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Abstract—Field-Programmable Gate Arrays or FPGAs are popular platforms for hardware-based attestation. They offer protection
against physical and remote attacks by verifying if an embedded processor is running the intended application code. However, since
FPGAs are configurable after deployment (thus not tamper-resistant), they are susceptible to attacks, just like microprocessors.
Therefore, attesting an electronic system that uses an FPGA should be done by verifying the status of both the software and the
hardware, without the availability of a dedicated tamper-resistant hardware module.

Inspired by the work of Perito and Tsudik, this paper proposes a partially reconfigurable FPGA architecture and attestation protocol
that enable the self-attestation of the FPGA. Through the use of our solution, the FPGA can be used as a trusted hardware module to
perform hardware-based attestation of a processor. This way, an entire hardware/software system can be protected against malicious

code updates.

Index Terms—FPGA, configurable hardware, remote attestation, hardware-based attestation, partial reconfiguration, ICAP,

configuration readback

1 INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) combine the
flexibility of software with the performance of hardware:
they allow device reconfiguration in the field while of-
fering a higher performance per consumed energy unit
than general-purpose microprocessors. In comparison to
Application-Specific Integrated Circuits (ASICs), FPGA ap-
plications have a shorter time to market and can be designed
with a lower non-recurring engineering (NRE) cost. ASICs
are not configurable after deployment but lead to circuits
with a higher speed, a lower power consumption and a
smaller area than FPGAs. Nevertheless, the performance
gap between FPGAs and ASICs is continuously shrinking
thanks to two phenomena: (1) the high-volume production
of FPGAs makes it economical to closely follow the latest
technology nodes, and (2) FPGA vendors improve the per-
formance of FPGAs by integrating dedicated application-
specific building blocks. These evolutions make the use of
FPGAs in embedded systems increasingly popular.

A typical FPGA-based embedded system combines a
general-purpose microprocessor with configurable hard-
ware. For the microprocessor, several techniques have been
proposed to verify that it is running the intended software
application, as explained in Section 4. However, for the
FPGA, it is not straightforward to remotely verify that it
is configured to the intended state. Many attestation mech-
anisms for microprocessors rely on a tamper-resistant hard-
ware module. Assuming that the hardware module itself
can be remotely reconfigured, the hardware prover core
needs to be able to prove its own state to the verifier, i.e.,
the configurable hardware needs to perform self-attestation.

This is shown in Figure 1, where the microprocessor and
the tamper-resistant hardware module are denoted by uP
and TR HW, respectively. The left side of the figure shows
the traditional adversary model, in which the adversary is
assumed to be capable of changing the software code in the
processor. The right side of the figure shows the scenario
that is considered in this work, where the adversary can
additionally tamper with the FPGA configuration.
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Fig. 1: The role of the adversary in traditional hardware-
based attestation (left) and in the model considered in this
paper (right), where uP denotes the microprocessor and
TR HW stands for the tamper-resistant hardware module.

The mechanism that is proposed, is inspired by the
work of Perito and Tsudik [1], who apply proofs of se-
cure erasure and secure code updates to embedded pro-
cessors. They assume that the processor platform contains
a small amount of immutable read-only memory (ROM)



that stores a basic program, taking care of communication
and memory read/write. FPGAs, however, do not have
the possibility of directly storing and accessing their basic
program/functionality in an immutable piece of ROM. Since
the basic functionality is stored in configurable memory, it is
far from straightforward to apply the results of [1] directly
to FPGAs.

This paper presents the SACHa (Self-Attestation of Con-
figurable Hardware) scheme. It consists of a novel hardware
design, mapped on an off-the-shelf FPGA, and a com-
munication protocol that executes the attestation process
based on the proposed FPGA design. The paper extends
our preliminary work [2] in two ways: (1) it dives deeper
into the technological capabilities of FPGAs that are needed
to implement the SACHa scheme, and (2) it details the
practical implementation and measurement results of the
scheme on a Xilinx FPGA. This allows other researchers and
practitioners to repeat our experiments and build further on
the SACHa scheme.

The paper is structured as follows. First, Section 2 gives
some background information. Section 3 discusses the as-
sumed system model and adversary model. In Section 4,
we revisit the concepts of remote attestation by discussing
related work. Section 5 introduces the SACHa scheme and
architecture and Section 6 presents a proof-of-concept im-
plementation. The performance and security of SACHa are
evaluated in Section 7. Finally, Section 8 concludes the paper
and gives directives for future work.

2 PRELIMINARIES

This section starts with explaining the basic structure of an
FPGA. Subsequently, it elaborates on two specific features
that we use in our SACHa proposal, namely partial recon-
figuration and configuration memory readback. Finally, the
concept of attestation is introduced as well as the specific
attestation solution that lies at the basis of this work.

2.1 FPGA
2.1.1 Basic Structure

The FPGA has been around for more than thirty years. It
consists of configurable fabric which gets its configuration
from a configuration memory, as shown on the left side of
Figure 2. Through this configuration memory, the function-
ality of the configurable fabric is determined. The data that
are stored in the configuration memory are referred to as
the bitstream. Depending on the type of FPGA, the config-
uration memory can be (volatile) SRAM or (non-volatile)
Flash memory. This work focuses on SRAM-based FPGAs,
which is the most frequently applied type of FPGAs. More
specifically, in the remainder of this paper, we concentrate
on Xilinx FPGAs and use the corresponding terminology.
Nevertheless, the concepts we propose can be applied to
most SRAM-based FPGAs.

The basic building blocks of the configurable fabric
are Configurable Logic Blocks (CLBs), embedded mem-
ory blocks called Block RAMs (BRAMs), Input/Output
Blocks (IOBs) and Switch Matrices (SMs); as is shown on
the right side of Figure 2. The CLBs consist of look-up tables
and distributed storage elements, while the BRAMs provide

2

centralized memory. The actual functionality of the FPGA
design is configured on the CLBs and the BRAMs. The SMs
interconnect the CLBs and the BRAM to each other and to
the IOBs. And they also connect the internal hardware to
the external environment through the pins of the FPGA. All
of the mentioned elements are configured by the bits in the
configuration memory.

Note that FPGAs also contain other dedicated hardware
primitives, which we omit from this overview, since they are
not necessary for the implementation of our solution. Never-
theless, it is possible to use these primitives in combination
with the proposed FPGA architecture.
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Fig. 2: Conceptual representation of an FPGA (left) and basic
building blocks of the configurable fabric (right).

2.1.2 Partial Reconfiguration

An FPGA can be logically partitioned, which implies that
the configurable fabric is segmented in two or more parti-
tions. These partitions can be configured separately while
the other partitions continue to operate normally. The part
of the configuration memory that configures a specific par-
tition is then updated at run-time through a bitstream of
which the size is proportional to the size of the partition.
This is referred to as partial reconfiguration.

The configuration memory of Xilinx FPGAs is not only
accessible from the outside of the FPGA, but also from
the configurable fabric inside the FPGA. This is achieved
through a dedicated primitive called the Internal Config-
uration Access Port (ICAP). When dealing with multiple
partitions, one partition usually stays unchanged and con-
tains the ICAP together with control logic. This partition is
referred to as the static partition. Typically, the configuration
of the static partition is loaded from a non-volatile Flash
memory on the printed circuit board into the (volatile)
SRAM-based configuration memory when the power is
turned on.

Next to the static partition, there can be one or more
run-time configurable partitions, which are referred to as
reconfigurable or dynamic partitions. This is shown in Fig-
ure 3, in which the ICAP is used to write a bitstream into
the part of the configuration memory that is connected to
the dynamic partition. This results in the reconfiguration
of the dynamic partition. Such a bitstream, only targeting
a dynamic partition, is referred to as a partial bitstream.
Note that, in principle, the ICAP is capable of updating the
entire configuration memory, including the static partition.
Nevertheless, this setting is rarely used in practice, because
the control logic in the static partition that interacts with the
ICAP should not be changed.
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Fig. 3: FPGA design in which the ICAP in the static partition
updates the configuration of the dynamic partition.

2.1.3 Configuration Memory Readback

Considering applications in which (un)intended faults occur
in the configuration memory, the readback capabilities of the
ICAP can be used for error detection and correction. This is
important in e.g., space applications, in which Single Event
Upsets cause bit flips in the configuration memory. We do
not target the detection of faults in our solution, but rather
the presence of malicious configuration data. Therefore, we
also use the configuration memory readback mechanism,
which allows the ICAP to read out the entire configuration
memory, as shown in Figure 4.
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Fig. 4: FPGA design in which the ICAP in the static partition
reads back the configuration of the entire configuration
memory.

2.2 Attestation Concept

In general, attestation is a challenge-response protocol be-
tween a verifier and an untrusted prover. Through attes-
tation, the verifier determines the “health” of the prover.
In a typical attestation protocol, the prover sends a cryp-
tographic checksum of its current state upon request of
the verifier. Based on the received checksum, the verifier
determines if the prover is operating in the intended state.
In order to ensure the freshness of the response, a nonce
generated by the verifier is included in the checksum. This
is shown in Figure 5.

The attestation mechanism we use in this paper relies
on proofs of secure erasure, which ensure that the mem-
ory/state of an embedded device is erased. This way secure
code updates can be done to ensure that the memory/state
of an embedded device is updated. It takes advantage of
the bounded memory model of an embedded device, which
assumes the verifier knows the exact size of the prover’s
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Fig. 5: Typical example of an attestation protocol between a
verifier and a prover, using a key K.

(bounded/limited) memory. The original proposal, as intro-
duced by Perito and Tsudik in [1], by which our work is
inspired, can be summarized as follows. When the verifier
sends data or code to the prover that fills the entire (limited)
memory of the prover’s embedded device, it is implied that
all prior code is overwritten and thus erased. The device
can then compute the checksum of the memory content
and send it back to the verifier. The embedded device is
supposed to have a small amount of immutable ROM that
takes care of (1) receiving code updates and writing them
to the device’s memory, and (2) reading out the checksum
and sending it back to the verifier. The algorithm for the
computation of the checksum can either be included in the
code that is sent by the verifier as part of the protocol,
or it can be a (fixed) part of the immutable ROM. When
we apply the mechanism proposed in [1] to Figure 5, the
attestation challenge and the nonce correspond to the code
that is sent by the verifier to fill the entire memory of the
prover’s device. The Message Authentication Code (MAC)
corresponds to the cryptographic checksum of the whole
memory content. This way, the goal is not to detect the
presence of malicious code, but to make sure there is no
malicious code remaining after the code erasure/update.

We apply a similar concept to FPGAs. In order to do so,
we overcome the challenges that occur due to the differences
between embedded processor platforms and FPGAs. The
resulting FPGA architecture uses partial reconfiguration
and configuration memory readback to make sure that it
does not contain malicious hardware modules. This way,
the FPGA can perform self-attestation, which is crucial for
hardware-based attestation solutions that use an FPGA as
the trusted hardware module.

3 SYSTEM AND ADVERSARY MODEL

Table 1 lists the notation we use for the entities in the
attestation scheme and the components of the system on the
prover’s side. The system model, consisting of the entities
and components in the table, is depicted in Figure 6.

The system model consists of the Prv and Vrf who
communicate with each other over a public channel. The
Vif is not constrained in computing power and is typically
a laptop, a desktop computer or a server. The Prv is an



TABLE 1: Notations used in this work.

Entities

Prv, Vif prover and verifier, respectively
Adv adversary

Components of the Prv
StatPart static partition of the Pro’s FPGA
DynPart dynamic partition of the Prv’s FPGA
StatMem configuration memory for StatPart
DynMem configuration memory for DynPart
BootMem non-volatile read-only memory, external to

the FPGA, to boot StatMem

% [
g ||

Prv Vrf

Fig. 6: System model.

embedded system that consists of an FPGA and a BootMem,
that initializes the StatMem when the power is turned on. We
assume that the BootMem is programmed before deployment
and not accessible remotely. Therefore, it can be seen as
a read-only memory during the attestation process. Note
that the BootMem is not the same as the immutable ROM
in the processor-based solution of Perito and Tsudik [1],
because it is not directly used to determine the functionality
of the FPGA; its content is loaded into the StatMem at
power-on, but it is the content of the StatMem, which is not
immutable, that determines the functionality of the StatPart.
The DynMem can be repeatedly reconfigured after start-up.
The StatMem and the DynMem provide the configuration for
the StatPart and the DynPart, respectively.

The adversary model depicts the scenario where the Adv
compromises or impersonates the Prv to fake its current
state or behavior to the Vif. In most of the attestation
literature, software-only attackers are considered. In the
scenario that we consider, a processor running software is
connected to an FPGA-based trusted component. Our Adv
can modify both the software of the processor and the
hardware configuration of the FPGA, i.e. the data in the
configuration memory. In this paper, we concentrate only on
the attestation of the FPGA configuration. We assume that
the Adv is capable of modifying the configuration memory
of the FPGA, not of applying hardware modifications to
the configurable fabric of the FPGA. This also excludes
Hardware Trojan insertion from the attack space. We can
classify our Adv based on the taxonomy introduced in [3]:

e The Adv can be a “remote adversary” that aims at
inserting malicious hardware components on the Prv
remotely. An example of an attack performed by a
remote adversary is the 2010 Stuxnet incident [4].

e The Adv can be a “local adversary” (subsuming a re-
mote adversary) that aims at impersonating or cloning
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the Prov’s device and/or at collecting information. The
Adv does this by eavesdropping and/or controlling the
communication between Prv and Vrf.

We consider side-channel analysis attacks and physical at-
tacks that actively modify the configurable fabric or the
FPGA-based system out of our current scope.

4 RELATED WORK

We explore related work in remote attestation in this section.
The discussed methods mainly belong to either software-
based or hard-ware-based attestation. Apart from that, we
also consider hybrid techniques which employ minimum
hardware support.

4.1 Software-based Attestation

In general, most of the software-based attestation mech-
anisms do not require hardware support and rely on a
challenge-response protocol. Typically, in software-based
attestation methods, a Vrfsends a challenge to a Prv (device).
The Prv computes the cryptographic checksum of its own
memory or underlying software along with the challenge
provided by the Vrf and sends it back to the Vrf. Based on
the received response, the Vrf verifies the “state” of the Prv.

In [5], Spinellis et al. propose a mechanism in which the
Prv computes the hash of two randomly colluding memory
areas. The hash value is then sent to the Vrf, who compares
it to the expected hash values. This technique relies on
sequential memory read-out for the hash calculation, but
the data memory is not verified. In case of an intelligent
adversary, malicious code can evade detection by shifting
its locations; this flaw occurs due to the non-simultaneous
hash calculation of the two randomly overlapping areas.

Seshadri et al. propose a software-based attestation
scheme called SWATT [6]. It assumes that malicious code
that is running on a (compromised) Prv must re-direct
the memory access to the location where the actual code
resides in order to get the valid response for the attestation
challenge. The authors assume that the timing overhead
introduced by the memory re-direction will be noticed dur-
ing the protocol execution. SWATT relies on strict timing
constraints, and thus unfeasible for real-world employment
over a network.

A remote software-based attestation scheme to detect a
malicious Prv in a network is proposed by Shaneck et al.
in [7]. The attestation challenge is generated at run-time
and is shared with the Prv using symmetric-key encryption
to achieve secure communication. A vulnerability occurs
when the node is compromised and the shared symmetric
key is extracted. The authors also use self-modifying code
to prevent an adversary from evading detection. However,
this technique does not verify the data memory and an
intelligent adversary can still evade detection by relocating
its position during attestation.

In other software-based attestation schemes like the one
proposed by Choi et al. [8], the Prv’s memory is filled
by pseudo-randomness using a Pseudo Random Function
(PRF). The Vrf sends a nonce to the Prov, after which the Prov
uses the nonce as a seed for the PRF. The value generated
by the PRF then fills the empty memory region of the Prv.



Next, the Prv computes the hash of the memory and sends
the result to the Vrf for verification. The main idea is to fill
the empty memory regions in such a way that the adversary
will have no place to hide malicious code. However, a
compromised Prv having access to the PRF can still evade
detection by computing a valid hash.

Li et al. present a technique for verifying the integrity of
peripherals’ firmware (VIPER [9]), which is also a software-
based attestation technique to identify the presence of
malware in the firmware of the peripherals. VIPER is a
challenge-response protocol that runs between a host CPU
(Vrf) and a potentially untrusted peripheral (Prv). The idea
is to identify the presence of malware which tries to hide
itself by employing a more powerful and faster proxy to
respond to the challenge sent by the Vif. Unfortunately,
VIPER also depends on a strict time-bound response and
does not scale as the Vif has to check the peripherals one at
a time, thus making it impractical for large-scale industrial
implementation.

In summary, software-based attestation schemes are in-
teresting, thanks to their easy and low-cost “hardware-
less” approach. However, most of the schemes have flaws
or are not practical due to strict timing constraints, due
to the absence of data memory attestation and/or due to
the lack of protection of stored secrets when the node is
compromised.

4.2 Hybrid Attestation

Hybrid attestation schemes employ software/hardware
co-design that facilitates effective, low-cost, secure solu-
tions without a dedicated hardware module (e.g., a TPM)
to thwart the inefficiency of software based-attestation
schemes. The goal of hybrid architectures is to provide more
security to the attestation schemes against all adversaries
except for physical adversaries.

In [10], El Defrawy et al. propose SMART (Secure and
Minimal Architecture for (Establishing a Dynamic) Root of
Trust), a software/hardware co-design for low-end embed-
ded devices. The essence of this architecture is to provide
a secure memory location for attestation code and for an
attestation key. The processor, to which minimal changes
in the form of these secure memory locations have been
applied, protects the secure memory locations from “non-
SMART” codes.

With TrustLite, Koeberl et al. provide a seclusion of spe-
cific software modules, independent of the operating sys-
tem, known as Trustlets [11]. They introduce an Execution-
Aware Memory Protection Unit (EA-MPU), which has a
similar working principal as the SMART-based memory
protection unit. The EA-MPU enforces code-specific data
use. Ferdinand et al. propose Tiny Trust Anchor for Tiny
Devices (TyTAN) [12]. The core idea of this architecture is
based on an EA-MPU. Apart from providing secure inter-
process communication, TyTAN facilitates robust schedul-
ing and run-time loading and unloading of tasks.

More recently, in [13]-[15], the authors propose new
hybrid schemes for low-end devices to counter physical
adversaries. Especially in [13], the use of a reliable read-
only clock guarantees non-malleability of the attestation
results. Specialized secure hardware modules, e.g. a Mem-
ory Protection Unit, safeguard the attestation-related code
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and keys from unauthorized access. These kind of secure
tamper-resistant hardware units assure authenticity of the
attestation results. However, the main purpose of these
techniques is to identify the presence of physical adversaries
rather than protecting the device itself.

The aforementioned schemes are designed while keep-
ing in mind low-end, tiny devices. Apart from providing
better resilience against stronger adversaries in networks,
their development and deployment in low-end devices
make large-scale “swarm” attestation feasible, i.e., a number
of low-end, tiny embedded devices that are employed as a
group for a specific task.

4.3 Hardware-based Attestation

Hardware-based attestation methods predominantly rely on
the use of specialized hardware. Arbaugh et al. propose the
“AEGIS” architecture to ensure the integrity of the Prv [16].
The essence of this method is a list of security checks on the
BIOS that are done from power-on until the kernel is loaded.
Failure of any of these checks will reboot the Prv and bring
it back to a known saved state.

In order to check the trustworthiness of the Prv, Sailer et
al. propose to extend the Trusted Platform Module (TPM)
with additional functionality [17]. The main idea is that the
TPM maintains a sequence of trust which covers the ap-
plication layer and the system configuration. Furthermore,
a kernel-maintained checksum list is also included in the
TPM for preserving its integrity.

In [18], England et al. propose to segregate a system into
two parts, namely a trusted and an untrusted part. Both
parts have distinct operating systems. Only the trusted part
of the system will be checked to maintain the integrity of
the system.

Kil et al. propose ReDAS (Remote Dynamic Attestation
System) in [19]. Their approach consists of extracting the
properties from application source code. At the time of pro-
gram execution, all activities, including malicious activities,
are recorded. The Prv is equipped with a TPM which stores
the recorded values in order to protect them against adver-
sarial modification. Upon receiving the attestation request
(challenge) from the Vrf, the Prv sends the TPM-protected
information to the Vrf. Although this approach is better than
the other discussed approaches, it has a drawback: ReDAS
does not consider all the available properties; it only checks
a subset of the dynamic system properties. As a result, an
adversary can still be successful by modifying properties
which are not covered by ReDAS.

The aforementioned hardware-based attestation solu-
tions rely on tamper-resistant hardware modules. These
tamper-proof modules cannot be modified by a physical
adversary, but are very costly and therefore unfeasible to
deploy on low-cost, tiny devices. For higher-end, security-
critical devices, hardware-based attestation is preferred over
software-based attestation.

We are aware of two papers that deal with the remote
attestation of configurable hardware; they are discussed in
the following two paragraphs.

Drimer and Kuhn describe a protocol for secure remote
updates of FPGAs in [20]. The presented protocol provides
for the remote attestation of the running configuration and



the status of the upload process. The bitstream is stored
in an external non-volatile memory and the configuration
memory is assumed to be tamper-proof. Other work on the
secure remote configuration of FPGAs is described in [21],
[22].

In [23], Chaves et al. perform on-the-fly attestation of
configurable hardware. Given that a loadable hardware
structure to a configurable device is described by a binary
bitstream, the hash value of this bitstream is calculated to
validate the hardware structure. The attestation core imple-
mented in the FPGA is assumed tamper-proof, as the core
is supposed to make sure that partial configuration updates
can only take place in a predetermined restricted area.

Both [20] and [23] rely on an external memory that is
accessible during the attestation process and/or a tamper-
proof configuration memory. Our system and adversary
model are much stronger, assuming that the attestation
mechanism cannot rely on an external memory and as-
suming that the configuration memory is not tamper-proof.
Therefore, our solution is the first mechanism to propose the
self-attestation of an FPGA.

Note that our solution uses a PUF, as explained in the
remainder of the paper. There are other attestation mecha-
nisms that use PUFs. However, these mechanisms rely on
a strong PUF to generate a challenge-based response, while
our solution uses a weak PUF to generate a key. This means
that the PUF has a less important role in our solution; the
novelty of our work is in the dynamic reconfiguration based
architecture in combination with the use of the bounded
memory model. Therefore, we do not extensively compare
to other PUF-based attestation mechanisms.

5 OUR SOLUTION: SACHA
5.1 Contribution

The mechanism we introduce in this paper improves the
security of FPGA-based attestation methods. From the ob-
servation that the trusted hardware module itself needs
to be verified when it is based on configurable hardware
(i.e.,, an FPGA), we propose the SACHa architecture and
attestation protocol. SACHa allows the self-attestation of the
FPGA-based module, such that the FPGA can be trusted by
the Vrf when it is used for the hardware-based attestation
of the software running on a processor. In this paper, we
concentrate on the self-attestation of the FPGA, not on the
connection of the FPGA-based trusted module to a proces-
sor. Nevertheless, our solution can easily be combined with
existing hardware-based attestation mechanisms. SACHa
consists of a novel FPGA architecture (implemented on an
off-the-shelf FPGA) and attestation protocol.

5.2 FPGA Architecture

We apply the bounded memory model, introduced in [1]
and summarized in Section 2.2, to the configuration memory
of an FPGA. We rely on the observation that the FPGA
does not have enough memory in the configurable fabric
to store the configuration data sent by the Vrf. In [24], it
is shown that this is a realistic assumption, i.e. the internal
BRAM does not have enough capacity to store a bitstream
that configures a large part of the FPGA. Therefore we can
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be sure that the configuration data are stored in the con-
figuration memory. Since the configuration data stored in
the memory determine the functionality of the configurable
fabric (cfr. Figure 2), this automatically implies that the
configurable fabric of the FPGA is running the application
intended by the Vrf. The platform used in [1] is assumed to
have an immutable ROM that contains a program for basic
send/receive and read/write functionality. Since FPGAs do
not have this as a part of their configuration memory, we
propose an architecture that makes use of partial reconfig-
uration. In our solution, the communication with the Vrf
and the configuration memory read/write mechanism are
implemented in the StatPart. The code updates are applied
to the (bounded) DynMem. A cryptographic checksum is
computed on the entire configuration memory, covering
both the StatMem and the DynMem. Figure 7 gives a high-
level overview of the FPGA architecture.

e —————
ETH ICAP MAC 4—*— attestation nonce
core ]

PUF ? ? PUF

\StatPart_______________ iDyPart

Fig. 7: High-level FPGA architecture of SACHa, in which
the key for the MAC comes either from StatPart or from
DynPart.

5.2.1 Static Partition

In the StatPart, the ICAP takes care of writing the configura-
tion memory in order to (re)configure the DynPart. It is also
used for reading out the entire configuration memory, which
contains both StatMem and DynMem. Further, the Ethernet
core (ETH core) provides a communication link with the Vrf.
The MAC core computes the cryptographic checksum of the
entire configuration memory content. The MAC serves two
purposes: (1) it guarantees that the checksum is computed
by the FPGA and not by another device impersonating the
FPGA (this is achieved by a shared key between Prv and
Vif); (2) it guarantees that the configuration data are not
tampered with.

There are two options for generating the key for the
MAC in the device. The first option is to implement a (weak)
Physical(ly) Unclonable Function (PUF) in the StatPart that
generates the key. Even if the Adv has access to the PUF
circuit in the StatMem, the key cannot be retrieved to clone
the device. The second option is to include a PUF in the
DynPart as a new hardware module from the Vif as part
of the attestation protocol. This allows the Vif to update
the shared key by updating the PUF circuit. In this case,
each PUF circuit sent by the Vrf needs to have gone through
an enrollment phase before the deployment of the FPGA.
Further, the Vrf needs to keep a database of PUF circuits
and corresponding keys. Note that we assume an ideal
key-generating PUF in our solution; attacks/weaknesses of
PUFs are considered out of scope in this work. The use
of a PUF does lead to an additional enrollment step in
the preparation of the FPGA-based device. However, the



BootMem of the device needs to be programmed anyway, so
we assume that the enrollment and thus the key exchange
can be done in the same provisioning step, which takes place
before the devices are placed in the field.

The StatPart needs to be configured and running on the
FPGA at all times. Since we focus on SRAM-based FPGAs,
the configuration memory is volatile. This means that the
static configuration needs to be loaded from a non-volatile
memory every time the power of the FPGA is turned on.
Therefore, we include BootMem in the system, i.e. a small
Flash memory to load the StatMem of the FPGA at power-
on. We minimize the size of the BootMem, such that it is
not capable of storing the configuration bitstream of the
DynPart, since that would undermine our assumption that
the partial bitstream can only be stored in the configura-
tion memory. In order to achieve a minimum-size static
configuration bitstream and thus a minimum-size BootMem,
we make the area of the StatPart as small as possible and
for sure significantly smaller than the area of the DynPart.
Note that, on commercial FPGA boards, it is only possible
to program the BootMem by decoupling it from the board
and connecting it to a programming device. This means that,
even if the BootMem was capable of storing the full bitstream
of the FPGA, it would still not be possible to store the partial
bitstream sent remotely by the Prv. So we can safely assume
that the bitstream sent by the Vrf can only be stored in the
configuration memory.

5.2.2 Dynamic Partition

The DynPart contains the intended configuration of the
FPGA and a register that stores a nonce, i.e., an arbitrary
number that can only be used once. The nonce can be
updated by the Vif in order to achieve freshness when
requesting a MAC from the Prv. Optionally, the DynPart
contains a PUF for key generation, as explained in Sec-
tion 5.2.1. In practice, we propose to use a separate partition
for the nonce, such that the nonce can be updated without
updating the intended application in the DynPart. This way,
the Vif can request a fresh checksum of the Prv’s configu-
ration without changing the intended application. Note that
the nonce could also be communicated to the StatPart as a
normal data packet.

5.3 Attestation Protocol

Figure 8 shows the attestation protocol that is applied be-
tween Vrf and Prv, in which the SACHa FPGA architecture is
on the side of the Prv. First, the Vrf sends a partial bitstream
to the Prv, who stores the bitstream in the configuration
memory through the ICAP. As explained in Section 5.2.2, the
architecture facilitates the independent configuration of the
intended application and the nonce. Therefore, the dynamic
configuration consists of two steps, as shown in Figure 8.
After the two configuration steps, the entire DynMem is
(over)written by the Vrf. Note that, even if the intended
application and the nonce register do not need all the
resources in the configurable fabric of the dynamic partition,
the partial bitstream still fills the entire DynMem. Optionally,
the bitstream that configures the intended application also
contains configuration data for the key-generating PUF.
When the bitstream is written into the configuration
memory, the FPGA runs the intended application and stores

Intended application configuration

H Nonce configuration
-

| B’ <= MAC,(full configuration (Prv)) |

| H <~ MAC, (expected configuration) |
H :

-
L]

| H=—H ? |

Fig. 8: SACHa protocol, using a key K.

the received nonce. To prove this to the Vif, the entire
configuration memory is read out by the ICAP. A MAC
is generated on the read-back data and sent back to the
Vif, who generates the same MAC using the shared key.
Finally, it compares the two values to verify the internal
configuration of the entire FPGA.

6 PROOF-OF-CONCEPT IMPLEMENTATION

As a proof of the SACHa concept, an implementation is
made on a Xilinx Virtex 6 FPGA (XC6VLX240T). To generate
configuration bitstreams, we use the Xilinx ISE 14.7 Suite.
The implementation of the protocol and the architecture are
discussed in this section.

6.1 Implementation of the Protocol

The configuration memory of the XC6VLX240T FPGA con-
sists of 28,488 frames. A frame is the smallest addressable
part of the configuration memory and contains 81 words of
32 bits for the considered FPGA. Since we want to make
the StatPart as small as possible, we use a BRAM-based
memory to store a single bitstream frame. This means that
the Vrf sends a single frame per network packet until the
DynMem of the FPGA is completely (over)written and the
DynPart is completely (re)configured. A trade-off between
the size of the BRAM-based memory and the number of
communication steps can be made, as long as the memory
is not capable of storing the partial bitstream at once, since
that would undermine our initial assumption that only the
DynMem has enough space to store the partial bitstream.
Note that, in practice, if the DynPart is large enough, which
is the case in our proof-of-concept implementation, there are
not enough BRAMs in the FPGA to store the entire partial
bitstream.

After the DynPart is completely (re)configured, the Prv
computes the MAC of the entire configuration memory.
Therefore, the ICAP reads out the memory frame per frame,
in an order chosen by the Vrf. For each frame, a new step in
the MAC calculation is computed. Before the first step, the
MAC is initialized. When the entire configuration is read
out and included in the MAC computation, the MAC is
finalized. The Prv sends back the checksum. The Vrf then
compares the received value to a locally generated golden
reference.

In practice, there is a complication that needs to be
overcome to implement the above procedure. The bitstream



that is sent to the FPGA does not exactly correspond to the
data that the ICAP reads from the configuration memory.
The reason is that the ICAP also reads out the content
of all registers, which depends on the current state of the
running FPGA application. Since the scope of this work is
the attestation of the FPGA configuration, the Vif needs to
be able to make a comparison of the checksum generated
by the Prv with the locally generated golden reference, and
therefore, the register content needs to be masked out. When
creating bitstreams using the Xilinx tools, this mask, which
we call Msk, can be generated. We apply the Msk on the
side of the Vrf. Therefore, the Prv does not only send back
the MAC value to the Vif, but also the content, i.e., the
frames. This way, the Vrf can apply the Msk to the received
frames in order to compare with the golden reference. Note
that another option is to send the Msk to the Prv whenever
a frame readback is requested, such that the Msk can be
applied to the configuration memory content before each
MAC step. This would lead to a similar communication
latency: the frames would not need to be sent from Prv to
Vif, but the Msk values for each frame would need to be
sent from Vrf to Pro.

In more detail, the attestation of the FPGA configuration
occurs by a repetition of three commands that are sent by
the Vif to the Pru:

1) ICAP_config(frame): update the configuration memory
with the frame data, which contains both the configura-
tion memory address and the content that needs to be
written;

2) ICAP_readback(frame_nb): read out the content of the
configuration memory at the address given by frame_nb,
send back the content to the Vif and compute the next
step in the MAC calculation (in case this is the first
step in the MAC calculation, it is preceded by the MAC
initialization);

3) MAC_checksum: finalize the MAC computation and
send back the checksum to the Vrf.

The low-level communication steps are shown in Fig-
ure 9. The attestation protocol is initiated by the Vrf, who
sends ICAP_config commands to the Prv. First, the Vrf
instructs the ICAP to configure the intended application in
the DynPart by transmitting the corresponding frames (from
frame_m to frame_n). The number of frames that is sent this
way depends on the size of the DynPart. The second step in
the dynamic configuration is the update of the nonce, which
consists of 64 bits in our implementation.

After these initial steps, the entire DynMem is
(over)written. Next, the Vrf sends the ICAP_readback com-
mand to the Prv together with a frame address, telling the
ICAP to read out a frame from the configuration memory
and to perform a calculation step in the computation of the
MAC. Before the first calculation step, an initialization of the
MAC computation is done. The frame addresses are applied
starting from address i, where i is chosen by the Vrf, up to
address 28,487, and then from address 0 up to address i-1.
The Vrf chooses the starting address i. In Figure 9, %28,488 is
used to indicate a modular reduction with modulus 28,488.
This way, all the frames in the configuration memory are
included in the computation of the MAC. It is pointed out
that this ascending order, starting from an offset 7, is in no
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way required. The order in which the frames are read back
can be any permutation. If desirable by the Vrf, a number
of frames could also appear multiple times. Note that the
use of a nonce already guarantees the freshness of the MAC
computation, so changing the order in which the frames are
configured is not necessary for freshness.

When the Vif sends the MAC_checksum command to the
Prv, the MAC is finalized and the cryptographic checksum is
sent to the Vrf. Upon verification of the checksum, the Vrfis
assured that the configuration originates from the Prv and
is not tampered with. Next, the Vrf applies the Msk to all
of the received frames, thus obtaining Bp,.,. Similarly, the
Vif applies the Msk to the golden reference to obtain By, .
When the comparison of Bp,, and By, results in equality,
the Vif has attested the Pro.

K K
Prv Msk Virf
command: ICAP_config(frame_m)
:'< . H 5
‘ command: ICAP_'Config(frame_n) é .‘é
P =)
H HE=
i . command: ICAP_config(nonce) Has
- d 51
H command:
.< ICAP_readback(i)
| Init MAC, |
? | Update MAC, step 1 | .
& : frame i =
=} »E [=} S
o 1.8 =
g H command: H § Q
5] iqICAP readback((+1)%28'488) 55
g Update MAC, step 2 | i § ;
— > 1 ’ H —_—
3 frame (1+1)-%28 488 > E §
= : i e
% ; command: 3]
= < ICAP_readback((i+28°487)%28°488)
| Update MAC, step 28°488 |
i frame (i+28°487)%28°488 >
L command: MAC_checksum
H, < finalize MAC, |
H, . <«— MAC,(received configuration)
(HPn' == HVrf) (’

B,,, <€ Apply Msk (received configuration)
B,,. <€ Apply Msk (golden configuration)
B, ==B,)?

Prv Vrf”

Fig. 9: Low-level communication steps, using a key K and
with Msk being the mask on the communicated bitstream.

6.2 Implementation of the Architecture

The high-level view of the SACHa architecture is given in
Figure 7. A block diagram of the proof-of-concept imple-



mentation of the StatPart is shown in Figure 10. The StatPart
is divided into three parts that each operate in a different
clock domain:

o the RX clock domain for receiving data from the Vif: the
RX clock is derived from the incoming network packets;
it runs at 125 MHz and drives the receiving port of the
ETH core and the other components in the RX clock
domain;

o the ICAP clock domain for reading and writing data
from/to the configuration memory: the ICAP clock is
generated by the DCM; it runs at 100 MHz and drives
the ICAP and the other components in the ICAP clock
domain.

o the TX clock domain for transmitting data to the Vrf:
the TX clock is generated by the Digital Clock Manager
(DCM); it runs at 125 MHz and drives the transmitting
port of the ETH core and the other components in the
TX clock domain;

The DCM derives the TX clock and the ICAP clock from
the on-board 200 MHz system clock. Note that the RX and
TX clocks run at the same frequency. They cannot originate
from the same clock source, though, since there might be
a phase shift between the incoming and outgoing network
packets. The role of the components in the three domains
is explained below. The clouds between two components
in Figure 10 symbolize glue logic that translates the signals
coming from one component to the format expected by the
other component. The ETH core provides a Gigabit network
connection by receiving/transmitting one byte per cycle of
the 125 MHz clock.

In the RX clock domain, the incoming network packets
from the Vrf are received by the ETH core. The network
packets are stored in the BRAM-based memory; the packets
contain one of the three commands explained in Section 6.1.
The Finite State Machine of the RX clock domain (RX FSM)
either triggers the glue logic in the TX clock domain to
initiate the running of the ICAP program or triggers the
Finite State Machine of the TX clock domain (TX FSM) to
transmit a network packet back to the Vrf.

In the ICAP clock domain, the command stored in the
BRAM-based memory is executed by the ICAP. In case
the stored command is ICAP_config, the ICAP takes the
configuration frame, that is also stored in the BRAM, and
writes it to the configuration memory. In case the stored
command is ICAP_readback, the frames read out by the
ICAP are stored in a FIFO, that can be read out in the TX
clock domain.

In the TX clock domain, the outgoing network packets
are generated. First, the packet header is loaded into a FIFO.
Then, either a frame is loaded into the FIFO (by copying the
content from the preceding FIFO) or the checksum gener-
ated by the MAC block (through the AES-CMAC algorithm)
is loaded into the FIFO. The content of the FIFO is transmit-
ted to the Vif by the ETH core. We use 128-bit AES for the
AES-CMAC algorithm, such that we need to generate a 128-
bit key. In the proof-of-concept implementation, we use a
key register in the StatPart to store the key. For a foolproof
solution, a key-generating PUF needs to be implemented, as
shown in Figure 7, instead of a key register.

ICAP clock domain

\ 4
2

R

<=2

=) | ICAP wp

AEScmac
header

DCM
: FIFO
RX clock domain : TX clock domain
ETH
: co:re
\StatPart e
~“control path /" 8-bit bus / 32-bit bus

/ 128-bitbus .-~ clock domain boundries
Fig. 10: The FPGA block diagram of the proof-of-concept
implementation of SACHa.

7 SACHA EVALUATION
7.1 Performance Evaluation

The occupied FPGA resources of the proof-of-concept
implementation of the SACHa architecture on a Xilinx
XC6VLX240T FPGA are presented in Table 2. The table
shows the number of CLBs, (18-kbit) BRAMSs, ICAPs and
DCM in the considered FPGA. Further, it summarizes the
occupied resources of the implemented components. The
StatPart occupies less than 9% of the FPGA (when consider-
ing both CLBs and BRAMs). This overhead is very reason-
able, since modern FPGAs are typically much larger than the
FPGA used for this proof of concept.The AES-CMAC core in
the StatPart is optimized towards low area, resulting in an
implementation using 283 CLBs and 8 BRAMs (including
the FIFO from which the incoming data are read). This
leaves the majority of the configurable fabric to the intended
application (including the nonce) in the DynPart.

TABLE 2: FPGA resources of the SACHa architecture.

Component | CLB | BRAM | ICAP | DCM
Entire FPGA | 18 840 832 1 12
StatPart 1 400 72 1 1
MAC
(+ FIFO) 283 8 0 0
DynPart 17 440 760 0 11

Table 3 shows the duration of the low-level actions in
the SACHa protocol. Table 4 lists the number of times each
action needs to be executed. The actions related to the
configuration of a frame in the DynMem are repeated 26,400
times, which corresponds to the number of frames in the
DynMem. The actions related to the readback of a frame
are repeated 28,488 times, which corresponds to the total
number of frames in FPGA. The initialization and finaliza-
tion of the MAC need to be performed only once. The same
holds for the Vrfs request to compute the final checksum
and the transmission of the MAC by the Prv. The sum of the



durations of these actions is around 1.5 s. We also measured
the actual duration of the execution of the SACHa protocol
in a lab network, resulting in a duration of 28.5 s. From
this result, we can conclude that the measured duration is
dominated by the delay of the network communication. The
reason for the large difference in theoretical and measured
duration comes from the fact that the protocol consists of
many steps (as shown in Figure 9). As a reference for the
reader, it is pointed out that a direct configuration of the
targeted FPGA takes around 28 s over a JTAG cable, which
shows that the measured duration of our protocol is very
reasonable.

TABLE 3: Timing of the low-level steps in the SACHa
protocol in the proof-of-concept implementation.

Action | Time
Al | Vifsends ICAP_config 8 856 ns
A2 | Prvperforms ICAP_config 1 834 ns
A3 Vif sends ICAP_readback 13 616 ns
A4 | Prv performs ICAP_readback | 24 044 ns
A5 | Prov performs MAC init 120 ns
A6 | Prv performs MAC update 128 ns
A7 | Prov performs MAC finalize 136 ns
A8 | Prv performs frame sendback 2 928 ns
A9 | Vrfsends MAC_checksum 344 ns
A10 | Pro performs MAC sendback 472 ns

TABLE 4: Total timing of the SACHa protocol in the proof-
of-concept implementation.

Action | Number of times | Time
Al 26 400 0.234 s
A2 26 400 0.050 s
A3 28 488 0.388 s
A4 28 488 0.685 s
A5 1| 0.120ps
A6 28 488 | 3.646 ms
A7 1| 0.136ps
A8 28 488 0.083 s
A9 1 0.344 ps
A10 1 0.464 ps

Theoretical duration 1443 s

Measured duration 285s

7.2 Security Evaluation

We use the classification of adversaries introduced in Sec-
tion 3 to evaluate the security of our SACHa proposal. We
consider the following threats:

o Alocal adversary, e.g., the owner of the FPGA platform,
adds a malicious hardware module to the DynPart of
the Prv’s FPGA: since the configuration data sent by
the Vrf can only be stored in the configuration memory,
the malicious hardware module has to be overwritten,
which is then proven to the Vrf, making the attack
infeasible.

 Alocal adversary adds a malicious hardware module to
the StatPart of the Prv’s FPGA: the StatPart is made as
small as possible, containing only relevant components
for the communication and the calculation of the MAC.
Since the size of the StatPart cannot be changed after de-
ployment, it is impossible for the Adv to use the StatPart
for communication and MAC computation while at the
same time running additional malicious blocks.
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e A local adversary impersonates the Prov: the key is
only contained in the legitimate device (Prv) and never
exchanged over a public channel, such that the MAC
cannot be computed on another device (Prv). The fact
that a PUF is used to generate the key for the MAC
prevents the Adv from impersonating the Prv.

e A local adversary connects another computing device
to the Prv’s FPGA, such that the MAC can be computed
on that device and the FPGA can run malicious code:
the bitstream reflects which FPGA pins are connected
to peripherals, such that the Vrf exactly knows if there
are additional connections to external devices.

A local adversary performs a replay attack: the pres-

ence of the nonce in the initial dynamic configuration

challenge makes the replay attack detectable by the Vif.

Further, the order in which the Vrf triggers the readback

of the configuration frames determines the order of

the steps in the MAC computation, which changes the

MAC in each repetition of the protocol, even if the Adv

manages to prevent the nonce from being updated.

8 CONCLUSION AND FUTURE WORK

This paper proposes an architecture and protocol for the
Self-Attestation of Configurable Hardware (SACHa). The
mechanism allows the use of FPGAs as trusted hardware
modules in hardware-based attestation schemes. Whereas
these schemes usually rely on trusted tamper-resistant ded-
icated hardware modules, FPGAs are configurable after
deployment thus inherently not tamper-resistant. Therefore,
the main contribution of the paper is that it is the first
work that does not assume that the FPGA is a tamper-
resistant hardware module in hardware-based attestation
schemes. The proposed solution consists of a novel FPGA
architecture, suitable for implementation on an off-the-shelf
FPGA, and attestation protocol.

Implementation results and measurements are per-
formed on a proof-of-concept implementation on a Xilinx
Virtex 6 FPGA. The experiments show that the SACHa archi-
tecture occupies less than 9% of the configurable resources
on the considered FPGA. The attestation of the complete
configuration memory of the FPGA based on the SACHa
protocol takes 1.5 seconds (without taking into account
the network delay). When the network delay is taken into
account, it takes 28.5 seconds to execute the protocol in a lab
setup.

The next step will be to also take the content of the
registers of the running application into account (which is
filtered out in the current solution by the use of a mask).
This makes it possible to not only attest the FPGA config-
uration, but also the current state of the FPGA application.
Consequently, the trend of embedding softcore processors in
an FPGA can be followed, allowing the attestation scheme
to do a combined verification of the FPGA configuration
and the current state of the FPGA application (including the
state of the embedded processor).

Another possible extension is to add a signature mech-
anism to the system when it is not possible to exchange
a secret key between the prover and the verifier before
deployment.
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