
ILC: A Calculus for Composable, Computational
Cryptography

Kevin Liao
University of Illinois

Urbana-Champaign, USA
kliao6@illinois.edu

Matthew A. Hammer
DFINITY, USA

matthew@dfinity.org

Andrew Miller
University of Illinois

Urbana-Champaign, USA
soc1024@illinois.edu

Abstract
The universal composability (UC) framework is the estab-
lished standard for analyzing cryptographic protocols in a
modular way, such that security is preserved under concur-
rent composition with arbitrary other protocols. However,
although UC is widely used for on-paper proofs, prior at-
tempts at systemizing it have fallen short, either by using a
symbolic model (thereby ruling out computational reduction
proofs), or by limiting its expressiveness.
In this paper, we lay the groundwork for building a con-

crete, executable implementation of the UC framework. Our
main contribution is a process calculus, dubbed the Inter-
active Lambda Calculus (ILC). ILC faithfully captures the
computational model underlying UC—interactive Turing
machines (ITMs)—by adapting ITMs to a subset of the 𝜋-
calculus through an affine typing discipline. In other words,
well-typed ILC programs are expressible as ITMs. In turn, ILC’s
strong confluence property enables reasoning about crypto-
graphic security reductions. We use ILC to develop a simpli-
fied implementation of UC called SaUCy.

CCS Concepts • Security and privacy → Formal secu-
rity models.

Keywords Provable security, universal composability, pro-
cess calculus, type systems

ACM Reference Format:
Kevin Liao, Matthew A. Hammer, and Andrew Miller. 2019. ILC:
A Calculus for Composable, Computational Cryptography. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’19), June 22–26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 31 pages. https:
//doi.org/10.1145/3314221.3314607

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314607

1 Introduction
In cryptography, a proof of security in the simulation-based
universal composability (UC) framework is considered the
gold standard for demonstrating that a protocol “does its job
securely” [16]. In particular, a UC-secure protocol enjoys the
strongest notion of compositionality—it maintains all secu-
rity properties even when run concurrently with arbitrary
other protocol instances. This is in contrast with weaker
property-based notions that only guarantee security in a
standalone setting [37] or under sequential composition [26].
Thus, the benefit of using UC is modularity—it supports an-
alyzing complex protocols by composing simpler building
blocks. However, the cost of using UC is that security proofs
tend to be quite complicated. We believe that applying a PL-
style of systemization to UC can help simplify its use, bring
new clarity, and provide useful tooling. We envision a future
where modularity of cryptographic protocol composition
translates to modular implementation as well.

Reviewing prior efforts of applying PL techniques to cryp-
tography, we find they run up against challenges when im-
porting the existing body of UC theory. Either they do not
support computational reasoning (which considers issues
of probability and computational complexity) [10], do not
support message-passing concurrency for distributed proto-
cols [4], or are too expressive (allow for expressing nonde-
terminism with no computational interpretation) [2].
Our observation is that these approaches diverge from

UC at a low level: UC is defined atop the underlying (con-
current) computational model of interactive Turing machines
(ITMs). The significance of ITMs is that they have a clear com-
putational interpretation, so it is straightforward to relate
execution traces to a probabilistic polynomial time computa-
tion, as is necessary for cryptographic reduction proofs. The
presence of (non-probabilistic) nondeterminism in alterna-
tive models of concurrency would frustrate such reduction
proofs. ITMs sidestep this issue by having a deterministic
(modulo random coin tosses), “single-threaded” execution se-
mantics. That is, processes pass control from one to another
each time a message is sent so that exactly one process is ac-
tive at any given time, and, moreover, the order of activations
is fully determined.
In this paper, we take up the challenge of faithfully cap-

turing these idioms by designing a new process calculus
called the Interactive Lambda Calculus (ILC), which adapts

https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/3314221.3314607

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

ITMs to a subset of the 𝜋-calculus [43] through an affine
typing discipline. In other words, well-typed ILC programs
are expressible as ITMs. We then use ILC to build a concrete,
executable implementation of a simplified UC framework,
dubbed SaUCy.

1.1 Interactive Lambda Calculus
Why do we need another process calculus in the first place?
Where do existing ones fall short? On the one hand, process
calculi such as the 𝜋-calculus [43] and its cryptography-
oriented variants [1, 2, 35] are not a good fit to ITMs, since
they permit non-confluent reductions by design (i.e., non-
probabilistic nondeterminism). On the other hand, various
other calculi that do enjoy confluence are overly restrictive,
only allowing for fixed or two-party communications [10,
24, 30].
ILC fills this gap by adapting ITMs to a subset of the 𝜋-

calculus through an affine typing discipline. To maintain
that only one process is active (can write) at any given time,
processes implicitly pass around an affine “write token” by
virtue of where they perform read and write effects: When
process 𝐴 writes to process 𝐵, process 𝐴 “spends” the write
token and process 𝐵 “earns” the write token. Moreover, to
maintain that the order of activations is fully determined,
the read endpoints of channels are (non-duplicable) affine
resources, and so each write operation corresponds to a
single, unique read operation. Together, these give ILC its
central metatheoretic property of confluence.
The importance of confluence is that the only nondeter-

minism in an ILC program is due to random coin tosses taken
by processes, which have a well-defined distribution. Addi-
tionally, any apparent concurrency hazards, such as adversar-
ial scheduling of messages in an asynchronous network, are
due to an explicit adversary process rather than uncertainty
built into the model itself. This eliminates non-probabilistic
nondeterminism, and so ILC programs are amenable to the
reasoning patterns necessary for establishing computational
security guarantees.

1.2 Contributions
To summarize, our main contributions are these:

• We design a foundational calculus for the purpose of sys-
temizing UC called the Interactive Lambda Calculus, which
exhibits confluence and is a faithful abstraction of ITMs.
• We use ILC to build a concrete, executable implementation
of a simplified UC framework called SaUCy.
• We then use SaUCy to port over a sampling of theory
from UC literature, including a composition theorem, an
instantiation proof of UC commitments [19], and an exam-
ination of a subtle definitional issue involving reentrant
concurrency [14].

2 Overview
We first provide background on the universal composability
framework and then give a tour of ILC.

2.1 Background on Universal Composability
Security proofs in the UC framework follow the real/ideal
paradigm [26]. To carry out some cryptographic task in the
real world, we define a distributed protocol that achieves the
task across many untrusted processes. Then, to show that it
is secure, we compare it with an idealized protocol in which
processes simply rely on a single trusted process to carry out
the task for them (and so security is satisfied trivially).
The program for this single trusted process is called an

ideal functionality as it provides a uniformway to describe all
the security properties we want from the protocol. Roughly
speaking, we say a protocol 𝜋 realizes an ideal functionality
F (i.e., it meets its specification) if every adversarial behavior
in the real world can also be exhibited in the ideal world.
Once we have defined 𝜋 and F , proving realization for-

mally follows a standard rhythm:
1. The first step is a construction: We must provide a sim-

ulator S that translates any attack A on the protocol 𝜋
into an attack on F .

2. The second step is a relational analysis: We must show
that running 𝜋 under attack by any adversaryA (the real
world) is indistinguishable from running F under attack
by S (the ideal world) to any distinguisherZ called the
environment.

In particular,Z is an adaptive distinguisher: It interacts with
both the real world and the ideal world, and the simulation
is sound if noZ can distinguish between the two.

As mentioned, the primary goal of this framework is com-
positionality. Suppose a protocol 𝜋 is a protocol module that
realizes a functionality F (a specification of the module),
and suppose a protocol 𝜌 , which relies on F as a subroutine,
in turn realizes an application specification functionality G.
Then, the composed protocol 𝜌 ◦ 𝜋 , in which calls to F are
replaced by calls to 𝜋 , also realizes G. Instead of analyzing
the composite protocol consisting of 𝜌 and 𝜋 , it suffices to
analyze the security of 𝜌 itself in the simpler world with F ,
the idealized version of 𝜋 .

Finally, the UC framework is defined atop the underlying
computational model of interactive Turing machines (ITMs).
In the ITMmodel, processes pass control from one to another
each time amessage is sent so that exactly one process is active
at any given time, and, moreover, the order of activations
is fully determined. This gives ITMs a clear computational
interpretation, which is necessary for the above proofs (in
particular, cryptographic reductions) to go through.

2.2 ILC by Example
We make the above more concrete by running through an
example of commitment, an essential building block in many

2

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Fcom proceeds as follows, running with committer 𝑃 and receiver 𝑄 .
1. Upon receiving a message (Commit, 𝑏) from 𝑃 , where 𝑏 ∈ {0, 1},

record the value 𝑏 and send the message (Receipt) to 𝑄 . Ignore
any subsequent Commit messages.

2. Upon receiving a message (Open) from 𝑃 , proceed as follows: If
some value 𝑏 was previously recorded, then send the message
(Open, 𝑏) to 𝑄 and halt. Otherwise, halt.

fCom :: Wr Msg→ Rd Msg⊸ 1

let fCom toQ frP =
let (!(Commit b), frP) = rd frP in
wr Receipt→ toQ ;
let (!Open, frP) = rd frP in
wr (Opened b)→ toQ

Figure 1. An ideal functionality for a one-time commitment scheme in prose (left) and in ILC (right).

cryptographic protocols [11]. The idea behind commitment
is simple: A committer provides a receiver with the digital
equivalent of a “sealed envelope” containing some value
that can later be revealed. The commitment scheme must
be hiding in the sense that the commitment itself reveals no
information about the committed value, and binding in the
sense that the committer can only open the commitment
to a single value. For security under composition, an addi-
tional non-malleability property is required, which roughly
prevents an attacker from using one commitment to derive
another related one.

All of these properties are captured at once using an ideal
functionality. In Figure 1 (left), we show a simplified ideal
functionality for one-time bit commitment, Fcom, as it would
appear in the cryptography literature [19]. The functionality
simply waits for the committer 𝑃 to commit to some bit 𝑏,
notifies the receiver 𝑄 that it has taken place, and reveals 𝑏
to 𝑄 upon request by 𝑃 . Notice that 𝑄 never actually sees a
commitment to 𝑏 (only the (Receipt) message), so the three
properties hold trivially.
In Figure 1 (right), we implement a simplified version

of Fcom in ILC to highlight some key features of the lan-
guage. The function fCom takes two channel endpoints as
arguments. The first is a write endpoint toQ : Wr Msg (for
sending messages of typeMsg to𝑄), and the second is a read
endpoint frP : Rd Msg (for receiving messages of typeMsg
from 𝑃). At a high level, it should be clear how the communi-
cation pattern in fCom follows that in Fcom, but there are a
few details that require further explanation. These details are
better explained in the context of ILC’s type system, which
we give a quick tour of next.

2.3 ILC Type System
ILC terms have either an unrestricted type, meaning they can
be freely copied, or an affine type, meaning they can be used
at most once. Affine typing serves a special purpose, namely,
to ensure that ILC processes have a determined sequence of
activations, as is required in ITMs. This is achieved through
the following invariants:

• Only one process is active at any given time. Processes im-
plicitly pass around an affine “write token” w○ by virtue
of where they perform read and write effects. In order
for process 𝐴 to write to process 𝐵, process 𝐴 must first

own the write token. Because the write token is unique,
at most one process owns the write token (“is active” or
“can write”) at any given time. When process 𝐵 reads the
message from 𝐴, process 𝐵 earns the write token, thereby
conserving its uniqueness and now allowing process 𝐵 to
write to some other process.
• The order of activations is deterministic. Each channel (or
“tape” in ITM parlance) has a read endpoint and a write
endpoint. The read endpoint is an affine resource, and
so it is owned by at most one process. This ensures that
each write operation corresponds to a single, unique read
operation.

Intuitively, the first invariant rules out the possibility of
write nondeterminism. Consider the case in which two pro-
cesses are trying to execute writes in parallel, which would
lead to a race condition. This does not typecheck, since the
affine write token belongs to at most one process. One might
justifiably wonder why write endpoints are unrestricted and
read endpoints are affine. Note that if two processes are try-
ing to write in parallel, the two write endpoints need not be
the same, so making write endpoints affine would not help
our case in eliminating write nondeterminism.
Dually, the second invariant rules out the possibility of

read nondeterminism. Consider the case in which two pro-
cesses 𝐴 and 𝐵 are listening on the same read endpoint. If a
process𝐶 writes on the corresponding write endpoint, which
of 𝐴 or 𝐵 (or both) gets activation? If only one of them is
activated, then we have a source of nondeterminism. If both
are activated, now 𝐴 and 𝐵 both own write tokens, violat-
ing its affinity. In any case, this does not typecheck since
read endpoints are affine resources, making it impossible
for two processes 𝐴 and 𝐵 to listen on the same read end-
point. Together, these invariants ensure that processes have
a determined sequence of activations as desired.

A Selection of Typing Rules. To see these invariants in
action, we walk through the typing rules for fork, write,
and read expressions. We read the typing judgement Δ; Γ ⊢
𝑒 : 𝑈 as “under affine context Δ and unrestricted context Γ,
expression 𝑒 has type𝑈 .” The metavariables𝑈 and 𝑉 range
over all types (both unrestricted and affine).

3

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

The fork expression 𝑒1 |▷ 𝑒2 spawns a child process 𝑒1 and
continues as 𝑒2.

Δ1; Γ ⊢ 𝑒1 : 𝑈 Δ2; Γ ⊢ 𝑒2 : 𝑉
Δ1,Δ2; Γ ⊢ 𝑒1 |▷ 𝑒2 : 𝑉

fork

Its typing rule says that if we can partition the affine context
as Δ1,Δ2 such that 𝑒1 has type 𝑈 under contexts Δ1; Γ and
𝑒2 has type 𝑉 under contexts Δ2; Γ, then the expression has
type𝑉 . Notice that affine resources (e.g., read endpoints and
the write token) must be split between the child process and
the parent process, thereby preventing their duplication.

Thewrite expressionwr(𝑒1, 𝑒2) sends the value that 𝑒1 eval-
uates to on the write endpoint that 𝑒2 evaluates to. One thing
to mention is that only values of a sendable type (ranged
over by 𝑆) can be sent over channels (more on this later).

Δ1; Γ ⊢ 𝑒1 : 𝑆 Δ2; Γ ⊢ 𝑒2 : Wr 𝑆

Δ1,Δ2, w○; Γ ⊢ wr(𝑒1, 𝑒2) : 1
wr

Its typing rule says that if we own the write token and we
can partition the affine context as Δ1,Δ2 such that 𝑒1 has type
𝑆 under contexts Δ1; Γ and 𝑒2 evaluates to a write endpoint
(of type Wr 𝑆) under contexts Δ2; Γ, then the expression has
type 1 (unit). Notice that typing a write expression spends
the write token, and so it cannot execute another write until
it gets “reactivated” by reading from some other process.

The read expression rd(𝑒1, 𝑥 .𝑒2) reads a value on the read
endpoint that 𝑒1 evaluates to and binds the value-endpoint
pair as 𝑥 in the affine context of 𝑒2. Rebinding the read end-
point allows it to be reused.

w○ ∉ Δ2 Δ1; Γ ⊢ 𝑒1 : Rd 𝑆
Δ2, w○, 𝑥 : ! 𝑆 ⊗ Rd 𝑆 ; Γ ⊢ 𝑒2 : 𝑈
Δ1,Δ2; Γ ⊢ rd(𝑒1, 𝑥 .𝑒2) : 𝑈

rd

Its typing rule says that if we can partition the affine context
as Δ1,Δ2 such that 𝑒1 evaluates to a read endpoint (of type
Rd 𝑆) under contexts Δ1; Γ, and 𝑒2 has type𝑈 under contexts
Δ2, w○, 𝑥 : ! 𝑆 ⊗ Rd 𝑆 ; Γ, then the expression has type𝑈 .
There are a few things to unpack here. First, we explain

the affine product type ! 𝑆 ⊗ Rd 𝑆 . Since sendable values are
unrestricted and read endpoints are affine, the value read on
the channel is wrapped in a ! operator (pronounced “bang”)
so that it can be placed in an affine pair. Next, observe that
w○ is available in the body 𝑒2 of the read expression (i.e., it
is conserved), but only under the condition that it is not
already in the affine context Δ2 (otherwise, a process could
arbitrarily mint write tokens, violating its affinity).

Revisiting fCom. Having gone through several typing rules,
we now revisit fCom from Figure 1 (right). In particular, we
should convince ourselves that fCom respects the invariants
of the type system.
The type signature tells us that toQ : Wr Msg is unre-

stricted (→ is the type connective for unrestricted arrows)
and frP : Rd Msg is affine (⊸ is the type connective for affine

arrows). As we mentioned, write endpoints are not affine,
since this restriction does not help in preventing write non-
determinism; read endpoints are affine, which does prevent
read nondeterminism. To see that frP is being used affinely,
notice that it is rebound when deconstructing the value-
endpoint pair from each read operation, so it can be used
again.

To see that the write token is being passed around appro-
priately, notice that the read and write effects are interleaved.
Before each read operation, fCom does not own the write
token: In the first read operation, only frP : RdMsg is present
in the affine context; in the second read operation, the first
write operation has already spent the write token. Before
each write operation, fCom does own the write token: Each
is preceded by a read operation.

3 Interactive Lambda Calculus
We now present the Interactive Lambda Calculus in full, for-
malizing its syntax, static semantics, and dynamic semantics.

3.1 Syntax
The syntax of ILC is given in Figure 2. Types (written 𝑈 ,
𝑉) are bifurcated into unrestricted types (written 𝐴, 𝐵) and
affine types (written 𝑋 , 𝑌).

A subset of the unrestricted types are sendable types (writ-
ten 𝑆 , 𝑇), i.e., the types of values that can be sent over chan-
nels. This restriction ensures that channels model network
channels, which send only data. The sendable types include
unit (1), products (𝑆 ×𝑇), and sums (𝑆 +𝑇).
The unrestricted types include the sendable types, write

endpoint types (Wr 𝑆), products (𝐴× 𝐵), sums (𝐴 + 𝐵), arrows
(𝐴 →∞ 𝑈 or simply 𝐴 → 𝑈), and write arrows (𝐴 →w 𝑈).
Write arrows specify unrestricted abstractions for which
the write token can be moved into the affine context of the
abstraction body during 𝛽-reduction.
The affine types include bang types (!𝐴), read endpoint

types (Rd 𝑆), products (𝑋 ⊗ 𝑌), sums (𝑋 ⊕ 𝑌), and arrows
(𝑋 →1 𝑈 or simply 𝑋 ⊸ 𝑈). Notice that the write token
w○ lives in the affine context, though it cannot be bound to
any variable. Instead, it flows around implicitly by virtue of
where read and write effects are performed.

For concision, certain syntactic forms are parameterized
by a multiplicity 𝜋 to distinguish between the unrestricted
(∞) and affine (1) counterparts; other syntactic forms are
parameterized by a syntax label ℓ , which includes the mul-
tiplicity labels and the write label w (related to write ef-
fects). On introduction and elimination forms for functions
(abstraction, application, and fixed points), the label w de-
notes variants that move around the write token as explained
above. On introduction and elimination forms for products
and sums, the label w denotes the sendable variants.

4

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

All types 𝑈 ,𝑉 ::= 𝐴 | 𝑋
Sendable types 𝑆,𝑇 ::= 1 | 𝑆 ×𝑇 | 𝑆 +𝑇
Unrestricted types 𝐴, 𝐵 ::= 𝑆 | Wr 𝑆 | 𝐴 × 𝐵 | 𝐴 + 𝐵 | 𝐴→∞|w 𝑈

Affine types 𝑋,𝑌 ::= !𝐴 | Rd 𝑆 | 𝑋 ⊗ 𝑌 | 𝑋 ⊕ 𝑌 | 𝑋 →1 𝑈

Syntax labels ℓ ::= 𝜋 | w
Multiplicity labels 𝜋 ::= 1 | ∞
Unrestricted typings Γ ::= · | Γ, 𝑥 : 𝐴
Affine typings Δ ::= · | Δ, 𝑥 : 𝑋 | Δ, w○

Values 𝑣 ::= () | (𝑣1, 𝑣2)ℓ | inj1ℓ (𝑣) | inj2ℓ (𝑣) | _ℓ 𝑥 . 𝑒 | 𝑐 | ! 𝑣
Channel endpoints 𝑐 ::= Read(𝑑) | Write(𝑑)
Channel names 𝑑 ::= · · ·
Expressions 𝑒 ::= 𝑥 | () | (𝑒1, 𝑒2)ℓ | inj𝑖ℓ (𝑒) | splitℓ (𝑒1, 𝑥1.𝑥2.𝑒2) | caseℓ (𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2)

| _ℓ 𝑥 . 𝑒 | (𝑒1 𝑒2)ℓ | fixℓ (𝑥 .𝑒) | let𝜋 (𝑒1, 𝑥 .𝑒2) | ! 𝑒 | ¡ 𝑒
| a (𝑥1, 𝑥2). 𝑒 | wr(𝑒1, 𝑒2) | rd(𝑒1, 𝑥 .𝑒2) | ch(𝑒1, 𝑥1 .𝑒3, 𝑒2, 𝑥2 .𝑒4) | 𝑒1 |▷ 𝑒2

Figure 2. ILC Syntax.

Values in ILC (written 𝑣) include unit, pairs, sums, lambda
expressions, channel endpoints (written 𝑐), and banged val-
ues.We distinguish between the names of channel endpoints—
Read(𝑑) and Write(𝑑)—and the channel 𝑑 itself that binds
them. ILC supports a fairly standard feature set of expres-
sions. Bang-typed values have introduction form ! 𝑒 and elim-
ination form ¡ 𝑒 . The more interesting expressions are those
related to communication and concurrency:

• Restriction: a (𝑥1, 𝑥2). 𝑒 binds a read endpoint 𝑥1 and a cor-
responding write endpoint 𝑥2 in 𝑒 .
• Write: wr(𝑒1, 𝑒2) sends the value that 𝑒1 evaluates to on
the write endpoint that 𝑒2 evaluates to.
• Read: rd(𝑒1, 𝑥 .𝑒2) reads a value from the read endpoint that
𝑒1 evaluates to and binds the value-endpoint pair as 𝑥 in
𝑒2.
• Choice: ch(𝑒1, 𝑥1.𝑒3, 𝑒2, 𝑥2.𝑒4) allows a process to continue
as either 𝑒3 or 𝑒4 based on some initial read event on one
of the read endpoints that 𝑒1 and 𝑒2 evaluate to. The value
read over the channel and the two read endpoints are
rebound in a 3-tuple as 𝑥1 in 𝑒3 or 𝑥2 in 𝑒4. Here, we show
only binary choice, but it can be generalized to the 𝑛-ary
case.
• Fork: 𝑒1 |▷ 𝑒2 spawns a child process 𝑒1 and continues as
𝑒2.

3.2 Static Semantics
The typing rules of ILC are given in Figure 3. An algorithmic
version of the rules appears in the appendix.

To recap, the typing rules maintain that only one process
is active at any given time (unique ownership of the write
token), and the order of activations is deterministic (unique
ownership of read endpoints). We read the typing judgement
Δ; Γ ⊢ 𝑒 : 𝑈 as “under affine context Δ and unrestricted
context Γ, expression 𝑒 has type 𝑈 .” In full detail, the typing
judgement also includes a typing context Ψ, which maps
channel names 𝑑 to sendable types 𝑆 . However, it is only
used in two special rules for typing channel endpoints that
do not arise for source level programs, but will be needed to
typecheck a running program that has performed channel

allocation:

Ψ(𝑑) = 𝑆

Ψ;Δ; Γ ⊢ Read(𝑑) : Rd 𝑆
rdend

Ψ(𝑑) = 𝑆

Ψ;Δ; Γ ⊢Write(𝑑) : Wr 𝑆
wrend

This pair of rules establish the canonical forms for the types
of channel endpoints, Rd 𝑆 andWr 𝑆 . We use the metavari-
able 𝑐 to range over these two canonical forms.
The typing rules for the functional fragment of ILC are

fairly standard, except that they now have unrestricted and
affine variants (and for some, sendable variants).
The rule for unrestricted abstraction (uabs) extends the

unrestricted context Γ with 𝑥 : 𝐴 before checking the body 𝑒
of the abstraction. Notice that because unrestricted abstrac-
tions can be duplicated, the body must be affinely closed
(cannot contain free affine variables).

The rule for write abstraction (wabs) is similar to uabs. The
only difference is that wabs extends the affine context with
the write token before checking the body 𝑒 of the abstraction.
Dually, the write application rule (wapp) stipulates that a
process must own the write token in order to apply a write
abstraction.

The rule for affine abstraction (aabs) is analagous to uabs,
but notice that the body need not be affinely closed, since
affine abstractions cannot be duplicated. It turns out that
most affine functions we write are affinely closed, and so
such a function 𝑓 : 𝑋 ⊸ 𝑈 can be made into an unrestricted
function 𝑔 : 𝐴 → 𝑋 ⊸ 𝑈 by adding a leading unrestricted
argument.
The bang rule turns an unrestrictedly typed expression

𝑒 : 𝐴 into an affinely typed expression 𝑒 : !𝐴. Dually, the
gnab rule turns an affinely typed expression 𝑒 : !𝐴 into an
unrestrictedly typed expression 𝑒 : 𝐴.
The typing rules for fork, write, and read were covered

in Section 2.3, so this leaves channel restriction (nu) and
external choice (choice) as the remaining typing rules related
to communication and concurrency.

5

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

Δ; Γ ⊢ 𝑒 : 𝑈 Under affine context Δ and unrestricted context Γ, expression 𝑒 has type𝑈 .

Γ(𝑥) = 𝐴

Δ; Γ ⊢ 𝑥 : 𝐴
uvar

Δ(𝑥) = 𝑋

Δ; Γ ⊢ 𝑥 : 𝑋
avar

Δ; Γ ⊢ () : 1
unit

Δ1; Γ ⊢ 𝑒1 : 𝐴1 Δ2; Γ ⊢ 𝑒2 : 𝐴2

Δ1,Δ2; Γ ⊢ (𝑒1, 𝑒2)∞ : 𝐴1 ×𝐴2
upair

Δ1; Γ ⊢ 𝑒1 : 𝑆1 Δ2; Γ ⊢ 𝑒2 : 𝑆2
Δ1,Δ2; Γ ⊢ (𝑒1, 𝑒2)w : 𝑆1 × 𝑆2

spair
Δ1; Γ ⊢ 𝑒1 : 𝑋1 Δ2; Γ ⊢ 𝑒2 : 𝑋2

Δ1,Δ2; Γ ⊢ (𝑒1, 𝑒2)1 : 𝑋1 ⊗ 𝑋2
apair

𝑖 ∈ {1, 2} Δ; Γ ⊢ 𝑒 : 𝐴𝑖

Δ; Γ ⊢ inj𝑖∞ (𝑒) : 𝐴1 +𝐴2
uinj

𝑖 ∈ {1, 2} Δ; Γ ⊢ 𝑒 : 𝑆𝑖
Δ; Γ ⊢ inj𝑖w (𝑒) : 𝑆1 + 𝑆2

sinj
𝑖 ∈ {1, 2} Δ; Γ ⊢ 𝑒 : 𝑋𝑖

Δ; Γ ⊢ inj𝑖1 (𝑒) : 𝑋1 ⊕ 𝑋2
ainj

Δ1; Γ ⊢ 𝑒1 : 𝐴1 ×𝐴2
Δ2; Γ, 𝑥1 : 𝐴1, 𝑥2 : 𝐴2 ⊢ 𝑒 : 𝑈

Δ1,Δ2; Γ ⊢ split∞ (𝑒1, 𝑥1 .𝑥2 .𝑒2) : 𝑈
usplit

Δ1; Γ ⊢ 𝑒1 : 𝑆1 × 𝑆2
Δ2; Γ, 𝑥1 : 𝑆1, 𝑥2 : 𝑆2 ⊢ 𝑒 : 𝑈

Δ1,Δ2; Γ ⊢ splitw (𝑒1, 𝑥1.𝑥2.𝑒2) : 𝑈
ssplit

Δ1; Γ ⊢ 𝑒1 : 𝑋1 ⊗ 𝑋2
Δ2, 𝑥1 : 𝑋1, 𝑥2 : 𝑋2; Γ ⊢ 𝑒 : 𝑈

Δ1,Δ2; Γ ⊢ split1 (𝑒1, 𝑥1.𝑥2.𝑒2) : 𝑈
asplit

Δ1; Γ ⊢ 𝑒 : 𝐴1 +𝐴2
Δ2; Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 : 𝑈 Δ2; Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 : 𝑈

Δ1,Δ2; Γ ⊢ case∞ (𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2) : 𝑈
ucase

Δ1; Γ ⊢ 𝑒 : 𝑆1 + 𝑆2
Δ2; Γ, 𝑥1 : 𝑆1 ⊢ 𝑒1 : 𝑈 Δ2; Γ, 𝑥2 : 𝑆2 ⊢ 𝑒2 : 𝑈

Δ1,Δ2; Γ ⊢ casew (𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2) : 𝑈
scase

Δ1; Γ ⊢ 𝑒 : 𝑋1 ⊕ 𝑋2
Δ2, 𝑥1 : 𝑋1; Γ ⊢ 𝑒1 : 𝑈 Δ2, 𝑥2 : 𝑋2; Γ ⊢ 𝑒2 : 𝑈

Δ1,Δ2; Γ ⊢ case1 (𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2) : 𝑈
acase

·; Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝑈
Δ; Γ ⊢ _∞ 𝑥 . 𝑒 : 𝐴→∞ 𝑈

uabs
w○; Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝑈

Δ; Γ ⊢ _w 𝑥 . 𝑒 : 𝐴→w 𝑈
wabs

Δ, 𝑥 : 𝑋 ; Γ ⊢ 𝑒 : 𝑈
Δ; Γ ⊢ _1 𝑥 . 𝑒 : 𝑋 →1 𝑈

aabs
Δ1; Γ ⊢ 𝑒2 : 𝐴 Δ2; Γ ⊢ 𝑒1 : 𝐴→∞ 𝑈

Δ1,Δ2; Γ ⊢ (𝑒1 𝑒2)∞ : 𝑈
uapp

Δ1; Γ ⊢ 𝑒2 : 𝐴 Δ2; Γ ⊢ 𝑒1 : 𝐴→w 𝑈

Δ1,Δ2, w○; Γ ⊢ (𝑒1 𝑒2)w : 𝑈
wapp

Δ1; Γ ⊢ 𝑒2 : 𝑋 Δ2; Γ ⊢ 𝑒1 : 𝑋 →1 𝑈

Δ1,Δ2; Γ ⊢ (𝑒1 𝑒2)1 : 𝑈
aapp

·; Γ, 𝑥 : 𝐴→∞ 𝑈 ⊢ 𝑒 : 𝐴→∞ 𝑈

Δ; Γ ⊢ fix∞ (𝑥 .𝑒) : 𝐴→∞ 𝑈
ufix

·; Γ, 𝑥 : 𝐴→w 𝑈 ⊢ 𝑒 : 𝐴→w 𝑈

Δ; Γ ⊢ fixw (𝑥 .𝑒) : 𝐴→w 𝑈
wfix

𝑥 : 𝑋 →1 𝑈 ; Γ ⊢ 𝑒 : 𝑋 →1 𝑈

Δ; Γ ⊢ fix1 (𝑥 .𝑒) : 𝑋 →1 𝑈
afix

Δ1; Γ ⊢ 𝑒1 : 𝐴
Δ2; Γ, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝑈

Δ1,Δ2; Γ ⊢ let∞ (𝑒1, 𝑥 .𝑒2) : 𝑈
ulet

Δ1; Γ ⊢ 𝑒1 : 𝑋
Δ2, 𝑥 : 𝑋 ; Γ ⊢ 𝑒2 : 𝑈

Δ1,Δ2; Γ ⊢ let1 (𝑒1, 𝑥 .𝑒2) : 𝑈
alet

Δ; Γ ⊢ 𝑒 : 𝐴
Δ; Γ ⊢ ! 𝑒 : !𝐴

bang
Δ; Γ ⊢ 𝑒 : !𝐴
Δ; Γ ⊢ ¡ 𝑒 : 𝐴

gnab

Δ, 𝑥1 : Rd 𝑆 ; Γ, 𝑥2 : Wr 𝑆 ⊢ 𝑒 : 𝑈
Δ; Γ ⊢ a (𝑥1, 𝑥2). 𝑒 : 𝑈

nu

Δ1; Γ ⊢ 𝑒1 : 𝑆
Δ2; Γ ⊢ 𝑒2 : Wr 𝑆

Δ1,Δ2, w○; Γ ⊢ wr(𝑒1, 𝑒2) : 1
wr

w○ ∉ Δ2 Δ1; Γ ⊢ 𝑒1 : Rd 𝑆
Δ2, w○, 𝑥 : ! 𝑆 ⊗ Rd 𝑆 ; Γ ⊢ 𝑒2 : 𝑈
Δ1,Δ2; Γ ⊢ rd(𝑒1, 𝑥 .𝑒2) : 𝑈

rd

w○ ∉ Δ3 Δ1; Γ ⊢ 𝑒1 : Rd 𝑆 Δ2; Γ ⊢ 𝑒2 : Rd𝑇
Δ3, w○, 𝑥1 : ! 𝑆 ⊗ Rd 𝑆 ⊗ Rd𝑇 ; Γ ⊢ 𝑒3 : 𝑈
Δ3, w○, 𝑥2 : !𝑇 ⊗ Rd 𝑆 ⊗ Rd𝑇 ; Γ ⊢ 𝑒4 : 𝑈
Δ1,Δ2,Δ3; Γ ⊢ ch(𝑒1, 𝑥1.𝑒3, 𝑒2, 𝑥2.𝑒4) : 𝑈

choice

Δ1; Γ ⊢ 𝑒1 : 𝑈
Δ2; Γ ⊢ 𝑒2 : 𝑉

Δ1,Δ2; Γ ⊢ 𝑒1 |▷ 𝑒2 : 𝑉
fork

Figure 3. ILC typing rules.

6

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Process names 𝑝, 𝑞 ::= · · ·
Name sets Σ ::= Y | Σ, 𝑑 | Σ, 𝑝
Process pools 𝜋 ::= Y | 𝜋, 𝑝 : 𝑒
Configurations 𝐶 ::= ⟨Σ;𝜋⟩

Evaluation 𝐸 ::= • | (𝐸, 𝑒)ℓ | (𝑣, 𝐸)ℓ | inj𝑖ℓ (𝐸)
contexts | splitℓ (𝐸, 𝑥1 .𝑥2 .𝑒) | caseℓ (𝐸, 𝑥1.𝑒1, 𝑥2 .𝑒2)

| (𝐸 𝑒)ℓ | (𝑣 𝐸)ℓ | let𝜋 (𝐸, 𝑥 .𝑒) | !𝐸 | ¡𝐸
| wr(𝐸, 𝑒) | wr(𝑣, 𝐸) | rd(𝐸, 𝑥 .𝑒)
| ch(𝐸, 𝑥1.𝑒3, 𝑒2, 𝑥2.𝑒4) | ch(𝑐, 𝑥1.𝑒3, 𝐸, 𝑥2.𝑒4)

Figure 4. ILC dynamic syntax.

𝐶1 ≡ 𝐶2 Configurations 𝐶1 and 𝐶2 are equivalent.

𝜋1 ≡perm 𝜋2

⟨Σ;𝜋1⟩ ≡ ⟨Σ;𝜋2⟩
permProcs

𝑐1 { 𝑐2 Write endpoint 𝑐1 connects to read endpoint 𝑐2.

Write(𝑑) { Read(𝑑)
bind

𝐶1 −→ 𝐶2 Configuration 𝐶1 reduces to 𝐶2.

𝑒1 −→ 𝑒2

⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒2]⟩
local

𝑞 ∉ Σ

⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1 |▷ 𝑒2]⟩ −→ ⟨Σ, 𝑞;𝜋, 𝑞 : 𝑒1, 𝑝 : 𝐸 [𝑒2]⟩
fork

𝐶1 ≡ 𝐶 ′1 𝐶 ′1 −→ 𝐶 ′2 𝐶 ′2 ≡ 𝐶2

𝐶1 −→ 𝐶2
congr

𝑑 ∉ Σ

⟨Σ;𝜋, 𝑝 : 𝐸 [a (𝑥1, 𝑥2). 𝑒]⟩ −→ ⟨Σ, 𝑑 ;𝜋, 𝑝 : 𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒]⟩
nu

𝑐2 { 𝑐1

⟨Σ;𝜋, 𝑝 : 𝐸1 [rd(𝑐1, 𝑥 .𝑒)], 𝑞 : 𝐸2 [wr(𝑣, 𝑐2)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒], 𝑞 : 𝐸2 [()]⟩
rw

𝑐 { 𝑐𝑖 𝑖 ∈ {1, 2}
⟨Σ;𝜋, 𝑝 : 𝐸1 [ch(𝑐1, 𝑥1 .𝑒1, 𝑐2, 𝑥2 .𝑒2)], 𝑞 : 𝐸2 [wr(𝑣, 𝑐)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥𝑖]𝑒𝑖], 𝑞 : 𝐸2 [()]⟩

cw

𝑒1 −→ 𝑒2 Expression 𝑒1 reduces to 𝑒2.

let𝜋 (𝑣, 𝑥 .𝑒) −→ [𝑣/𝑥]𝑒
let

((_ℓ 𝑥 . 𝑒) 𝑣)ℓ −→ [𝑣/𝑥]𝑒
app

splitℓ ((𝑣1, 𝑣2)ℓ , 𝑥1 .𝑥2.𝑒) −→ [𝑣1/𝑥1] [𝑣2/𝑥2]𝑒
split

caseℓ (inj𝑖ℓ (𝑣), 𝑥1.𝑒1, 𝑥2.𝑒2) −→ [𝑣/𝑥𝑖]𝑒𝑖
case

fixℓ (𝑥 .𝑒) −→ [fixℓ (𝑥 .𝑒)/𝑥]𝑒
fix

¡ (! 𝑣) −→ 𝑣
gnab

Figure 5. ILC reduction rules.

The nu rule extends the affine context Δ with a read end-
point 𝑥1 : Rd 𝑆 and the unrestricted context Γ with a corre-
sponding write endpoint 𝑥2 : Wr 𝑆 before typing the body
𝑒 .

The choice rule partitions the affine context as Δ1,Δ2,Δ3.
The first two affine contexts are used to type 𝑒1 : Rd 𝑆 and
𝑒2 : Rd𝑇 , respectively. The third affine contextΔ3 is extended
with the affine write token and a variable 𝑥1 (or 𝑥2) binding
an affine 3-tuple containing the read value and the two read
endpoints before checking the continuation 𝑒3 (or 𝑒4). While
somewhat cumbersome, the generality of this rule allows
both read endpoints to be used in either continuation.

3.3 Dynamic Semantics
Figures 4 and 5 define the dynamic syntax and semantics of
ILC, respectively. We define a configuration 𝐶 as a tuple of
dynamic channel and process names Σ, and a pool of running
and terminated processes 𝜋 .
We read the configuration reduction judgment 𝐶1 −→

𝐶2 as “configuration 𝐶1 steps to configuration 𝐶2,” and the
local stepping judgment 𝑒1 −→ 𝑒2 for a single process 𝑒
as “expression 𝑒1 steps to expression 𝑒2.” The rules of local
stepping follow a standard call-by-value semantics, where
we streamline the definition with an evaluation context 𝐸.

7

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

Configuration stepping consists of six rules. These include
a congruence rule congr that permits some of the other rules
to be simpler, by making the order of the pool unimportant.
The relation 𝜋1 ≡perm 𝜋2 holds when 𝜋2 is a permutation of
𝜋1. The other five rules consist of local stepping (via local),
creating new processes (via fork), creating new channels
(via nu), read-write interactions (via rw), and choice-write
interactions (via cw). To avoid allocating the same name
twice, the name set Σ records names of allocated channels
and processes. We define the relation 𝑐1 { 𝑐2 to hold when
𝑐1 is the write endpoint of a corresponding read endpoint 𝑐2.

4 ILC Metatheory
Intuitively, ILC’s type system design enforces that a con-
figuration’s reduction consists of a unique (deterministic)
sequence of reader-writer process pairings, and is confluent
with any other reduction choice that exchanges the order
of other (non-interactive) reduction steps. As explained in
Section 3, ILC’s type system does so by restricting the write
effects (via an affine write token) and read effects (via affine
read endpoints) of processes. The proofs of type soundness,
whose statements we discuss next, establish the validity of
these invariants. These language-level invariants support
confluence theorems, also stated below. These theorems in-
clude full confluence: Any two full reductions of a configu-
ration yield a pair of equivalent configurations (isomorphic,
up to a renaming of nondeterministic name choices).

4.1 Type Soundness
We prove type soundness of ILC via mostly-standard notions
of progress and preservation. To state these theorems, we
follow the usual recipe, except that we give a special defini-
tion of program termination that permits deadlocks. (Recall
that ILC is concerned with enforcing confluence as its central
metatheoretic property, not deadlock freedom.) Informally,
𝐶 term holds when either:
1. 𝐶 is fully normal: Every process in 𝐶 is normalized (con-

sists of a value), or
2. 𝐶 is (at least partially) deadlocked: Some (possibly empty)

portion of 𝐶 is normal, and there exists one or more read-
ing processes in 𝐶 , or there exists one or more writing
processes in 𝐶 , however, no reader-writer process pair
exists for a common channel.
We also extend the type system given in Section 3.2 with

typing rules for configurations, including process pool typ-
ings Φ from process names 𝑝 to types𝑈 . These details, along
with the proofs of progress and preservation, can be found
in the appendix.

Theorem 4.1 (Progress). If Ψ ⊢ 𝐶 : Φ, then either𝐶 term or
there exists 𝐶 ′ such that 𝐶 −→ 𝐶 ′.

Theorem 4.2 (Preservation). If Ψ ⊢ 𝐶 : Φ and 𝐶 −→ 𝐶 ′,
then there exists Ψ′ ⊇ Ψ and Φ′ ⊇ Φ such that Ψ′ ⊢ 𝐶 ′ : Φ′.

4.2 Confluence
Confluence implies, among other things, that the order of
reduction steps is inconsequential, and that no process sched-
uling choices will affect the final outcome. ILC’s type system
enforces confluence up to nondeterministic naming choices
in rules nu and fork (Figure 5). To account for different
choices of dynamically-named channels and processes, re-
spectively, we state and prove confluence with respect to
a renaming function 𝑓 , which consistently renames these
choices in a related configuration:

Theorem 4.3 (Single-step confluence). For all well-typed
configurations 𝐶 , if 𝐶 −→ 𝐶1 and 𝐶 −→ 𝐶2, then there exists
a renaming function 𝑓 such that either:

1. 𝐶1 = 𝑓 (𝐶2), or
2. there exists 𝐶3 such that 𝐶1 −→ 𝐶3 and 𝑓 (𝐶2) −→ 𝐶3.

Intuitively, the sister configuration 𝐶2 is either different
because of a name choice (case 1), or a different process sched-
uling choice (case 2). In either case, there exists a renaming
of any choice made to reach 𝐶2, captured by function 𝑓 . By
composing multiple uses of this theorem, and the renaming
functions that they construct, we prove a multi-step notion
of confluence that reduces a single configuration 𝐶 to two
equivalent terminal configurations, 𝐶1 and 𝐶2:

Theorem 4.4 (Full confluence). For all well-typed configura-
tions𝐶 , if𝐶 −→∗ 𝐶1 and𝐶 −→∗ 𝐶2 and𝐶1 term and𝐶2 term,
then there exists renaming function 𝑓 such that 𝐶1 = 𝑓 (𝐶2).

The proofs of these statements can be found in the appen-
dix.

5 Implementation
Using this on-paper design as a guide, we have implemented
an ILC interpreter in Haskell, which at present consists of
2.3K source lines of code. The implementation of ILC and
our concrete implementation of the UC framework called
SaUCy (Section 6) are publicly available. Access to the latest
developments can be found here:

https://github.com/initc3/SaUCy.

6 SaUCy
Using ILC, we build a concrete, executable implementation
of a simplified UC framework, dubbed SaUCy. Then, we
demonstrate the versatility of SaUCy in three ways:

1. We define a protocol composition operator and prove its
associated composition theorem.

2. We walk through an instantiation of UC commitments.
3. We use ILC’s type system to reason about “reentrancy,” a

subtle definitional issue in UC that has only recently been
studied.

8

https://github.com/initc3/SaUCy

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

6.1 Probabilistic Polynomial Time in ILC
The goal of cryptography reduction is to relate every bad
event in a protocol to a probabilistic polynomial time compu-
tation that solves a hard problem. The ILC typing rules do not
guarantee termination, let alone polynomial time normaliza-
tion, so we must tackle this in metatheory. Also, since ILC
is effectively deterministic (confluent), we will need to ex-
press random choices some other way. To meet these needs,
we define a judgment about ILC terms that take a security
parameter and a stream of random bits.

Definition 6.1 (Polynomial time normalization). The judg-
ment that 𝑒 is polynomial time normalizable, written PPT 𝑒 ,
is defined as follows:

·; · ⊢ 𝑒 : Nat→ [Bit] → Bit
∀ 𝑘 ∈ Nat. ∀ 𝑟 ∈ [Bit]poly(𝑘) . 𝑒 𝑘 𝑟 →poly(𝑘) 𝑣

PPT 𝑒
ppt

This says that if for all security parameters𝑘 and all bitstrings
𝑟 (of length polynomial in 𝑘) the term 𝑒 𝑘 𝑟 normalizes to a
value 𝑣 in poly(𝑘) steps, then PPT 𝑒 .

Here, we have chosen a simple definition of polynomial
time defined only for closed terms (i.e., an entire system of
ITMs), and that requires polynomial time normalization for
every choice of random bits, not just in expectation or with
high probability.
We note that most UC variants use a more nuanced def-

inition in which the individual ITM entities, such as the
environment or protocol, can be judged polynomial time in-
dependently of their surrounding context [3, 16, 27]. Looking
ahead to Section 6.3, this choice will constrain our defini-
tion of secure protocol emulation. Hofheinz et al. [28] give a
detailed discussion of subtle issues arising with various poly-
nomial time definitions and their consequences for defining
UC security. Regardless, the present notion suffices for our
examples. We consider this issue complementary to the de-
sign of ILC itself, and adapting other notions of polynomial
time to ILC as important future work. As an example, the
polynomial time notion used in IITMs [3] relies on a dis-
tinction between “invited” and “uninvited” messages, which
could be captured through refinement types à la the RCF
calculus [12].

Definition 6.2 (Value Distribution). Because processes are
confluent, we know that if 𝑒 𝑘 𝑟 →∗ 𝑣 , then the value 𝑣 is
unique. We can therefore define the probability distribution
ensemble 𝐷 (𝑒) = {𝐷𝑒,𝑘 }𝑘 based on a uniform distribution
𝑈𝑘 over 𝑘-bit strings 𝑟 , so the distribution 𝐷𝑒,𝑘 is given as

𝐷𝑒,𝑘 (𝑣) =
∑
𝑟 ∈𝑅

𝑈𝑘 (𝑟), for 𝑅 = {𝑟 | 𝑒 𝑘 𝑟 →∗ 𝑣}.

Definition 6.3 (Indistinguishability). What remains is to
define a notion of indistinguishability for value distributions.
However, we need to clarify when polynomial time normal-
ization is an assumption or a proof obligation. To simplify

things later, we define a partial order 𝑒1 ≤ 𝑒2, which captures
that 𝑒2 must be PPT if 𝑒1 is PPT, and if so, that their value
distributions are statistically similar.

PPT 𝑒1 =⇒ (PPT 𝑒2 and 𝐷 (𝑒1) ∼ 𝐷 (𝑒2))
𝑒1 ≤ 𝑒2

indist

6.2 SaUCy Execution Model
The implementation of SaUCy is centered around a definition
of the UC execution model in ILC. For space and readability,
we elide endpoint allocation/distribution with ellipses. We
also abbreviate the type signature (e.g., 𝐴z is the type of z).
More details can be found in the appendix.

execUC :: ∀ 𝐴z→w 𝐴p ×𝐴q → 𝐴f → 𝐴a →
Crupt→ Nat→ [Bit] → Bit

let execUC z (p,q) f a crupt k r =
a let (rf,ra,rp,rq,rz) = splitBits r in

f k rf crupt ...
|▷ a k ra crupt ...
|▷ corruptOrNot p k rp (crupt == CruptP) ...
|▷ corruptOrNot q k rq (crupt == CruptQ) ...
|▷ z k rz ...

Z �� ��
FA

|B

Figure 6. execUC.

The function execUC takes as argu-
ments an environment z, a pair of pro-
tocol processes (p, q), a functionality
f, an adversary a, a corruption model
crupt, a security parameter k, and a ran-
dom bitstring r. At a high level (ignor-
ing details related to corruptions for
now), it runs each of the processes (al-
locating random bits to each of them) and connects channels
as illustrated in Figure 6. (The protocol processes p and q
correspond to 𝜋𝑃 and 𝜋𝑄 , respectively.) The execution is cen-
tered on the environment z in the sense that z first gets the
write token (notably, it has type Nat→w · · · → Bit), and the
experiment concludes when z returns a single bit value.

Next, we explain some of our main modeling choices and
the consequences they have for the ILC implementation.
To start with, we make several simplifications to standard
UC, for example, focusing on the special case of two-party
protocols (à la Simplified UC [18]). We also only aim to show
the case of static corruptions, in which the corrupt parties are
determined at the onset. This is achieved by parameterizing
the entire experiment by a value crupt : Crupt denoting
which parties are corrupt (if any). The data type Crupt is
defined as follows.

data Crupt = CruptP | CruptQ | CruptNone

For a more general model with adaptive corruptions, execUC
would need to accept requests from the environment to add
to the crupt list as the execution proceeds.
Our corruption model is Byzantine, meaning the adver-

sary gets to exert complete control over the corrupted parties.
9

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

For each party, depending on the value of crupt, either we
run a copy of the honest party, or connect the channels to
the adversary. This is implemented in the function corrup-
tOrNot.

fwd :: ∀ a b . Wr a→ Rd a⊸ b
letrec fwd toR frS =
let (!msg, frS) = rd frS in wr msg→ toR ; fwd toR frS

corruptOrNot :: ∀ 𝐴p → Nat→ [Bit] → Bool→ · · ·
let corruptOrNot p k bits iscrupt toZ toF toA toQ

frZ frF frA frQ =
if iscrupt then

let _ = rd frZ in error "Z can't wr to corrupt"
|▷ fwd toA frF
|▷ fwd toA frQ
|▷ fwd toF frA

else
p k bits toZ toF toQ frZ frF frQ

The fwd function simply forwards messages received on the
read endpoint frS to the write endpoint toR. In corruptOrNot,
if a party is corrupted, messages from the functionality and
the other protocol party are forwarded to the adversary; mes-
sages from the adversary are forwarded to the functionality.
Otherwise, the party is run as normal.

We also model a strong form of communication channels
between the parties: 𝑃 and 𝑄 are connected by a pair of raw
ILC channels. Communication over these channels happens
immediately, without activating the adversary or leaking
even the existence of the message. In a more realistic model,
the parties would only be able to communicate over a net-
work channel modeled as a functionality, Fsmt or Fsyn [16].
Consequently our Fcom functionality would need to be weak-
ened by leaking some (model-specific) information about the
message to the adversary.

6.3 Defining UC Security in ILC
The central security definition in UC is protocol emulation.
The guiding principle is that 𝜋 emulates 𝜙 if the environ-
ment cannot distinguish between the two protocols. Our first
attempt is the following, where S is the simulator that trans-
lates every attack in the real world into an attack expressed
in the ideal world:
∀ Z. execUCZ 𝜋 F1 1A ≤ execUCZ 𝜙 F2 S

S ⊢ (𝜋, F1) ≈ (𝜙, F2)
emulate

To remark on a few notational choices: We make the func-
tionality explicit, so emulation is a relationship between
protocol-functionality pairs. Here, 1A is the dummy adver-
sary, which just relays messages between the environment
and the parties/functionality. We elide the standard dummy
lemma that shows this is without loss of generality; the intu-
ition is that whatever an adversary can do, the environment
can achieve using 1A .

Unfortunately this simple definition turns out to be vacu-
ous: a degenerate protocol 𝜋 can emulate anything simply
failing to be PPT, e.g., by diverging. To put it another way,
the problem is the definition imposes a proof obligation on
the simulator S but not on 𝜋 . What we want to say is that
the real world protocol (𝜋, F1) must be well behaved when-
ever the ideal world (𝜙, F2) is. However, even a reasonable
protocol can result in non-PPT executions if paired with a
divergent environment. To solve this problem, we define pro-
tocol emulation by requiring a simulation in both directions,
so every behavior in the ideal world must correspond to a
behavior in the real world and vice versa.

Definition 6.4 (Protocol Emulation). The judgment that one
protocol-functionality pair (𝜋, F1) securely emulates another
(𝜙, F2) (as proven by the simulators SR,SI) is defined as
∀ Z. execUCZ 𝜙 F2 1A ≤ execUCZ 𝜋 F1 SR

execUCZ 𝜋 F1 1A ≤ execUCZ 𝜙 F2 SI
SR,SI ⊢ (𝜋, F1) ≈ (𝜙, F2)

emulate

We remark this definition goes against the UC convention of
requiring simulation in one direction only. One direction is
preferable intuitively because it should be fine if the protocol
is even more secure than its specification. This does not
pose any problem for our commitment example; however,
a protocol that leaks even less information than its ideal
functionality requires would be impossible to prove secure
under this definition. In any case, the benefit is this simplifies
the polynomial time notion: vacuous protocols are clearly
ruled out by the top condition, and both simulations are only
required to be PPTwhen the environmentZ is well-behaved.

6.4 A Composition Theorem in SaUCy
As a first demonstration of SaUCy, we work through the
development of a composition operator, and give a theorem
explaining its use.

Definition 6.5 (UC realizes). To set out, we introduce the
notation of “realizes,” which views a protocol as a way of
instantiating a specification functionality F2 from a setup
assumption functionality F1,

(𝜋, F1) ≈ (id𝜋 , F2)
F1 𝜋−→ F2

realizes

where id𝜋 is the dummy protocol, which simply relays mes-
sages between the environment and the functionality. This
notation is convenient because it suggests a categorical ap-
proach to composition.

Theorem 6.1 (Composition Theorem).
F1 𝜋−→ F2 F2 𝜌−→ F3

F1 𝜌 ◦ 𝜋−−−−−→ F3
The idea is that the 𝜌 ◦ 𝜋 can be defined in a natural way,
where the ideal functionality channel of 𝜌 is connected to

10

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

F1

ZZ ���� �� ��
A A

�� ��
F2

let (◦) (𝜌𝑃 , 𝜌𝑄) (𝜋𝑃 , 𝜋𝑄)
w𝜌P2Z w𝜌Q2Z w𝜌P2F w𝜌Q2F
w𝜌P2𝜌Q w𝜌Q2𝜌P rZ2𝜌P rZ2𝜌Q
rF2𝜌P rF2𝜌Q r𝜌Q2𝜌P r𝜌P2𝜌Q =

a 𝜋𝑃 w𝜋P2𝜌P w𝜌P2F w𝜋P2𝜋Q r𝜌P2𝜋P rF2𝜌P r𝜋Q2𝜋P
|▷ 𝜋𝑄 w𝜋Q2𝜌Q w𝜌Q2F w𝜋Q2𝜋P r𝜌Q2𝜋Q rF2𝜌Q r𝜋P2𝜋Q
|▷ 𝜌𝑃 w𝜌P2Z w𝜌P2𝜋P w𝜌P2𝜌Q rZ2𝜌P r𝜋P2𝜌P r𝜌Q2𝜌P
|▷ 𝜌𝑄 w𝜌Q2Z w𝜌Q2𝜋Q w𝜌Q2𝜌P rZ2𝜌Q r𝜋Q2𝜌Q r𝜌P2𝜌Q

Figure 7. Protocol composition operator.

the environment channel of 𝜋 , as illustrated and defined in
Figure 7.

Proof. To prove the theorem we construct the simulators
𝑆R,𝜌 ◦ 𝑆R,𝜋 (respectively 𝑆I,𝜌 ◦ 𝑆I,𝜋) in the natural way as
well (see the appendix). Our proof obligation is to introduce
an arbitrary environmentZ and conclude

execUCZ (𝜌 ◦𝜋) F1 1A ≤ execUCZ 1𝜋 F3 (SI,𝜌 ◦SI,𝜋).
The main idea is to notice that that we can bring 𝜌 from
the composed protocol into the environment as (Z ◦ 𝜌), re-
flecting the fact that the environment is meant to represent
arbitrary outer protocols. This transformation results in an
equivalent term, given that ILC configurations are invariant
to channel renaming and reordering of processes in a config-
uration (as in Section 4). The following derivation completes
the proof:

execUCZ (𝜌 ◦ 𝜋) F1 1A
≡ execUC (Z ◦ 𝜌) 𝜋 F1 1A (By equivalence)
≤ execUC (Z ◦ 𝜌) id𝜋 F2 SI,𝜋 (From F1 𝜋−→ F2)
≡ execUC (SI,𝜋 ◦ Z) 𝜌 F2 1A (By equivalence)
≤ execUC (SI,𝜋 ◦ Z) id𝜋 F3 SI,𝜌 (From F2 𝜌−→ F3)
≡ execUCZ id𝜋 F3 (SI,𝜋 ◦ SI,𝜌) (By equivalence)

The remaining case for SR,𝜌 ◦ SR,𝜋 is symmetric. □

Other notions of composition. Our composition operator
above is just a starting point. The “universal composition” [16]
operator essentiallymultiplexes sessions identified by unique
tags (session ids), while a joint state composition theorem col-
lapses multiple subroutines into one [20]. Despite its name,
development in UC often involves defining additional compo-
sition operators. For example, interesting composition often
happens “in the functionality” through higher order “wrap-
per” functionalities [29, 31] which we would express through

abstraction. Some security properties require a generalized
notion of ideal functionality that the environment can inter-
act with directly. All the above motivate the development
of the ILC core calculus as a flexible foundation; developing
them in ILC is important future work.

6.5 Instantiating UC Commitments
We next walk through an instantiation of UC commitments
(à la Canetti and Fischlin [19]). Instantiation proofs in SaUCy
follow a standard rhythm. We start with a security definition
as an ideal functionality (such as Fcom), give the protocol,
construct a simulator, and finally complete the relational
analysis on paper.

While commitments are one of the simplest UC primitives,
as a case study, this serves twomain purposes. First, the proof
demonstrates several representative UC techniques [36], in
particular the simulator makes use of a “trusted setup” and
extracts inputs from a corrupt sender. Second, the protocol
makes use of computational primitives and thus requires a
reduction step in the proof, which can go through because
of ILC’s confluent design.

Extending ILC with cryptographic primitives. The UC
commitment protocol makes use of a cryptographic prim-
itive, namely a trapdoor pseudorandom generator. This is
provided by extending ILC with new syntactic forms, along
with their static and dynamic semantics (given in the ap-
pendix). While in a symbolic setting we would instantiate
these with algebraic data, in ILC we give the stepping rule
in terms of an arbitrary pseudorandom function family, i.e.,
the actual computational definition. This can be instantiated
concretely for execution (e.g., with an RSA-based function)
or treated abstractly in the metatheory when we get to the
reduction step of the proof.

The commitment protocol also relies on a “trusted setup,”
or common reference string (CRS), which is essentially public
parameters generated ahead of time. The common reference
string is modeled as an ideal functionality Fcrs (implemented
in ILC as fCrs in the appendix).

Commitment Protocol. We implement the commitment
protocol by Canetti and Fischlin [19] in ILC as follows:

committer :: ∀ Nat→ [Bit] → · · · ⊸ 1

let committer k bits crupt toZ toF toQ frZ frF frQ =
let (!(Commit b), frZ)= rd frZ in
wr GetCRS→ toF ;
let (!(PublicStrings 𝜎 pk0pk1), frF) = rd frF in
let r = take k bits in
let x = if b == 0 then prg pk0 r

else xors (prg pk1 r) 𝜎 in
wr Commit' x→ toQ ;
let (!Open, frZ)= rd frZ in
wr (Open' b r)→ toQ

11

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

receiver :: ∀ Nat→ [Bit] → · · · ⊸ 1

let receiver k bits crupt toZ toF toP frZ frF frP =
let (!(Commit' x), frP) = rd frP in
wr GetCRS→ toF ;
let (!(PublicStrings 𝜎 pk0pk1), frF) = rd frF in
wr Receipt→ toZ ;
let (!(Open' b r), frP) = rd frP in
if (b == 0 && x == prg pk0 r) ||
(b == 1 && x == xors (prg pk1 r) 𝜎)

then wr (Opened b)→ toZ
else error "Cannot occur in honest case."

To briefly summarize what is going on: The setup CRS func-
tionality fCom samples a random string 𝜎 and two trapdoor
pseudorandom generator (PRG) keys pk0 and pk1. To commit
to 𝑏, the committer produces a string 𝑦 that is the result of
applying one or the other of the PRGs, and if 𝑏 = 1 addition-
ally applying xor with 𝜎 . The intuitive explanation why this
is hiding is that without the trapdoor, it is difficult to tell
whether a random 4𝑘-bit string is in the range of either PRG.
To open the commitment, the committer simply reveals the
preimage and the receiver checks which of the two cases
applies. The intuitive explanation why this is binding is that
it is difficult to find a pair 𝑦,𝑦 ⊕ 𝜎 that are respectively in
the range of both PRGs.

Defining the simulator. The SaUCy proof consists of two
simulators, one for the ideal world and one for the real world.
The ideal world simulator is ported directly from the UC
literature [19]. The nonstandard real world simulator, given
in the appendix, is trivial, but necessary because our protocol
emulation definition requires simulation in both directions.

The ideal world simulator generates its own “fake” CRS for
which it stores the trapdoors. The string 𝜎 is not truly ran-
dom, but instead is the result of combining two evaluations
of the PRGs. In Figure 8, we show the case that the committer
𝑃 is corrupt (the other case is in the appendix). The simu-
lator is activated whenZ sends a message (Commit' y); in
the real world, this is relayed by the dummy adversary to
Q, who outputs Receipt back to the environment. Hence to
achieve the same effect in the ideal word, the simulator must
send (Commit b) to Fcom. To extract b from y, the simulator
makes use of the PRG trapdoor check which one has y in its
range. It is necessary to argue by cryptographic reduction
that this simulation is sound, which we do next.

Relational argument. The goal of the relational analysis
is to show that an environment’s output in the real world
is indistinguishable from its output in the ideal world. The
proof follows the one in Canetti and Fischlin [19].

let simI k bits crupt toZ toF toP toQ frZ frF frP frQ =
let (pk0,td0) = kgen k in
let (pk1,td1) = kgen k in
let (r0, bits) = sample k bits in
let (r1, bits) = sample k bits in
let 𝜎 = xors (prg pk0 r0) (prg pk1 r1) in
match crupt with
| CruptP⇒
let (!GetCRS, frZ) = rd frZ in
wr (X2Z (PublicStrings 𝜎 pk0 pk1))→toZ ;
let (!(A2P (Commit' y)), frZ) = rd frZ in
if check td0 pk0 y then
wr (Commit 0)→ toP

else
if check td1 pk1 (xors y 𝜎) then
wr (Commit 1)→ toP

else error "Fail" ;
let (!(A2P (Open' b r)), frZ) = rd frZ in
if b == 0 && y == prg pk0 r ||
b == 1 && y == xors (prg pk1 r) 𝜎

then wr Open→ toP
else error "Fail"

| ...

Figure 8. Ideal world simulator (excerpt) for UC commit-
ment (full version in appendix).

Proof Sketch. Consider the following ensembles:

𝐷R = 𝐷 (execUCZ (committer, receiver) fCrs dummyA)
𝐷 ′R = 𝐷 (execUCZ (committer, receiver) bCrs dummyA)
𝐷I = 𝐷 (execUCZ (dummyP, dummyQ) fCom simI)

The ensemble 𝐷R is over the output of Z in a real world
execution. The ensemble 𝐷 ′R is similar, exceptZ runs with
a bad functionality bCrs (see appendix) that computes fake
public strings in the same way that the simulator does. The
ensemble𝐷I is over the output ofZ in an ideal world execu-
tion. The goal is to show that 𝐷R ∼ 𝐷I . The proof proceeds
by first showing that breaking the pseudorandomness of the
PRG reduces to distinguishing between 𝐷R and 𝐷 ′R (hence,
𝐷R ∼ 𝐷 ′R), and then by showing that breaking the pseu-
dorandomness of the PRG also reduces to distinguishing
between 𝐷 ′R and 𝐷I (hence, 𝐷 ′R ∼ 𝐷I). By the transitivity
of indistinguishability, we have that 𝐷R ∼ 𝐷I . □

Here, ILC’s confluence property plays a critical role: It is
necessary for defining the probability ensembles 𝐷R , 𝐷 ′R ,
and 𝐷I , without which we would not be able to obtain a
reduction from some computationally hard problem to dis-
tinguishing the real world and ideal world ensembles.

12

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

6.6 Reentrancy in SaUCy
Camenisch et al. [14] recently identified subtleties in defining
UC ideal functionalities (related to reentrancy and the sched-
uling of concurrent code) such that several functionalities in
the literature are ambiguous as ITMs. Although concerning,
these issues have no cryptographic flavor, and so they are
better addressed from a PL standpoint. To illustrate, consider
the following (untypeable) ILC process reentrantF, which
allows an adversary A to control the delivery schedule of
messages from 𝑃 to 𝑄 (i.e., an asynchronous channel):

loop :: ∀ a b . (a→ b)→ Rd a⊸ b
letrec loop f frS = let (!v, frS) = rd frS in f v; loop f frS

let reentrantF ... frP frA =
loop (_ msg . (let (!Ok, frA) = rd frA in wr msg→ toQ)

|▷ wr msg→ toA) frP

After receiving input from party 𝑃 , it notifies the adver-
sary, then forks a background thread to wait for Ok before
delivering the message. This introduces a race condition:
Suppose input message𝑚1 is sent by 𝑃 , but then A, before
sending Ok, instead returns control to Z, which passes 𝑃
a second input 𝑚2. Now there are two queued messages.
Which one gets delivered when the adversary sends Ok?

To resolve this issue, notice that reentrantF is untypeable
in ILC. The race condition occurs because the read endpoint
frA is duplicated (appears free in an unrestricted function).
Camenisch et al. [14] identified several strategies for resolv-
ing this problem in UC, which in turn are expressible ILC.
One approach is to make the process explicitly sequential,
such that the arrival of a second message before the first is
delivered causes execution to get stuck:

letrec sequentialF ... frP frA =
let (!msg, frP) = rd frP in
wr msg→ toA ;
let (!Ok, frA) = rd frA in
wr msg→ toQ ;
sequentialF ... frP frA

Alternatively, we may discard such messages arriving out
of order, returning them to sender; we express this in ILC
using the external choice operator:

letrec discardingF ... frP frA =
let (!msg, frP) = rd frP in
wr msg→ toA ;
letrec iloop () frP frA =
choice
| (_,frP,frA)@(rd frP)⇒ wr Discard→ toP ;

iloop () frP frA
| (_,frP,frA)@(rd frA)⇒ wr msg→ toQ ;

discardingF ... frP frA
in iloop () frP frA

Ultimately, Camenisch et al. propose a different strategy,
which is to restrict how the environment/adversary respond
to certain “urgent” messages that are used to exchange meta-
information (modeling related messages). That is, upon re-
ceiving an urgent message from process 𝑃 , the environment
(or adversary) must return control back to 𝑃 immediately.
Modeling this solution is left as future work, but ILC provides
an ideal starting point—restrictions on the environment/ad-
versary could be expressed by behavior refinements: upon
receiving an urgent message from 𝑃 , the environment (or
adversary) must not send a message on its other channels
before sending a message to 𝑃 .

7 Related Work
7.1 Process Calculi
Process calculi have a long and rich history. ILC occupies
a point in this space that is particularly suited to faithfully
capturing interactive Turing machines (and hence, computa-
tional cryptography), but plenty of existing calculi are also
cryptographically-flavored and/or enjoy similar properties
to ILC. We survey some of them here.

With symbolic semantics. Two early adaptations of pro-
cess calculi for reasoning about cryptographic protocols
were the spi calculus [2] and the applied 𝜋-calculus [1], both
of which extend the 𝜋-calculus with cryptographic opera-
tions [43]. Symbolic UC [10] is a simulation-based security
framework in this setting. However, protocols proven se-
cure in the symbolic setting may not be realizable with any
cryptographic primitives based on hardness assumptions.

With computational semantics. Naturally, ensuing work
has turned to bridging the gap between this PL-style of for-
malization and the computational model of cryptography by
outfitting these calculi with a computational semantics. Lin-
coln et al. [35] give a computational semantics to a variant of
the 𝜋-calculus, which allows one to define communicating
probabilistic polynomial-time processes; Mateus et al. [38]
adapts their calculus to explore (sequential) compositionality
properties in protocols. A drawback of these protocols is that
they embed probabilistic choices directly into the definition—
essentially when faced with nondeterminism, each path has
equal probability. Laud [33] gives a computational semantics
to the spi calculus, which additionally includes a type system
for ensuring well-typed protocols preserve the secrecy of
messages given to it by users.

With confluence. There are a number of other process cal-
culi that enjoy confluence. Berger et al. [6] describe a type
system for capturing deterministic (sequential) computation
in the 𝜋-calculus. The type system uses affineness and state-
less replication to achieve deterministic computation. Fowler
et al. [24] present a core linear lambda calculus with (binary)
session-typed channels and exception handling that enjoys

13

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

confluence and termination. The calculus only considers two-
party protocols, so for our multiparty setting, ILC requires a
sophisticated type system to achieve confluence.

7.2 Tools for Cryptographic Analysis
Computer-aided tools for cryptographic analysis operate in
either the symbolic model or the computational model. The
survey by Blanchet [8] highlights some of their differences.
Symbolic tools include the NRL protocol analyzer [41],

Maude-NPA [23], and Proverif [9]. In the symbolic setting,
cryptographic operations are abstracted as term algebras
(a variant of the applied 𝜋-calculus in the case of Proverif),
and adversary capabilities are nondeterministic applications
of deduction rules over these terms. Here, nondetermin-
ism allows the adversary to find attack traces (if there are
any), whereas the presence of nondeterminism in the com-
putational setting would frustrate cryptographic reduction
proofs.

Computational tools include CertiCrypt [5], EasyCrypt [4],
CryptoVerif [7], Cryptol [34], and F∗ [45]. These tools focus
on game-based security, which, in contrast to simulation-
based definitions (such as UC), only guarantee security in a
standalone setting (no composition guarantees). While they
are not specifically purposed for simulation-based proofs, it
would be interesting to embed ILC into EasyCrypt or F∗ to
use their tooling.

7.3 Variations of Universal Composability
A number of models for universal composability have been
proposed in the literature [3, 10, 13–18, 20, 27, 39, 40, 44].
We highlight a few that have similar goals to ours.

In contrast with UC, which uses ITMs as its computational
model, the reactive simulatability framework (RSIM) [3] uses
probabilistic IO automata, which are amenable to automated
reasoning. In contrast with RSIM, ILC is intended to be the
basis for a convenient and flexible programming language
to which we can easily port existing UC pseudocode.
Models based on inexhaustible interactive Turing ma-

chines (IITMs) [15, 32] aim to address drawbacks of UC
models for which polynomial time ITMs can be “exhausted”
(by having other machines send useless messages, forcing
them to halt). In turn, models with exhaustible ITMs are less
expressive. Because IITMs maintain the “single-threaded”
execution semantics of ITMs, ILC can be used to build a
concrete programming model for IITM-based frameworks
as well.
The abstract cryptography framework [40] advocates a

top-down approach: developing theory at an abstract level
(ignoring low level details such as computational models
and complexity notions) to simplify definitions. While we
stick to a bottom-up approach, we aim to simplify UC via PL
formalisms.

Simplified universal composability (SUC) [18] gives a sim-
pler and restricted variant of the UC framework. The main

difference from vanilla UC [16] is that the set of parties is
fixed, which greatly simplifies polynomial time reasoning
and protocol composition while maintaining the same strong
properties. We follow this in our execUC implementation.

8 Conclusion and Future Work
The universal composability (UC) framework is widely used
in cryptography for proofs. SaUCy takes a step towardsmech-
anizing UC as a programming framework for constructing
and analyzing large systems. We envision using SaUCy to
tackle, for example, applications involving blockchains and
smart contracts [21, 22, 42], which comprise an array of cryp-
tography and distributed computing components and suffer
from increasingly unwieldy formalisms.

We can view ILC typechecking of simulators in SaUCy as
a partial mechanization of UC proofs, though the indistin-
guishability analysis is still on paper. Even partial mecha-
nization is useful for catching bugs; we imagine using SaUCy
to systematically implement functionalities and protocols
from the literature and fuzz test them. Future work would
be to embed ILC within a mechanized proof system, such as
F∗ or EasyCrypt.

Acknowledgements
We thank our shepherd, Amal Ahmed, and the anonymous
reviewers for their valuable feedback. We also thank Marco
Patrignani for pointing out an error in an earlier version of
the paper. This material is based on work supported by the
National Science Foundation under Grant No. 1801321 and a
Graduate Research Fellowhip.

References
[1] Martín Abadi and Cédric Fournet. 2001. Mobile values, new names,

and secure communication. In ACM Sigplan Notices, Vol. 36. ACM,
104–115.

[2] Martın Abadi and Andrew D Gordon. 1999. A calculus for crypto-
graphic protocols: The spi calculus. Information and computation 148,
1 (1999), 1–70.

[3] Michael Backes, Birgit Pfitzmann, and Michael Waidner. 2007. The
reactive simulatability (RSIM) framework for asynchronous systems.
Information and Computation 205, 12 (2007), 1685–1720.

[4] G. Barthe, B. Grégoire, S. Heraud, and S. Béguelin. 2011. Computer-
aided security proofs for the working cryptographer. In Proceedings of
the International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT).

[5] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009.
Formal certification of code-based cryptographic proofs. ACM SIG-
PLAN Notices 44, 1 (2009), 90–101.

[6] Martin Berger, Kohei Honda, and Nobuko Yoshida. 2001. Sequential-
ity and the 𝜋-calculus. In International Conference on Typed Lambda
Calculi and Applications. Springer, 29–45.

[7] Bruno Blanchet. 2007. CryptoVerif: Computationally sound mecha-
nized prover for cryptographic protocols. In Dagstuhl seminar “Formal
Protocol Verification Applied. 117.

[8] Bruno Blanchet. 2012. Security protocol verification: Symbolic and
computational models. In Proceedings of the First international confer-
ence on Principles of Security and Trust. Springer-Verlag, 3–29.

14

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[9] Bruno Blanchet, V Cheval, X Allamigeon, and B Smyth. 2010.
Proverif: Cryptographic protocol verifier in the formal model. URL
http://prosecco. gforge. inria. fr/personal/bblanche/proverif (2010).

[10] Florian Böhl and Dominique Unruh. 2016. Symbolic universal com-
posability. Journal of Computer Security 24, 1 (2016), 1–38.

[11] Gilles Brassard, David Chaum, and Claude Crépeau. 1988. Minimum
disclosure proofs of knowledge. J. Comput. System Sci. 37, 2 (1988),
156–189.

[12] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maf-
fei. 2015. Affine refinement types for secure distributed programming.
ACM Transactions on Programming Languages and Systems (TOPLAS)
37, 4 (2015), 11.

[13] Jan Camenisch, Manu Drijvers, and Björn Tackmann. [n. d.]. Multi-
Protocol UC and its Use for Building Modular and Efficient Protocols.
([n. d.]).

[14] Jan Camenisch, Robert R Enderlein, Stephan Krenn, Ralf Küsters, and
Daniel Rausch. 2016. Universal composition with responsive environ-
ments. In International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 807–840.

[15] Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. [n.
d.]. iUC: Flexible Universal Composability Made Simple (Full Version).
([n. d.]).

[16] R. Canetti. 2001. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings of the Symposium on Foun-
dations of Computer Science (FOCS).

[17] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. 2008. Analyzing security protocols
using time-bounded task-PIOAs. Discrete Event Dynamic Systems 18, 1
(2008), 111–159.

[18] RanCanetti, Asaf Cohen, and Yehuda Lindell. 2015. A simpler variant of
universally composable security for standard multiparty computation.
In Annual Cryptology Conference. Springer, 3–22.

[19] Ran Canetti and Marc Fischlin. 2001. Universally composable com-
mitments. In Annual International Cryptology Conference. Springer,
19–40.

[20] Ran Canetti and Tal Rabin. 2003. Universal compositionwith joint state.
In Annual International Cryptology Conference. Springer, 265–281.

[21] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Mali-
nowski. [n. d.]. Perun: Virtual payment channels over cryptographic
currencies. Technical Report.

[22] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018.
General State Channel Networks. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
949–966.

[23] Santiago Escobar, Catherine Meadows, and José Meseguer. 2009.
Maude-NPA: Cryptographic protocol analysis modulo equational prop-
erties. In Foundations of Security Analysis and Design V. Springer, 1–50.

[24] Simon Fowler, Sam Lindley, J Garrett Morris, and Sára Decova. 2018.
Session Types without Tiers. (2018).

[25] Simon J Gay and Vasco T Vasconcelos. 2010. Linear type theory for
asynchronous session types. Journal of Functional Programming 20, 1
(2010), 19–50.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to
play any mental game. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing. ACM, 218–229.

[27] Dennis Hofheinz and Victor Shoup. 2015. GNUC: A new universal
composability framework. Journal of Cryptology 28, 3 (2015), 423–508.

[28] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. 2013.
Polynomial runtime and composability. Journal of Cryptology 26, 3
(2013), 375–441.

[29] Jonathan Katz. 2007. Universally composable multi-party computation
using tamper-proof hardware. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
115–128.

[30] Naoki Kobayashi, Benjamin C Pierce, and David N Turner. 1999. Linear-
ity and the pi-calculus. ACM Transactions on Programming Languages
and Systems (TOPLAS) 21, 5 (1999), 914–947.

[31] Ahmed Kosba, AndrewMiller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. 2016. Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. In 2016 IEEE symposium on
security and privacy (SP). IEEE, 839–858.

[32] Ralf Kusters. 2006. Simulation-based security with inexhaustible inter-
active turing machines. In Computer Security Foundations Workshop,
2006. 19th IEEE. IEEE, 12–pp.

[33] Peeter Laud. 2005. Secrecy types for a simulatable cryptographic
library. In Proceedings of the 12th ACM conference on Computer and
communications security. ACM, 26–35.

[34] Jeffrey R Lewis and Brad Martin. 2003. Cryptol: High assurance,
retargetable crypto development and validation. InMilitary Communi-
cations Conference, 2003. MILCOM’03. 2003 IEEE, Vol. 2. IEEE, 820–825.

[35] Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre Scedrov.
1998. A probabilistic poly-time framework for protocol analysis. In
Proceedings of the 5th ACM conference on Computer and communications
security. ACM, 112–121.

[36] Yehuda Lindell. 2017. How to simulate it–a tutorial on the simulation
proof technique. In Tutorials on the Foundations of Cryptography.
Springer, 277–346.

[37] Yehuda Lindell and Jonathan Katz. 2014. Introduction to modern cryp-
tography. Chapman and Hall/CRC.

[38] Paulo Mateus, J Mitchell, and Andre Scedrov. 2003. Composition of
cryptographic protocols in a probabilistic polynomial-time process
calculus. In International Conference on Concurrency Theory. Springer,
327–349.

[39] Ueli Maurer. 2011. Constructive cryptography–a new paradigm for
security definitions and proofs. In Theory of Security and Applications.
Springer, 33–56.

[40] Ueli Maurer and Renato Renner. 2011. Abstract cryptography. In In
Innovations in Computer Science. Citeseer.

[41] Catherine Meadows. 1996. The NRL protocol analyzer: An overview.
The Journal of Logic Programming 26, 2 (1996), 113–131.

[42] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry.
2017. Sprites: Payment channels that go faster than lightning. CoRR
abs/1702.05812 (2017).

[43] Robin Milner. 1999. Communicating and mobile systems: the pi calculus.
Cambridge university press.

[44] Birgit Pfitzmann and Michael Waidner. 2001. A model for asynchro-
nous reactive systems and its application to secure message transmis-
sion. In Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on. IEEE, 184–200.

[45] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, et al. 2016. Dependent types and multi-
monadic effects in F∗. In Proceedings of the Symposium on Principles of
Programming Languages (POPL).

15

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

A Algorithmic Typing Rules

Δin; Γ ⊢ 𝑒 : 𝑈 ⊣ Δout Under input contexts Δin and Γ, expression 𝑒 has type𝑈 and output context Δout.

Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 ⊣ Δ
uvar

Δ, 𝑥 : 𝑋 ; Γ ⊢ 𝑥 : 𝑋 ⊣ Δ
avar

Δ; Γ ⊢ () : 1 ⊣ Δ
unit

Δ1; Γ ⊢ 𝑒1 : 𝐴1 ⊣ Δ2
Δ2; Γ ⊢ 𝑒2 : 𝐴2 ⊣ Δ3

Δ1; Γ ⊢ (𝑒1, 𝑒2)∞ : 𝐴1 ×𝐴2 ⊣ Δ3
upair

Δ1; Γ ⊢ 𝑒1 : 𝑆1 ⊣ Δ2
Δ2; Γ ⊢ 𝑒2 : 𝑆2 ⊣ Δ3

Δ1; Γ ⊢ (𝑒1, 𝑒2)w : 𝑆1 × 𝑆2 ⊣ Δ3
spair

Δ1; Γ ⊢ 𝑒1 : 𝑋1 ⊣ Δ2
Δ2; Γ ⊢ 𝑒2 : 𝑋2 ⊣ Δ3

Δ1; Γ ⊢ (𝑒1, 𝑒2)1 : 𝑋1 ⊗ 𝑋2 ⊣ Δ3
apair

𝑖 ∈ {1, 2}
Δ1; Γ ⊢ 𝑒 : 𝐴𝑖 ⊣ Δ2

Δ1; Γ ⊢ inj𝑖∞ (𝑒) : 𝐴1 +𝐴2 ⊣ Δ2
uinj

𝑖 ∈ {1, 2}
Δ1; Γ ⊢ 𝑒 : 𝑆𝑖 ⊣ Δ2

Δ1; Γ ⊢ inj𝑖w (𝑒) : 𝑆1 + 𝑆2 ⊣ Δ2
sinj

𝑖 ∈ {1, 2}
Δ1; Γ ⊢ 𝑒 : 𝑋𝑖 ⊣ Δ2

Δ1; Γ ⊢ inj𝑖1 (𝑒) : 𝑋1 ⊕ 𝑋2 ⊣ Δ2
ainj

Δ1; Γ ⊢ 𝑒1 : 𝐴1 ×𝐴2 ⊣ Δ2
Δ2; Γ, 𝑥1 : 𝐴1, 𝑥2 : 𝐴2 ⊢ 𝑒 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ split∞ (𝑒1, 𝑥1 .𝑥2.𝑒2) : 𝑈 ⊣ Δ3
usplit

Δ1; Γ ⊢ 𝑒1 : 𝑆1 × 𝑆2 ⊣ Δ2
Δ2; Γ, 𝑥1 : 𝑆1, 𝑥2 : 𝑆2 ⊢ 𝑒 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ splitw (𝑒1, 𝑥1 .𝑥2 .𝑒2) : 𝑈 ⊣ Δ3
ssplit

Δ1; Γ ⊢ 𝑒1 : 𝑋1 ⊗ 𝑋2 ⊣ Δ2
Δ2, 𝑥1 : 𝑋1, 𝑥2 : 𝑋2; Γ ⊢ 𝑒 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ split1 (𝑒1, 𝑥1.𝑥2.𝑒2) : 𝑈 ⊣ Δ3 ÷ (𝑥1 : 𝑋1, 𝑥2 : 𝑋2)
asplit

Δ1; Γ ⊢ 𝑒 : 𝐴1 +𝐴2 ⊣ Δ2
Δ2; Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 : 𝑈 ⊣ Δ3
Δ2; Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ case∞ (𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2) : 𝑈 ⊣ Δ3
ucase

Δ1; Γ ⊢ 𝑒 : 𝑆1 + 𝑆2 ⊣ Δ2
Δ2; Γ, 𝑥1 : 𝑆1 ⊢ 𝑒1 : 𝑈 ⊣ Δ3
Δ2; Γ, 𝑥2 : 𝑆2 ⊢ 𝑒2 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ casew (𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2) : 𝑈 ⊣ Δ3
scase

Δ1; Γ ⊢ 𝑒 : 𝑋1 ⊕ 𝑋2 ⊣ Δ2
Δ2, 𝑥1 : 𝑋1; Γ ⊢ 𝑒1 : 𝑈 ⊣ Δ3 Δ2, 𝑥2 : 𝑋2; Γ ⊢ 𝑒2 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ case1 (𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2) : 𝑈 ⊣ Δ3 ÷ (𝑥1 : 𝑋1, 𝑥2 : 𝑋2)
acase

·; Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝑈 ⊣ ·
Δ; Γ ⊢ _∞ 𝑥 . 𝑒 : 𝐴→∞ 𝑈 ⊣ Δ

uabs
w○; Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝑈 ⊣ ·

Δ; Γ ⊢ _w 𝑥 . 𝑒 : 𝐴→w 𝑈 ⊣ Δ
wabs

Δ1, 𝑥 : 𝑋 ; Γ ⊢ 𝑒 : 𝑈 ⊣ Δ2

Δ1; Γ ⊢ _1 𝑥 . 𝑒 : 𝑋 →1 𝑈 ⊣ Δ2 ÷ (𝑥 : 𝑋)
aabs

Δ1; Γ ⊢ 𝑒2 : 𝐴 ⊣ Δ2
Δ2; Γ ⊢ 𝑒1 : 𝐴→∞ 𝑈 ⊣ Δ3

Δ1; Γ ⊢ (𝑒1 𝑒2)∞ : 𝑈 ⊣ Δ3
uapp

Δ1; Γ ⊢ 𝑒2 : 𝐴 ⊣ Δ2
Δ2; Γ ⊢ 𝑒1 : 𝐴→w 𝑈 ⊣ Δ3

Δ1, w○; Γ ⊢ (𝑒1 𝑒2)w : 𝑈 ⊣ Δ3
wapp

Δ1; Γ ⊢ 𝑒2 : 𝑋 ⊣ Δ2
Δ2; Γ ⊢ 𝑒1 : 𝑋 →1 𝑈 ⊣ Δ3

Δ1; Γ ⊢ (𝑒1 𝑒2)1 : 𝑈 ⊣ Δ3
aapp

·; Γ, 𝑥 : 𝐴→∞ 𝑈 ⊢ 𝑒 : 𝐴→∞ 𝑈 ⊣ ·
Δ; Γ ⊢ fix∞ (𝑥 .𝑒) : 𝐴→∞ 𝑈 ⊣ Δ

ufix
·; Γ, 𝑥 : 𝐴→w 𝑈 ⊢ 𝑒 : 𝐴→w 𝑈 ⊣ ·
Δ; Γ ⊢ fixw (𝑥 .𝑒) : 𝐴→w 𝑈 ⊣ Δ

wfix
𝑥 : 𝑋 →1 𝑈 ; Γ ⊢ 𝑒 : 𝑋 →1 𝑈 ⊣ ·
Δ; Γ ⊢ fix1 (𝑥 .𝑒) : 𝑋 →1 𝑈 ⊣ Δ

afix

Δ1; Γ ⊢ 𝑒1 : 𝐴 ⊣ Δ2
Δ2; Γ, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ let∞ (𝑒1, 𝑥 .𝑒2) : 𝑈 ⊣ Δ3
ulet

Δ1; Γ ⊢ 𝑒1 : 𝑋 ⊣ Δ2
Δ2, 𝑥 : 𝑋 ; Γ ⊢ 𝑒2 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ let1 (𝑒1, 𝑥 .𝑒2) : 𝑈 ⊣ Δ3 ÷ (𝑥 : 𝑋)
alet

Δ1; Γ ⊢ 𝑒 : 𝐴 ⊣ Δ2

Δ1; Γ ⊢ ! 𝑒 : !𝐴 ⊣ Δ2
bang

Δ1; Γ ⊢ 𝑒 : !𝐴 ⊣ Δ2

Δ1; Γ ⊢ ¡ 𝑒 : 𝐴 ⊣ Δ2
gnab

Δ1, 𝑥1 : Rd 𝑆 ; Γ, 𝑥2 : Wr 𝑆 ⊢ 𝑒 : 𝑈 ⊣ Δ2

Δ1; Γ ⊢ a (𝑥1, 𝑥2). 𝑒 : 𝑈 ⊣ Δ2 ÷ (𝑥1 : Rd 𝑆)
nu

Δ1; Γ ⊢ 𝑒1 : 𝑆 ⊣ Δ2
Δ2; Γ ⊢ 𝑒2 : Wr 𝑆 ⊣ Δ3

Δ1, w○; Γ ⊢ wr(𝑒1, 𝑒2) : 1 ⊣ Δ3
wr

16

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

w○ ∉ Δ2 Δ1; Γ ⊢ 𝑒1 : Rd 𝑆 ⊣ Δ2
Δ2, w○, 𝑥 : ! 𝑆 ⊗ Rd 𝑆 ; Γ ⊢ 𝑒2 : 𝑈 ⊣ Δ3

Δ1; Γ ⊢ rd(𝑒1, 𝑥 .𝑒2) : 𝑈 ⊣ Δ3 ÷ (w○, 𝑥 : ! 𝑆 ⊗ Rd 𝑆)
rd

w○ ∉ Δ3 Δ1; Γ ⊢ 𝑒1 : Rd 𝑆 ⊣ Δ2 Δ2; Γ ⊢ 𝑒2 : Rd𝑇 ⊣ Δ3
Δ3, w○, 𝑥1 : ! 𝑆 ⊗ Rd 𝑆 ⊗ Rd𝑇 ; Γ ⊢ 𝑒3 : 𝑈 ⊣ Δ4
Δ3, w○, 𝑥2 : !𝑇 ⊗ Rd 𝑆 ⊗ Rd𝑇 ; Γ ⊢ 𝑒4 : 𝑈 ⊣ Δ4

Δ1; Γ ⊢ ch(𝑒1, 𝑥1 .𝑒3, 𝑒2, 𝑥2 .𝑒4) : 𝑈 ⊣ Δ4 ÷
(w○, 𝑥1 : ! 𝑆 ⊗ Rd 𝑆 ⊗ Rd𝑇, 𝑥2 : !𝑇 ⊗ Rd𝑇 ⊗ Rd 𝑆)

choice

Δ1; Γ ⊢ 𝑒1 : 𝑈 ⊣ Δ2
Δ2; Γ ⊢ 𝑒2 : 𝑉 ⊣ Δ3

Δ1; Γ ⊢ 𝑒1 |▷ 𝑒2 : 𝑉 ⊣ Δ3
fork

Figure 9. Algorithmic typing rules.

B Type Soundness
We first define syntax for process and channel typings, which each map a kind of identifier (process name or channel name) to
its associated type:

Process pool typings Φ ::= · | Φ, 𝑝 : 𝑈
Channel typings Ψ ::= · | Ψ, 𝑑 : 𝑆

Using the syntax above, we define configuration typing as a straightforward extension of single-process typing, given in
Section 3.2:
Ψ ⊢ 𝐶 : Φ Configuration 𝐶 is well-typed.

Ψ ⊢ ⟨Σ; Y⟩ : ·
empty

Ψ ⊢ 𝑒 : 𝑈 Ψ ⊢ ⟨Σ;𝜋⟩ : Φ
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝑒⟩ : Φ, (𝑝 : 𝑈)

cons

B.1 Progress
Progress for the functional fragment of ILC (local progress) is fairly standard. We follow the usual recipe, except that we give a
special definition of local process termination:
𝑒 lterm Expression 𝑒 is locally terminated.

𝑣 lterm
val

𝐸 [rd(𝑐, 𝑥 .𝑒)] lterm
rdterm

𝐸 [ch(𝑐1, 𝑥1 .𝑒1, 𝑐2, 𝑥2 .𝑒2)] lterm
chterm

𝐸 [wr(𝑣, 𝑐)] lterm
wrterm

In other words, 𝑒 lterm holds when 𝑒 is a value, is reading (either as a standalone read or an external choice), or is writing.

Lemma B.1 (Local Progress). If Ψ ⊢ 𝑒 : 𝑈 , then either 𝑒 lterm or there exists 𝑒 ′ such that 𝑒 → 𝑒 ′.

Proof. By structural induction on the derivation of Ψ ⊢ 𝑒 : 𝑈 . □

To state progress on configurations, we give a special definition of “program termination” that permits deadlocks:
𝐶 term Configuration 𝐶 is terminated.

∀(𝑝 : 𝑒) ∈ 𝜋. 𝑒 lterm
RdChans(𝜋) = Σ1 WrChans(𝜋) = Σ2
{(𝑐1, 𝑐2) | 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2, 𝑐2 { 𝑐1} = ∅

⟨Σ;𝜋⟩ term
Cterm

RdChans(Y) = · WrChans(Y) = ·
RdChans(𝜋, 𝑝 : 𝐸 [rd(𝑐, 𝑥 .𝑒)]) = RdChans(𝜋), 𝑐 WrChans(𝜋, 𝑝 : 𝐸 [rd(𝑐, 𝑥 .𝑒)]) = WrChans(𝜋)

RdChans(𝜋, 𝑝 : 𝐸 [ch(𝑐1, 𝑥1 .𝑒1, 𝑐2, 𝑥2 .𝑒2)]) = RdChans(𝜋), 𝑐1, 𝑐2 WrChans(𝜋, 𝑝 : 𝐸 [ch(𝑐1, 𝑥1 .𝑒1, 𝑐2, 𝑥2 .𝑒2)]) = WrChans(𝜋)
RdChans(𝜋, 𝑝 : 𝐸 [wr(𝑣, 𝑐)]) = RdChans(𝜋) WrChans(𝜋, 𝑝 : 𝐸 [wr(𝑣, 𝑐)]) = WrChans(𝜋), 𝑐

RdChans(𝜋, 𝑝 : 𝑣) = RdChans(𝜋) WrChans(𝜋, 𝑝 : 𝑣) = WrChans(𝜋)
In other words, 𝐶 term holds when either:

17

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

1. 𝐶 is fully normal: Every process in 𝐶 is normalized (consists of a value), or
2. 𝐶 is (at least partially) deadlocked: Some (possibly empty) portion of 𝐶 is normal, and there exists one or more reading

processes in 𝐶 , or there exists one or more writing processes in 𝐶 , however, no reader-writer process pair exists for a
common channel.

Theorem B.2 (Progress). If Ψ ⊢ 𝐶 : Φ, then either 𝐶 term or there exists 𝐶 ′ such that 𝐶 −→ 𝐶 ′.

Proof. By structural induction on the derivation of Ψ ⊢ 𝐶 : Φ.
Case

Ψ ⊢ ⟨Σ; Y⟩ : ·
empty

∀(𝑝 : 𝑒) ∈ Y. 𝑒 lterm Vacuous
Σ1 = RdChans(Y) = · By definition of RdChans
Σ2 = WrChans(Y) = · By definition of WrChans
{(𝑐1, 𝑐2) | 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2, 𝑐2 { 𝑐1} = ∅
⟨Σ; Y⟩ term By rule Cterm

Case
Ψ ⊢ 𝑒 : 𝑈 Ψ ⊢ ⟨Σ;𝜋⟩ : Φ
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝑒⟩ : Φ, (𝑝 : 𝑈)

cons

𝑒 lterm or ∃ 𝑒 ′ s.t. 𝑒 → 𝑒 ′ By i.h.
⟨Σ;𝜋⟩ term or ∃ ⟨Σ′;𝜋 ′⟩ s.t. ⟨Σ;𝜋⟩ → ⟨Σ′;𝜋 ′⟩ By i.h.
Subcase ∃ 𝑒 ′ s.t. 𝑒 → 𝑒 ′

Subsubcase local
𝑒 = 𝐸 [𝑒1] and 𝑒 ′ = 𝐸 [𝑒2] Suppose
⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1]⟩ → ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒2]⟩ By rule local

Subsubcase fork
𝑒 = 𝐸 [𝑒1 |▷ 𝑒2], 𝑒 ′ = 𝐸 [𝑒2], and 𝑞 ∉ Σ Suppose
⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1 |▷ 𝑒2]⟩ → ⟨Σ, 𝑞;𝜋, 𝑞 : 𝑒1, 𝑝 : 𝐸 [𝑒2]⟩ By rule fork

Subsubcase nu
𝑒 = 𝐸 [a (𝑥1, 𝑥2). 𝑒1], 𝑒 ′ = 𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒1], 𝑑 ∉ Σ Suppose
⟨Σ;𝜋, 𝑝 : [a (𝑥1, 𝑥2). 𝑒1]⟩ → ⟨Σ, 𝑑 ;𝜋, 𝑝 : 𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒1]⟩ By rule nu

Subsubcase rw
𝑒 = 𝐸 [rd(𝑐1, 𝑥 .𝑒1)], 𝑒 ′ = 𝐸 [[(!𝑣, 𝑐1)1/𝑥]𝑒1], and 𝑐2 { 𝑐1, or
𝑒 = 𝐸 [wr(𝑣, 𝑐2)], 𝑒 ′ = 𝐸 [()], and 𝑐2 { 𝑐1

Subsubsubcase 𝑒 = 𝐸 [rd(𝑐1, 𝑥 .𝑒1)], 𝑒 ′ = 𝐸 [[(!𝑣, 𝑐1)1/𝑥]𝑒1], and 𝑐2 { 𝑐1
∃ (𝑞 : 𝐸 [wr(𝑣, 𝑐2)]) ∈ 𝜋 By 𝑐2 { 𝑐1
⟨Σ;𝜋, 𝑝 : 𝐸 [rd(𝑐1, 𝑥 .𝑒1)] → ⟨Σ;𝜋, 𝑝 : 𝐸 [[(!𝑣, 𝑐1)1/𝑥]𝑒1]⟩⟩ By rule rw

Subsubsubcase 𝑒 = 𝐸 [wr(𝑣, 𝑐2)], 𝑒 ′ = 𝐸 [()], and 𝑐2 { 𝑐1
∃ (𝑞 : 𝐸 [rd(𝑐1, 𝑥 .𝑒1)]) ∈ 𝜋 By 𝑐2 { 𝑐1
⟨Σ;𝜋, 𝑝 : 𝐸 [wr(𝑣, 𝑐2)] → ⟨Σ;𝜋, 𝑝 : 𝐸 [()]⟩⟩ By rule rw

Subsubcase cw
𝑒 = 𝐸 [ch(𝑐1, 𝑥1.𝑒1, 𝑐2, 𝑥2.𝑒2)], 𝑒 ′ = 𝐸 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥𝑖]𝑒𝑖], 𝑐 { 𝑐𝑖 , 𝑖 ∈ {1, 2}, or
𝑒 = 𝐸 [wr(𝑣, 𝑐)], 𝑒 ′ = 𝐸 [()], 𝑐 { 𝑐𝑖 , 𝑖 ∈ {1, 2}

Subsubsubcase 𝑒 = 𝐸 [ch(𝑐1, 𝑥1.𝑒1, 𝑐2, 𝑥2.𝑒2)], 𝑒 ′ = 𝐸 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥𝑖]𝑒𝑖],
𝑐 { 𝑐𝑖 , 𝑖 ∈ {1, 2}
∃ (𝑞 : 𝐸 [wr(𝑣, 𝑐)]) ∈ 𝜋 By 𝑐 { 𝑐𝑖

18

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

⟨Σ;𝜋, 𝑝 : 𝐸 [ch(𝑐1, 𝑥1.𝑒1, 𝑐2, 𝑥2.𝑒2)] → ⟨Σ;𝜋, 𝑝 : 𝐸 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥𝑖]𝑒𝑖]⟩⟩ By rule cw
Subsubsubcase 𝑒 = 𝐸 [wr(𝑣, 𝑐)], 𝑒 ′ = 𝐸 [()], 𝑐 { 𝑐𝑖 , 𝑖 ∈ {1, 2}
∃ (𝑞 : 𝐸 [ch(𝑐1, 𝑥1 .𝑒1, 𝑐2, 𝑥2 .𝑒2)]) ∈ 𝜋 By 𝑐 { 𝑐𝑖

⟨Σ;𝜋, 𝑝 : 𝐸 [wr(𝑣, 𝑐)] → ⟨Σ;𝜋, 𝑝 : 𝐸 [()]⟩⟩ By rule cw
Subcase ∃ ⟨Σ′;𝜋 ′⟩ s.t. ⟨Σ;𝜋⟩ → ⟨Σ′;𝜋 ′⟩
⟨Σ;𝜋, 𝑝 : 𝑒⟩ → ⟨Σ′;𝜋 ′, 𝑝 : 𝑒⟩ By rules local and congr

Subcase ⟨Σ; 𝑝 : 𝑒⟩ term and ⟨Σ;𝜋⟩ term
Σ1 = RdChans(𝜋, 𝑝 : 𝑒) and Σ2 = WrChans(𝜋, 𝑝 : 𝑒) Suppose
{(𝑐1, 𝑐2) | 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2, 𝑐2 { 𝑐1} = ∅ or
{(𝑐1, 𝑐2) | 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2, 𝑐2 { 𝑐1} ≠ ∅

Subsubcase {(𝑐1, 𝑐2) | 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2, 𝑐2 { 𝑐1} = ∅
⟨Σ;𝜋, 𝑝 : 𝑒⟩ term By rule Cterm

Subsubcase {(𝑐1, 𝑐2) | 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2, 𝑐2 { 𝑐1} ≠ ∅
∃ 𝑐2 { 𝑐1 s.t. 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2 Above
𝑝 : 𝑣 or 𝑝 : 𝐸 [rd(𝑐1, 𝑥 .𝑒)] or 𝑝 : 𝐸 [ch(𝑐1, 𝑥1 .𝑒1, 𝑐3, 𝑥2 .𝑒2)] or
𝑝 : 𝐸 [ch(𝑐3, 𝑥1.𝑒1, 𝑐1, 𝑥2.𝑒2)] or 𝑝 : 𝐸 [wr(𝑣, 𝑐2)] By definition of lterm

Subsubsubcase 𝑝 : 𝑣 Impossible
Subsubsubcase 𝑝 : 𝐸 [rd(𝑐1, 𝑥 .𝑒)]
∃ 𝑞 : 𝐸 [wr(𝑣, 𝑐2)] ∈ 𝜋 By 𝑐2 { 𝑐1
⟨Σ;𝜋, 𝑝 : 𝐸 [rd(𝑐1, 𝑥 .𝑒)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸 [[(!𝑣, 𝑐1)1/𝑥]𝑒]⟩ By rule rw

Subsubsubcase 𝑝 : 𝐸 [ch(𝑐1, 𝑥1.𝑒1, 𝑐3, 𝑥2.𝑒2)]
∃ 𝑞 : 𝐸 [wr(𝑣, 𝑐2)] ∈ 𝜋 By 𝑐2 { 𝑐1
⟨Σ;𝜋, 𝑝 : 𝐸 [ch(𝑐1, 𝑥1.𝑒1, 𝑐3, 𝑥2.𝑒2)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸 [[(!𝑣, 𝑐1, 𝑐3)1/𝑥1]𝑒1]⟩ By rule cw

Subsubsubcase 𝑝 : 𝐸 [ch(𝑐3, 𝑥1 .𝑒1, 𝑐1, 𝑥2 .𝑒2)]
∃ 𝑞 : 𝐸 [wr(𝑣, 𝑐2)] ∈ 𝜋 By 𝑐2 { 𝑐1
⟨Σ;𝜋, 𝑝 : 𝐸 [ch(𝑐3, 𝑥1.𝑒1, 𝑐1, 𝑥2.𝑒2)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸 [[(!𝑣, 𝑐1, 𝑐3)1/𝑥2]𝑒2]⟩ By rule cw

Subsubsubcase 𝑝 : 𝐸 [wr(𝑣, 𝑐2)]
∃ 𝑞 : 𝐸 [rd(𝑐1, 𝑥 .𝑒)] ∈ 𝜋 or ∃ 𝑞 : 𝐸 [ch(𝑐1, 𝑥1.𝑒1, 𝑐3, 𝑥2.𝑒2)] ∈ 𝜋 or
∃ 𝑞 : 𝐸 [ch(𝑐3, 𝑥1 .𝑒1, 𝑐1, 𝑥2 .𝑒2)] ∈ 𝜋 By 𝑐2 { 𝑐1
⟨Σ;𝜋, 𝑝 : 𝐸 [wr(𝑣, 𝑐2)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸 [()]⟩ By rule rw

□

B.2 Preservation
Preservation for the functional fragment of ILC (local preservation) is standard.

Lemma B.3 (Local Preservation). If Ψ ⊢ 𝑒 : 𝑈 and 𝑒 → 𝑒 ′, then there exists Ψ′ ⊇ Ψ such that Ψ ⊢ 𝑒 ′ : 𝑈 .

Proof. By structural induction on the derivation of 𝑒 → 𝑒 ′. □

To state preservation on configurations, we first state several auxiliary results, which follow the formulation of Gay and
Vasconcelos [25]. Lemma B.4 shows that typing of configurations is preserved under configuration equivalence.

Lemma B.4 (Preservation Modulo Equivalence). If Ψ ⊢ 𝐶 : Φ and 𝐶 ≡ 𝐶 ′, then Ψ ⊢ 𝐶 ′ : Φ.

Proof. By structural induction on Ψ ⊢ 𝐶 : Φ. □

Lemma B.5 shows that a subterm of a well-typed evaluation context is typeable with a subset of the type contexts.

Lemma B.5 (Typeability of Subterms). If D is a derivation of Ψ;Δ; Γ ⊢ 𝐸 [𝑒] : 𝑈 (written D :: Ψ;Δ; Γ ⊢ 𝐸 [𝑒] : 𝑈), then
1. there exists Ψ1,Ψ2;Δ1,Δ2; Γ1, Γ2 and 𝑉 such that Ψ = Ψ1,Ψ2, Δ = Δ1,Δ2, Γ = Γ1, Γ2,
2. D has a subderivation D ′ (written D ′ ⊑ D) concluding Ψ1;Δ1; Γ1 ⊢ 𝑒 : 𝑉 ,
3. the position of D ′ in D corresponds to the position of the hole in 𝐸 (written 𝐸 [D ′ ⊑ D]).

Proof. By structural induction on the structure of 𝐸. □
19

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

Lemma B.6 shows that the subterm of a well-typed evaluation context can be replaced.

Lemma B.6 (Replacement (Evaluation Contexts)). If
1. D :: Ψ1,Ψ2;Δ1,Δ2; Γ1, Γ2 ⊢ 𝐸 [𝑒] : 𝑈 ,
2. D ′ ⊑ D such that D ′ :: Ψ2;Δ2; Γ2 ⊢ 𝑒 : 𝑉 ,
3. 𝐸 [D ′ ⊑ D],
4. Ψ3;Δ3; Γ3 ⊢ 𝑒 ′ : 𝑉 ,
5. Ψ1,Ψ3;Δ1,Δ3; Γ1, Γ3 is defined,

then Ψ1,Ψ3;Δ1,Δ3; Γ1, Γ3 ⊢ 𝐸 [𝑒 ′] : 𝑈 .

Proof. By structural induction on the structure of 𝐸. □

Finally, Lemmas B.7, B.8, B.9, B.10 show that typing of terms is preserved by substitution.

Lemma B.7 (Substitution (Unrestricted)). If
1. Ψ1;Δ1; Γ1, 𝑥 : 𝐴 ⊢ 𝑒 : 𝑈 ,
2. Ψ2;Δ2; Γ2 ⊢ 𝑒 ′ : 𝐴,
3. Ψ1,Ψ2;Δ1,Δ2; Γ1, Γ2 is defined,

then Ψ1,Ψ2;Δ1,Δ2; Γ1, Γ2 ⊢ [𝑒 ′/𝑥]𝑒 : 𝑈 .

Proof. By structural induction on the derivation of Ψ1;Δ1; Γ1, 𝑥 : 𝐴 ⊢ 𝑒 : 𝑈 . □

Lemma B.8 (Substitution (Affine)). If
1. Ψ1;Δ1, 𝑥 : 𝑋 ; Γ1 ⊢ 𝑒 : 𝑈 ,
2. Ψ2;Δ2; Γ2 ⊢ 𝑒 ′ : 𝑋 ,
3. Ψ1,Ψ2;Δ1,Δ2; Γ1, Γ2 is defined,

then Ψ1,Ψ2;Δ1,Δ2; Γ1, Γ2 ⊢ [𝑒 ′/𝑥]𝑒 : 𝑈 .

Proof. By structural induction on the derivation of Ψ1;Δ1, 𝑥 : 𝑋 ; Γ1 ⊢ 𝑒 : 𝑈 . □

Lemma B.9 (Substitution (Read Endpoint)). If
1. Ψ;Δ, 𝑥 : Rd 𝑆 ; Γ ⊢ 𝑒 : 𝑈 ,
2. Ψ, 𝑑 : 𝑆 ;Δ; Γ is defined,

then Ψ, 𝑑 : 𝑆 ;Δ; Γ ⊢ [Read(𝑑)/𝑥]𝑒 : 𝑈 .

Proof. By structural induction on the derivation of Ψ;Δ, 𝑥 : Rd 𝑆 ; Γ ⊢ 𝑒 : 𝑈 . □

Lemma B.10 (Substitution (Write Endpoint)). If
1. Ψ;Δ; Γ, 𝑥 : Wr 𝑆 ⊢ 𝑒 : 𝑈 ,
2. Ψ, 𝑑 : 𝑆,Ψ;Δ; Γ is defined,

then Ψ, 𝑑 : 𝑆 ;Δ; Γ ⊢ [Write(𝑑)/𝑥]𝑒 : 𝑈 .

Proof. By structural induction on the derivation of Ψ;Δ; Γ, 𝑥 : Wr 𝑆 ⊢ 𝑒 : 𝑈 . □

Theorem B.11 (Preservation). If Ψ ⊢ 𝐶 : Φ and 𝐶 −→ 𝐶 ′, then there exists Ψ′ ⊇ Ψ and Φ′ ⊇ Φ such that Ψ′ ⊢ 𝐶 ′ : Φ′.

Proof. By structural induction on the derivation of 𝐶 −→ 𝐶 ′.
Case

𝑒1 −→ 𝑒2

⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒2]⟩
local

Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1]⟩ : Φ s.t. Φ = Φ𝜋 , 𝑝 : 𝑈 ,

Ψ = Ψ1,Ψ2, and D :: Ψ1,Ψ2 ⊢ 𝐸 [𝑒1] : 𝑈 Assumption
∃ D ′ ⊑ D s.t. D ′ :: Ψ2 ⊢ 𝑒1 : 𝑉 and 𝐸 [D ′ ⊑ D] By Lemma B.5

Ψ2 ⊢ 𝑒2 : 𝑉 By i.h. and Lemma B.3
Ψ1,Ψ2 ⊢𝐸 [𝑒2] : 𝑈 By Lemma B.6

20

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Ψ ⊢𝐸 [𝑒2] : 𝑈 By above equalities
Ψ ⊢ ⟨Σ;𝜋⟩ : Φ𝜋 Above
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒2]⟩ : (Φ𝜋 , 𝑝 : 𝑈) By rule cons
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒2]⟩ : Φ By above equalities

Ψ′ = Ψ and Φ′ = Φ Suppose
Ψ′ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒2]⟩ : Φ′ By above equalities

Case
𝑞 ∉ Σ

⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1 |▷ 𝑒2]⟩ −→ ⟨Σ, 𝑞;𝜋, 𝑞 : 𝑒1, 𝑝 : 𝐸 [𝑒2]⟩
fork

Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [𝑒1 |▷ 𝑒2]⟩ : Φ s.t. Φ = Φ𝜋 , 𝑝 : 𝑈 ,

Ψ = Ψ1,Ψ2, and D :: Ψ1,Ψ2 ⊢ 𝐸 [𝑒1 |▷ 𝑒2] : 𝑈 Assumption
∃ D ′ ⊑ D s.t. D ′ :: Ψ2 ⊢ 𝑒1 |▷ 𝑒2 : 𝑉2 and 𝐸 [D ′ ⊑ D] By Lemma B.5

Ψ2 ⊢ 𝑒1 : 𝑉1 By inversion on fork
Ψ2 ⊢ 𝑒2 : 𝑉2 By inversion on fork

Ψ1,Ψ2 ⊢𝐸 [𝑒2] : 𝑈 By Lemma B.6
Ψ ⊢𝐸 [𝑒2] : 𝑈 By above equalities
Ψ ⊢ ⟨Σ;𝜋⟩ : Φ𝜋 Above
Ψ ⊢ ⟨Σ, 𝑞;𝜋⟩ : Φ𝜋 By 𝑞 ∉ Σ

Ψ ⊢ ⟨Σ, 𝑞;𝜋, 𝑞 : 𝑒1⟩ : (Φ𝜋 , 𝑞 : 𝑉1) By rule cons
Ψ ⊢ ⟨Σ, 𝑞;𝜋, 𝑞 : 𝑒1, 𝑝 : 𝐸 [𝑒2]⟩ : (Φ𝜋 , 𝑞 : 𝑉1, 𝑝 : 𝑈) By rule cons
Ψ ⊢ ⟨Σ, 𝑞;𝜋, 𝑞 : 𝑒1, 𝑝 : 𝐸 [𝑒2]⟩ : Φ, 𝑞 : 𝑉1 By above equalities

Ψ′ = Ψ and Φ′ = Φ, 𝑞 : 𝑉1 Suppose
Ψ′ ⊢ ⟨Σ, 𝑞;𝜋, 𝑞 : 𝑒1, 𝑝 : 𝐸 [𝑒2]⟩ : Φ′ By above equalities

Case
𝐶1 ≡ 𝐶 ′1 𝐶 ′1 −→ 𝐶 ′2 𝐶 ′2 ≡ 𝐶2

𝐶1 −→ 𝐶2
congr

Ψ ⊢𝐶1 : Φ Assumption
𝐶1 ≡ 𝐶 ′1 Given

Ψ ⊢𝐶 ′1 : Φ By Lemma B.4
Ψ′ ⊇ Ψ and Φ′ ⊇ Φ Suppose

Ψ′ ⊢𝐶 ′2 : Φ′ By i.h.
Ψ′ ⊢𝐶2 : Φ′ By Lemma B.4

Case
𝑑 ∉ Σ

⟨Σ;𝜋, 𝑝 : 𝐸 [a (𝑥1, 𝑥2). 𝑒]⟩ −→ ⟨Σ, 𝑑 ;𝜋, 𝑝 : 𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒]⟩
nu

Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [a (𝑥1, 𝑥2). 𝑒]⟩ : Φ s.t. Φ = Φ𝜋 , 𝑝 : 𝑈 ,

Ψ = Ψ1,Ψ2 and D :: Ψ1,Ψ2 ⊢ 𝐸 [a (𝑥1, 𝑥2). 𝑒] : 𝑈 Assumption
∃ D ′ ⊑ D s.t. D ′ :: Ψ2 ⊢ a (𝑥1, 𝑥2). 𝑒 : 𝑉 and 𝐸 [D ′ ⊑ D] By Lemma B.5

Ψ2; Γ;Δ ⊢ 𝑒 : 𝑈 where Γ;Δ = 𝑥1 : Rd 𝑆 ;𝑥2 : Wr 𝑆 By inversion on nu
𝑑 : 𝑆 ⊢Read(𝑑) : Rd 𝑆 By rule rdend

21

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

𝑑 : 𝑆 ⊢Write(𝑑) : Rd 𝑆 By rule wrend
Ψ3 ⊢ [Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒 : 𝑈 where Ψ3 = Ψ2, 𝑑 : 𝑆 By Lemmas B.9 and B.10

Ψ1,Ψ3 ⊢𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒] : 𝑈𝑝 By Lemma B.6
Ψ,Ψ4 ⊢𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒] : 𝑈𝑝 where Ψ4 = 𝑐1 : Rd 𝑆, 𝑐2 : Wr 𝑆 By above equalities
Ψ,Ψ4 ⊢ ⟨Σ;𝜋⟩ : Φ𝜋 Above
Ψ,Ψ4 ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒]⟩ : (Φ𝜋 , 𝑝 : 𝑈) By rule cons
Ψ,Ψ4 ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒]⟩ : Φ Above

Ψ′ = Ψ,Ψ4 and Φ′ = Φ Suppose
Ψ′ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸 [[Read(𝑑)/𝑥1] [Write(𝑑)/𝑥2]𝑒]⟩ : Φ′ By above equalities

Case
𝑐2 { 𝑐1

⟨Σ;𝜋, 𝑝 : 𝐸1 [rd(𝑐1, 𝑥 .𝑒)], 𝑞 : 𝐸2 [wr(𝑣, 𝑐2)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒], 𝑞 : 𝐸2 [()]⟩
rw

Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [rd(𝑐1, 𝑥 .𝑒)], 𝑞 : 𝐸2 [wr(𝑣, 𝑐2)]⟩ : Φ s.t. Φ = Φ𝜋 , 𝑝 : 𝑈 ,𝑞 : 𝑉 ,
Ψ = Ψ1,Ψ2,D𝑝 :: Ψ1,Ψ2 ⊢ 𝐸1 [rd(𝑐1, 𝑥 .𝑒)] : 𝑈 ,

Ψ = Ψ3,Ψ4, and D𝑞 :: Ψ3,Ψ4 ⊢ 𝐸2 [wr(𝑣, 𝑐2)] : 𝑉 Assumption
∃ D ′𝑝 ⊑ D𝑝 s.t. D ′𝑝 :: Ψ2 ⊢ rd(𝑐1, 𝑥 .𝑒) : 𝑈 ′ and 𝐸1 [D ′𝑝 ⊑ D𝑝] By Lemma B.5
∃ D ′𝑞 ⊑ D𝑞 s.t. D ′𝑞 :: Ψ4 ⊢ wr(𝑣, 𝑐2) : 1 and 𝐸2 [D ′𝑞 ⊑ D𝑞] By Lemma B.5
𝑐2 { 𝑐1 s.t. Ψ(𝑐2) = Wr 𝑆 and Ψ(𝑐1) = Rd 𝑆 Given

Ψ2;Δ; · ⊢ 𝑒 : 𝑈 ′ where Δ = w○, 𝑥 : ! 𝑆 ⊗ Rd 𝑆 By inversion on rd
⊢ 𝑣 : 𝑆 By inversion on wr
⊢ ! 𝑣 : ! 𝑆 By rule bang
⊢ (!𝑣, 𝑐1)1 : ! 𝑆 ⊗ Rd 𝑆 By rule apair

Ψ2; w○; · ⊢ [(!𝑣, 𝑐1)1/𝑥]𝑒 : 𝑈 ′ By Lemma B.8
Ψ1,Ψ2 ⊢𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒] : 𝑈 By Lemma B.6

Ψ ⊢𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒] : 𝑈 By above equalities
Ψ ⊢ ⟨Σ;𝜋⟩ : Φ𝜋 Above
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒]⟩ : (Φ𝜋 , 𝑝 : 𝑈) By rule cons
Ψ4 ⊢ () : 1 By rule unit

Ψ3,Ψ4 ⊢𝐸2 [()] : 𝑉 By Lemma B.6
Ψ ⊢𝐸2 [()] : 𝑉 By above equalities
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒], 𝑞 : 𝐸2 [()]⟩ : (Φ𝜋 , 𝑝 : 𝑈 ,𝑞 : 𝑉) By rule cons
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒], 𝑞 : 𝐸2 [()]⟩ : Φ By above equalities

Ψ′ = Ψ and Φ′ = Φ Suppose
Ψ′ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1)1/𝑥]𝑒], 𝑞 : 𝐸2 [()]⟩ : Φ′ By above equalities

Case
𝑐 { 𝑐𝑖 𝑖 ∈ {1, 2}

⟨Σ;𝜋, 𝑝 : 𝐸1 [ch(𝑐1, 𝑥1 .𝑒1, 𝑐2, 𝑥2 .𝑒2)], 𝑞 : 𝐸2 [wr(𝑣, 𝑐)]⟩ −→ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥𝑖]𝑒𝑖], 𝑞 : 𝐸2 [()]⟩
cw

Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [ch(𝑐1, 𝑥1.𝑒1, 𝑐2, 𝑥2.𝑒2)], 𝑞 : 𝐸2 [wr(𝑣, 𝑐)]⟩ : Φ
s.t. Φ = Φ𝜋 , 𝑝 : 𝑈 ,𝑞 : 𝑉 ,
Ψ = Ψ1,Ψ2,D𝑝 :: Ψ1,Ψ2 ⊢ 𝐸1 [ch(𝑐1, 𝑥1.𝑒1, 𝑐2, 𝑥2.𝑒2)] : 𝑈 ,

Ψ = Ψ3,Ψ4, and D𝑞 :: Ψ3,Ψ4 ⊢ 𝐸2 [wr(𝑣, 𝑐)] : 𝑉 Assumption
∃ D ′𝑝 ⊑ D𝑝 s.t. D ′𝑝 :: Ψ2 ⊢ ch(𝑐1, 𝑥1.𝑒1, 𝑐2, 𝑥2.𝑒2) : 𝑈 ′ and 𝐸1 [D ′𝑝 ⊑ D𝑝] By Lemma B.5
∃ D ′𝑞 ⊑ D𝑞 s.t. D ′𝑞 :: Ψ4 ⊢ wr(𝑣, 𝑐2) : 1 and 𝐸2 [D ′𝑞 ⊑ D𝑞] By Lemma B.5

22

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

𝑐 { 𝑐1 s.t. Ψ(𝑐) = Wr 𝑆, Ψ(𝑐1) = Rd 𝑆, Ψ(𝑐2) = Rd𝑇 or
𝑐 { 𝑐2 s.t. Ψ(𝑐) = Wr𝑇, Ψ(𝑐1) = Rd 𝑆, Ψ(𝑐2) = Rd𝑇 Given

Subcase 𝑐 { 𝑐1
Ψ2;Δ; · ⊢ 𝑒 : 𝑈 ′ where Δ = w○, 𝑥1 : ! 𝑆 ⊗ Rd 𝑆 ⊗ Rd𝑇 By inversion on choice

⊢ 𝑣 : 𝑆 By inversion on wr
⊢ ! 𝑣 : ! 𝑆 By rule bang
⊢ (!𝑣, 𝑐1, 𝑐2)1 : ! 𝑆 ⊗ Rd 𝑆 ⊗ Rd𝑇 By rule apair

Ψ2; w○; · ⊢ (!𝑣, 𝑐1, 𝑐2)1/𝑥1]𝑒1 : 𝑈 ′ By Lemma B.8
Ψ1,Ψ2 ⊢𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥1]𝑒1] : 𝑈 By Lemma B.6

Ψ ⊢𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥1]𝑒1] : 𝑈 By above equalities
Ψ ⊢ ⟨Σ;𝜋⟩ : Φ𝜋 Above
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥1]𝑒1]⟩ : (Φ𝜋 , 𝑝 : 𝑈) By rule cons
Ψ4 ⊢ () : 1 By rule unit

Ψ3,Ψ4 ⊢𝐸2 [()] : 𝑉 By Lemma B.6
Ψ ⊢𝐸2 [()] : 𝑉 By above equalities
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥1]𝑒1], 𝑞 : 𝐸2 [()]⟩ : (Φ𝜋 , 𝑝 : 𝑈 ,𝑞 : 𝑉) By rule cons
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥1]𝑒1], 𝑞 : 𝐸2 [()]⟩ : Φ By above equalities

Ψ′ = Ψ and Φ′ = Φ Suppose
Ψ′ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥1]𝑒1], 𝑞 : 𝐸2 [()]⟩ : Φ′ By above equalities

Subcase 𝑐 { 𝑐2
Ψ2;Δ; · ⊢ 𝑒 : 𝑈 ′ where Δ = w○, 𝑥2 : !𝑇 ⊗ Rd 𝑆 ⊗ Rd𝑇 By inversion on choice

⊢ 𝑣 : 𝑇 By inversion on wr
⊢ ! 𝑣 : !𝑇 By rule bang
⊢ (!𝑣, 𝑐1, 𝑐2)1 : !𝑇 ⊗ Rd 𝑆 ⊗ Rd𝑇 By rule apair

Ψ2, w○; · ⊢ (!𝑣, 𝑐1, 𝑐2)1/𝑥2]𝑒2 : 𝑈 ′ By Lemma B.8
Ψ1,Ψ2 ⊢𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥2]𝑒2] : 𝑈 By Lemma B.6

Ψ ⊢𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥2]𝑒2] : 𝑈 By above equalities
Ψ ⊢ ⟨Σ;𝜋⟩ : Φ𝜋 Above
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥2]𝑒2]⟩ : (Φ𝜋 , 𝑝 : 𝑈) By rule cons
Ψ4 ⊢ () : 1 By rule unit

Ψ3,Ψ4 ⊢𝐸2 [()] : 𝑉 By Lemma B.6
Ψ ⊢𝐸2 [()] : 𝑉 By above equalities
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥2]𝑒2], 𝑞 : 𝐸2 [()]⟩ : (Φ𝜋 , 𝑝 : 𝑈 ,𝑞 : 𝑉) By rule cons
Ψ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥2]𝑒2], 𝑞 : 𝐸2 [()]⟩ : Φ By above equalities

Ψ′ = Ψ and Φ′ = Φ Suppose
Ψ′ ⊢ ⟨Σ;𝜋, 𝑝 : 𝐸1 [[(!𝑣, 𝑐1, 𝑐2)1/𝑥2]𝑒2], 𝑞 : 𝐸2 [()]⟩ : Φ′ By above equalities

□

C Confluence
The following lemmas state structural invariants over write effects and read endpoints of a well-typed configuration: at most
one process owns the write token w○, and every read endpoint is a non-duplicable (affine) resource.

Lemma C.1 (Unique writer process). If 𝐶 is a well-typed configuration with process pool 𝜋 , then there exists at most one process
in 𝜋 that owns the write token w○ (i.e., has w○ in its affine context).

Proof. By structural induction over the typing derivation for 𝐶 . □

Lemma C.2 (Unique reader process). If 𝐶 is a well-typed configuration with process pool 𝜋 , and 𝑐 is a read endpoint in this
configuration, then there exists at most one process in 𝜋 where 𝑐 appears.

Proof. By structural induction over the typing derivation for 𝐶 . □
23

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

Theorem C.3 (Single-step confluence). For all well-typed configurations𝐶 , if𝐶 −→ 𝐶1 and𝐶 −→ 𝐶2 then there exists renaming
a function 𝑓 such that either:

1. 𝐶1 = 𝑓 (𝐶2), or
2. there exists 𝐶3 such that 𝐶1 −→ 𝐶3 and 𝑓 (𝐶2) −→ 𝐶3.

Proof. By induction on the pair of steps ⟨𝐶 −→ 𝐶1 , 𝐶 −→ 𝐶2⟩.
We consider the following cases:
Case congruence
If either step uses congr, we apply the inductive hypothesis.

Case independent processes
If both steps advance distinct processes, using any of the rules local, fork and nu, we produce 𝐶3 by combining those two
(independent) steps.

Case one process
If both steps advance the same process, we show that this is deterministic (up to naming) by constructing the naming
function 𝑓 such that 𝐶2 = 𝑓 (𝐶1). Most cases are straightforward since they perform no nondeterministic choices. The
only source of nondeterminism is the name choices, in rules nu and fork. In each case, we map the name choice from the
second step to that of the first step.

Case interaction
If either step uses rw or cw, we rely on Lemmas C.1 and C.2 to show that both steps use either rw or cw, and that the
reader-writer process pair is unique.

□

By composing multiple uses of this theorem we prove multi-step confluence. However, to carry forth this composition, we
need a more general notion of single-step confluence, which is parameteric in a renaming function for the initial configurations.

Theorem C.4 (Single-step confluence, generalized). For all well-typed configurations 𝐶 and renaming functions 𝑓 , if 𝐶 −→ 𝐶1
and 𝑓 (𝐶) −→ 𝐶2 then there exists renaming function 𝑔 such that either:

1. 𝐶1 = 𝑔(𝐶2), or
2. there exists 𝐶3 such that 𝐶1 −→ 𝐶3 and 𝑔(𝐶2) −→ 𝐶3.

Proof. Analogous to the proof of Theorem C.3 (single-step confluence). □

We prove a full confluence theorem that is generalized similarly, by accepting a renaming function 𝑓 to produce a new
function 𝑔:

Theorem C.5 (Full confluence). For all well-typed configurations 𝐶 , and renaming functions 𝑓 , if 𝐶 −→∗ 𝐶1 and 𝑓 (𝐶) −→∗ 𝐶2
and 𝐶1 term and 𝐶2 term then there exists a renaming function 𝑔 such that 𝐶1 = 𝑔(𝐶2).

Proof. By induction on the reduction sequence pair ⟨𝐶 −→∗ 𝐶1 , 𝑓 (𝐶) −→∗ 𝐶2⟩. Because of single-step confluence, we know
that if either reduction sequence is empty, then the other must be empty, and that if either takes a step, the other must take a
step.
Case empty
When empty, we have the resulting renaming function 𝑔 via single-step confluence.

Case step
We consider the case where each reduction consists of at least one step: 𝐶 −→ 𝐶 ′1 and 𝐶

′
1 −→∗ 𝐶1 and 𝑓 (𝐶) −→ 𝐶 ′2 and

𝐶 ′2 −→∗ 𝐶2. By single-step confluence, we have that there exists 𝑔0 such that 𝑔0 (𝐶 ′2) = 𝐶 ′1. By the inductive hypothesis, we
have that there exists 𝑔 such that 𝐶1 = 𝑔(𝐶2).

□

24

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

D ILC Implementation of execUC
The full implementation of the UC execution experiment is given in Figure 10.

data Crupt = CruptP | CruptQ | CruptNone

corruptOrNot :: ∀ 𝐴p → Nat→ [Bit] → Bool→ · · ·
let corruptOrNot p k bits iscrupt toZ toF toA toQ frZ frF frA frQ=

if iscrupt then
let _ = rd frZ in error "Z can't wr to corrupt"

|▷ fwd toA frF
|▷ fwd toA frQ
|▷ fwd toF frA

else
p k bits toZ toF toQ frZ frF frQ

execUC :: 𝐴z→w 𝐴p ×𝐴q → 𝐴f → 𝐴a → Crupt→ Nat → [Bit] → Bit
let execUC z (p,q) f a crupt k r =
a (rZ2P, wZ2P), (rP2Z, wP2Z)
, (rZ2Q, wZ2Q), (rQ2Z, wQ2Z)
, (rP2F, wP2F), (rF2P, wF2P)
, (rQ2F, wQ2F), (rF2Q, wF2Q)
, (rF2A, wF2A), (rA2F, wA2F)
, (rA2Z, wA2Z), (rZ2A, wZ2A)
, (rP2A, wP2A), (rA2P, wA2P)
, (rQ2A, wQ2A), (rA2Q, wA2Q)
, (rP2Q, wP2Q), (rQ2P, wQ2P)
. let (rf,ra,rp,rq,rz) = splitBits r in

f k rf crupt wF2P wF2Q wF2A rP2F rQ2F rA2F
|▷ a k ra crupt wA2Z wA2F wA2P wA2Q wP2Q rZ2A rF2A rP2A rQ2A
|▷ corruptOrNot p k rp (crupt == CruptP) wP2Z wP2F wP2A wP2Q rZ2P rF2P rA2P rQ2P
|▷ corruptOrNot q k rq (crupt == CruptQ) wQ2Z wQ2F wQ2A wQ2P rZ2Q rF2Q rA2Q rP2Q
|▷ z k rz wZ2P wZ2Q wZ2A rP2Z rQ2Z rA2Z

��
FA

|B Z ��

Figure 10. Full implementation of execUC. The channels follow a uniform naming scheme. The read end of a channel is
prefixed with r- and the write end of a channel is prefixed with w-. The channel rZ2P denotes the read end of communications
from the environment z to the party p. First, the random bitstring is split amongst each of the five parties. Then, the functionality,
the adversary, and both protocol parties are spawned in a child process (given the appropriate channels and parameters), and
the process continues as the environment process. Notice that parties are run in wrapper functions, which alter their behavior
depending on whether or not they are corrupted. If a party is corrupted, then the adversary masquerades as the party.

25

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

E Extending ILC with Trapdoor
Permutations

UCCommitments are realized from cryptographic primitives,
such as trapdoor permutations, which require extensions to
ILC. The new syntactic forms are kgen, tdp, inv, and hc with
the static and dynamic semantics shown in Figure 11. The
semantics are written in terms of the cryptographic objects
themselves.

The key generation function keygen takes as input a ran-
dom bitstring and outputs a random public key 𝑣𝑝𝑘 and a
trapdoor 𝑣𝑡𝑑 . The trapdoor permutation function tdp takes
as inputs a key 𝑣𝑝𝑘 and a bitstring 𝑣𝑖𝑛 and outputs a bitstring
𝑣𝑜𝑢𝑡 . The inv function takes as inputs a key-trapdoor pair
(𝑣𝑝𝑘 , 𝑣𝑡𝑑) and a bitstring 𝑣𝑖𝑛 and outputs a bitstring 𝑣𝑜𝑢𝑡 . The
hardcore predicate function hc takes as input a key 𝑣𝑝𝑘 and
outputs a single bit.
We can use these to implement a special pseudorandom

number generator 𝐺𝑝𝑘 : {0, 1}𝑘 → {0, 1}4𝑘 that has a trap-
door property, i.e., it is easy to compute, but difficult to invert
except with special information called the “trapdoor.”

𝐺𝑝𝑘 (𝑟) =
(
f (3𝑛)
𝑝𝑘
(𝑟),B(f (3𝑛−1)

𝑝𝑘
(𝑟)), . . . ,B(f𝑝𝑘 (𝑟)),B(𝑟)

)
Here, f𝑝𝑘 is a trapdoor permutation over {0, 1}𝑘 , with f (𝑖)

𝑝𝑘
(𝑟)

denoting the 𝑖th-fold application of f𝑝𝑘 , and B is a hardcore
predicate for f𝑝𝑘 . In ILC, this can be implemented as:

iterate :: ∀ a . Int→ (a→ a)→ a→ a
prg :: [Bit]→ [Bit]→ Nat→ [Bit]
let prg pk r k =
letrec aux j =
if j ≤ 0 then [hc r]
else hc (iterate j (tdp pk) r) : aux pk r (j − 1) in

iterate (3 ∗ k) (tdp pk) r ++ aux pk r (3 ∗ k − 1)

F Universally Composable Commitment
Protocol

In this section we give the full elaboration of our UC commit-
ment instantiation. The specification functionality is given
in the body in Figure 1, along with the protocol implementa-
tion in Section 6.5. Our development follows closely from the
psuedocode in the UC literature [19], which we show here
in Algorithm 1. The protocol relies on the CRS functionality
which we define here in Figure 15. To briefly summarize
what is going: the setup CRS samples a random string 𝜎

and two trapdoor pseudorandom generators (prgs pk0, pk1).
To commit to the bit 𝑏, the commiter produces a string 𝑦

that is the result of applying one or the other of the prgs,
and if 𝑏 = 1 additionally applying xor with 𝜎 . The intuitive
explanation why this is hiding is that without the trapdoor,
it is difficult to tell whether a random 4𝑘-bit string is in the
range of either prg. To open the commitment, the committer
simply reveals the preimage and the receiver checks which

of the two cases applies. The intuitive explanation why this
is binding is that it is difficult to find a pair 𝑦,𝑦 ⊕ 𝜎 that are
respectively in the range of both prgs.

The UC proof consists of two simulators, one for the ideal
world and one for the real world. The ideal world simula-
tor, given in Figure 17 is ported directly from the UC litera-
ture [19], while the non-standard real world simulator, given
in Figure 18, is required because our protocol emulation def-
inition requires simulation in both directions. The key to
the ideal world simulator is to allow the simulator to gen-
erate its own “fake” CRS, for which it stores the trapdoors.
The string 𝜎 is not truly random, but instead is the result
of combining two evaluations of the prgs. The ideal world
simulator consists of two cases, depending on which of the
parties is corrupt.

In the case that the committer P is corrupt, the simulator
needs to be able to extract the committed value. The simu-
lator is activated whenZ sends a message (Commit′ 𝑦); in
the real world, this is relayed by the dummy adversary to Q,
who outputs Committed back to the environment. Hence to
achieve the same effect in the ideal word, the simulator must
send (Commit 𝑏) to FCom. To extract 𝑏 from 𝑦, the simulator
makes use of the prg trapdoor check which one has 𝑦 in its
range. It is necessary to argue by cryptographic reduction
that this simulation is sound. To show this, we would define
an alternative execution where the prg is substituted for a
truly random function (i.e., a random oracle). If an environ-
mentZ could distinguish between these two worlds, then
we could adapt the execution to distinguish the prg from
random, violating the prg assumption.
In the case that the receiver Q is corrupt, the simulator

needs to equivocate. The simulator is activated whenZ in-
puts (Commit 𝑏) to P, after which FCom sends Committed
to the simulator. In the real world, the environment receives
a commitment message (Commit′ 𝑦) from corrupted Q for
some seemingly-random 𝑦. To achieve the same effect, the
simulator must choose 𝑦. However, the simulator is next
activated when theZ inputs (Open 𝑏) to P, after which the
simulator learns 𝑏 from FCom. However, in the real world the
environment receives a valid opening (Opened′ 𝑏 𝑟) that is
consistent with 𝑦 and with the value chosen by the environ-
ment. Thus the simulator must initially choose 𝑦 so that it
can later be opened to either value 𝑏 may take. The simula-
tor achieves this by choosing 𝜎 and 𝑦 ahead of time while
generating the fake CRS. The reduction step is the same, and
involves replacing prg with a true random function.

Recall that the motivation for the real world simulator is to
rule out degenerate protocols that diverge in some way. For
every well behaved environment such that the ideal world is
PPT, we need to demonstrate an adversary in the real world
that is also PPT. Fortunately, the real world simulator, shown
in Figure 18 is much simpler than ideal world simulator.
Essentially the simulator runs a copy of the honest protocol

26

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Expressions 𝑒 ::= kgen(𝑒) | tdp(𝑒1, 𝑒2) | inv(𝑒1, 𝑒2) | hc(𝑒)

Δ; Γ ⊢ 𝑒 : 𝑈 Under affine context Δ and unrestricted context Γ, expression 𝑒 has type𝑈 .

Δ; Γ ⊢ 𝑒 : [Bit]
Δ; Γ ⊢ kgen(𝑒) : [Bit] × [Bit]

kgen
Δ1; Γ ⊢ 𝑒1 : [Bit] Δ2; Γ ⊢ 𝑒2 : [Bit]

Δ1,Δ2; Γ ⊢ tdp(𝑒1, 𝑒2) : [Bit]
tdp

Δ1; Γ ⊢ 𝑒1 : [Bit] × [Bit] Δ2; Γ ⊢ 𝑒2 : [Bit]
Δ1,Δ2; Γ ⊢ inv(𝑒1, 𝑒2) : [Bit]

inv
Δ; Γ ⊢ 𝑒 : [Bit] → Bit

Δ; Γ ⊢ hc(𝑒) : Bit
hc

𝑒1 −→ 𝑒2 Expression 𝑒1 reduces to 𝑒2.

Gen(𝑣𝑟) = (𝑣𝑝𝑘 , 𝑣𝑡𝑑)∞ 𝑣𝑝𝑘 , 𝑣𝑡𝑑 ∈ {0, 1}𝑘

kgen(𝑣𝑟) −→ (𝑣𝑝𝑘 , 𝑣𝑡𝑑)∞
kgen

f (𝑣𝑝𝑘 , 𝑣𝑖𝑛) = 𝑣𝑜𝑢𝑡 f : {0, 1}𝑘 → {0, 1}𝑘 → {0, 1}𝑘

tdp(𝑣𝑝𝑘 , 𝑣𝑖𝑛) −→ 𝑣𝑜𝑢𝑡
tdp

Inv((𝑣𝑝𝑘 , 𝑣𝑡𝑑)∞, 𝑣𝑖𝑛) = 𝑣𝑜𝑢𝑡 Inv : {0, 1}𝑘 × {0, 1}𝑘 → {0, 1}𝑘 → {0, 1}𝑘

inv((𝑣𝑝𝑘 , 𝑣𝑡𝑑)∞, 𝑣𝑖𝑛) −→ 𝑣𝑜𝑢𝑡
inv

B(𝑣𝑝𝑘) = 𝑣 B : {0, 1}𝑘 → {0, 1}
hc(𝑣𝑝𝑘) −→ 𝑣

hc

Figure 11. Extending ILC with trapdoor permutations. The semantics are parameterized by a security parameter 𝑘 .

for each of the corrupted parties. The simulation that results
in this case is identical.

Protocol 1: Universally Composable Commitment
1 Public strings:
2 𝜎 : Random string in {0, 1}4𝑛
3 𝑝𝑘0, 𝑝𝑘1: Keys for generator

𝐺𝑘 : {0, 1}𝑛 → {0, 1}4𝑛
4 Commit(𝑏):
5 𝑟 ← {0, 1}𝑛
6 𝑦 B 𝐺𝑝𝑘𝑏

(𝑟)
7 if 𝑏 = 1 then 𝑦 B 𝑦 ⊕ 𝜎
8 Send (Commit, 𝑦) to receiver.
9 Upon receiving (Commit, 𝑦) from 𝐴, 𝐵 outputs

(Receipt).
10 Decommit(𝑥):
11 Send (𝑏, 𝑟) to receiver.
12 Receiver checks 𝑦 = 𝐺𝑝𝑘𝑏

(𝑟) for 𝑏 = 0, or
𝑦 = 𝐺𝑝𝑘𝑏

(𝑟) ⊕ 𝜎 for 𝑏 = 1. If verification
succeeds, then 𝐵 outputs (Open, 𝑏).

27

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

dummy :: ∀ a Nat→ [Bit] → Crupt→ · · · a
let dummyA k bits crupt toZ toF toP toQ toQasP frZ frF frP frQ =
let fwd2Z () c = loop (_ m . wr (X2Z m)→ toZ) c in

loop (_ x .match x with
| A2F m⇒ wr m→ toF
| A2P m⇒ if crupt == CruptP

then wr m→ toQasP
else wr m→ toP) frZ

|▷ fwd2Z () frF
|▷ fwd2Z () frP
|▷ fwd2Z () frQ

Figure 12. Dummy adversary. The dummy adversary forwards messages from the environment to either the functionality
(if the message has constructor A2F) or the party p (if the message has constructor A2P). Similarly, the dummy adversary
forwards messages from the functionality or the procotol parties to the environment.

dummyP :: ∀ a b Nat→ [Bit] →Wra→ · · · b
let dummyP k r toZ toF toQ frZ frF frQ = fwd toF frZ |▷ fwd toZ frF

Figure 13. Dummy party. The dummy party simply relays information between the environment and the functionality.

fCrs :: ∀ a Nat→ [Bit] → Crupt→ · · · a
let fCrs k bits crupt toP toQ toA frP frQ frA =
let (𝜎 , bits) = sample (4∗k) bits in
let (r0, bits) = sample k bits in
let (r1, bits) = sample k bits in
let pk0 = kgen k r0 in
let pk1 = kgen k r1 in
let pub = PublicStrings 𝜎 pk0 pk1 in
let replyCrs to fr = loop (_ _ . wr pub→ to) fr in

replyCrs toP frP
|▷ replyCrs toQ frQ
|▷ replyCrs toA frA

Figure 14. Ideal functionality for common reference string.

28

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

bCrs :: ∀ a Nat→ [Bit] → Crupt→ · · · a
let bCrs k bits crupt toP toQ toA frP frQ frA =
let (r0, bits) = sample k bits in
let (r1, bits) = sample k bits in
let pk0 = kgen k r0 in
let pk1 = kgen k r1 in
let 𝜎 = xors (prg pk0 r0) (prg pk1 r1)
let pub = PublicStrings 𝜎 pk0 pk1 in
let replyCrs to fr = loop (_ _ . wr pub→ to) fr in

replyCrs toP frP
|▷ replyCrs toQ frQ
|▷ replyCrs toA frA

Figure 15. Bad ideal functionality for common reference string.

fCom :: Nat→ [Bit] → Crupt→ · · · ⊸ R 1

let fCom k bits crupt toP toQ toA frP frQ frA =
let (!(Commit b), frP) = rd frP in
wr Receipt→ toQ ;
let (!Open, frP) = rd frP in
wr (Opened b)→ toQ

Figure 16. Ideal functionality for one-time bit commitment.

29

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Kevin Liao, Matthew A. Hammer, and Andrew Miller

simI :: Nat→ [Bit] → Crupt→ · · · ⊸ 1

let simI k bits crupt toZ toF toP toQ frZ frF frP frQ =
let (pk0,td0) = kgen k in
let (pk1,td1) = kgen k in
let (r0, bits) = sample k bits in
let (r1, bits) = sample k bits in
let 𝜎 = xors (prg pk0 r0) (prg pk1 r1) in
match crupt with
| CruptP⇒
let (!GetCRS, frZ) = rd frZ in
wr (X2Z (PublicStrings 𝜎 pk0 pk1))→toZ ;
let (!(A2P (Commit' y)), frZ) = rd frZ in
if check td0 pk0 y then
wr (Commit 0)→ toP

else
if check td1 pk1 (xors y 𝜎) then
wr (Commit 1)→ toP

else error "Fail" ;
let (!(A2P (Open' b r)), frZ) = rd frZ in
if b == 0 && y == prg pk0 r ||
b == 1 && y == xors (prg pk1 r) 𝜎

then wr Open→ toP
else error "Fail"

| CruptQ⇒
let (!GetCRS, frZ) = rd frZ in
wr (X2Z (PublicStrings 𝜎 pk0 pk1))→ toZ ;
let (!Receipt, frQ) = rd frQ in
let y = prg pk0 r0 in
wr (X2Z (Commit' y))→ toZ ;
let (!(Opened b'), frQ) = rd frQ in
if (b' == 0) then
wr (X2Z (Opened' r0))→ toZ

else
wr (X2Z (Opened' r1))→ toZ

| CruptNone⇒ error "Fail"

Figure 17. Ideal world simulator for UC commitment.

30

ILC: A Calculus for Composable, Computational Cryptography PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

simR :: Nat→ [Bit] → Crupt→ · · · ⊸ 1

let simR k bits crupt toZ toF toP toQ frZ frF frP frQ =
match crupt with
| CruptP⇒
let (!(Commit b), frZ) = rd frZ in
wr GetCRS→ toF ;
let (!(PublicStrings 𝜎 pk0 pk1), frF) = rd frF in
let r = take k bits in
let y = if b == 0 then prg pk0 r else xors (prg pk0 r) 𝜎 in
wr (Commit' y)→ toQ ;
let (!(Open), frZ)= rd frZ in
wr (Open' b r)→ toQ

| CruptQ⇒
let (!(Commit' y), frQ) = rd frQ in
wr Receipt→ toZ ;
let (!(Open' b r), frQ) = rd frQ in
wr (Opened b)→ toZ

| CruptNone⇒ error "Fail"

Figure 18. Real world simulator for UC commitment.

31

	Abstract
	1 Introduction
	1.1 Interactive Lambda Calculus
	1.2 Contributions

	2 Overview
	2.1 Background on Universal Composability
	2.2 ILC by Example
	2.3 ILC Type System

	3 Interactive Lambda Calculus
	3.1 Syntax
	3.2 Static Semantics
	3.3 Dynamic Semantics

	4 ILC Metatheory
	4.1 Type Soundness
	4.2 Confluence

	5 Implementation
	6 SaUCy
	6.1 Probabilistic Polynomial Time in ILC
	6.2 SaUCy Execution Model
	6.3 Defining UC Security in ILC
	6.4 A Composition Theorem in SaUCy
	6.5 Instantiating UC Commitments
	6.6 Reentrancy in SaUCy

	7 Related Work
	7.1 Process Calculi
	7.2 Tools for Cryptographic Analysis
	7.3 Variations of Universal Composability

	8 Conclusion and Future Work
	References
	A Algorithmic Typing Rules
	B Type Soundness
	B.1 Progress
	B.2 Preservation

	C Confluence
	D ILC Implementation of execUC
	E Extending ILC with Trapdoor Permutations
	F Universally Composable Commitment Protocol

