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Abstract

Boolean functions used in some cryptosystems of stream ciphers should satisfy

various criteria simultaneously to resist some known attacks. The fast algebraic

attack (FAA) is feasible if one can find a nonzero function g of low algebraic

degree and a function h of algebraic degree significantly lower than n such that

f · g = h [5]. Then one new cryptographic property fast algebraic immunity

(FAI) was proposed in [6], which measures the ability of Boolean functions

to resist FAAs. It is a great challenge to determine the exact values of the

fast algebraic immunity of an infinite class of Boolean functions with optimal

algebraic immunity. In this letter, we explore the exact fast algebraic immunity

of two subclasses of the majority function.

Keywords: Fast algebraic immunity, Majority function, Algebraic immunity,

Boolean function

1. Introduction

In recent years, more efforts have been made to investigate the FAI of

Boolean functions. In 2012, Carlet-Feng function [3], a class of n-variable bal-

anced Boolean functions with the optimal AI and good nonlinearity, was proved

to have perfectly resistance to FAAs on 2s + 1 variables [6]. In 2014, another

class of balanced even-variable Boolean functions with maximum AI and high

nonlinearity, called T-C-T functions [4], was also proved to have almost optimal
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resistance against FAAs [9]. In 2016, Tang et al. gave the exact FAI value

2m−1 + 2 of the majority function of 2m and 2m + 1 variables [10]. In 2017,

Tang et al. proposed a large family of 1-resilient Boolean functions having high

lower bound on nonlinearity, optimal AI, optimal algebraic degree as well as

provably FAI no less than n−6 [11]. This letter determines the exact FAI value

of 2m + 2 and 2m + 3 variables (m ≥ 2) majority function to equal 2m−1 + 4.

2. Preliminaries

Let Fn2 be the n-dimensional vector space over the finite field F2 = {0, 1}.

Then a Boolean function on n-variable can be viewed as a mapping from Fn2 to

F2. Furthermore, any Boolean function f can be given by its truth table, which

is a binary string of length 2n listed as follows (lexicographic order):

f =
[
f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)

]
.

Let Bn be the set of all n-variable Boolean functions. A Boolean function

f ∈ Bn can also be seen as a multivariate polynomial over F2, which is called

the algebraic normal form (ANF), that is

f(x1, x2, · · · , xn) =
⊕
α∈Fn

2

c(α)xα, (1)

where xα = xa11 x
a2
2 · · ·xann for x = (x1, x2, · · · , xn), α = (a1, a2, · · · , an), and

c(α) ∈ F2 can be determined by the Möbius transform

c(α) =
⊕

β∈Fn
2 ,β�α

f(β) (2)

where β = (β1, β2, · · · , βn) and β � α means that βi ≤ αi for all 1 ≤ i ≤ n. We

denote by wt(α) the Hamming weight of α. The algebraic degree of a Boolean

function in formula (1) is defined as

deg(f) = max{wt(α)|α ∈ Fn2 , c(α) = 1}.

A Boolean function is said to be symmetric if its output is invariant under

any permutation of its input bits. Denote by SBn the set of all n-variable
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symmetric Boolean functions. Actually, for any f ∈ SBn, the ANF can be

written as

f(x) =

n⊕
i=0

λf (i)σi, (3)

where λf (i) ∈ F2 and σi denotes the n-variable elementary symmetric Boolean

function which consists of all terms of degree i, i.e., σ0 = 1, σ1 =
⊕n−1

i=0 xi,

σ2 =
⊕

0≤i<j<n xixj ,· · · , and σn = x0x1 · · ·xn−1.

Now we give the definition of algebraic immunity and fast algebraic immu-

nity.

Definition 1. ([1]) The algebraic immunity (AI) of an n-variable Boolean func-

tion f is defined as

AI(f) = min{deg(g)|g 6= 0, fg = 0 or (f + 1)g = 0}.

For resisting the standard algebraic attacks, AI of an n-variable Boolean

function should reach or close to this optimal bound dn2 e.

Definition 2. ([6]) The fast algebraic immunity (FAI) of a Boolean function

f ∈ Bn is the number

FAI(f) = min{2 AI(f),

min{deg(g) + deg(fg)|1 ≤ deg(g) < AI(f)}}.

Ref.[10] gave two properties about the FAI:

Lemma 1. ([10]) If f ∈ Bn, then

i) FAI(f) ≤ n;

ii) FAI(f) = FAI(f + 1).

The majority function as a class of special symmetric Boolean functions has

been used to construct more Boolean functions with optimal AI. Now we present

definition of the majority function.

Definition 3. ([7]) The majority function is defined as

fM (x) =

1, if wt(x) ≥
⌈
n
2

⌉
0, if wt(x) <

⌈
n
2

⌉
.

3



Lemma 2. ([2]) Let fM ∈ SBn be the majority function, then

i) deg(fM ) = 2blog2 nc;

ii) AI(fM ) = dn2 e.

Ref. [8] presented a precious result on the behavior of the majority function

against FAAs.

Theorem 1. ([8]) Let fM be the majority function of n-variable, where n ≥ 2.

There exist Boolean Functions g and h such that fMg = h, where d = deg(h) =

bn/2c+ 1 and e = deg(g) = d− 2j , and where j is the maximum number such

that e > 0.

Ref.[10] deduced this result as an intuitive conclusion, which is presented in

Lemma 3.

Lemma 3. ([10]) Let fM be the majority function of n-variable, where 2m ≤

n < 2m+1. Then FAI(fM ) ≤ n − 2m−1 + c, where c = 2 for even n and c = 1

for odd n.

3. Main Result

Now we explore the exact FAI of the majority function on 2m+2 and 2m+3

variables (m ≥ 2).

Lemma 4. Let 2m + 2 ≤ n < 2m+1 with m ≥ 2 and fM ∈ SBn be the ma-

jority function. For any n-variable Boolean function g with deg(g) = 1, then

deg(fMg) = deg(fM ) + 1.

Proof. From Lemma 2 we know deg(fM ) = 2blog2 nc = 2m, which by formula (3)

implies that the ANF of fM consists of all terms with degree 2m. For proving

deg(fMg) = 2m + 1, we only need to find one term with degree 2m + 1 appears

odd times in fMg.

i) Suppose g(x) = x0 + x1 + · · · + xn−1. Then x0x1 · · ·x2m appears 2m + 1

times in fMg.
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ii) Suppose g(x) = x0 + x1 + · · · + xn−1 − xi, where 0 ≤ i ≤ n − 1. For

convenience, let i = n − 1, then xi makes no influence to the situation in

i). So x0x1 · · ·x2m appears 2m + 1 times in fMg.

iii) Suppose g(x) = x0 + x1 + · · · + xn−1 −X1, where X1 express addition of

even number of different xi’s with 0 ≤ i ≤ n − 1. For convenience, let

X1 = x0 + x1 + · · · + xl where l is odd and l < n − 1, then x0x1 · · ·x2m

appears 2m + 1− (l + 1) = 2m − l times in fMg, which is odd obviously.

iv) Suppose g(x) = x0 + x1 + · · ·+ xn−1 −X1 − xj , where 0 ≤ j ≤ n− 1 and

xj is not contained in X1. For convenience, let X1 = x0 + x1 + · · · + xl

where l is odd and l < n− 2, xj = xn−1, then xj makes no influence to the

situation in iii). So x0x1 · · ·x2m appears 2m − l times in fMg.

It is obvious that whether ANF of g consists of term ’1’ makes no influence to

the degree of fMg. Because of the high symmetry of majority function, we can

infer that for all deg(g) = 1, there always exists a term with degree 2m + 1

appears odd times. This completes the proof.

Lemma 5. Let 2m+ 2 ≤ n < 2m+1 with m ≥ 2 and fM ∈ SBn be the majority

function. Define A = min{deg(h)|fMh = 0, h 6= 0}. Then FAI(fM ) ≥ A +2 ≥

AI(fM ) + 2.

Proof. Firstly,

min
1≤deg(g)<AI(fM+1)

{deg(g) + deg((fM + 1)g)}

≥ A +2 ≥ AI(fM ) + 2

is an immediate consequence because of the following three facts:

• AI(fM ) ≤ A ≤ deg(fM ) because fM (fM + 1) = 0, fM + 1 6= 0 and

deg(fM + 1) = deg(fM );

• AI(fM ) = AI(fM + 1), by Definition 1;

• if deg(g) = 1 we have deg((fM + 1)g) = deg(fM ) + 1 ≥ A +1 by Lemma

4; if deg(g) ≥ 2 we have deg((fM + 1)g) ≥ A since fM (fM + 1)g = 0 and

(fM + 1)g 6= 0.
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Secondly, 2 AI(fM + 1) ≥ A +2 holds since:

• A ≤ deg(fM + 1) = 2m, by Lemma 2;

• AI(fM ) = AI(fM + 1), by Definition 1;

• when 2m + 2 ≤ n < 2m+1, by Lemma 2, for even n, 2 AI(fM ) = n

and for odd n, 2 AI(fM ) = n + 1. Both the two cases indicate that

2 AI(fM + 1) ≥ 2m + 2 ≥ A +2.

Therefore, by Definition 2 and Lemma 1, for 2m + 2 ≤ n < 2m+1 with m ≥ 2

we have

FAI(fM ) = FAI(fM + 1) ≥ A +2 ≥ AI(fM ) + 2.

Now we give an lower bound on the FAI of 2m + 2 ≤ n < 2m+1 (m ≥ 2)

variables majority functions.

Lemma 6. Let fM ∈ SBn be the majority function with 2m + 2 ≤ n < 2m+1

where m ≥ 2. Then FAI(fM ) ≥ bn2 c+ 3.

Proof. There are two cases:

i) Even n. By Lemma 5, we only need to prove that fM has no nonzero

annihilator with algebraic degree less than n
2 + 1. It suffices to prove that

f ′M (x1, · · · , xn) = fM (x1 + 1, · · · , xn + 1) has no nonzero annihilator with

algebraic degree less than n
2 + 1 since if there exists a nonzero function

g of algebraic degree less than n
2 + 1 such that f ′Mg = 0 then we have

fMg
′ = 0 where g′(x1, · · · , xn) = g(x1 + 1, · · · , xn + 1). Assume that g is

an annihilator of f ′M with deg(g) ≤ n
2 . Let the ANF of g(x) be

g(x) =
⊕

α∈Fn
2 ,wt(α)≤n/2

c(α)xα,

Since g is an annihilator of f ′M , g(x) = 0 for every x with wt(x) ≤ n
2 . Then

we have c(α) = 0 for any α ∈ Fn2 with wt(α) ≤ n/2 by formula (2). This

implies that g = 0 and hence f ′M has no nonzero annihilator with algebraic

degree less than n
2 + 1.
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ii) Odd n. It follows from Lemma 5 that FAI(fM ) ≥ AI(fM ) + 2 = bn2 c+ 3.

By Lemma 3 and Lemma 6, we get our main theorem:

Theorem 2. Let fM ∈ SBn be the majority function with n ∈ {2m+2, 2m+3}

where m ≥ 2. Then FAI(fM ) = 2m−1 + 4.

4. Conclusion

In this letter, we give a lower bound of the fast algebraic immunity of n-

variable (where 2m+2 ≤ n < 2m+1, m ≥ 2) majority function. Combining with

previous work, we determine that the exact fast algebraic immunity value of the

majority function of 2m + 2 and 2m + 3 variables (m ≥ 2) equals 2m−1 + 4.
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