4 or a random permutation
from {0, 1}n to {0, 1}n. Let us define a function GO : {0, 1}n/2 → {0, 1}n/2 that depends
on O by

GO (x) :=
(
O(0n/2, x)

)
R
⊕ x, (85)

where
(
O(0n/2, x)

)
R
is the right half n/2 bits of O(0n/2, x). We can implement GO by

making O(1) queries.
When O is the 4-round Luby-Rackoff construction LR4, we have that GO (x) =

f3( f2(x ⊕ f1(0n/2))) ⊕ f1(0n/2) holds. Thus, if all round functions of LR4 are truly
random functions, the function distribution of GO will be the same as that of the
composition of two independent random functions RF ◦RF. On the other hand, when O
is a random permutation from {0, 1}n to {0, 1}n, the function distribution of GO will be
almost the same as that of the truly random function RF from {0, 1}n/2 to {0, 1}n/2.

Since RF ◦ RF has twice as many collisions as RF, we can distinguish LR4 from a
truly random permutation by making O((2n/2)1/2) = O(2n/4) queries to GO .

Conversion of the classical attack to a quantum attack. Next, we explain how to
convert the classical attack above into a quantum attack that makes O(2n/6) quantum
queries and prove Theorem 4. The following lemma is crucial. It shows that we can
distinguish RF ◦ RF from RF by making O((2n/2)1/3) = O(2n/6) quantum queries.
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Lemma 3. Let us denote the composition of two independent random functions from
{0, 1}n/2 to {0, 1}n/2 by RF◦RF. Then, a quantum algorithmB exists that makes O(2n/6)
quantum queries and satisfies AdvqPRF

RF◦RF(B) = Ω(1). That is, an algorithm exists that
distinguishes RF ◦ RF from a random function with a constant probability, by making
O(2n/6) quantum queries.

Proof. We use the following fact that is shown by Ambainis [2].

Fact 1 (Theorem 3 in [2]). Let X and Y be finite sets, and F : X → Y be a func-
tion. Then there is a quantum algorithm that judges if distinct elements x1, x2 ∈ X exist
such that F (x1) = F (x2) with bounded error bymakingO(|X |2/3) quantum queries to F.

Let [N] ⊂ {0, 1}n/2 denote the subset {0, 1, . . . , N−1} for each integer 1 ≤ N ≤ 2n/2.
By using the above fact, we can deduce that for 1 ≤ N ≤ 2n/2 a quantum algorithm
DN exists such that, given oracle access to a function F : {0, 1}n/2 → {0, 1}n/2, it
outputs 1 if distinct elements x1, x2 ∈ [N] exist such that F (x1) = F (x2), and it outputs
0 otherwise, with an error that is smaller than 1/30, by making O(|N |2/3) quantum
queries. (We can make suchDN by iteratively running Ambainis’ algorithm O(1) times
for F |[N ] : [N]→ {0, 1}n/2, which is the restriction of F to [N].)

Here we give an analysis of the qPRF advantage ofDN on RF ◦RF, for each N . For
a function F : {0, 1}n/2 → {0, 1}n/2 and a subset Z ∈ {0, 1}n/2, let collFZ denote the event
that F has a collision in Z , i.e., there are distinct x1, x2 ∈ Z such that F (x1) = F (x2).
Then, we have that

Pr
F

[
¬collF[N ]

]
=

(
1 −

1
2n/2

)
·

(
1 −

2
2n/2

)
· · ·

(
1 −

N − 1
2n/2

)
=

N−1∏
j=1

(
1 −

j
2n/2

)
(86)

holds,whereF is chosen fromFunc({0, 1}n/2, {0, 1}n/2) uniformly at random. In addition,
when F1 and F2 are chosen from Func({0, 1}n/2, {0, 1}n/2) uniformly at random, we have
that

Pr
F1,F2

[
¬collF2◦F1

[N ]

]
= Pr

F2

[
¬collF2

F1 ([N ])
���¬collF1

[N ]

]
· Pr
F1

[
¬collF1

[N ]

]

=

(
Pr
F

[
¬collF[N ]

])2
. (87)

Now we have that

AdvqPRF
RF◦RF(DN ) = Advdist

RF,RF◦RF(DN )

=
�����
Pr
F

[
DF

N () → 1
]
− Pr

F1,F2

[
D

F2◦F1
N () → 1

] �����

≥
�����
Pr
F

[
collF[N ]

]
− Pr

F1,F2

[
collF2◦F1

[N ]

] �����
−

2
30
, (88)
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where we used the property that the error of DN is smaller than 1/30. In addition,
from (87), it follows that

�����
Pr
F

[
collF[N ]

]
− Pr

F1,F2

[
collF2◦F1

[N ]

] �����
= Pr

F1,F2

[
collF2◦F1

[N ]

]
− Pr

F

[
collF[N ]

]

=

(
1 −

(
Pr
F

[
¬collF[N ]

])2)
−

(
1 − Pr

F

[
¬collF[N ]

])
= Pr

F

[
¬collF[N ]

] (
1 − Pr

F

[
¬collF[N ]

])
(89)

holds. Therefore, we have that

AdvqPRF
RF◦RF(DN ) ≥ Pr

F

[
¬collF[N ]

] (
1 − Pr

F

[
¬collF[N ]

])
−

2
30

(90)

holds. Now we show the following claim.

Claim. There exists a parameter N0 that is in O(2n/4), and

3
5
≥

N0−1∏
j=1

(
1 −

j
2n/2

)
≥

1
5

(91)

holds for sufficiently large n.

Proof. First, let us denote pN :=
∏N−1

j=1

(
1 − j

2n/2

)
. For each 1 ≤ N ≤ 2n/2, we have

that

N−1∏
j=1

(
1 −

j
2n/2

)
≥

(
1 −

N
2n/2

)N

=
*.
,

(
1 −

N
2n/2

)− 2n/2
N +/

-

− N2
2n/2

(92)

holds. In addition,

N−1∏
j=1

(
1 −

j
2n/2

)
≤

N−1∏
j=1

(
e−

j

2n/2
)
= e−

N (N−1)
2·2n/2 (93)

holds. Thus

e−
N (N−1)
2·2n/2 ≥ pN ≥

*.
,

(
1 −

N
2n/2

)− 2n/2
N +/

-

− N2
2n/2

(94)

holds.
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Next, let us put N0 := 2n/4 ·
√

2 log 2. Then

e−
N0 (N0−1)

2·2n/2 = e−
N0 ·N0
2·2n/2 +

(
e−

N0 (N0−1)

2·2n/2 − e−
N0 ·N0
2·2n/2

)
=

1
2
+

*.
,

(
1
2

) N0−1
N0
−

1
2

+/
-

(95)

holds, and thus e−
N0 (N0−1)

2·2n/2 ≤ 3/5 holds for sufficiently large n. In addition, since the
function f (x) = (1−x)−1/x increases as x increases for 0 < x < 1 and limx→+0 f (x) = e
holds, we have that (

1 −
N0

2n/2

)− 2n/2
N0
≤ e +

1
10

(96)

holds for sufficiently large n. Thus

*.
,

(
1 −

N0

2n/2

)− 2n/2
N0 +/

-

−
N2

0
2n/2

≥

(
e +

1
10

)− N2
0

2n/2

=

(
e +

1
10

)−2 log 2
≥

1
5

(97)

holds for sufficiently large n.
Therefore, if we put N0 := 2n/4 ·

√
2 log 2,

3
5
≥ pN0 ≥

1
5

(98)

holds for sufficiently large n. Hence the claim follows. ut

From the above claim and (86), a parameter N0 exists that is in O(2n/4), and

3
5
≥ Pr

F

[
¬collF[N0]

]
≥

1
5

(99)

holds for sufficiently large n. Hence, from (88) we have that

AdvqPRF
RF◦RF(DN0 ) ≥

1
5

(
1 −

3
5

)
−

2
30
=

1
75
≥ Ω(1). (100)

Therefore, if we putB := DN0 , thisB satisfies the claim of the lemma, since (100) holds
and DN0 makes at most O((N0)2/3) = O((2n/4)2/3) = O(2n/6) quantum queries. ut

Next we show the following proposition.

Proposition 8. A quantum algorithmA exists that makesO(2n/6) quantum queries and
satisfies AdvqPRF

LR4
(A) = Ω(1) .

Proof. Suppose that we are given an oracle access to O, which is either the 4-round
Luby-Rackoff construction LR4 or a random function from {0, 1}n to {0, 1}n. Recall that
the function GO : {0, 1}n/2 → {0, 1}n/2 is defined by

GO (x) :=
(
O(0n/2, x)

)
R
⊕ x, (101)
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where
(
O(0n/2, x)

)
R

is the right half n/2 bits of O(0n/2, x). We can implement a
quantum circuit that computes GO by making O(1) queries.9

Now we define a quantum algorithm A as the following three-step procedure.

1. Let B be the same algorithm as in Lemma 3.
2. Run B relative to GO .
3. If B returns 1, output 1. If B returns 0, output 0.

Here we analyzeA. When O is the 4-round Luby-Rackoff construction LR4, we have
that GO (x) = f3( f2(x ⊕ f1(0n/2))) ⊕ f1(0n/2) holds. Since we are considering the case
that all round functions of LR4 are truly random functions, the function distribution of
GO will be the same as that of RF◦RF. On the other hand, when O is a random function
from {0, 1}n to {0, 1}n, the function distribution of GO will be the same as that of the
truly random function from {0, 1}n/2 to {0, 1}n/2. Thus, from Lemma 3 we have that

AdvqPRF
LR4

(A) = AdvqPRF
RF◦RF(B) = Ω(1) (102)

holds. In addition, since B makes at most O(2n/6) quantum queries and G makes only
O(1) queries to O, A makes at most O(2n/6) quantum queries. Therefore the claim of
the proposition holds. ut

Finally we prove Theorem 4.

Proof (of Theorem 4). Let A be the same algorithm as in Proposition 8. Then, from
Proposition 8 it follows that

AdvqPRP
LR4

(A) ≥ AdvqPRF
LR4

(A) − Advdist
RP,RF(A)

≥ Ω(1) −O(1/2n/2) = Ω(1), (103)

where we used the fact that, for any quantum adversaryA ′ that makes at most q queries,
the distinguishing advantageAdvdist

RP,RF(A ′) is upper bounded byO(q3/2n) for a random
function and a random permutation from {0, 1}n to {0, 1}n (see Proposition 1). Thus the
claim of the theorem holds. ut

6 Concluding Remarks

In this paper, we showed that Ω(2n/6) quantum queries are required to distinguish the
(n-bit block) 4-round Luby-Rackoff construction from a random permutation by qCPAs.
In particular, the 4-round Luby-Rackoff construction becomes a quantumly secure PRP
against qCPAs if round functions are quantumly secure PRFs. We also gave a qCPA
that distinguishes the 4-round Luby-Rackoff construction from a random permutation
with O(2n/6) quantum queries and showed that Θ(2n/6) is the tight bound. To give
security proofs, we gave an alternative formalization of the compressed oracle technique
by Zhandry and applied it. We believe that our alternative formalization and analyses

9 Here we have to truncate O’s outputs by using a technique observed in [17].
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for its behavior help us understanding Zhandry’s technique better, which will lead to the
technique begin applied even more widely.

An important future work is to see if the provable security bound improves when
we increase the number of rounds. Also, analyzing the security of the Luby-Rackoff
constructions against qCCAs is left as an interesting open question. It would be a
challenging problem since we have to treat inverse (decryption) queries to quantum
oracles. Oracles that allow inverse quantum queries are usually much harder to deal with
than the ones that allow only forward quantum queries, and some other new techniques
would be required for the analysis.
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A On the Technical Error in the Preliminary Version

The previous version [15,16] contained an error in the proof to upper bound the norms
of bad vectors (which corresponds to the proof for (42) of Proposition 5 in this version).

Roughly speaking, the previous version set |ψgood
j 〉 := ΠgoodΠregOLR3 |ψ

good
j−1 〉 for each

j and claimed that ‖Πirreg∨badOLR3 |ψ
good
j−1 〉 ‖ ≤ O(

√
j/2n/2) holds (instead of claiming

(42) in the current version), where Πirreg∨bad is the projection onto the space spanned
by the vectors that contain irregular states or bad databases, i.e., Πirreg∨bad = I −
ΠgoodΠreg. Here, a vector is called irregular if it is not regular.10 To prove the upper
bound ‖Πirreg∨badOLR3 |ψ

good
j 〉 ‖ ≤ O(

√
j/2n/2), the previous version first decomposed

the vector |ψgood
j 〉 on an orthonormal system S and proved ‖Πirreg∨badOLR3 |φ〉 ‖ ≤

O(
√

j/2n/2) for all |φ〉 ∈ S such that 〈φ|ψgood
j 〉 , 0. However, this does not immediately

imply ‖Πirreg∨badOLR3 |ψ
good
j 〉 ‖ ≤ O(

√
j/2n/2).

It turns out that the norm of the irregular component of OLR3 |ψ
good
j 〉 (which we

denote ΠirregOLR3 |ψ
good
j 〉) may be much larger than

√
j/2n/2, and in fact we do not have

to care about the norm of the irregular component of ΠirregOLR3 |ψ
good
j 〉 to prove the

indistinguishability of OLR3 and OLR′3 .
Hence we changed the proof strategy in Section 4.1. In particular, this version does

not use additional oracles OLR3-det and OLR′3-det that are used in the previous version. By
removing OLR3-det and OLR′3-det the proof strategy has become simpler.

10 To be more precise, the previous version used the notation Πbad instead of Πbad∨irreg.
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