
Fooling the Sense of Cross-core Last-level Cache
Eviction based Attacker by Prefetching Common

Sense
Biswabandan Panda

Department of Computer Science Indian Institute of Technology, Kanpur
208016

biswap@cse.iitk.ac.in

Abstract—Cross-core last-level cache (LLC) eviction based side-
channel attacks are becoming practical because of the inclusive
nature of shared resources (e.g., an inclusive LLC), that creates
back-invalidation-hits at the private caches. Most of the cross-
core eviction based side-channel attack strategies exploit the
same for a successful attack. The fundamental principle behind
all the cross-core eviction attack strategies is that the attacker
can observe LLC access time differences (in terms of latency
differences between events such as hits/misses) to infer about
the data used by the victim. In this paper, we fool the attacker
(by providing LLC hits to the addresses of interest) through a
back-invalidation-hits triggered hardware prefetching technique
(BITP). BITP is an L2 cache level hardware prefetcher that
prefetches the back-invalidated block addresses and refills the
LLC (along with the L2) before the attacker’s observation/access,
efficiently nullifying inferences due to differences in LLC access
latencies.

We show that BITP can fool the attacker with various
security metrics related to LLC side-channel. BITP provides zero
probability of success in terms of attacker’s probability of success
for Evict+Time, Evict+Reload, and Prime+Probe attacks. We also
show the effectiveness of BITP in terms of performance by sim-
ulating SPEC CPU 2006, PARSEC, and CloudSuite benchmarks
and find that, on average, BITP improves system performance
marginally by 1.1%. Overall, BITP is a simple, practical, and
yet powerful technique in mitigating various cross-core LLC
eviction-based side-channel attacks. Compared to the state-of-
the-art policies, BITP does not require support from software
writer, operating system (OS), and runtime systems. Overall,
BITP provides marginal improvement in system performance,
providing security with no hardware and performance overhead,
which makes BITP readily-implementable.

I. INTRODUCTION

Cross-core eviction based side-channel attacks at the last-
level cache (LLC), observe the fundamental property of “latency
differences between cache hits and misses” to infer about the
cache blocks that are accessed by the victim (cryptographic)
application [1]–[6]. An LLC eviction attack includes an attacker
(spy) application running along with a victim application on a
multi-core system. The attacker is a malicious application that
tries to infer the secret data. As all the cores of a system usually
share the LLC, an attacker tries to eviction with the victim at
the LLC set and fools the victim by employing different cross-
core side-channel attack strategies. These strategies observe
hits/misses to the cache block addresses of interest of the victim.
There are various cache eviction attacks that are mounted on

mobiles [7], desktops [5], and clouds [4].
The essence of an inclusive shared resource (e.g., an inclusive

LLC that is always a superset of the private caches (L1 and
L2)), becomes a security loophole when exploited carefully as
an eviction of a cache block from the LLC, back-invalidates
cache blocks in private caches. Moreover, future accesses by
the victim incur cache misses at private caches. Note that
inclusive LLCs are famous for simplifying the cache coherence
layer as LLC becomes the directory and there is no need for
additional hardware for maintaining cache coherence.

All the LLC eviction based cross-core side-channel attack
strategies exploit this feature to attack the victim. Even for a
non-inclusive LLC, a recent [8] successful eviction based cross-
core attack, exploits the inclusive cache coherence directory to
create inclusion-victims (back-invalidation hits). For the ease
of understanding, unless specified, we focus on inclusive LLCs.
We discuss a recent eviction attack on non-inclusive LLCs that
uses inclusive coherence directory in Section III-E.

To understand how an inclusive shared resource helps in
cross-core eviction attack, we look deep into these attacks: in
Evict+Reload attack [1], the attacker evicts a specific cache
block(s) of the victim at the shared inclusive LLC, and this
eviction causes back-invalidation-hit(s) at the private caches
of the victim. After a fixed interval, the attacker reloads the
evicted address and if it gets a shorter access time (LLC hit),
then the attacker can infer that the victim has accessed the
cache block between the eviction and reload. Other strategies
follow similar events to extract information about the victim’s
LLC accesses. All the eviction attacks use the notion of time
precisely to schedule the events such as evict, flush, and reload.

The problem: In LLC side-channel attacks, the fundamental
principle behind all the strategies is to observe LLC access
time differences to infer about the data used by another core.
What if an inclusive shared resource ensures equal access time
for security-critical data even after a eviction? This problem is
non-trivial.

Our goal is to propose a simple micro architecture technique
that can completely mitigate cross-core LLC eviction based
side-channel attacks with no performance and hardware over-
head, and which does not demand intervention from software
writer, instruction set architecture (ISA), compiler, runtime
system, and operating system (OS). Prior proposals [9]–[14]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

ca
lc

u
lix

ga
m

es
s

gc
c

G
em

sF
D

TD

go
b

m
k

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
et

p
p

p
er

lb
en

ch

p
o

vr
ay

sj
en

g

so
p

le
x

sp
h

in
x3

to
n

to

w
rf

xa
la

n
cb

m
k

ze
u

sm
p

SP
EC

-4
/8

/1
6

-c
o

re

P
A

R
SE

C
-8

/1
6

-c
o

re

C
lo

u
d

su
it

e-
4

-c
o

re

A
ve

ra
ge

B
ac

k-
in

va
lid

at
io

n
 h

it
s

at
 t

h
e

L2
SHiP++ HAWKEYE

SPEC 4-core: 31465 mixes, SPEC 8-core: 31464/2 (15732) mixes, SPEC 16-core: 15732/2 (7866) mixes
One 8/16-core mix is created by mixing two/four 4-core mixes.

Fig. 1. Fraction of LLC evictions that result in back-invalidation-hits at the
L2 for single-core and multi-core systems with 2MB/LLC per core.

that try to mitigate side-channel attacks at the LLC degrade
system performance and system fairness and some of the
proposals are very specific to a particular attack. Some of
them [15], [16] demand changes at the OS level.

Key Observations: The following observations motivate our
proposal.
(I) Back-invalidation-hits help attackers: In a eviction based
cross-core side channel attack, the attacker’s premise is that
the evicted LLC block is present in private caches. Therefore,
in such a scenario, back-invalidations originating from the
LLC, hit at the private cache of the victim and invalidates the
corresponding blocks. This leads to private cache misses for
future accesses to the same blocks by the victim and future
accesses load the same block from the LLC.
(II) Cross-core Back-invalidation-hits are rare and benign:
The fraction of back-invalidations that hit at the private caches
is low if the per-core L2:L3 ratio is low and the back-invalidated
blocks are “hot” (get reused) [17]. So, prefetching back-
invalidated blocks will not degrade the system performance.

While the first observation is the essence of the attack
scenario, the second observation requires empirical validation
for strengthening the claim and quantifying the performance
overhead. To establish “back-invalidation-hits help attack-
ers”, we simulate a 2-core system mounting the Evict+Reload
attack, where a spy runs on core-0 and a victim runs on
core-1 with cryptographic applications such as GnuPG [18]
and Poppler [19]. We find that all the block addresses of
interest cause back-invalidation-hits at the L2. We describe the
details about different attack strategies in Section II. We also
experiment with other ciphers like AES-128 and RSA, and our
conclusion remains the same.

To establish that “Cross-core back-invalidation-hits are
rare and benign”, we quantify the fraction of back-
invalidations that hit at L2. We perform this study with two
of the best cache replacement policies: SHiP++ (an extended
SHiP [20]) and a modified version of HAWKEYE [21] as
per the 2nd cache replacement championship (CRC-2) held
in ISCA ’17. Figure 1 shows that on average, less than 4%
LLC evictions cause back-invalidation-hits at the L2 for single-
core and multi-core mixes involving SPEC CPU 2006 [22],
PARSEC [23], and CloudSuite [24] benchmarks and out of
which more than 98% of the back-invalidated blocks get reused.

We use all the 4-core multi-programmed mixes 1 possible
(28 choose 4 with repetitions) for client based workloads
and then combine them to create 8-core and 16-core mixes.
For server workloads, we use the multi-threaded cloudSuite
benchmarks and for scientific parallel applications, we use the
multi-threaded PARSEC benchmarks. We observe a similar
trend with other replacement policies that are mentioned in
CRC-2 site2. We do not report the back-invalidation-hits at
the L1 as L2 is inclusive of L1. For this experiment, we use
the gem5 [25] simulator with L1 D-cache of 32KB, L2 cache
of 256 KB, and an inclusive LLC of 2MB/core, which is the
industry standard in some of the recent commercial processors.
Also, the recently concluded CRC-2 [26] has 2MB LLC/core.

Note that, the fraction of back-invalidations that hit at the
L2 in the temporal locality aware (TLA) policy [17] is high
because, the authors have used an LLC of 1MB/core, motivated
by the 1st cache replacement championship (CRC-1) [27] held
in ISCA 2010. In contrast, we consider 2MB/core LLC for
the reasons already mentioned. Note that the expected back-
invalidation-hit ratio is around 256KB

2MB for L2 and with a 1MB
LLC/core, this ratio goes up to around 256KB

1MB . We corroborate
the findings of [17] for different L2/LLC ratios.

We also try LRU based replacement policies where the
percentage of back-invalidation-hits is small because policies
such as SHiP++ and HAWKEYE are more aggressive than
LRU in evicting cache blocks of cache-averse applications
(applications that do not get benefit with LLC). Note that,
We use the gem5 [25] full-system simulator and simulate the
SPEC CPU 2006 benchmarks for 250M instructions within
their respective region of interest after a fast-forward of 200M
instructions. We use the region of interests similar to the CRC-
2 site. This experiment sets the tone for our proposal as the
fraction of back-invalidations that hit at the L2 is marginal
and a large fraction of them get reused.

Our Idea: We propose a simple per-core private hardware
prefetcher at the L2 level and name it back-invalidation-
triggered-prefetching (BITP). Note that, no other invalidation
hits such as invalidation hits while maintaining cache coher-
ence, trigger BITP. BITP prefetches the back-invalidated block
addresses and it does not maintain any additional hardware
structure to prefetch. To the best of our knowledge, this is
the first proposal on hardware prefetching that mitigates well-
known cross-core LLC eviction based side-channel attacks by
exploiting the notion of back-invalidation-hits. Overall, our
contributions are as follows:

• We quantify the back-invalidation-hits for cryptographic
and standard applications (Figure 1) and propose BITP
that brings the back-invalidated blocks into L2 and LLC.
We provide the security effectiveness of BITP and show
how BITP mitigates cross-core LLC eviction attacks. We
also discuss few subtle issues of interest. (Section III).

1A multi-programmed mix is a mix of benchmarks that are running
concurrently on individual cores.

2The fraction increases with an increase L2:L3 ratio. For a ratio of 1, on
average, 60% back-invalidations hit at the L2.

2

https://crc2.ece.tamu.edu/?page_id=53
http://crc2.ece.tamu.edu/#schedule
http://crc2.ece.tamu.edu/#objective
https://www.jilp.org/jwac-1/

• We show the effectiveness of BITP in terms of system
performance (an average improvement of 1.1%) and
provide security with no hardware overhead, and no
support from ISA, compilers, runtime systems, and OS
(Section IV).

II. BACKGROUND

This section provides background on different cross-core
eviction based side-channel attacks (miss type and hit type)
at the LLC. It also provides a discussion about some of the
recent LLC replacement policies. In miss type attacks, the
attacker is interested in observing longer cache access time,
because of cache misses (miss access can be either from the
victim or the attacker). In contrast, in hit-based attacks, the
attacker is interested in shorter access time (hits). All the
attacks measure LLC access time. However, some attacks do
it precisely per memory access (access based attacks), and
some accumulate the timing information for the entire security-
critical accesses (timing based attacks). Primarily, there are
three different strategies such as (i) Evict+Reload (a variant of
Flush+Reload attack where the Flush operation is replaced by
the Evict operation), (ii) Evict+Time, and (iii) Prime+Probe.
In flush based attacks such as Flush+Reload [5], the attacker
uses clflush instruction to flush a cache block address from
all the cache levels and later reloads the same block address.
While reloading, if it gets a hit, then the attacker concludes
that the victim has accessed the cache block.

Note that, based on the prior works suggest flush based at-
tacks [5], [28]–[30] can be mitigated by preventing clflush
instruction in user mode for read-only or executable OS pages
(such as shared library code) [16]. It can be done through
a system call (Linux OS already has a system call called
cacheflush [31]). There are other possibilities like making
clflush constant time, or the extreme case like Google Nacl
[32] that disables clflush instruction. Note that x86 still
allows clflush from the user mode. We believe there are
undisclosed reasons for which clflush is not privileged
yet and it is an open problem to debate and discuss, which
is beyond the scope of this paper. In this paper, we only
concentrate on eviction based attacks at the LLC that do
not use clflush.

Evict+Time: In this attack, the spy observes the execution
time of the victim over a large number of intervals. First, the
spy evicts cache blocks from a few set(s) at the LLC that
causes back-invalidation-hits in the private L2 of the victim.
Later, when the victim accesses the evicted block(s), it results
in a longer access time. The spy observes the same.

Evict+Reload: In Evict+Reload attack, the spy core evicts
a cache block from the LLC that results in a back-invalidation
and invalidates the corresponding cache blocks in private L2
of the victim. After an interval (predetermined fixed value), the
spy reloads the same address and if it gets a shorter access time
(an LLC hit), then it concludes that the victim has accessed
the same cache block.

Prime+Probe: In this attack, the attacker loads its cache
blocks by evicting the blocks of the victim (the prime part).

Then the victim executes its secure operation and in the process,
gets LLC misses, evicts the blocks brought by the attacker.
Next, the attacker probes its execution time by reloading its
blocks, to see whether it gets longer access time because the
victim has evicted the block (an LLC miss).

Out of all these attacks, Evict+Reload attack demands the
notion of sharing of OS pages between the victim and the
spy. The attack is more precise (operates at specific block
addresses).

The notion of time: In all the cross-core eviction based
attack strategies, the attacker uses monitor epochs of 5000 to
10,000 cycles [2]3, [16], [33], and [10]. In one epoch, the
attacker evicts (or primes) 16 cache blocks (assuming a 16-way
LLC) at the beginning of the epoch, waits, and reloads (or
probes/observes) LLC block(s) of interest, just before the end
of the epoch. Yarom and Falkner [5] show how to choose
the time gap (length of the epoch) so that an attacker can
attack successfully. The next section shows how BITP mitigates
various cross-core LLC side-channel attacks.

Cache Replacement Policies: LLC replacement policies
play an important role in setting up the eviction based attacks
because to evict a block from a cache set, the attacker has to
access the set multiple times to make sure the victim’s block
is evicted from the LLC. As LRU based policies are not that
effective for large LLCs, aggressive LLC replacement policies
such as SHiP++ [20] and HAWKEYE [21] have been proposed
that use re-reference interval prediction (RRIP) [34] chain
based policies with re-reference prediction values (RRPVs).
SHiP++ uses difference signatures like the program counter
(PC) and memory region to infer about the reuse of the blocks
belonging to that signature and HAWKEYE tries to provide
an illusion of Belady’s optimal replacement policy. It looks at
the past behavior of cache blocks based on a signature like PC
and applies Belady’s policy on them to infer about the future
reuse.

III. BACK-INVALIDATION-HITS
TRIGGERED PREFETCHING (BITP)

A. BITP Mechanism

A self-contained Figure 2 shows the steps involved with the
BITP mechanism. BITP only prefetches on back-invalidation
hits and not on invalidations due to cache coherence. Note
that in case of a baseline system without BITP, the LLC
controller sends a normal invalidation command (INV) along
with the evicted address to the private caches. With BITP,
we need a mechanism to distinguish back-invalidations from
normal invalidations. To accomplish this, the LLC con-
troller sends a packet with BACK-INV command (simi-
lar to other commands like GET/PUT/INV/LOAD/STORE/
PREFETCH/WRITEACK) along with the evicted block address
in the command+address bus. The private cache controllers
would trigger BITP if there is a back-invalidation hit (by
comparing the tag) and the command is BACK-INV and
not INV. Also, depending on the implementation of cache

3Note that this epoch is used in real machines.

3

L2

LLC SLICE

BITP

IF ((L2 HIT) AND (CMD=BACK-INV)) THEN

BACK-INV + ADDRESS

DRAM REQUEST/RESPONSE,
BLOCK ALLOCATED IN LLC AS PER LLC-FILL POLICY

BLOCK ALLOCATED

RESPONSE

①

②

③

④

⑤

⑥

⑦

MSHRsMSHRs

ON-CHIP INTERCONNECT

FILL
QUEUE

BLOCK ADDRESS OF BACK-INVALIDATION HIT

CMD: COMMAND
BACK-INV: BACK-INVALIDATION COMMAND

Fig. 2. BITP Mechanism. MSHRS in 6 and 7 are the same as 3 and 4 .

coherence directory (e.g., a sliced directory for each slice
at the LLC), the evicted LLC block address along with the
BACK-INV command, should be communicated to the sliced
directory first, which converts the address and the command
into back-invalidation requests for private caches. So, overall,
BITP demands marginal changes to existing structures and
does not demand any additional hardware.

B. Metrics for Security Effectiveness

To compare different micro-architecture techniques in terms
of information leakage, metrics such as true positive rate (TPR),
which is the ratio of true critical accesses observed by the
attacker and the number of critical accesses of the victim
and Cache side-channel vulnerability (CSV) [35] (Pearson’s
correlation coefficient between the victim and attacker traces
at the LLC) are proposed. Recently, He and Lee proposed a
nice and more generic model called Probabilistic information
flow graph (PIFG) [36] to quantify the probability of attack
success (PAS). A PAS value closer to 0 is better and secure.
We apply PIFG [36] to include the events of interest for an
inclusive LLC. We redefine PAS for an inclusive LLC for
Evict+Time, Prime+Probe, and Evict+Reload attacks by adding
one additional event of back-invalidation-hit. Overall, we show
the effectiveness of BITP with the following metrics: (i) PAS,
(ii) Relative LLC access time difference as observed by the
attacker, (iii) TPR, and (iv) CSV. Out of these four metrics,
PAS is a recent one, which we explain in details.

PAS [36]: Table I shows conditional probabilities of interest
through which the information flows from the victim to the
attacker, for all three cross-core eviction based attacks at the
LLC. For a detailed overview on PIFG, please refer [36]. We
quantify PAS for a baseline system with 32KB L1, 256KB L2,
and 16-way 2MB LLC slice/core (similar to Intel’s slicing at
the LLC [37]) by finding out the probabilities (Table I):
p1: 1.00, conventional mapping in which a DRAM address
mapped to a particular cache set with probability 1.00 and it is
known to the attacker. If it is not known to the attacker, then
it will be less than 1.00.
p2: 1.00, for a successful attack, the attacker should be able to
replace the cache block(s) of interest before the victim reloads.
For a w-way cache, the attacker should access a particular set
at-least w times for LRU based policy and w̄ (w̄ can be less

TABLE I
CONDITIONAL PROBABILITIES OF EVENTS OF INTEREST BASED ON PIFG.

Events
p1 Memory block getting mapped into a cache set
p2 Cache block selected for replacement given the cache set
p3 Cache block selected by the replacement policy is evicted
p4 Evicted cache block leads to back-invalidation-hits at the L2
p5 Evicted block (that has caused back-invalidation-hit) when accessed

again gets an LLC miss and the very next access gets a hit.
p6 LLC hit/miss getting mapped to the shorter/longer access time.

than equal to w or greater than w) times for RRIP [34] based
eviction policies.
p3: 1.00, this probability will change if we prevent replacement
of the block of interest.
p4: 0.125, theoretically, the expected probability of getting a
back-invalidation-hit with state-of-the-art replacement policies
is 256KB

2MB = 0.125.
p5: 1.00, the attacker observes an LLC miss/hit in miss/hit
type attacks.
p6: 1.00, a direct correlation between miss/hit with the LLC
access time. So the PAS of the baseline system is 0.125 (p1×
p2×p3×p4×p5×p6). Next, we show the PAS for cross-core
miss-type attacks, which is easy to understand followed by the
hit-type attacks.

C. PAS of BITP

1) PAS for Evict+Time attack with BITP: As Evict+Time
is a miss type and timing based attack, the attacker will
be successful if it observes longer access time to the block
addresses of interest that are evicted by itself. The only
conditional probability that changes with BITP is p5, which
becomes 0 as the probability of victim’s reload getting a miss
is zero (BITP provides hits), which results in a PAS of 0.

2) PAS for Evict+Reload Attack: In contrast to Evict+Time
attack, Evict+Reload is a hit type attack. An attacker goes
through conditional probabilities of p1 to p4 (same as
Evict+Time). p5 corresponds to the attacker’s reload is a hit
provided the victim has accessed the cache block between evict
and reload. Note that PIFG calculates the forward probability
from the victim’s side (attacker=hit

victim=accessed) and because of which
it can not capture the effectiveness BITP as it does not consider
the cases where the victim has not accessed and the attacker
still gets the hits. A formal way of finding the PAS for this
attack is to find the backward probability from the attacker’s
point of view (victim=accessed

attacker=hit) till the point that a cache set
is mapped to the memory block. A simple alternative is p5
can be exactly correlated with the TPR, which is 1.00 in the
baseline. With BITP, p5 is PV (probability of the victim’s
access at the LLC in between evict and reload). Note that,
there are two possibilities:
(i) The victim gets a hit at the L2 thanks to BITP and there
is no access to LLC. In this case PV and p5 are 0, which
happens all the time with BITP.
(ii) However, it is still possible that the victim gets a miss at
the L2 and accesses LLC with probability PV and in this case,
BITP provides LLC hits all the time to the attacker. So, in the
worst case, the PAS for Evict+Reload is 0.125×PV. Based on

4

ALGORITHM 1: Square Multiply Exponentiation
1: Input: base b, modulo m, and exponent e (en−1 to e0)
2: Output: be mod m
3: r=1
4: for all i, from n-1 to 0 do
5: r = square (r)
6: r = modulo (r, m)
7: if (ei==1) then
8: r = multiply (r, b)
9: r = modulo (r, m)

10: end if
11: end for
12: return r

our simulations on AES-128, GnuPG, and Poppler, we find PV
varies from 0.04 to 0.26.

3) PAS for Prime+Probe Attack with BITP: In Prime+Probe
attack, first, the attacker evicts blocks of interest of the victim
(step 1) and then the victim misses and evicts the blocks of
interest of the attacker (step 2). Later, when the attacker probes,
it gets an LLC miss (longer access time). In terms of PAS,
there is one sequence of p1 to p6 for the attacker (evicting
victim’s blocks). There is another sequence of p1 to p6 for
the victim (evicting attacker’s blocks), which leads to a PAS of
0.125×0.125 = 0.0156 in the baseline system. With BITP, the
PAS becomes zero, because the victim does not evict the blocks
of the attacker. So in the Probe stage, the attacker gets hits at its
L2 (no LLC misses during the victim’s accesses, no evictions,
and no back-invalidations to the blocks of the attacker). So
BITP prevents information leakage and also makes it difficult
to mount Prime+Probe attack at the LLC.

Note that, BITP prefetches on all back-invalidation-hits,
irrespective of the source of the request:attacker/victim and
it is not dependent on the core-id of the request. Although
PAS is a generic metric, PAS does not account for timing
characteristics and does not adequately capture the nuances of
side-channel attacks. In the next section, we show the relative
LLC latency differences as observed by the attacker.

D. Access Time Difference with BITP

In this section, we evaluate the security effectiveness for
cross-core LLC eviction based Evict+Time, Evict+Reload, and
Prime+Probe attacks by running AES-128, GnuPG, and Poppler.
In case of Evict+Time and Evict+Reload attacks, to find out
the cache set that contains the critical cache block addresses,
the spy mmaps the virtual addresses of interest. In case of
Prime+Probe attack, it creates an eviction-set(s) before the
prime process. In miss/hit type attacks, the attacker will be
successful if it gets longer/shorter LLC access (execution) time.

1) Evict+Time Attack on AES: In Evict+Time attack, the
attacker attacks AES-128 where it evicts an AES cache block
containing table entries and then call a routine to encrypt with
random plain-text and measures the encryption time. Note
that, as Evict+Time is a miss-type attack, the attacker will be
successful if it gets LLC misses for certain plain-text values,
increasing the average encryption time. However, with BITP,

0

1

2

3

4

5

0 50 100 150 200 250 300N
o

rm
al

iz
ed

 a
vg

. e
n

cr
yp

ti
o

n

ti
m

e

Content of plain-text byte

Baseline BITP

Higher the better for the attacker

Fig. 3. Normalized average encryption time observed by the attacker for
different plain-text values on AES-128. Higher avg. encryption time leads to
a successful Evict+Time attack.

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

La
te

n
cy

 (
in

 C
yc

le
s)

Square-Baseline Multiply-Baseline Square-BITP Multiply-BITP

Multiply-BITP

Square-Baseline
Multiply-Baseline

Square-BITP

Fig. 4. LLC access time observed by the attacker while attacking GnuPG.
Y-axis shows LLC access time. X-axis: attack epochs.

the average encryption time does not change much (thanks to
LLC hits) and the attack is unsuccessful. Figure 3 shows the
average encryption time for each plaintext values normalized
to encryption time averaged across all the plaintext values. We
can see, plaintext values from 112 to 126 show LLC misses
(higher avg. encryption time), which helps the attacker in the
baseline.

2) Evict+Reload attack on GnuPG: GnuPG [18] is an open-
source implementation of OpenPGP standard. We use the
GnuPG 1.4.13 version that uses modular exponentiation in the
form of square-and-multiply [38] Algorithm (refer Algorithm
1), where each occurrence of square-modulo-multiply-modulo
corresponds to the exponent bit one whereas each occurrence
of square-modulo not followed by a multiply operation corre-
sponds to a zero. A complete trace of the square-and-multiply
can help in recovering the exponent as mentioned in [5], [39],
[40]. Note that modular exponentiation is the main computation
in many other public-key ciphers like RSA and ElGamal. We
run a simulated 2-core system with an attacker on core-0
and GnuPG on core-1. The attacker creates 10,000 epochs
where each epoch is of 6,000 cycles (this gap is required for a
successful attack. Note that this number may change with the
cache and DRAM organization and it should be determined
empirically). In each epoch, the attacker evicts and reloads the
addresses corresponding to the square and multiply functions
(addresses of interest).

The attacker measures the access time to infer about LLC
hits and misses, and with BITP, the attacker should get the
time closer to the hit latency of the LLC. Figure 4 shows the
LLC access time for the critical accesses (square and multiply
functions) as observed by the attacker within a representative
window of 50 epochs (epoch # 1000 to 1050). For illustration
purpose, we pick a small window. However, we observe a

5

0

1

0 50 100 150 200 250 300 350 400 450 500

All Functions

(a)Baseline

(b) BITP

(a)Baseline

(a)Baseline

(a)Baseline
0

1

0 50 100 150 200 250 300 350 400 450 500

ShowSpaceText

0

1

0 50 100 150 200 250 300 350 400 450 500

TextMoveSet

0

1

0 50 100 150 200 250 300 350 400 450 500

SetFont

0

1

0 50 100 150 200 250 300 350 400 450 500

TextNextLine

Fig. 5. Shorter/longer access time observed by the attacker in terms of 0s/1s
while attacking critical functions of Poppler. We do not show the “1s” explicitly.
X-axis: attack epochs.

similar trend for the rest of the epochs. From Figure 4, In the
baseline, the attacker can differentiate the LLC hits and misses
by observing the access latencies and can infer the secret key
bit (if multiply follows the square in one epoch, then the bit is
one else zero). However, with BITP, the attacker gets access
time closer to LLC hits to the addresses of interest as BITP
prefetches them before the attacker reloads. Note that, there is
no latency difference between an LLC hit to a demand cache
block and an LLC hit to a prefetched cache block.

3) Prime+Probe attack on Poppler: This section explains
the effect of BITP on a pdf rendering library called Poppler
[19]. We run the attacker on core-0 and pdftops on core-1.
The approach used in [41] that attacks four different functions
of pdf2ps motivates our attack. We show the LLC hits for each
function with the baseline system and with BITP in Figure 5.
More details about the attack are available in [41] where the
authors describe how they probe the addresses of interest (four
functions) to identify more than 100 pdf files. The attacker uses
10,000 epochs each of 8,000 cycles, where the attacker primes
and probes the addresses corresponding to four functions that
are accessed by the victim core. Typically, an LLC hit takes in
between 40 to 126 cycles depending on which LLC slice (bank)
has the requested address and an LLC miss takes around 150
to 325 cycles. So if an attacker sets a threshold of 130 cycles
for an LLC hit and anything above 130 cycles as an LLC miss,
then BITP makes sure that the attacker always gets LLC hit,
access latency of fewer than 90 cycles. Figure 5 shows the
shorter access times (less than 130 cycles) with “0” and more
than 130 cycles as longer access time with “1” as observed
with the baseline for all the four functions. It also shows the
effectiveness of BITP that results in LLC shorter access times
for all the functions all the time. Note that the shorter access
time includes L2 hits too.

Probability distribution of LLC access time: Figure 6
shows the probability distribution function of LLC access time
averaged across all the cross-core LLC-eviction attacks. Note
that, with BITP, the attacker gets access time closer to LLC
hits. LLC misses have two components: DRAM row-buffer hits
and row-buffer conflicts. Table II summarizes the effectiveness
of BITP in terms of four different metrics related to all the

0

0.05

0.1

0.15

0.2

0.25

0.3

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

2
5

0

2
7

5

3
0

0

3
2

5

P
ro

b
ab

ili
ty

(a) Access time (in cycles) in the baseline
system. Average: 172.58 cycles

LLC hit LLC miss,
row hit

LLC miss,
row conflict

0

0.2

0.4

0.6

50 100 150 200 250 300

P
ro

b
ab

ili
ty

(b) Access time (in cycles) with
the BITP. Average: 63.1 cycles

LLC hit LLC miss

Fig. 6. Probability distribution function of LLC access time of critical accesses
across all the attacks with the (a) baseline and (b) BITP.

TABLE II
SUMMARY OF SECURITY RESULTS ACROSS ALL ATTACKS.

Baseline BITP
PAS 0.125 0
Avg. access time 172 cycles 63 cycles
Range of TPR 0.77 to 0.91 0.04 to 0.11
Range of CSV 0.81 to 0.93 0.07 to 0.13

three cross-core cache side-channel attacks. Note that, with
PIFG model (a mathematical model), PAS of BITP is zero.
However, the range of values of TPR (0.04 to 0.11) and CSV
(0.07 to 0.13) are non-zero (though closer to zero) because of
noise that comes from the experiments.

E. Eviction Attacks in Non-inclusive LLCs

A recent work that will appear in SP ’19 [8] shows cross-
core eviction attacks in non-inclusive caches. The premise
of the attack is ”shared inclusive, and extended sliced cache
coherence directory”. The authors exploit the inclusive directory
to create cross-core evictions that create inclusion victims
(back-invalidation hits) at the L2. Similar to the inclusive LLC,
we trigger BITP on every eviction at the extended coherence
directory that creates back-invalidation hits. So, fundamentally,
any attack that creates back-invalidation-hits will be mitigated
by our approach (irrespective of inclusive and non-inclusive
LLC), which makes a solid case for BITP.

F. BITP with Intelligent Attackers

We discuss some other ways of launching a cross-core LLC
eviction attack and how BITP handles them.

Prime+Reprime+Probe attack [42]: An attacker can
launch a Prime+Probe attack, where the attacker primes the
LLC and reprimes the LLC to make sure the primed cache
blocks at the LLC are not present in its private L2. The
attacker ensures that the reprime process keeps the prime data
to a new cache set in the LLC, but to the same cache set in
the L2s. In case of systems that use huge pages (OS page
size of 1MB and 1GB) it is relatively easy because 20 to 30
bits (for 1MB and 1GB pages) of page offset will not change
during the page translation. Depending on the cache indexing,
the attacker can evict the cache blocks only from the L1/L2
caches while leaving them in the LLC. In this case, there will
not be back-invalidation-hits at the attacker’s L2. However,
back-invalidation-hits will be there at the victim’s L2 in both
the Prime and Reprime steps, which trigger BITP from the
victim’s L2 and makes sure that the victim gets L2 and LLC
hits, no eviction of attacker’s blocks. So, in the Probe step,

6

Higher the better for the attacker

0

0.2

0.4

0.6

0.8

1

1000 2000 4000 8000

Tr
u

e
Po

si
ti

ve
 R

at
e

Epoch length

Baseline BITP

Fig. 7. True positive rate (TPR) versus epoch length.

the attacker gets LLC hits because its blocks are not evicted
by the victim.

Invalidate+Evict+Reload attack: There are a few ciphers
that updates(writes) and reads the data. In this case, the
attacker may first invalidate the victim block(s) in the victim’s
L2 through cache coherence, and then evict its blocks from its
private caches and then from the LLC. In such cases, the LLC
eviction will not cause back-invalidation hits. However, this
methodology is non-deterministic and impractical as explained
below. After the invalidation (STORE access from the attacker)
of the victim’s private block, the attacker would have the same
block in the M state (assuming MOESI protocol) at its L1.

To ensure that the block is not present in the entire cache
hierarchy, the attacker does the following: (i) evicts the
block from L1 (4 accesses for a 4-way L1, being dirty,
block would enter the L1 write-back queue), block gets
updated at the L2 if needed, (ii) evicts the updated block
from L2 (8 accesses for an 8-way L2), block would enter L2
write-back queue, and the block gets updated at the LLC if
needed, and finally (iii) evicts the block from the LLC (16
accesses for a 16-way LLC). Note that there would be a gap
between L1 eviction and L2 update from the L1 write-back
queue, and same at the LLC level. We find this attack is
impractical because in the best case, the attacker has to
perform 29 to 50 accesses to different levels of caches. We
perform the same on Intel Skylake and Intel Haswell machines.

G. Revisiting The Notion of Time

Sensitivity to the epoch length: In Section II, we have
discussed the length of the epochs (5000 to 10000 cycles).
We also test shorter (starting from zero cycles) and longer
monitor intervals for the effectiveness of BITP. As mentioned
in Section III-F, the victim accesses the LLC after an interval,
which is of 2000 cycles. So, fundamentally, the attack will not
be effective even in the baseline case if the attacker uses an
epoch of less than 2000 cycles. For example, in a Prime+Probe
attack, the attacker has to evict 16 cache blocks of a given
cache set then the victim accesses and evicts few blocks, and
then again the attacker has to access the block addresses of
interest. Figure 7 shows the effect of epoch length on TPR
across all the eviction attacks and we find an epoch length
between 6000 cycles to 10,000 cycles is the best for most
of the cross-core eviction based LLC attacks. This shows
the effectiveness of BITP as small epoch length will make

an attack weak and with a good enough epoch length, BITP
makes the attack weak.

Time gap between back-invalidation hit and prefetch
response: This time gap should be less than the gap between
back-invalidation-hit and the victim’s access. We find, there is
an average gap of just more than 2000 cycles between the
Evict or Prime step and the victim’s access. That is why the
attacker chooses a long epoch. If the attacker chooses a small
epoch of say 2000 to 4000 cycles, then most of the time the
attacker will miss at the LLC. We find two insights: (i) It is
sufficient to prefetch anytime in between Evict and the Reload
of the attacker for all the miss-type attacks. (ii) However, for
the hit-type attacks, the prefetcher should prefetch before the
victim accesses, and makes sure that by the time the victim
accesses it finds hits at the L2 (no access to LLC from the
attacker corresponds no information leakage at the LLC).

Based on our simulations, in the best/worst case, a prefetch
response takes 72/323 processor cycles (averaged among
4-core, 8-core, and 16-core simulations with one, two, and
four DRAM controllers).

Motivated attacker: Note that if a motivated attacker
reloads during the prefetch response interval (for a fixed
epoch as shown in Figure 7), then it will be unsuccessful. If
an attacker knows about BITP and tries to reload just after
the eviction then it would be successful with a TPR of less
than 0.002 (TPR of the baseline system is 0.9). To make our
case even stronger, we run all the attacks on real machines
(on Intel Skylake and Intel Haswell) where once we finish
evictions of all the blocks, we reload immediately creating a
multi-threaded attacker, and find even a lower TPR. We find
two scenarios dominating this experiment: (i) Attacker reloads
before victim’s access and (ii) an overlap between attacker’s
reload and victim’s access.

H. Security Comparison with Recent Works

SHARP prevents cross-core eviction of blocks that create
back-invalidation hits and hence prevents cross-core side-
channel attacks at the LLC by sending queries to L2 and
probing the coherence directory. SHARP does not allow a
spy to perform cross-core eviction if the eviction results in
inclusion victims (back-invalidation-hits) at the L2 of the victim.
To realize that, before evicting a cache block from an LLC set,
SHARP-4 sends up to four queries (4 block addresses based
on the replacement priority order, for example, LRU to LRU-3
positions if the LLC uses LRU replacement policy) one by
one to the L2 cache. The moment it finds that a query does
not create an inclusion victim then it evicts the block from the
LLC. In the worst case, if all the four queries fail to provide
a block that prevents inclusion victims; it uses the coherence
vector to find out if the rest of the blocks that are present in
the set will cause inclusion victim. In the rare case, SHARP
evicts a block randomly and if the # random evictions cross
a threshold, then it raises an interrupt to the OS.

RIC [15] is a relaxed inclusive cache hierarchy that prevents
back-invalidations of thread-private data and read-only data.

7

TABLE III
SHARP [16], RIC [15], AND BITP: A COMPARISON.

BITP RIC SHARP
Needs OS sup-
port?

No Yes, to identify read-
only pages and thread
private data, to flush
the stale data in L2s,
and to prevent thread
migration

Yes (interrupt han-
dling)

Affects LLC
eviction
priority chain?

No No Yes

Needs
coherence
directory
support?

No No Yes (for probing)

Does thread
migration
affect?

No No (if OS flushes the
stale private data) and
Yes otherwise

Yes (SHARP
uses the core-id
information to
prevent cross-core
back-invalidations
but allows intra-core
back-invalidations)

Hardware
Overhead

Zero RI bit/tag, 64KB for
32MB LLC

alarm-counter
(12-bit) per core

RIC takes the help of system software (OS) to identify the
read-only pages and it augments an additional bit (relaxed
inclusion bit) per cache block to identify the read-only block.
During an eviction, if the relaxed inclusion bit of the block is
set, then RIC does not back-invalidates private caches. RIC is
simpler (in terms of design aspects) compared to SHARP.

Security: Both SHARP and RIC provide the same level
of protection as BITP. SHARP and RIC fool the attacker
by preventing back-invalidation-hits, (in terms of PIFG, by
making p4 zero), resulting in PAS of zero. We compare
SHARP and RIC with BITP in terms of PAS, LLC access
time, TPR, and CSV, and find that all these techniques are
equally effective. Table III shows the subtle issues that are
involved with SHARP and RIC and why BITP scores better
over SHARP and RIC. BITP does not demand OS intervention
and it does not incur additional hardware. Apart from these
important points, BITP does not affect the LLC replacement
policy chain. SHARP affects the replacement priority, which
causes performance degradation with SHiP++ and HAWKEYE
based policies (details in Section IV-C).

IV. PERFORMANCE EVALUATION

A. Simulation Methodology

We use the x86 based gem5 [25] simulator to simulate
single-core SPEC CPU 2006 [22] benchmarks and multi-core
(4-core to 16-core) multi-programmed mixes. To simulate the
CloudSuite [24] benchmarks, we use the CRC-2 framework
that provides traces of CloudSuite benchmarks. Table IV shows
the parameters used in our simulated system. Note that for
multi-core mixes, the shared resources are scaled to prevent
resource constraints. For simulating CloudSuite benchmarks,
we use a modified version of ChampSim [44] interfaced with
DRAMSim2 [45]. We simulate the region of interest for
250M instructions with a warm-up of 200M instructions. For
CloudSuite benchmarks, we use the 100M traces as provided

TABLE IV
PARAMETERS OF THE SIMULATED SYSTEM.

Processor 1/2/4/8/16-cores, 3.7 GHz, out of order
L1 D/I, L2 32 KB (4 way), 256KB (8 way, inclusive)
Shared L3 2MB× cores, #slices=#cores, 16 way, inclu-

sive
MSHRs 16, 16, 16/128/256 MSHRs

at L1, L2, L3 with 1/8/16 cores
Cache line size 64B in L1, L2 and L3
Replacement policy SHiP++ [20] and HAWKEYE [21]
L2 prefetchers Best Offset [43]
On-chip interconnect Ring
DRAM controller 1/2/4 controllers for 1/8/16-cores, Open Row,

64 read/write queues, FR-FCFS, drain-when-
full

DRAM bus split-transaction, 800 MHz, BL=8
DRAM DDR3 1600 MHz (11-11-11)

Max bandwidth/channel - 12.8 GB/sec

TABLE V
CLASSIFICATION OF BENCHMARKS.

Benchmarks Type
h264ref, perlbench, povray, sjeng, gamess, namd L2 fitting
astar, bzip2, calculix, hmmer, xalancbmk, namd
classification, cloud9, bodytrack, dedup, x264, ferret,
freqmine, swaptions, blackscholes, raytrace, fluid.,
vips

LLC fitting

mcf, libquantum, sphinx3, omnetpp, gobmk,
GemsFDTD, bwaves, gcc, lbm, leslie3d, milc,
zeusmp, catus., tonto, wrf, soplex, cassandra, nutch,
streaming, streamcl., facesim, canneal

LLC thrash-
ing

by the CRC-2. For PARSEC, we use the sim-medium input
set and simulate the region-of-interest. For multi-programmed
mixes, we continue our simulation till the slowest application
finishes its 250M instructions (same methodology as prior
works such as [17]). However, we report the results only for
the region of interest of each application. Table V classifies all
the SPEC CPU 2006 and CloudSuite benchmarks into three
categories : (i) L2 fitting (working set fits in L2), (ii) LLC fitting
(working set fits in LLC), and (iii) LLC thrashing (working
set thrashes LLC) as used in [17].

Metrics: We use the L2+LLC misses per kilo instruction
(MPKI) to measure the reduction or increase in the L2+LLC
misses. For single-core simulations, we use speedup as the
metric, i.e., Exectimebaseline

Exectimetechnique
. For multi-programmed mixes,

we use harmonic mean of speedups (fair-speedup (FS)) [46].
FS = N

N−1∑
i=0

IPCalone
i

IPC
together
i

, where IPCtogether
i is the IPC of core i

when it runs along with other N -1 applications nd IPCalone
i is

the IPC of core i when it runs alone on a N -core multi-core
system.

B. Single-core and Multi-core Results

Single-core results: Though, BITP is effective in mitigating
cross-core side-channel attacks at the LLC for multi-cores, it is
essential to report its effect on single-core simulations as single-
core performance should not be compromised for cross-core
security. With BITP, improvement/degradation in performance
depends on LLC MPKI, the fraction of LLC evictions that
cause back-invalidation-hits and their reuse.

8

TABLE VI
REPRESENTATIVE WORKLOAD MIX TYPES.

Mix type
1 All L2 fitting (L2F)
2 All LLC fitting (LLCF)
3 All LLC thrashing (LLCT)
4 50% L2F + 50% LLCF (0.5L2F-0.5LLCF)
5 50% L2F + 50% LLCT (0.5L2F-0.5LLCT)
6 50% LLCF + 50% LLCT (0.5LLCF-0.5LLCT)
7 25% LLCT + 75% Ł2F (0.25LLCT-0.75L2F)
8 Random mix

0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYE

0.98

0.99

1

1.01

1.02

1.03

1.04
SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYEHigher the better

Lower the better

(a) L2+LLC MPKI reduction normalized to baseline.

(b) Fair speedup normalized to the baseline.

Fig. 8. Normalized L2+LLC MPKI and performance for 4-core multi-
programmed mixes. SHiP:SHiP++ and GM: geometric mean.

(i) L2 fitting applications do not contribute to LLC accesses,
and hence LLC misses and back-invalidations. The fraction of
back-invalidations-hits are close to zero. So the performance
improvement is negligible.

(ii) LLC fitting applications evict cache blocks rarely
at the LLC, which causes LLC back-invalidations and their
corresponding hits, also rare (< 1%), causing a negligible
impact on the IPC.

(iii) LLC thrashing applications miss significantly at
the LLC, which causes significant back-invalidations. However,
again the back-invalidation-hits are marginal (less than 7% in
most of the benchmarks). So BITP brings prefetched blocks for
7% of total LLC evictions improving performance by 2.19%
only. In summary, for single-core simulations, BITP has no
impact on system performance for L2 fitting and LLC fitting
benchmarks. It improves performance by an average 2.19% for
LLC thrashing applications, only.

Multi-core results: For multi-core evaluation, We create 120
representative 4-core mixes (15 from each type as mentioned in
Table VI). We pick 15 mixes from each type to get a cohesive
picture of BITP. We also create 50 and 25 8-core and 16-core
representative mixes, respectively.

Based on the single-core performance results, it is expected
that multi-programmed mixes that contain L2-fitting applica-
tions along with LLC fitting or LLC thrashing applications
would get performance benefit because L2-fitting applications’
blocks will be back-invalidated by LLC-thrashing applications.
We observe and validate this expected trend.

Figure 8 shows the effect of BITP on LLC+L2 misses and
fair-speedup. On average (across all 4-core mixes (31,465

0.98

0.99

1

1.01

1.02

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
M

SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYE

0.96

0.98

1

1.02

1.04

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

G
M

SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYEHigher the better

(a) 8-core: Normalized fair speedup

Higher the better

(b) 16-core: Normalized fair speedup

Fig. 9. Performance of BITP for 8/16-core (16/32MB L3, 2/4 DRAM
controllers) systems.

mixes, 28 choose 4 with repetitions)), the effect of BITP
is marginal on LLC misses (average reduction of 2% and
3% with SHiP++ and HAWKEYE) and fair-speedup (aver-
age improvement of 1.1% with SHiP++ and HAWKEYE).
There are few mix types like 0.5L2F-0.5LLCF, 0.25LLCT-
0.75L2F, and 0.5L2F-0.5LLCT, where BITP improves the
system performance by 3%, in which one application evicts
blocks of other applications, aggressively. With BITP, these
evictions cause back-invalidation-hits that cause prefetching
of the corresponding blocks, resulting in subsequent L2/LLC
hits. For example, in one of the mixes, with HAWKEYE,
BITP improves performance close to 3%, where LLC thrashing
applications are lbm and mcf (more than 99% of cache blocks
of zero reuse). So with BITP, performance of lbm and mcf
does not increase. However, the cross-core evictions caused by
lbm and mcf that have resulted in back-invalidation-hits, get
allocated again for benchmarks like h264ref and sjeng.

Similarly, there are mixes that contain LLC fitting and LLC
thrashing applications only, where the effectiveness of BITP is
marginal. In few mixes, where the reuse of back-invalidated
blocks is low, it increases LLC misses by polluting the LLC
(bringing in cache blocks that get no further cache hits) causing
performance degradation of 0.03%. Overall, BITP improves
performance marginally.

Moving from 4-core to 8-/16-core systems: BITP scales
well with large core count as there is no hardware overhead.
Also, the effectiveness remains the same (average performance
improvement of less than 1%) even with 8-core and 16-core
mixes as well. Figure 9 shows performance improvement
with 8-core and 16-core multi-programmed mixes. Apart from
the effect of reuse of back-invalidated blocks, few mixes
get affected because, with BITP, the miss access pattern is
different at the DRAM compared to the baseline, which causes
a marginal increase/decrease in the LLC MPKI. Overall, on
average, BITP does not affect system performance and scales
well, which makes BITP a simple, scalable, yet effective choice
for mitigating cross-core side-channel attacks at the LLC.

CloudSuite and PARSEC benchmarks: The effectiveness
of BITP remains the same (average performance improvement
of less than 0.5%) with CloudSuite benchmarks too. Figure
10 shows the reduction in LLC misses and improvement
in the execution time. We do not report fair-speedup for

9

Lower the better

0.975

0.98

0.985

0.99

0.995

1

1.005
SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYE

(a) L2+LLC MPKI reduction normalized to the baseline

0.99

0.995

1

1.005

1.01

1.015
SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYEHigher the better

(b) Speedup normalized to the baseline

Fig. 10. Normalized L2+LLC MPKI and speedup for 4-core CloudSuite
benchmarks. _px: phase x. SHiP:SHiP++

0.985
0.99

0.995
1

1.005
1.01

1.015
1.02

1.025 SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYEHigher the better

Fig. 11. Normalized speedup averaged across 8-threaded/16-threaded PARSEC
applications.

these benchmarks as these are system workloads and multi-
threaded in nature with synchronization primitives that affect
the actual instruction count. As expected, the applications
that get penalized because of back-invalidation-hits get the
maximum improvement. Figure 11 shows the effectiveness of
BITP on for 8 and 16-threaded parallel applications from the
PARSEC benchmark suite. The trend remains the same for
PARSEC also (avg. improvement of just 1.09%) as in some
applications it improve the execution time by bringing back
the shared data into the cache hierarchy.

Energy Consumption: Figure 12 shows the normalized
energy consumption with BITP. We use CACTI 6.5 [47],
DRAM Micron power model [48], and Orion 2.0 [49] for
modeling energy related to caches, DRAM, and interconnect,
respectively. Compared to the baseline, there is a slight variation
with the maximum overhead of 1.9% for PARSEC benchmarks,
which is because of interconnect traffic that comes from back-
invalidations of S state blocks at the LLC, which leads to
multiple back-invalidation hits and multiple prefetch requests.
However, Beyond LLC, all these requests merged into one
prefetch request.

Sensitivity studies: So far, we use L2:L3 ratio of 1:8.
When we bridge the difference between L2 and LLC capacity
(LLC is just 256KB or 512KB per core, with L2:L3 ratio of
1.00 and 0.5, which is opposite of the current trend as the
shared resources are more constrained), the fraction of back-
invalidations that hit at L2 become significant. As expected,
with BITP, the performance improves significantly (average
improvement of more than 20% and 10%, respectively). Figure
13 (a) shows the improvement in performance with different

0

0.2

0.4

0.6

0.8

1

SPECCPU:Baseline SPECCPU:BITP Cloud:Baseline Cloud:BITP PARSEC:Baseline PARSEC:BITP

DRAM-Static DRAM-Dynamic Caches-Static Caches-Dynamic Processor + Interconnect

0.99 1.016 1.019Lower the better

Fig. 12. Normalized system energy consumption of BITP compared to the
baseline.

0.99

1.04

1.09

1.14

1.19

1.24

1 1/2 1/4 1/8 1/16

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

L2/L3

3

4

5

6

7

8

4-core 8-core 16-core

%
 L

LC
 E

vi
ct

io
n

s

SHiP++ HAWKEYE

(b)(a)

Fig. 13. (a) Normalized performance of BITP for different L2/L3s. (b) LLC
evictions that cause RRPV increments with SHARP in %.

L2:L3 ratios averaged across all multi-core mixes, which
corroborates the conclusions of TLA [17]. So, for smaller
LLCs, BITP improves performance significantly and at
the same time prevents information leakage.
In terms of demand access driven prefetching, so far, we have
considered best offset (BO) [43] L2 prefetcher. However, the
effectiveness of the BITP remains the same with other hardware
prefetchers such as kill the program counter (kpc) [50], sandbox
[51], and no prefetcher. Note that BITP can be implemented
with and without core prefetchers as it does not use any meta-
data for learning and speculating future accesses. Also, with the
change in prefetching techniques the epoch size for a successful
attack should be changed.

C. Comparison with the prior works

SHARP prevents cross-core evictions that cause back-
invalidation-hits on LRU based replacement policies by sending
four block addresses to L2, as mentioned in Section III-H. How-
ever, when we try to do the same with SHiP++ and HAWKEYE,
some mixes are significantly affected. For example, one of the
4-core mixes show a performance degradation of 4.8% with
SHARP that uses SHiP++ replacement policy.

The primary reason for this behavior is that while preventing
cross-core evictions, SHARP increases the RRPVs of multiple
blocks (in contrast to LRU) and because of which these blocks
get evicted quickly.

For example, on a two-core system, if a core is trying to evict
a block with RRPV=3 and the block is present in another core’s
L2 cache, SHARP does not evict the block and explores other
possible cache blocks that will not create inclusion victims.
There are cases, where the rest of the blocks belong to RRPV
values of less than 3 and the replacement policy increments
their RPPV values. In the worst case, rest of the blocks may
have RRPV values of 0 (cache friendly blocks) and to prevent

10

cross-core evictions, SHARP increments their RRPVs to 3
(causing early evictions). This situation becomes equally worse
for SHARP with HAWKEYE as HAWKEYE uses 3-bit RRPV
values (0 to 7).

RRPV Increments: Figure 13 (b) shows the fraction of
evictions that result in RRPV increments. Note that this scenario
is not critical in LRU based policies as SHARP evicts blocks
from LRU position to LRU-3 position. However, with all the
RRIP based chains, all the blocks within a cache set get affected
if they share the same RRPV values. This increases LLC misses
and with a detailed DRAM model (in contrast to a fixed latency
of SHARP), degrades performance significantly.

Also, to prevent cross-core evictions resulting in inclusion
victims at other cores, a core evicts its useful blocks at the LLC
and L2. Applications with the large working set (LLC thrashing
type) suffer from this behavior. On average SHARP degrades
performance by 1.7% (maximum degradation of 5.1%).

Compared to SHARP, RIC does not suffer from this behavior.
There are few mixes in which BITP performs slightly better (in
the order of 0.5%) than RIC in which an L2 block reference is
not present in L2 and LLC (with RIC) but present in L2 (with
BITP). Note that, in RIC [15], the authors report significant
performance improvement with RIC for an 8-core system with
2MB LLC (256KB per core with per core L2:L3 ratio of
1.0) and 4MB LLC (L2:L3 ratio of 1:2). Figure 13 shows
performance improvement in the same magnitude with BITP
for per core L2:L3 ratios of 1 and 1:2. Based on the simulation
results, we corroborate the findings of RIC [15] for small LLCs
shared by a large number of cores and we conclude the same
for BITP too. Based on the experiments, we find both RIC and
BITP are effective and the magnitude of the effectiveness is
the same. Note that both RIC and SHARP use a fixed latency
DRAM model that also contributes to improving the margin
of performance improvement. In case of an LRU replacement
policy at the LLC, the effectiveness of SHARP, RIC, and BITP
are similar. However, LRU policy is less effective for the multi-
core system when compared with SHiP++ and HAWKEYE.

Summary: Based on 4-/8-/16-core simulations, we find that
SHARP degrades system performance (in terms of fair-speedup)
for 42% of mixes by more than 4.7%. Table VII summarizes the
performance results for multi-core systems. Based on Table VII
and Table III, we can conclude that BITP eliminates information
leakage with no hardware overhead, performance overhead,
and additional support from the OS, compiler, run-time systems.
Apart from performance reasons, as already mentioned, with
SHARP, processor core generates an interrupt to notify the OS
about the suspicious activity. BITP is simpler and free from
additional hardware/software intervention.

V. RELATED WORK

This section discusses side-channel mitigation techniques
apart from SHARP [16] and RIC [15]. Several cache partition-
ing techniques [10], [13], [52], [53] have been proposed to
mitigate side-channel attacks. However, all these attacks affect
system performance and fairness significantly. CATalyst [10]
partitions the LLC into insecure and secure partitions. Also,

TABLE VII
SHARP [16], RIC [15], AND BITP: A PERFORMANCE COMPARISON.

BITP RIC SHARP
Avg. perf. +1.2% +1.1% -1.7%
Max. perf. +4.5% +4.2% +1.8%
Min. perf. -0.02% -0.08% -5.1%
DRAM traffic (de-
mand+prefetch)

+1.05%
(improves)

+1.73% -3.12%
(degrades)

within the secure partition, it prevents replacement of cache
blocks that store the secure data. CATalyst demands changes
to the programming language and run-time. Random fill cache
[12] is a technique that is proposed to mitigate reuse-based
side-channel attack at the L1. Another technique that thwarts
side-channel attack is by random L1 cache mapping instead
of standard cache mapping technique.

Timewarp [11] and fuzzy timing [54] are some of the run-
time system techniques that try to fudge the timing information
(mostly rdtsc) by adding noise. These techniques demand
changes at the ISA level, applications level, and for some
changes, it needs virtualization support, which is a substantial
modification for an architect. These fuzzing techniques do not
mitigate attacks that use new techniques (e.g., performance
counters) to keep track of micro-architecture events. For
applications that need to use rdtsc, these techniques demand
changes at the system administrator level. Compared to all
these techniques, BITP is simpler and yet efficient in mitigating
LLC side-channel attacks.

There are few other mitigation techniques, such as CC-Hunter
[55] and replayconfusion [56] that detect covert channels and
not side-channels. HexPADS [57] is a technique that uses
heuristics (based on the LLC access counts of the attacker)
in mitigating side-channel attacks. However, this technique
is affected by false-positives. TLA [17] can be argued to be
secure. However, an attacker can control its access patterns
(hence temporal locality) to nullify the effects of TLA, making
it a baseline inclusive cache. Also, TLA does not assure
that it will not create back-invalidation-hits, which motivates
the SHARP [16] proposal. Disruptive Prefetch [58] is a
prefetching technique that prevents a specific set of side-
channel attacks called access based attacks at the L1 Dcache
by using techniques such as randomization and set-balancing.
The technique is not applicable for L2 and L3 caches [58].

VI. CONCLUSION

This paper proposed back-invalidation-hits triggered prefetch-
ing (BITP) that mitigates various cross-core eviction based
side-channel attack strategies at the last-level cache (LLC)
by prefetching the addresses of interest. We showed the
effectiveness of BITP by simulating attacks on AES-128,
GnuPG and Poppler and quantified the probability of attack
success and other relevant metrics for security effectiveness.
We also showed the effect of BITP on system performance
and fairness with the use of fair-speedup metric. We conclude
that BITP does not compromise on system performance and
system fairness for security and makes a case for secure but

11

inclusive LLC. Overall, BITP is a prefetching framework that
is simple (no additional hardware structures, no intervention
from software writer and OS) yet effective to mitigate LLC
cross-core side-channel attacks.

REFERENCES

[1] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive last-level caches,”
in 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., 2015, pp. 897–912.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/gruss

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy, ser. SP ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 605–622. [Online]. Available:
http://dx.doi.org/10.1109/SP.2015.43

[3] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared cache
attack that works across cores and defies vm sandboxing – and its
application to aes,” in Proceedings of the 2015 IEEE Symposium
on Security and Privacy, ser. SP ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 591–604. [Online]. Available:
http://dx.doi.org/10.1109/SP.2015.42

[4] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: Exploring information leakage in third-party
compute clouds,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 199–212. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653687

[5] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 719–732. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2671225.2671271

[6] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in paas clouds,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 990–1003. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660356

[7] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Armageddon: Cache attacks on mobile devices,” in 25th USENIX
Security Symposium (USENIX Security 16). Austin, TX: USENIX
Association, 2016, pp. 549–564. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/lipp

[8] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks
in a non-inclusive world,” in 2019 2019 IEEE Symposium on
Security and Privacy (SP), vol. 00, pp. 56–72. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2019.00004

[9] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 871–882. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978324

[10] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), March 2016, pp. 406–418.

[11] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 118–129. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337159.2337173

[12] F. Liu and R. B. Lee, “Random fill cache architecture,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 203–215. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.28

[13] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh, “Secdcp:
Secure dynamic cache partitioning for efficient timing channel protection,”
in Proceedings of the 53rd Annual Design Automation Conference, ser.

DAC ’16. New York, NY, USA: ACM, 2016, pp. 74:1–74:6. [Online].
Available: http://doi.acm.org/10.1145/2897937.2898086

[14] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, ser. ISCA ’07.
New York, NY, USA: ACM, 2007, pp. 494–505. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250723

[15] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: Relaxed inclusion
caches for mitigating llc side-channel attacks,” in Proceedings of
the 54th Annual Design Automation Conference 2017, ser. DAC ’17.
New York, NY, USA: ACM, 2017, pp. 7:1–7:6. [Online]. Available:
http://doi.acm.org/10.1145/3061639.3062313

[16] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure
hierarchy-aware cache replacement policy (sharp): Defending against
cache-based side channel atacks,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: ACM, 2017, pp. 347–360. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080222

[17] A. Jaleel, E. Borch, M. Bhandaru, S. C. S. Jr., and J. S. Emer,
“Achieving non-inclusive cache performance with inclusive caches:
Temporal locality aware (TLA) cache management policies,” in 43rd
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2010, 4-8 December 2010, Atlanta, Georgia, USA, 2010, pp.
151–162. [Online]. Available: https://doi.org/10.1109/MICRO.2010.52

[18] “Gnupg, https://www.gnupg.org/software/index.html.”
[19] “Poppler, https://poppler.freedesktop.org/.”
[20] C. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. S. Jr.,

and J. S. Emer, “Ship: signature-based hit predictor for high
performance caching,” in 44rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2011, Porto Alegre, Brazil,
December 3-7, 2011, 2011, pp. 430–441. [Online]. Available:
http://doi.acm.org/10.1145/2155620.2155671

[21] A. Jain and C. Lin, “Back to the future: Leveraging belady’s
algorithm for improved cache replacement,” in 43rd ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2016, Seoul,
South Korea, June 18-22, 2016, 2016, pp. 78–89. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.17

[22] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online].
Available: http://doi.acm.org/10.1145/1186736.1186737

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008, pp.
72–81. [Online]. Available: http://doi.acm.org/10.1145/1454115.1454128

[24] “Cloudsuite, http://parsa.epfl.ch/cloudsuite/cloudsuite.html.”
[25] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.

Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill,
and D. A. Wood, “The gem5 simulator,” SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[26] “CRC2 objective: http://crc2.ece.tamu.edu/#objective,.”
[27] “CRC1, https://www.jilp.org/jwac-1/.”
[28] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A

fast and stealthy cache attack,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721, ser. DIMVA 2016. New York, NY, USA:
Springer-Verlag New York, Inc., 2016, pp. 279–299. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-40667-1 14

[29] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’16. New
York, NY, USA: ACM, 2016, pp. 353–364. [Online]. Available:
http://doi.acm.org/10.1145/2897845.2897867

[30] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 368–379.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978356

[31] “Cacheflush, http://man7.org/linux/man-pages/man2/cacheflush.2.html.”
[32] “NACL, https://developer.chrome.com/native-client.”

12

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
http://dx.doi.org/10.1109/SP.2015.43
http://dx.doi.org/10.1109/SP.2015.42
http://doi.acm.org/10.1145/1653662.1653687
http://dl.acm.org/citation.cfm?id=2671225.2671271
http://doi.acm.org/10.1145/2660267.2660356
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
doi.ieeecomputersociety.org/10.1109/SP.2019.00004
http://doi.acm.org/10.1145/2976749.2978324
http://dl.acm.org/citation.cfm?id=2337159.2337173
http://dx.doi.org/10.1109/MICRO.2014.28
http://doi.acm.org/10.1145/2897937.2898086
http://doi.acm.org/10.1145/1250662.1250723
http://doi.acm.org/10.1145/3061639.3062313
http://doi.acm.org/10.1145/3079856.3080222
https://doi.org/10.1109/MICRO.2010.52
 https://www.gnupg.org/software/index.html
 https://poppler.freedesktop.org/
http://doi.acm.org/10.1145/2155620.2155671
https://doi.org/10.1109/ISCA.2016.17
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1454115.1454128
http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://doi.acm.org/10.1145/2024716.2024718
http://crc2.ece.tamu.edu/#objective
https://www.jilp.org/jwac-1/
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://doi.acm.org/10.1145/2897845.2897867
http://doi.acm.org/10.1145/2976749.2978356
http://man7.org/linux/man-pages/man2/cacheflush.2.html
https://developer.chrome.com/native-client

[33] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and Y. Yarom,
“Amplifying side channels through performance degradation,” in
Proceedings of the 32Nd Annual Conference on Computer Security
Applications, ser. ACSAC ’16. New York, NY, USA: ACM, 2016,
pp. 422–435. [Online]. Available: http://doi.acm.org/10.1145/2991079.
2991084

[34] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” in 37th International Symposium on Computer Architecture
(ISCA 2010), June 19-23, 2010, Saint-Malo, France, 2010, pp. 60–71.
[Online]. Available: http://doi.acm.org/10.1145/1815961.1815971

[35] R. B. Lee and W. Shi, “HASP 2013, the second workshop on
hardware and architectural support for security and privacy, tel-
aviv, israel, june 23-24, 2013.” ACM, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487726

[36] Z. He and R. B. Lee, “How secure is your cache against side-
channel attacks?” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: ACM, 2017, pp. 341–353. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3124546

[37] C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering intel last-level cache complex addressing using
performance counters,” in Proceedings of the 18th International
Symposium on Research in Attacks, Intrusions, and Defenses -
Volume 9404, ser. RAID 2015. New York, NY, USA: Springer-
Verlag New York, Inc., 2015, pp. 48–65. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26362-5 3

[38] D. M. Gordon, “A survey of fast exponentiation methods,” J.
Algorithms, vol. 27, no. 1, pp. 129–146, Apr. 1998. [Online]. Available:
http://dx.doi.org/10.1006/jagm.1997.0913

[39] O. Aciiçmez and W. Schindler, “A vulnerability in rsa implementations
due to instruction cache analysis and its demonstration on openssl,”
in Proceedings of the 2008 The Cryptopgraphers’ Track at the
RSA Conference on Topics in Cryptology, ser. CT-RSA’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 256–273. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1791688.1791711

[40] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security, ser.
CCS ’12. New York, NY, USA: ACM, 2012, pp. 305–316. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382230

[41] T. Hornby, “Side-channel attacks on everyday applications: Distinguishing
inputs with flush+reload,” 2016.

[42] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared cache attack
that works across cores and defies vm sandboxing – and its application
to aes,” in 2015 IEEE Symposium on Security and Privacy, May 2015,
pp. 591–604.

[43] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
March 2016, pp. 469–480.

[44] “Champsim, https://github.com/ChampSim/ChampSim.”
[45] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate

memory system simulator,” IEEE Computer Architecture Letters, vol. 10,
no. 1, pp. 16–19, Jan 2011.

[46] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and
fairness in smt processors,” in 2001 IEEE International Symposium
on Performance Analysis of Systems and Software. ISPASS., 2001, pp.
164–171.

[47] “CACTI, http://www.hpl.hp.com/research/cacti.”
[48] “Calculating memory system power for ddr3.”
[49] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast

and accurate noc power and area model for early-stage design space
exploration,” in Proceedings of the Conference on Design, Automation
and Test in Europe, ser. DATE ’09. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2009, pp. 423–428.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1874620.1874721

[50] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and
C. Wilkerson, “Kill the program counter: Reconstructing program
behavior in the processor cache hierarchy,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017, 2017, pp. 737–749. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037701

[51] S. H. Pugsley, Z. Chishti, C. Wilkerson, P. f. Chuang, R. L. Scott, A. Jaleel,
S. L. Lu, K. Chow, and R. Balasubramonian, “Sandbox prefetching:
Safe run-time evaluation of aggressive prefetchers,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2014, pp. 626–637.

[52] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 871–882. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978324

[53] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-level
protection against cache-based side channel attacks in the cloud,” in
Proceedings of the 21st USENIX Conference on Security Symposium, ser.
Security’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 11–11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2362793.2362804

[54] W.-M. Hu, “Reducing timing channels with fuzzy time,” J. Comput.
Secur., vol. 1, no. 3-4, pp. 233–254, May 1992. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2699806.2699810

[55] J. Chen and G. Venkataramani, “Cc-hunter: Uncovering covert timing
channels on shared processor hardware,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-47. Washington, DC, USA: IEEE Computer Society, 2014, pp.
216–228. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2014.42

[56] M. Yan, Y. Shalabi, and J. Torrellas, “Replayconfusion: Detecting
cache-based covert channel attacks using record and replay,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2016, pp. 1–14.

[57] M. Payer, “Hexpads: A platform to detect ”stealth” attacks,” in
Proceedings of the 8th International Symposium on Engineering Secure
Software and Systems - Volume 9639, ser. ESSoS 2016. New York,
NY, USA: Springer-Verlag New York, Inc., 2016, pp. 138–154. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-30806-7 9

[58] A. Fuchs and R. B. Lee, “Disruptive prefetching: Impact on
side-channel attacks and cache designs,” in Proceedings of the 8th
ACM International Systems and Storage Conference, ser. SYSTOR ’15.
New York, NY, USA: ACM, 2015, pp. 14:1–14:12. [Online]. Available:
http://doi.acm.org/10.1145/2757667.2757672

13

http://doi.acm.org/10.1145/2991079.2991084
http://doi.acm.org/10.1145/2991079.2991084
http://doi.acm.org/10.1145/1815961.1815971
http://dl.acm.org/citation.cfm?id=2487726
http://doi.acm.org/10.1145/3123939.3124546
http://dx.doi.org/10.1007/978-3-319-26362-5_3
http://dx.doi.org/10.1006/jagm.1997.0913
http://dl.acm.org/citation.cfm?id=1791688.1791711
http://doi.acm.org/10.1145/2382196.2382230
 https://github.com/ChampSim/ChampSim
http://www.hpl.hp.com/research/cacti
http://dl.acm.org/citation.cfm?id=1874620.1874721
http://doi.acm.org/10.1145/3037697.3037701
http://doi.acm.org/10.1145/2976749.2978324
http://dl.acm.org/citation.cfm?id=2362793.2362804
http://dl.acm.org/citation.cfm?id=2699806.2699810
http://dx.doi.org/10.1109/MICRO.2014.42
http://dx.doi.org/10.1007/978-3-319-30806-7_9
http://doi.acm.org/10.1145/2757667.2757672

	Introduction
	Background
	BACK-INVALIDATION-HITS TRIGGERED PREFETCHING (BITP)
	BITP Mechanism
	Metrics for Security Effectiveness
	PAS of BITP
	PAS for Evict+Time attack with BITP
	PAS for Evict+Reload Attack
	PAS for Prime+Probe Attack with BITP

	Access Time Difference with BITP
	Evict+Time Attack on AES
	Evict+Reload attack on GnuPG
	Prime+Probe attack on Poppler

	Eviction Attacks in Non-inclusive LLCs
	BITP with Intelligent Attackers
	Revisiting The Notion of Time
	Security Comparison with Recent Works

	Performance Evaluation
	Simulation Methodology
	Single-core and Multi-core Results
	Comparison with the prior works

	Related Work
	Conclusion
	References

