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Abstract. A generalized Feistel cipher is one of the methods to con-
struct block ciphers, and it has several variants. Dong, Li, and Wang
showed quantum distinguishing attacks against the (2d—1)-round Type-1
generalized Feistel cipher with quantum chosen-plaintext attacks, where
d > 3, and they also showed key recovery attacks [Dong, Li, Wang. Sci
China Inf Sci, 2019, 62(2): 022501].

In this paper, we show a polynomial time quantum distinguishing attack
against the (3d — 3)-round version, i.e., we improve the number of rounds
by (d — 2). We also show a quantum distinguishing attack against the
(d®* — d 4 1)-round version in the quantum chosen-ciphertext setting.
We apply these quantum distinguishing attacks to obtain key recovery
attacks against Type-1 generalized Feistel ciphers.
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1 Introduction

Zheng, Matsumoto, and Imai proposed Type-1, Type-2, and Type-3 generalized
Feistel ciphers, which are dn-bit block ciphers composed of n-bit round functions,
where d > 3 [ZMI89]. These constructions are suitable for small-scale implemen-
tations because the internal round function can be smaller as the number of
branches d grows. Several block ciphers are based on this construction, e.g., we
see CAST-256 [AG99] and MAME [YWO™07] (Type-1), CLEFIA [SSAT07] and
RC6 [RRSY9§| (Type-2), and MARS [BCD™99] (Type-3).

The seminal work of Shor’s algorithm [Sho97] shows that a wide class of pub-
lic key cryptosystems can be broken once quantum computers are developed. On
the other hand, for symmetric key cryptosystems, Kuwakado and Morii showed
that the impact of the development of quantum computers is also significant.
Specifically, Kuwakado and Morii presented a quantum distinguishing attack
against the 3-round Feistel cipher, where the adversary can make quantum su-
perposition queries [KM10]. Feistel cipher with 3 rounds is known to be secure
in the classical setting [LR88], and hence the result proves that the security sig-
nificantly changes in the quantum setting. They used Simon’s algorithm [Sim97]
that finds a secret cycle-period in polynomial-time. Since then, many quantum
attacks using Simon’s algorithm have been proposed. Examples include a key



recovery attack against Even-Mansour cipher [KM12], forgery attacks on vari-
ous MACs [KLLN16], cryptanalysis of AEZ [Bonl7], and distinguishing attacks
against Type-1 and Type-2 generalized Feistel ciphers [DLW19]. Furthermore,
Leander and May [LM17] showed a key recovery attack against FX construction
by combining Grover search [Gro96] and Simon’s algorithm. Given these exam-
ples, it is important to evaluate the impact of quantum attacks on symmetric
cryptosystems.

In the classical setting, Zheng et al. showed that the (2d — 1)-round Type-
1 generalized Feistel cipher is secure against chosen-plaintext attacks [ZMI89].
See also the analyses by Moriai and Vaudenay [MV00], and by Hoang and Rog-
away [HR10]. On the other hand, in the quantum setting, Dong, Li, and Wang
showed a distinguishing attack against the (2d — 1)-round version with quan-
tum chosen-plaintext attacks by using Simon’s algorithm [DLW19]. They also
showed a key recovery attack against the (d*> — d + 2)-round version in time
0(2(§_%+2)‘§) by using the (2d — 1)-round distinguisher, where k is the key
length of the internal round function.

In this paper, we continue the work of Dong, Li, and Wang [DLW19] to eval-
uate the security of Type-1 generalized Feistel cipher against quantum attacks.

— First, we show a polynomial time distinguishing attack against the (3d — 3)-
round version. This improves the number of rounds by (d—2). Our idea is to
shift the position of «;, which is a constant used to define a period, so that
the period is preserved for longer rounds. It turns out that the idea is simple,
but still effective to improve the number of rounds that we can attack.

— Next, assuming that we are in the quantum chosen-ciphertext setting, we
show a distinguishing attack against the (d*> — d + 1)-round version. The
number of rounds is significantly larger than the above, and this follows
the intuition in the classical setting where the diffusion of Type-1 general-
ized Feistel cipher in the decryption direction is slow, which is pointed out
in [MV00Q].

— Finally, we consider key recovery attacks by using the distinguishers. With
the (3d — 3)-round distinguisher, base on Dong et al.’s key recovery at-
tack, we obtain a key recovery attack against the d?-round version in time
0(2(§*%+2)-§),

With the (d? — d + 1)-round distinguisher in the decryption direction, we

r—(d2—
obtain an r-round key recovery attack in time 0(2( “ 2d+1))k), which is
better than the one with (3d — 3)-round distinguisher when d > 3.

It is interesting to note that our (3d — 3)-round distinguisher outperforms the
classical provable security result, i.e., there are examples where a block cipher
is provably secure in the classical sense with r rounds, and there is a matching
quantum distinguishing attack that breaks the r-round version, but our result
shows an example that a quantum attack can break much more rounds than r.

A summary of key recovery attacks is shown in Table



Table 1. Key Recovery Attacks against Type-1 Generalized Feistel Cipher

Distinguisher Round Complexity (log)
24— 1 [DLWI9) |r > d® — d + 2|(Ld® — 2d+2) - & + =L Hd2)k
3d — 3 [Ours] r> d? G —3d+2) -4+ =dk
d* —d+1 [Ous]|r > d*> —d +1 (=g —dbl)k

Paper Outline. This paper is organized as follows: Section [2 describes prelimi-
naries. Sectionintroduces previous work. Sectionpresents our (3d — 3)-round
quantum distinguisher against Type-1 generalized Feistel cipher. In Sect. 5| we
show the (d? —d+1)-round quantum distinguisher by using the quantum decryp-
tion oracle. Section [f] presents key recovery attacks against Type-1 generalized
Feistel cipher by using our quantum distinguishers. We conclude the paper in

Sect. [0

2 Preliminaries

2.1 Notation

For a positive integer n, let {0,1}" be the set of all strings of n bits. Let Perm(n)
be the set of all permutations on {0, 1}", and let Func(n) be the set of all function
from {0,1}™ to {0,1}". For vectors a and b of the same dimension, we denote
their inner product by a - b. In this paper, e denotes Napier’s number.

2.2 Type-1 Generalized Feistel Ciphers

In this section, we describe Type-1 generalized Feistel ciphers [ZMI89]. In Type-1
generalized Feistel cipher, we divide the dn-bit state into d branches, where d > 3
and each branch constitutes an n-bit sub-block. Let @, denote the encryption al-
gorithm of the r-round Type-1 generalized Feistel cipher, and &1 denote its de-
cryption algorithm. Let Ry, Rs, ..., R, € Func(n) be the keyed round functions
of @,.. We assume that the function R; takes a k-bit key k; as input (thus the total
key length of @, is rk bits). @, takes a plaintext (z9,29,...,29_,) € ({0,1}")4
as input, and outputs a ciphertext (zf, 27, ..., 2% ;) € ({0,1}™)¢, where the i-th
round is defined as

(1’6_1, o ,xfi__ll) > (Ri(zf)—l) oottt xé_l, s ,xfi—_ll, :176_1).
The decryption is defined in an obvious way. Figure [1| shows the i-th round of
Type-1 generalized Feistel cipher.
2.3 Simon’s Algorithm

Here we review Simon’s algorithm [Sim97] that is the basis of our distinguishers.
Simon’s algorithm can solve the following problem efficiently.
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Fig. 1. The i-th round of Type-1 generalized Feistel cipher

Problem 1. Given a function f : {0,1}™ — {0,1}" that has a non-zero period
s € {0,1}" such that

f@)=f@)ea'=2ds
for any distinct a,2 € {0,1}", the goal is to find the period s.

We need O(2"/2) queries to find s in the classical setting. On the other hand,
Simon’s algorithm can find s with O(n) quantum queries.

We explain how Simon’s algorithm works. We assume that we have access
to the quantum oracle Uy, which is defined as Uy |x) |2) = |z) |z @ f(x)). For
an n-qubit state |z), Hadamard transformation H®" is defined as H®" |z) =
\/% > yefo,1y»(—1)"¥ [y). Simon proposed a circuit Sy that computes a vector
that is orthogonal to s for a periodic function f, which is defined as Sy =
(H®" ®1,) - Uy - (H®" ® I,,) and works as follows.

Spl0m)[0") = (H®" @ I,) - Uy - (H®" ® I,,) [0") [0")

=(H®" @ I,)- Uf\/127z ) [0™)

(HE" 81,) <=5 o) ()

o S D ) £ (a) )

z,y

If f satisfies f(z) = f(2') © 2’ =2 & s, then can be rearranged as

o D0 (17 4 (CDEE0) ) (@)

zeVyy

where V' is a linear subspace of {0,1}" of dimension (n — 1) that partitions
{0,1}" into cosets V and V +s. The vector y such that y-s =1 (mod 2) satisfies
(=1)*¥ 4 (=1)(=®$)'¥ = 0. Therefore, the vector y that we obtain by measuring
Sy 10™) |0™) satisfies y - s = 0 (mod 2). By repeating this measurement for O(n)
times, we obtain (n — 1) linearly independent vectors that are all orthogonal to
s with a high probability. Then we can recover s by solving the system of linear
equations with O(n?) classical steps.



2.4 Qunatum Distinguisher based on Simon’s Algorithm

Next, we introduce a quantum distinguisher based on Simon’s algorithm. We
follow the approach of Kaplan et al. [KLLNT6] and Santoli and Schaffner [SS17],
and the formalization by Ito et al. [[HM™19]. To recover s with Simon’s algo-
rithm, the function f has to satisfy f(z) = f(2') & 2/ = & s. However, for
distinguishers, the condition can be relaxed.

In more detail, suppose that we are given an oracle O : {0,1}" — {0,1}",
which is either an encryption algorithm Fx € Perm(n) or a random permutation
IT € Perm(n), and our goal is to distinguish the two cases. We assume that the
quantum oracles Up and Up-1 are given. The distinguisher in [ITHM*19| can
be applied to a function f©€ : {0,1}* — {0,1}™, where there exists a non-zero
period s when O = Ff, i.e., f© such that fFx(z) = fFx(z @ s) holds for all
x. We expect that, with a high probability, f// does not have any period. The
distinguisher works as follow.

1. Prepare an empty set ).

2. Measure the first £ qubits of Syo |0¢F™) and add the obtained vector y to
for n times.

3. Calculate the dimension d of the vector space spanned by ).

4. If d = £, then output O = II, otherwise output O = Ek.

If f© has the period s, the obtained vector y is orthogonal to s. Therefore the
dimension d of the vector space spanned by ) is at most ¢ — 1. On the other
hand, if f© has no period, the dimension can reach £. Thus we can distinguish
the two cases by checking the dimension.

This distinguisher fails only if O = II and the dimension of the vector space
spanned by ) is less than £. To analyze the success probability of the distin-
guisher, define a parameter €} as

T = oo, Pl @) = Mo,
where 7 € Perm(n) is a fixed permutation. This parameter shows how the di-
mension of y is biased when IT = 7. If this parameter is large (i.e., there exists ¢
that is close to a period), then with a high probability, the vector space spanned
by ) is orthogonal to ¢t. Thus, we take a small constant 0 < § < 1 arbitrarily,
and we say that a permutation 7 is irregular if € > 1 — 4. In addition, define

the set of the irregular permutations irrfc as
irr‘;c = {7 € Perm(n) | €} > 1 —6}.
The following theorem was proved.

Theorem 1 ([IHM™19]). Let £ and m be positive integers that are O(n). As-
sume that we have a quantum circuit with O(poly(€,m)) qubits which computes
O :{0,1} — {0,1}™ by making O(1) queries to O, and runs in time T (£, m).



The distinguisher makes O(n) quantum queries, and distinguishes Ex from IT
with probability at least

2[

)
~ lj’jr[ﬂ € irr}].

This shows that the distinguisher succeeds if Pry[IT € irr‘}] is a small value.

2.5 Combining Grover Search and Distinguishers

Leander and May combined Grover search and Simon’s algorithm to show a key
recovery attack against FX constructions [LM17]. Hosoyamada and Sasaki [HS1§],
and Dong and Wang [DWTS§| showed key recovery attacks against Feistel ciphers
by using this combining technique.

Grover Search. Grover search provides a quadratic speed up on unsorted-
database search [Gro96]. Let N be the number of elements in the database, and
assume that there exists only one target element. In the classical setting, we can
find the target element in time O(N). However, in the quantum setting, Grover’s
algorithm can find it in time O(v/N).

This algorithm was generalized later as quantum amplitude amplification by
Brassard et al. as in the following theorem.

Theorem 2 ([BHMTO02|). Let A be any quantum algorithm on q qubits that
uses no measurement. Let B : {0,1}¢ — {0,1} be a function that classifies
outcomes of A as good or bad. Let p > 0 be the initial success probability
that o measurement of A|0) is good. Set m = |mw/48,|, where 0, is defined
so that Sinz(ﬁp) =p and 0 < 0, < w/2. Moreover, define the unitary operator
Q = —ASyA~1Sg, where the operator S conditionally changes the sign of the
amplitudes of the good states,

) s {— ) if Bla)

L,

) if B(x) =0,

while the operate Sy changes the sign of the amplitude if and only if the state
is the zero state |0). Then, after the computation of Q™A|0), a measurement is
good with probability at least max{l — p,p}.

Key Recovery Attack against FX Constructions. FX construction by
Killian and Rogaway is a way to extend the key length of a block cipher [KR96,
KRO1]. Let E be an n-bit block cipher that takes an m-bit key k¢ as input. FX
construction under two additional n-bit keys k1, ko is described as

Enc(z) = Eg,(x @ k1) D ka.
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Fig. 2. FX construction

Figure [2| shows FX construction.
Leander and May constructed a function f(k,z) that is defined as

f(k,z) = Enc(x) @ Ex(x) = Ex,(x ® k1) ® ko ® Ex(x).

If k = ko, f(k,x) satisfies f(k,z) = f(k,x ® k;) for all x € {0,1}". That is, the
function f(ko,-) has a period k1. However, if k # ko, with a high probability, the
function f(k,-) does not have any period. Then they apply Grover search over
k € {0,1}™. They construct the classifier B that identifies the sates as good if
k = ko by using Simon’s algorithm to f(k,-). The complexity of Grover search is
O(2™/?) and Simon’s algorithm runs in time O(n) in the classifier B. Thus this
attack runs in time O(2™/2). For more details, see [LMI17].

3 Previous Attacks

In this section, we review the quantum attacks against Type-1 generalized Feistel
ciphers by Dong et al. [DLW19]. They showed a (2d — 1)-round distinguishing
attack and a (d? — d + 2)-round key recovery attack.

We first review the distinguishing attack. Let o, a1 € {0,1}" be two arbi-
trary distinct n-bit constants, and 29,9, ... 7x3_2 € {0,1}" be arbitrary n-bit
constants. Given the oracle O, they define a function f© as

£2:{0,1} x {0,1}" — {0,1}"
(b,z) = ap Dy,
where (yo,y1,---,¥a—1) = O(ap, 23,29, ...,29_5, ). (2)
Let the intermediate state value after the first i rounds be (zf,2%,..., 2% ).
If O is 941, then the function f© is described as
f(b,x) = ap @291
=ap D xg
=ap @ Rd(ngl) @ oy
= Riy(Ra—1(Rg-2(-- Ro(Ri(ap) @ 2}) ®ay---) ©ag_p) @),  (3)
where in the second equality, we use the fact that xé = xfitll = x?j = ... =

zi** (See Fig.[3). Let A(-) = Ry—1(Ry—a(-+ Ro(Ri(-) @ af) @ a3 ) @ 2f_,).
We see that h(-) is a function that is independent of the input (b,x), since
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Fig. 3. (2d — 1)-round distinguishing attack

x‘f,xg,...,xg_Q are constants. By using h(:), we can describe as fO =

Rq(h(ow) @ ), and fO satisfies

f(b,z) = Ra(h(aw) & )
= Ry(h(apg1) ® h(ao) ® h(ar) & )
=f(bd 1,2 ® h(ag) ® h(ay)).

This implies that the function f© has the period (1, h(ag) ® h(ay)).
If f© is II, then with a high probability, f© does not have any period.
Therefore, Prj[II € irr‘}} is a small value and we can distinguish the two cases.
We next review the key recovery attack. We recover the key of the (d? —d+2)-
round Type-1 generalized Feistel cipher by appending (d? — 3d + 3) rounds after
the (2d — 1)-round distinguisher (See Fig. . The subkey length that we need to

recover is (d; — 34 4 2)k bits. Thus, the time complexity of the exhaustive search

2
d2 _3d

for (d2 — d + 2) rounds by Grover search is O(2(T =% +2)'%). The distinguisher

2
runs in time O(n) and the time complexity of this attack is O(2(7 ~% +2)'2),
‘We see that this attack is better than the direct application of Grover search
to the entire (d? — d + 2)k-bit subkey. If we recover the key of r > d? — d + 2
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Fig. 4. (d*> — d 4 2)-round key recovery attack for d = 4

2 r—d24d—
rounds, the time complexity is 0(2(%*%”)'%*( = 2)k), since the subkey

length that we need to recover becomes (‘12—2 — 3 4 )k + (r — d*> + d — 2)k bits
in total.

4 (3d — 3)-Round Distinguishing Attack

In this section, we present our distinguishing attacks against (3d — 3)-round
Type-1 generalized Feistel ciphers. We improve the number of rounds that we
can distinguish from (2d — 1) rounds to (3d — 3) rounds by shifting the position
of a4 in the plaintext.

As before, we first fix two arbitrary distinct constants «g,aq € {0,1}" and
fix arbitrary constants xJ, 29, ... ,33273 € {0,1}™. Given the oracle O, we define
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Fig. 5. (3d — 3)-round distinguishing attack

a function f© as

fO:{0,1} x {0,1}" — {0,1}"
(byz) = ap D y1,

where (yo,y1,.--,ya—1) = O(xd,29,..., 2% 5, au, 2).

10



Observe that the difference from is the position of «y.
If Ois $3q_3, let (xf, ..., 2% ) be the intermediate state value after the
first 4 rounds. Now f© is described as

fo(bvl') =ap DY
— ap @ 23

=ap D x%d”, (4)

: @ i+l a2 _ itd—1 :
since zf =zl | = a5 = =] (See Fig. .
Our main observation is the following lemma.

Lemma 1. If O is $34_3, then for any b € {0,1} and x € {0,1}", the function
1O satisfies

FO,2) = fO(b® 1,2 ® Ry-1(C ® ag) ® Ra—1(C ® 1)),

where C = Ry_2(Rq—3(--- Ri(zd) @2 ---) @Y ;). That is, f© has the period
s = (1, Rdfl(C (&) Oé(]) D Rdfl(C D 041)).

Proof. We first consider the intermediate state value after the first (d—2) rounds
in which «y, reaches the leftmost position (See the red lines in Fig. . The value
is described as
(xg_g, x‘f‘g, . ,xjﬁ) = @d_g(xg, 20, ,x2_3, Qap, T)
= (Ra_2(xd™) @ ap, x, 20, 2, ..., 2873).
For 1 <i <d— 3, z} is described as

2y = Ri(Ri1(-+ Ry(x0) @2 ) @) ) ®af,

and ) is a constant that is independent of the input (b, z), since 2§, 29, ..., 29

are constants. Let C' = Rq_p(x3~ %), which is independent of (b, ) and hence can
be treated as a constant. The output after one more round, which is the output
after the first (d — 1) rounds, is described as

(ngl,xffl, . ,ng) =(Rg—1(C® ) ® x, mg,x(l), ... 7333737 C®ap).

Now we consider the value of x%d_2. This is the intermediate state value after
the first (2d — 2) rounds in which a; @ C reaches the leftmost position again,
and is described as

2292 — R(Ry1(C® op) B ) ® oy & C, (5)

where R'(-) = Rog_2(Raa—3(- - Ray1(Ra(-)@ad) @z - ) ®xd™3) (See the green
lines in Fig.. R/(-) is a function that is independent of the input (b, z), since

x9,xg, ... ,mf‘o’ are constants. From and , the function f© is described as

)=y ®R(Ri1(CPay) @) Day,dC

11



=R(Ri_1(C®ap)Dz)DC.
The function f© has the claimed period since it satisfies

fPh®1L,2® Ri—1(C @ ap) ® Rg—1(C @ 1))
= R'(Ri—1(C ® apg1) ® Ri—1(C® ap) ® Rg—1(C® 1) dz)® C
= Rl(Rdfl(C (&) ab) (&) LL') o C
= (b, x),
and hence the lemma follows. O

Therefore, we can distinguish the (3d — 3)-round Type-1 generalized Feistel
cipher by using the function f©. The success probability of the distinguishing

attack with measuring (4n + 4) times is at least 1 — (2/e)"*! — Pr[II € irr}/z],
where we use 6 = 1/2 and n = 4n+4. Pr[II € irr}/Q] is a small value, since with
a high probability, the function f© does not have any period when O is II.

5 (d? — d + 1)-Round Distinguishing Attack

If we can use the decryption oracle in the quantum setting, we can construct a
distinguishing attack against the (d*> — d + 1)-round Type-1 generalized Feistel
cipher. We write the i-th round function in decryption as R;. Note that this is
different from the notation in Sect. [l

We fix two distinct constants ag,a; and (d — 1) constants 29, 29,...,29 ,,

which are all n bits. Given the decryption oracle O~!, we define f 07" as

07 1{0,1} x {0,1}™ — {0,1}"
(b, ) — o @ yo,

where (Yo, y1,---,Ya_1) = O (z, 29,25, ... 25 5, ap).
Consider the case O~ ! = (15;217 441 and let the intermediate state value after
the first ¢ rounds be (xf,z%,...,2% ;). O7! is described as

FO7 (b)) = iy B wo

- d?—d+1

=ap D x

—ap @ m¢11272d+2’ (6)
since 2} = it = 252 = ... = it (See Fig. @

The following lemma holds.
Lemma 2. If 07! is @;zl_dﬂ, then for any b € {0,1} and x € {0,1}", the

function fO satisfies
O (by2) = O (b @ 1,2 ® Ri(ag) ® Ri(an)).
That is, fO ' has the period s = (1, Ri(ag) @ Ri(ay)).

12
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Fig. 6. (d*> — d + 1)-round distinguishing attack

Proof. In the first round, R;i(ap) is xored to x. In the d-th round, the value
Ri(ap) @ is used as the input of Ry, and the output of Ry is xored to z§. This
implies that x¢ is

¢ = Rg(Ry(ap) ® ) ® 29, (7)

See the green lines in Fig. @ The function R(-) = R4(+) ® 29 is independent of

the input (b, x), since 2¥ is a constant. Therefore, @ can be described as

2 = R(Ri(w) @ z)
with some function R € Func(n). After additional (d — 1) rounds, this value is
used as the input of Roy_1, and the output of Roy_1 is xored to the sub-block

which was 3 at the input. The sub-block which was 3 at the input is a constant
because it is not xored by the value that includes b nor x. Therefore, for some

13



function R’ € Func(n), the value of 22?71 is described as

22971 = R'(Ry(ap) @ ).

After that, for each (d — 1) rounds, this value is used as the input to the round
function and the output is xored to the sub-block which was x? at the input, for
i =3,4,...,d — 2. Since the sub-block is a constant that is independent of the

2d—1+4+(d—1)x(d—4) _ xd2—3d+3
=

input (b, x), the value of x] is described as

x?273d+3 — R”(Rl(ab) ® .’E)

for some function R” € Func(n).
In the (d? —2d + 2)-th round, Rgz o4, 2(R"(R1(ap) ©x)) is xored to the sub-
block which was a; at the input. Since only the value that does not include b nor

x is xored to the sub-block which was «p, with some function R” € Func(n),

d?—2d+2
1

the value of = is described as

xf2,2d+2 _ R//I(Rl(ab) EB.’E) D ap. (8)
From @ and , the function ]”071 can be written as

FO T (b,2) = ap @ R (Ri(ap) ® 2) ®
= R"(Ri(w) @ z).

The function f© satisfies

O (0@ 1,2 ® Ri(ag) ® Ri(a1)) = R”(Ri(awer) ® 2 ® Ry(ag) ® Ry(n))
= R"(Ri(a) ® x)

=19 (b),
and hence we have the lemma. O

The success probability of the distinguishing attack using the function f o7
with measuring (4n + 4) times is at least 1 — (2/e)" ™t — Pr[II € irr;/ﬂ, where

we use 6 = 1/2 and n = 4n + 4. We see that Pr[IT € irr}/z] is a small value, and
hence the attack succeeds with a high probability.

6 Key Recovery Attacks

Similarly to the previous key recovery attacks by Dong et al. that combine Grover
search and the distinguisher, we can construct key recovery attacks against Type-
1 generalized Feistel cipher based on our distinguishers.

With the (3d — 3)-round distinguisher, we can recover the key of the d-

d2 _3d

round Type-1 generalized Feistel cipher in time O(2(7 % +2)'§) by replacing
the (2d — 1)-round distinguisher in Dong et al.’s attack with our (3d — 3)-round
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distinguisher. In general, the key recovery attack against the r-round version,
2 r—d2
where 7 > d?, runs in time 0(2(%*%”)'%*( e ).
With the (d? — d + 1)-round distinguisher, by using the decryption oracle,
we can recover the key of the r-round Type-1 generalized Feistel cipher for
r—(d2—
r>d?—d+1in time O(2" ="
to recover is (r — d? + d — 1)k bits.
If d = 3, the time complexity of these two key recovery attacks is the same
2 2
because (d; 3oy kg (7“7;1 )k (r=(d ;d+1))k _ k(dfzi(dfs). It d > 3, the
key recovery attack with the (d* — d + 1)-round distinguisher is better than the
one with the (3d — 3)-round distinguisher.

), because the subkey length that we need

7 Concluding Remarks

In this paper, we presented the (3d—3)-round distinguisher against Type-1 gener-
alized Feistel cipher with quantum chosen-plaintext attacks that can distinguish
more rounds than the previous distinguisher. We also gave the (d* — d + 1)-
round distinguisher by using the quantum decryption oracle. Based on these
distinguishers, we presented quantum key recovery attacks. Our quantum key

recovery attacks against the r-round Type-1 generalized Feistel cipher recover
(r—d?)k

keys in time 0(2(§*37d+2)‘§+ 7 ) with the (3d — 3)-round distinguisher and
02525 ) with the (d2 — d + 1)-round distinguisher.

As an open question, the tight bound of the number of rounds that we can
distinguish is not known. There is a possibility that we can distinguish more
than (3d — 3) rounds, and we may distinguish more than (d?> — d + 1) rounds in
the quantum chosen-ciphertext setting.
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