
Practical Algebraic Side-Channel
Attacks against ACORN

Alexandre Adomnicai1,2[0000−0003−1210−8046], Laurent

Masson1[0000−0002−5835−4616], and Jacques J.A. Fournier3[0000−0001−8185−892X]

1
Trusted Objects, Aix-en-Provence, France,

{a.adomnicai, l.masson}@trusted-objects.com
2

Mines Saint-Étienne, CEA-Tech, Centre CMP, Gardanne, France,
3

Univ. Grenoble Alpes, CEA-LETI, DSYS, Grenoble, France,
jacques.fournier@cea.fr

Abstract. The authenticated cipher ACORN is one of the two finalists
of the CAESAR competition and is intended for lightweight applications.
Because such use cases require protection against physical attacks, sev-
eral works have been undertaken to achieve secure implementations. Al-
though dedicated threshold and masked schemes have been proposed,
no practical side-channel attack against ACORN has been published in
the literature yet. It has been theoretically demonstrated that ACORN is
vulnerable against differential power analysis but the feasibility of the at-
tack has not been validated in a practical manner. This paper details the
results obtained when putting the attack into practice against a software
implementation running on a 32-bit micro-controller. Especially, these
practical results led us to propose two optimizations of the reference at-
tack: one that requires less knowledge of initial vectors and another one
that is less prone to errors and requires fewer acquisitions.

Keywords: ACORN, Authenticated encryption, Side-channel attacks

1 Introduction

In January 2013, the competition for authenticated encryption: security, applica-
bility, and robustness (CAESAR) has been launched with the objective to push
for the adoption of authenticated encryption schemes that offer advantages over
AES-GCM and are suitable for widespread adoption. In March 2018, the finalists
for different use cases were announced. Among them, ACORN is still competing
for lightweight applications. This category is defined by various criteria such as
compactness of the implementation (in software and hardware), a low overhead
for short messages and an intrinsic ability to protect against physical attacks.
While several studies have been carried out in order to investigate the last point,
most of them discuss the susceptibility of ACORN towards fault attacks [19,14,4].
The first work with regards to side-channel attacks has been recently published
[5]. In this paper, the authors propose threshold implementations of some CAE-
SAR candidates, including ACORN, in order to compare their ability to integrate

countermeasures against differential power analysis (DPA) in hardware. To jus-
tify the need of such countermeasures, they apply the non-specific t-test [13] to
each unprotected implementation on a Spartan 6 FPGA in order to detect the
presence of leakages. Their results show that ACORN seems to be the most leak-
age resilient candidate in the unprotected setting and has the lowest area when
implemented with countermeasures. The second work dealing with side-channel
attacks follows the same approach by studying the integration of the masking
countermeasure to the finalists ACORN and Ascon in software [1]. This latter also
introduces the first theoretical DPA against ACORN but does not provide any
practical results. Therefore, the only two available studies on the susceptibility
of ACORN towards side-channel analysis only deal with leakage detection and
theoretical attacks.

Our contribution. Although leakage assessment methodologies give a good
overview of the resilience of an implementation against side-channel attacks, it
might not be sufficient to guarantee its security level [16]. Because such statistic
tools are not meant to perform a key recovery, it is recommended to run addi-
tional tests (e.g. DPA) in order to assess the security of an implementation in
an accurate manner. However, the only DPA against ACORN reported in the
literature has not been validated in practice. To fill the gap, we run the attack
described in [1] on a software implementation of ACORN on a 32-bit microcon-
troller. In addition to bringing information on the effectiveness of the attack and
the difficulties that might be encountered in practice, our results allow us to
introduce more efficient attack paths.

Outline. The rest of this paper is organised as follows. Section 2 briefly recalls
the specification of ACORN and the principle of correlation eletromagnetic anal-
ysis. Section 3 recalls the theoretical attack against this algorithm and provides
some missing elements in order to put it into practice. Subsequently, Sect. 4 de-
tails how the attack was applied in a practical manner and presents the results
obtained. Section 5 introduces two optimized variants of the reference attack,
each one having its own advantages. Finally, we summarise our main results and
provide some perspectives in Sect. 6.

2 Preliminaries

2.1 ACORN

ACORN [18] is a stream cipher based authenticated encryption with associated
data (AEAD) algorithm designed by Hongjun Wu. ACORN uses a 128-bit key,
a 128-bit initialization vector (IV) and produces a 128-bit authentication tag.
Its internal state is 293-bit long and consists of the concatenation of six LFSRs
in addition to a 4-bit register, as shown in Fig.1. We note Si the state after i
updates and Sj the jth bit of the state.

ACORN relies on three main functions: an output keystream generation func-
tion, a nonlinear feedback function, and a state update function. The keystream

0 23 60

⊕
⊕

61 66 106

⊕
⊕

107 111 153

⊕
⊕

154 160 192

⊕
⊕

193 196 229

⊕
⊕

230 235 288

⊕
⊕

289 292

⊕
mi

fi

Fig. 1: The concatenation of 6 LFSRs in ACORN. fi and mi indicate the overall
feedback bit and the message bit for the ith step, respectively.

generation function is defined by

κ(S) = S12 ⊕ S154 ⊕Maj(S235, S61, S193)⊕ Ch(S230, S111, S66) (1)

where Maj(x, y, z) = (x∧y)⊕ (x∧z)⊕ (y∧z) and Ch(x, y) = (x∧y)⊕ (¬x∧z).
The nonlinear feedback function is defined by

ϕ(S, k, ca, cb) = S0 ⊕ ¬S107 ⊕Maj(S244, S23, S160)⊕ (ca ∧ S196)⊕ (cb ∧ k) . (2)

The variables ca and cb allow to define different variants of the feedback func-
tion for the four phases of the cipher: initialization, additional data processing,
encryption and tag generation. All of them rely on the state update function,
defined in Alg.1, which is the core of ACORN.

Algorithm 1 StateUpdate(Si,mi, ca, cb)

S
i
289 ← S

i
289 ⊕ S

i
235 ⊕ S

i
230 . Update using six LFSRs

S
i
230 ← S

i
230 ⊕ S

i
196 ⊕ S

i
193

S
i
193 ← S

i
193 ⊕ S

i
160 ⊕ S

i
154

S
i
154 ← S

i
154 ⊕ S

i
111 ⊕ S

i
107

S
i
107 ← S

i
107 ⊕ S

i
66 ⊕ S

i
61

S
i
61 ← S

i
61 ⊕ S

i
23 ⊕ S

i
0

ksi ← κ(S
i
)

ci ← ksi ⊕mi . Encryption of the input
fi ← ϕ(S

i
, ksi, ca, cb) . Nonlinear feedback bit generation

for j from 0 to 291 do
S

i+1
j ← S

i
j+1 . Shift the state

S
i+1
292 ← fi ⊕mi . Injection of the input

Initialization. The initialization phase takes as input the encryption key and
the IV. First, the entire state is initialized to zero. Then the cipher is run for
1792 steps as described in Alg.2.

Additional Data Processing. After the initialization step, the associated data
is used to update the state. The cipher is run for at least 256 steps, even if there
is no associated data to process.

Encryption. At each step of the encryption, one bit from the plaintext is en-
crypted. The cipher is run for at least 256 steps, even if there is no plaintext to
encrypt.

Finalization. At the end, an n-bit authentication tag is computed. The state is
updated 768 times and the tag consists of the last n keystream bits generated.

Algorithm 2 AcornInit(S0,K, IV)

(S
0
0 , ..., S

0
292)← (0, ..., 0) . Initialize the state to zero

for i from 0 to 127 do
S

i+1 ← StateUpdate(S
i
,Ki, 1, 1) . Update the state with key bits as input

for i from 0 to 127 do
S

129+i ← StateUpdate(S
128+i

, IVi, 1, 1) . Update the state with IV bits as
input

S
257 ← StateUpdate(S

256
,K0 ⊕ 1, 1, 1)

for i from 1 to 1535 do
S

257+i ← StateUpdate(S
256+i

,Ki mod 128, 1, 1) . Update the state with key bits
as input

2.2 Correlation Electromagnetic Analysis

Since the publication of DPA [9], it is common knowledge that the analysis of
the power consumed by the execution of a cryptographic primitive might re-
veal information about the secret involved. A few years later, correlation power
analysis (CPA) has been widely adopted over DPA as it requires fewer traces
and has been shown to be more efficient [3]. The principle is to target a sen-
sitive intermediate state of the algorithm which depends on a subpart of the
key, and try to predict its value for all hypotheses. The function that defines
the intermediate state from the known input and the subkey is called selection
function. Then, to uncover the link between these predictions and the leakage
measurements, the Pearson correlation coefficient between these two variables
is computed using an appropriate leakage model. The Hamming weight (HW)
and the Hamming distance (HD) models are the most commonly used models
to simulate the leakage of a cryptographic device. For each subkey hypothe-
sis, it results in a value between −1 and 1, indicating how much it correlates
with the recorded values for every point in time. Finally, the hypothesis which
matches with the real subkey should return a significantly higher coefficient than
the other hypotheses. The procedure is described in details in Alg. 3. This at-
tack remains valid when analyzing electromagnetic emanations [6,11] instead of
power consumption, since they are mainly due to the displacement of current
through the rails of the metal layers. In this case, we refer to it as correlation
electromagnetic analysis (CEMA).

3 Reference Attack against ACORN

3.1 Theoretical Basics

The attack introduced in [1] details how a DPA can be mounted against leakages
caused by the calculation of Si+1

292 ← fi ⊕ mi when updating the state update
during the initialization phase for 128 ≤ i ≤ 255. More precisely, it assumes
the knowledge of the input mi = IVi−128 and thus targets the feedback bits fi.
However, because feedback bits are defined by nonlinear combinations of several

Algorithm 3 CEMA(ϕ, L, D1···n, [a, b], M1···n)

Require: Selection function ϕ ; Leakage model L ; Data acquisitions D
1···n

; Interval
of samples to consider [a, b] ; Input messages M

1···n

Ensure: subkey candidate k̄
for i from 1 to n do

for k from 0 to |K − 1| do . K denotes the key search space

H
i
k ← L

(
ϕ(k,M

i
)
)

. Prediction of the intermediate state leakage

for i from a to b do . For each sample to consider
for k from 0 to |K − 1| do

C
i
k ← Corr

([
H

1
k , · · · , H

n
k

]
,
[
D

0
i , · · · , D

n
i

])
Ck̄ ← max(C) . Most likely subkey among all samples in [a, b]

key bits, the attack does not lead to a direct key recovery but returns a system
of Boolean equations to be solved. This kind of attack is called algebraic side-
channel attack (ASCA) [12] and has already been applied to other stream ciphers
such as Trivium and Grain [8].

In the case of ACORN, the state is first updated 128 times with the key.

Especially, after the 128th initialization step, the state is as follows(
S

128
0 , ..., S

128
164

)
= (0, ..., 0)(

S
128
165 , ..., S

128
198

)
= (¬K0, ...,¬K33)(

S
128
199 , ..., S

128
201

)
= (K34 ⊕K0, ..., K36 ⊕K2)(

S
128
202 , ..., S

128
218

)
= (¬K37 ⊕K3 ⊕K0, ...,¬K53 ⊕K19 ⊕K16)(

S
128
219 , ..., S

128
223

)
= (K54 ⊕K20 ⊕K17 ⊕K0, ..., K58 ⊕K24 ⊕K21 ⊕K4)(

S
128
224 , ..., S

128
229

)
= (¬K59 ⊕K25 ⊕K22 ⊕K5 ⊕K0, ...,¬K64 ⊕K30 ⊕K27 ⊕K10 ⊕K5)(

S
128
230 , ..., S

128
261

)
= (¬K65 ⊕K11 ⊕K6, ...,¬K96 ⊕K42 ⊕K37)(

S
128
262 , ..., S

128
272

)
= (K97 ⊕K43 ⊕K38 ⊕ f97, ..., K107 ⊕K53 ⊕K48 ⊕ f107)(

S
128
273 , ..., S

128
288

)
= (¬K108 ⊕K54 ⊕K49 ⊕K0 ⊕ f108, ...,¬K123 ⊕K69 ⊕K64 ⊕K15 ⊕ f123)(

S
128
289 , ..., S

128
292

)
= (¬K124 ⊕ f124, ...,¬K127 ⊕ f127)

(3)

where fi defines the nonlinear feedback bit.

fi =



1 if 0 ≤ i ≤ 96

Ki−97 if 97 ≤ i ≤ 99(
¬Ki−58

)
∧
(
¬Ki−100

)
⊕Ki−97 if 100 ≤ i ≤ 111(

Ki−58 ⊕Ki−112

)
∧
(
¬Ki−100

)
⊕Ki−97 if 112 ≤ i ≤ 116

¬
(
Ki−58 ⊕Ki−112 ⊕Ki−117

)
∧
(
¬Ki−100

)
⊕Ki−97 if 117 ≤ i ≤ 127

(4)

Then, the state is updated with the IV as input for the next 128 steps. As a
result, one can run a DPA by targeting the result of the XOR between IV bits
and feedback bits in order to get a system of Boolean equations to be solved.

However, fi is constant for a given key if and only if i ≤ 176. Indeed, from
i = 177, IV bits that have been injected into the internal state have been shifted
to such an extent that they are involved in the computation of fi. Therefore, the
use of XOR as selection function is only possible from f128 to f176, which results
in a Boolean system F that depends on all key bits.

The task of recovering the key bits from F can be reduced to a variant of the
Boolean satisfiability (SAT) problem, which decides whether a given proposi-
tional formula in conjunctive normal form (CNF) is satisfiable. As the CNF
derived from F is satisfiable at least by the encryption key K, the purpose of
the attack is to get all of the truth assignments of SAT. Because F defines a
system of 49 equations with 128 unknowns, there are so many solutions that
we were not able to determine the number of truth assignments by means of
600 core-hours. In order to reduce the number of solutions, it is possible to ex-
tend F by recovering the next feedback bits using more sophisticated selection
functions.

Actually, the DPA should not target the next fi themselves but their com-
ponent parts that are IV-independent. The principle is to isolate the key bit
combinations from the IV bits so that they can be recovered through a DPA
and then be added to the Boolean system. As a result, each DPA against fi
for i ≥ 177 adds n+ 1 equations to the Boolean system where n is the number
of IV bits involved in the calculation of fi. The authors computed the value of
each equation of F for a random key and investigated how many equations are
necessary to return a single key hypothesis. Their experimentations led to the
conclusion that F has a unique truth assignment only if it results from the leak-
age of at least the first 82 updates (i.e. from f128 to f209). Therefore, ACORN
is theoretically vulnerable to DPA and it is only necessary to have knowledge of
the first 82 IV bits to recover the entire encryption key.

3.2 Remarks and Clarifications

Although [1] clearly exhibits how to proceed in order to isolate the key bit
combinations when a single IV bit interferes in the recovery of fi with i ≥ 177,
the case where multiple IV bits are involved is left to the reader as an exercise.
Thanks to the distributive property of AND over XOR, fi can be rewritten in
terms of IV bits as shown in Table 1, where f ′i refers to fi for the null IV.

Table 1: Intermediate bit βi∈I to consider when running a DPA against
f128+i ⊕ IVi

I βi∈I

[0, 48] f128+i ⊕ IVi

[49, 57] f
′
128+i ⊕

(
S

128+i
160 ∧ IVi−49

)
⊕ IVi

[58, 62] f
′
128+i ⊕

(
S

128+i
160 ∧ IVi−49

)
⊕
(
S

128+i
193 ∧ IVi−58

)
⊕ IVi

[63, 96] f
′
128+i ⊕

(
S

128+i
160 ∧ IVi−49

)
⊕
(
S

128+i
193 ∧ IVi−58

)
⊕
(
S

128+i
111 ∧ IVi−63

)
⊕ IVi

It straightforwardly follows the definition of the selection function ϕi∈I to
use for a given feedback bit index.

ϕi :


x 7→ x⊕ IVi if 0 ≤ i ≤ 48

(x, y) 7→ x⊕
(
y ∧ IVi−49

)
⊕ IVi if 49 ≤ i ≤ 57

(x, y, z) 7→ x⊕
(
y ∧ IVi−49

)
⊕
(
z ∧ IVi−58

)
⊕ IVi if 58 ≤ i ≤ 62

(x, y, z, t) 7→ x⊕
(
y ∧ IVi−49

)
⊕
(
z ∧ IVi−58

)
⊕
(
t ∧ IVi−63

)
⊕ IVi if 63 ≤ i ≤ 96

(5)

Throughout this paper, FI refers to the system resulting from the leakage of
βi∈I . In order to express the values of FI in terms of key bits, we implemented a
software version of ACORN which operates on strings instead of numeric values
(i.e. ‘a’ ⊕ ‘b’ = ‘a ^ b’). For instance, F[0,81] which should return a unique
solution according to [1], is defined in Eq. 6.

F[0,81] =



(¬K70 ⊕K11 ⊕K16) ∧ ¬K28 ⊕K31 = f128
.
.
.

.

.

.

(¬ (K69 ⊕K10 ⊕K15) ∧ ¬K27 ⊕K30 ⊕K127 ⊕K68 ⊕K9 ⊕ · · ·) ∧ · · · = f176
(f128 ⊕K69 ⊕K10 ⊕K74 ⊕K20) ∧ S

177
160 ⊕ ¬ (K61 ⊕K2 ⊕K7)⊕ · · · = f

′
177

.

.

.
.
.
.

(f160 ⊕ (¬K44 ∧ ¬K2)⊕K5 ⊕K102 ⊕K43 ⊕K48) ∧ (¬K60 ⊕ · · ·)⊕ · · · = f
′
209

¬K44 ⊕K7 ⊕K10 ⊕K5 ⊕K11 = S
177
160

.

.

.
.
.
.

K76 ⊕K17 ⊕K22 ⊕K39 ⊕K2 ⊕K42 ⊕K8 ⊕K37 ⊕K0 ⊕K3 ⊕ · · · = S
209
160

¬K86 ⊕K27 ⊕K32 ⊕K49 ⊕K12 ⊕K14 ⊕K52 ⊕K15 ⊕K18 = S
186
193

.

.

.
.
.
.

(¬K51 ∧ ¬K9)⊕K21 ⊕K109 ⊕K50 ⊕K55 ⊕K1 ⊕K72 ⊕K13 ⊕ · · · = S
209
193

¬K9 = S
191
111

.

.

.
.
.
.

¬K27 = S
209
111

(6)

Because the equations resulting from the recovery of S128+i
111 depend on a

single key bit, they are especially useful to solve F[0,81]. As a result, it might be
interesting to ignore leakages related to f128+i for i ∈ [0, 62] and rather focus on
F[63,96].

4 From Theory to Practice

4.1 Targeted Implementation

Although ACORN is designed to process one bit per step, because its smallest
LFSR is 37-bit long, up to 37 steps can be processed in parallel. Within the
scope of the CAESAR contest, Hongjun Wu provided an optimized software
implementation which processes 32 steps at once. In this way, each function
defined in Sect. 2 should be seen as operating on 32-bit words instead of bits. Its
implementation dedicates a 64-bit register to each LFSR. Although it consumes
more memory than needed, since all LFSRs contains less than 64 bits, it increases

the performances by saving some instructions in order to build the 32-bit working
variables. An ARM assembly implementation of the state update function based
on the same principle is provided in [1]. We chose to run the attack against
this specific implementation, as it is the most appropriate for 32-bit platforms.
The hard-coded 128-bit encryption key K = ‘Encryption key K’ was used to
encrypt and authenticate 5 000 messages, using random IVs.

4.2 Experimental Setup

All practical experiments presented below were done using a microcontroller
equipped with an ARM Cortex-M3 running at 24MHz. Note that the device
under test does not embed any hardware countermeasure against side-channel
attacks. A trigger signal was inserted at the beginning and the end of the initial-
ization phase in order to guarantee a proper synchronization. EM emanations
were measured using a Langer HF-U 5 near-field probe (30 MHz - 3 GHz) com-
bined with a Langer PA 303 BNC preamplifier providing a gain of 30dB. The
sampling acquisition was performed using a PicoScope 6404D sampled at 1GS/s.
We recorded the leakage from state updates where IV words are given as input,
but also from five further ones in case they would also contain information to
exploit. As shown in Fig. 2, state updates are clearly discernible and each of
them are roughly made up of 10 000 samples.

Time sample ×104
0 1 2 3 4 5 6 7 8 9

E
le

ct
ro

m
ag

ne
tic

 e
m

an
at

io
ns

-0.1

0

0.1

0.2

Fig. 2: Data acquisition of nine 32-bit state updates
during the initialization phase

4.3 Practical Correlation Electromagnetic Analysis

Even if the targeted feedback bits are actually stored in 32-bit registers, it has
been proven that one can compute a partial correlation of the entire variable in
order to reduce the computational complexity [17]. Therefore we chose to apply
the attack as defined above, in a mono-bit manner, using the Hamming weight
leakage model and the Pearson’s correlation coefficient as distinguisher. In order
to precisely target leakages related to the insertion of f128+i into the state, the
window on which the attack is run depends on the feedback bit index. More
precisely, an attack against f128+i ⊕ IVi is managed by executing

CEMA

(
ϕi,HW, D

1···5 000
,

[
10 000×

⌈
i

32

⌉
+ 1, 10 000×

⌈
i+ 32

32

⌉]
, IV

1···5 000

)
.

As suggested in the theoretical specification, we run the attack for i from 0
to 81. After assigning the CEMA results to the corresponding equations within
F[0,81], they are converted into CNF formulas using the bc2cnf tool [7] and
finally given as input to the SAT solver CryptoMiniSat5 [15]. On the first try,
it turns out that the input system is not satisfiable and therefore does not lead
to a key recovery. Because this issue can be due to many factors (e.g. some er-
roneous CEMA results or ineffectiveness of some selection functions), we carried
out investigations starting by visually examining the CEMA output for various
feedback bits.

Figure 3 illustrates the points of interests (POI) for some of them. The first
observation that can be made is that information leakage is not identical for all
feedback bits. For instance, Fig. 3a shows three samples (5 913, 7 245 and 9 160)
that might reveal information about f128 while Fig. 3b shows only two (5 913
and 9 329) regarding f157.

Time sample
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a) f128 ⊕ IV0

Time sample
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(b) f157 ⊕ IV29

Time sample
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(c) f159 ⊕ IV31

Fig. 3: POI for several feedback bits during the first state update

Because the implementation processes 32 steps at once, all but the last four –
stored in the 4-bit register – feedback bits have already been updated using S230

and S235 before being added to the state. For instance, after the state update of
S128 with IV0···31 as input, the last 32 bits of S160 are as follows.(

S
160
261 , · · · , S

160
288

)
=
(
f128 ⊕ S

132
230 ⊕ S

132
235 ⊕ IV0, · · · , f155 ⊕ S

159
230 ⊕ S

159
235 ⊕ IV27

)
(
S

160
289 , · · · , S

160
292

)
= (f156 ⊕ IV28, · · · , f159 ⊕ IV31)

(7)

Especially, the implementation computes (fi ‖ · · · ‖ fi+31)⊕(IVi ‖ · · · ‖ IVi+31)
before finally updating its 28 most significant bits and adding it into the state.
Therefore, ϕi∈[0,48] should not only return a candidate for f128+i, but also for

f1128+i = f128+i ⊕ S
132+i
230 ⊕ S132+i

235 when i < 28 mod 32. Moreover, the imple-
mentation of the state update function is generic in the sense that the input
is always encrypted using the keystream, even during the initialization phase.
Although encryption is not necessary during this phase, it allows the use of the
same code through all the authenticated encryption process. As a result, the
selection function ϕi∈[0,48] also targets ksi ⊕ IVi unintentionally.

These remarks highlight the first difficulty when putting the attack into prac-
tice. Because selection functions can lead to the recovery of several key bit com-
binations (keystream, feedback and updated feedback bits), an attacker has to
associate each leakage to an intermediate value. Indeed, if the highest correla-
tion coefficient is reached for the keystream bit but its value is assigned to the
feedback bit equation, then the ASCA will fail because of an erroneous Boolean
system. For instance, this scenario is depicted in Fig. 3c where the highest corre-
lation peak is reached for the leakage of ks159⊕ IV31 instead of f159⊕ IV31. The
methodology that was used to clearly identify each leakage is described below.

When targeting software implementations on load/store architectures, data
transfers due to memory accesses are known to leak the most information com-
pared to arithmetic and logic operations, which only occur between registers
and are usually more difficult to exploit in practice [2,10]. Especially, on top of
memory accesses that store the last 32 bits into the state as described in Eq. 7,
the assembly code under test performs two additional store instructions that are
likely to be critical. It consists of (ksi ‖ · · · ‖ ksi+31) ⊕ (IVi ‖ · · · ‖ IVi+31) as

computation of the ciphertext, and (f1128+i ‖ · · · ‖ f
1
155+i)⊕ (IVi ‖ · · · ‖ IVi+27) as

computation of the updated feedback word in a temporary register. Therefore,
attacks using ϕi∈[0,48] should lead to three leakages for i < 28 mod 32 and only
two for i ≥ 28 mod 32, which is consistent with the results from Fig. 3.

As a result, our first attempt to run the attack in practice led to an unsat-
isfiable system because some CEMA results did not match the expected key bit
combinations. More generally, our investigations highlight that the theoretical
DPA against ACORN as described in Sect. 3 does not necessarily apply to all
unprotected implementations. However, a tweaked version of the attack can still
be applied in order to deal with exploitable leakages on the device under test.
We chose to ignore leakages related to ciphertext computations as they can be
easily avoided during the initialization phase.

The required modifications affect some of the selection functions. Indeed,
even if they remain valid when i ≥ 28 mod 32, this is not the case anymore from
i = 54 since S132+i

235 depends on IV0. In this case, additional IV bits have to
be considered. The tweaked selection functions are noted ϕ1

i and are defined in
Eq. 8.

ϕ
1
i =


ϕi if i ≥ 28 mod 32 or i ≤ 54

ϕi−54 ◦ ϕi if 54 ≤ i ≤ 58

ϕi−59 ◦ ϕi−54 ◦ ϕi otherwise

(8)

Of course, the Boolean system F has to be modified in order to be compliant
with the intermediate bits defined by ϕ1

i , and we refer to this variant as F 1. As
leakages related to keystream words are not taken into consideration, the attack
is run on the last 3 000 samples of each state update window, by executing for i
from 0 to 81,

CEMA

(
ϕ

1
i ,HW, D

1···5 000
,

[
10 000×

⌈
i

32

⌉
+ 7 000, 10 000×

⌈
i+ 32

32

⌉]
, IV

1···5 000

)
.

This time, the attack is successful as the resulting system F 1
[0,81] is satisfiable

and returns the expected key as the unique solution. Moreover, unlike F[0,n] that

requires n ≥ 81 to return a unique solution, n ≥ 78 is enough for F 1
[0,n]. For

each kind of selection function, Fig. 4 shows a CEMA result and the maximum
correlation coefficient reached for each key hypothesis, depending on the number
of acquisitions.

Key hypothesis
0 1

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Number of acquisitions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) ϕ
1
0 returns f

1
128 = 1

Key hypothesis
0 1 2 3

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Number of acquistions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) ϕ
1
49 returns f

1
177 ‖ S

177
160 = (10)2

Key hypothesis
0 1 2 3 4 5 6 7

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Number of acquisitions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt
s

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) ϕ
1
58 returns

f
1
186 ‖ S

186
160 ‖ S

186
193 = (100)2

Key hypothesis
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Number of acquisitions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) ϕ63 returns
f191||S

191
160 ||S

191
193 ||S

191
111 = (0110)2

Fig. 4: Experimental results for the different selection functions

4.4 Lessons Learned

Several conclusions can be drawn from these experimentations. First, although
the practical application does not exactly follows the theoretical specification, it
still validates the reference attack in the sense that the evaluation of selection
functions remains the same. Indeed, the XOR of additional IV bits does not
change the way the hypothetical bits interact with each other as detailed in
Eq. 9.

ϕ65(x, y, z, t) = x⊕ (y ∧ IV16)⊕ (z ⊕ IV7)⊕ (t ∧ IV2)⊕ IV65

ϕ
1
65(x, y, z, t) = x⊕ (y ∧ IV16)⊕ (z ⊕ IV7)⊕ (t ∧ IV2)⊕ (IV65 ⊕ IV11 ⊕ IV6)

(9)

Second, since f128+i has to be XORed with IVi at some point, it might
be tempting to perform this calculation during the encryption step in order
to achieve a generic implementation of the state update function. However, as
shown by our practical experiments, it can lead to additional leakages that an

attacker could exploit. Therefore, we argue that the encryption computation
should be removed during the initialization phase and that the XOR with IVi
should only occur once f128+i has been entirely computed.

Third, some of the selection functions can be used to recover several inter-
mediate values during the initialization phase (e.g. keystream and feedback bits
for ϕi∈[0,48]). On the one hand, it introduces the fact that several variants of the
attack can be defined depending on the leakage available to the attacker. On the
other hand, it requires to clearly identify the points of interests in order to avoid
misinterpretation of the results. Finally, some of the selection functions perform
better than others. In the next section, we discuss how to take advantage of
these results in order to propose more efficient attack paths.

5 Other Attack Variants

5.1 Minimizing the Knowledge of Initial Vectors

Because the knowledge of plaintexts (or IVs in the case of ACORN) is sometimes
an unrealistic assumption in practice, it might be interesting to identify the most
efficient attack path given the fewer input bits to consider.

In this case, focusing on ϕi∈[0,48] is of great interest as knowledge of a single
IV bit allows to recover several key bit combinations. Because ACORN is defined
by the concatenation of six LFSRs, each feedback bit is updated six times before
being thrown from the internal state.Therefore, regardless of a potential leakage
related to the keystream computation, ϕi∈[0,48] could theoretically be used to
target up to seven key bit combinations: the feedback bit itself f128+i and its

six updated values, noted from f1128+i to f6128+i and defined in Eq. 10, which are
computed just before being shifted in each LFSR.

f
1
i = fi ⊕ S

i+4
235 ⊕ S

i+4
230

f
2
i = f

1
i ⊕ S

i+63
196 ⊕ S

i+63
193

f
3
i = f

2
i ⊕ S

i+100
160 ⊕ Si+100

154

f
4
i = f

3
i ⊕ S

i+139
111 ⊕ Si+139

107

f
5
i = f

4
i ⊕ S

i+186
66 ⊕ Si+186

61

f
6
i = f

5
i ⊕ S

i+232
23 ⊕ Si+232

0

(10)

In order to investigate whether this statement is verified in practice, we ran
attacks using ϕi∈[0,48] on the same acquisitions but this time, on the entire
window of 90 000 samples. Indeed, focusing on the state updates with IV as input
only allows to exploit leakages related to the update of three LFSRs. Therefore,
also considering five further 32-bit state updates gives access to leakages of all
LFSRs’ updates. As shown in Fig. 5, each state update leads to several leakages
in time (usually two). In addition to the leakage produced by the final store
instruction, we suspect that the other peak is due to a previous memory access

Time sample ×104

0 1 2 3 4 5 6 7 8 9

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.1

-0.05

0

0.05

0.1

f4
157 f5

157 f5
157

f1
157 f2

157
f2
157f157 f6

157
f3
157

Fig. 5: Leakage in time from CEMA
(
ϕ29,HW, D1···5 000, [1, 90 000] , IV 1···5 000

)

that loads the state from RAM to registers. Note that a 32-bit shift does not
necessarily imply an LFSR update and thus, several leakages may refer to the
same intermediate value. Therefore, the window to consider when targeting a
specific feedback bit depends on its index. For instance, Fig. 5 indicates for each
state update the key bit combination targeted by ϕ29.

We tried to apply this attack to our acquisitions. Because the device under
test does not leak f128+i ⊕ IVi when i < 28 mod 32, we were able to exploit
six leakages in this case and seven otherwise. The resulting Boolean system is
noted F 1→6

[0,n] where n refers to the number of IV bits considered. Finally, the
SAT solver returned the correct key hypothesis as the unique truth assignment
for n ≥ 18. However, the resulting system required more than one hour to be
solved on a commonly available laptop while previous systems required less than
a second. Indeed, the more an intermediate value is updated, the more terms are
involved in its definition, significantly increasing the number of CNF clauses in
the resulting system.

5.2 Maximizing the Practical Efficiency

In cases where the attacker has full knowledge of the IVs, other leakages should
be preferred. As mentioned in Sect. 3.2, leakages related to f128+i for i ∈ [63, 96]
are of particular interest as some components targeted by ϕi∈[63,96] refer to single
key bits, not combinations of them, allowing to simplify the Boolean system.
Moreover, focusing on F[63,96] brings additional benefits from a practical point
of view.

First, it results from Fig. 4 that ϕ64 shows better results than the other
selection functions. Especially, it seems that the more IV bits involved in the
selection function, the more efficient it is. This can be explained by the fact
that selection functions make IV bits interact with hypotheses through the bit-
wise AND operator, which is nonlinear. Nonlinearity is a valuable property for
selection functions as it ensures a good distinguishability between the correct
and incorrect hypotheses and reduces the risk of false positives in practice. As
a result, ϕi∈[63,96] requires fewer acquisitions than other selection functions for
the correct hypothesis to stand out.

Second, attacking an intermediate bit using ϕi∈[63,96] returns a result for four
Boolean equations at once. This allows to build a meaningful system by targeting
fewer intermediate values and thus, making this attack path less prone to errors.
For instance, F[64,95] is composed of 32×4 = 128 equations and has only six truth
assignments. Another benefit from this variant is the fact that all the leakages
take place during the same state update. Therefore, it is of great interest for
32-bit implementations since it does not require to carefully choose the window
to attack given the index of the targeted feedback bit. We ran this attack on
our acquisitions, using still ϕ1

i∈[64,95] to be compliant with the implementation

under test. Solving F 1
[64,95] led to the correct key as the only solution. In order

to highlight all the differences and subtleties between the different attack paths
discussed above, Table 2 summarizes all the practical results reported in this
paper.

Table 2: Summary and comparison of our practical experiments

F 1
[0,78] F 1

[64,95] F 1→6
[0,18]

IV bits to consider IVi∈[0,78] IVi∈[0,95] IVi∈[0,18]

of required acquisitions ≥ 4 000 ≥ 2 000 ≥ 4 000

of attacked bits 79 32 114

of equations 148 128 114

of CNF clauses 2165 1804 4251

Solving time (i5-6200U CPU) 0.05sec 0.04sec 87min17sec

6 Conclusion and Perspectives

The main objective of this paper was to validate the practical feasibility of side-
channel attacks against ACORN. To do so, we first defined all selection functions
required to put the attack introduced in [1] into practice. Because our experimen-
tal setup did not allow us to exploit some leakages required by the theoretical
specification, we had to make some minor changes in the selection functions
and thus in the resulting Boolean system, in order to achieve a successful at-
tack against the 32-bit implementation under test. However, it does not call into
question the reference attack as the results of the selection functions’ evalua-
tion remain valid in both cases. Among the different observations made during
our experimentations, two of them allowed us to propose optimized variants of
the attack. First, one of the selection functions can actually be used to recover
several intermediate values, not just the feedback bit itself. It led to an attack

that minimizes the number of IV bits to consider. On the device under test,
we were able to recover the encryption key with only knowledge of 19 IV bits.
Second, another selection function shows significantly better results as it pro-
vides a higher distinguishability of the correct hypothesis for fewer acquisitions.
This observation led to an attack path that requires to target fewer intermediate
values, and is therefore is less prone to errors. On the device under test, we were
able to recover the encryption key by targetting 32 intermediate values with half
as many acquisitions than other attack paths.

Further work should be undertaken on protected implementations in order
to determine whether the selection functions discussed in this paper are efficient
enough to deal with high-order side channel analyses. Moreover, the integration
of countermeasures such as hiding and shuffling in the specific case of ACORN
has not been studied yet and could be of great benefit as some selection functions
require to clearly identify specific points of interests.

References

1. Adomnicai, A., Fournier, J.J., Masson, L.: Masking the Lightweight Authenti-
cated Ciphers ACORN and Ascon in Software. In: Tiplea, F.L., Warinschi, B.
(eds.) Cryptography and Information Security in the Balkans. Springer Interna-
tional Publishing, Cham (2018), https://eprint.iacr.org/2018/708

2. Biryukov, A., Dinu, D., Großschädl, J.: Correlation Power Analysis of Lightweight
Block Ciphers: From Theory to Practice, pp. 537–557. Springer International Pub-
lishing, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 29

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leak-
age Model, pp. 16–29. Springer Berlin Heidelberg, Berlin, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28632-5 2

4. Dey, P., Rohit, R.S., Adhikari, A.: Full Key Recovery of ACORN
with a Single Fault. J. Inf. Secur. Appl. 29(C), 57–64 (Aug 2016).
https://doi.org/10.1016/j.jisa.2016.03.003

5. Diehl, W., Abdulgadir, A., Farahmand, F., Kaps, J.P., Gaj, K.: Comparison of cost
of protection against differential power analysis of selected authenticated ciphers.
In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). pp. 147–152 (April 2018). https://doi.org/10.1109/HST.2018.8383904

6. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete
Results, pp. 251–261. Springer Berlin Heidelberg, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-44709-1 21

7. Junttila, T.A., Niemelä, I.: Towards an Efficient Tableau Method for Boolean Cir-
cuit Satisfiability Checking. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau,
K.K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey, P.J. (eds.) Computational
Logic — CL 2000. pp. 553–567. Springer Berlin Heidelberg, Berlin, Heidelberg
(2000)

8. Kazmi, A.R., Afzal, M., Amjad, M.F., Abbas, H., Yang, X.: Algebraic Side Chan-
nel Attack on Trivium and Grain Ciphers. IEEE Access 5, 23958–23968 (2017).
https://doi.org/10.1109/ACCESS.2017.2766234

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology.

https://eprint.iacr.org/2018/708
https://doi.org/10.1007/978-3-319-39555-5_29
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1016/j.jisa.2016.03.003
https://doi.org/10.1109/HST.2018.8383904
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1109/ACCESS.2017.2766234

pp. 388–397. CRYPTO ’99, Springer-Verlag, London, UK, UK (1999), http://dl.
acm.org/citation.cfm?id=646764.703989

10. McCann, D., Eder, K., Oswald, E.: Characterising and Comparing the Energy
Consumption of Side Channel Attack Countermeasures and Lightweight Cryptog-
raphy on Embedded Devices. In: 2015 International Workshop on Secure Internet
of Things (SIoT). pp. 65–71 (Sept 2015). https://doi.org/10.1109/SIOT.2015.11

11. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-measures for Smart Cards, pp. 200–210. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7 17

12. Renauld, M., Standaert, F.X.: Algebraic Side-Channel Attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Information Security and Cryptology. pp. 393–410.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

13. Schneider, T., Moradi, A.: Leakage Assessment Methodology. Journal of Crypto-
graphic Engineering 6(2), 85–99 (Jun 2016). https://doi.org/10.1007/s13389-016-
0120-y

14. Siddhanti, A., Sarkar, S., Maitra, S., Chattopadhyay, A.: Differential Fault Attack
on Grain v1, ACORN v3 and Lizard. In: SPACE (2017)

15. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic
Problems. In: Theory and Applications of Satisfiability Testing - SAT 2009, 12th
International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Pro-
ceedings. pp. 244–257 (2009). https://doi.org/10.1007/978-3-642-02777-2 24

16. Standaert, F.X.: How (not) to Use Welch’s T-test in Side-Channel Security Eval-
uations. Cryptology ePrint Archive, Report 2017/138 (2017), https://eprint.

iacr.org/2017/138

17. Tunstall, M., Hanley, N., McEvoy, R., Whelan, C., Murphy, C., Marnane, W.:
Correlation Power Analysis of Large Word Sizes (2007), http://www.geocities.
ws/mike.tunstall/papers/THMWMM.pdf

18. Wu, H.: ACORN: A Lightweight Authenticated Cipher (v3). Submission to
the CAESAR competition: https://competitions.cr.yp.to/round3/acornv3.

pdf (2016)
19. Zhang, X., Feng, X., Lin, D.: Fault Attack on ACORN v3. The Computer Journal

(2018). https://doi.org/10.1093/comjnl/bxy044

http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
https://doi.org/10.1109/SIOT.2015.11
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/978-3-642-02777-2_24
https://eprint.iacr.org/2017/138
https://eprint.iacr.org/2017/138
http://www.geocities.ws/mike.tunstall/papers/THMWMM.pdf
http://www.geocities.ws/mike.tunstall/papers/THMWMM.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://doi.org/10.1093/comjnl/bxy044

	Practical Algebraic Side-Channel Attacks against ACORN

