
On the Complexity of the Permuted Kernel Problem

Abstract. In 1989, A. Shamir [1] introduced an interesting public-key scheme
of a new nature, a Zero-Knowledge (ZK) Identification scheme, based on PKP:
the Permuted Kernel Problem. PKP is an NP-hard [2] algebraic problem which
has been extensively studied [7,8,9,5,10]. Among all the attacks, the problem
PKP is in spite of the research effort, still exponential. This problem was used to
develop an Identification Scheme (IDS) which has a very efficient implementa-
tion on low-cost smart cards [1].
There has been recently a renewed interest in PKP-based cryptography due to
post quantum security considerations, simple security proofs, and the design of
new PKP-based signature algorithm [12]. In 2018 and through the Fiat-Shamir
transform [3], the PKP-IDS was used to construct a post-quantum signature
scheme [12] which was submitted to a Chinese competition for the design of
post-quantum cryptographic algorithms (organized by the Chinese Association
CACR). This latter was improved in [13].
The aim of this document is two-fold. First, we investigate the complexity of
the combinatorial problem - namely PKP. We also present a summary of previ-
ously known algorithms devoted to solve this problem. Contrary to what is shown
in [10], and after a thorough analysis of the State-of-the-art attacks of PKP, we
claim that the Joux-Jaulmes attack [10] is not the most efficient algorithm for
solving PKP. In fact, the complexity of the Joux-Jaulmes attack underestimate
the amount of certain important phase of the algorithm.
Second, we examine the complexity given by various algorithms, specifically the
ones introduced by Patarin-Chauvaud [9] and Poupard [5]. It is relatively com-
plex to obtain a general complexity formula due to the very numerous variants.
However, we have been able to develop a program and provide its approximate
space and time complexities which allow us to identify hard instances and secure
sets of parameters of this problem with respect to the best attack currently known.

Keywords: Cryptanalysis · Identification scheme · Public-key signature · Com-
plexity · Post-quantum cryptography · Permuted Kernel Problem.

1 Introduction

In this paper we focus on the analysis of the Permuted Kernel Problem (PKP). PKP is
the problem of finding a permutation of a known vector such that the resulting vector is
in the kernel of a given matrix. It was proved to be an NP-hard combinatorial problem
[1].
PKP requires simple operations which involve basic linear algebra computations. Due
to its simplicity, the problem has received significant attentions from theory and appli-
cation in cryptography. Here, we study the theoretical analysis behind the PKP problem
over a finite field. There are no new reported attacks on PKP which makes the construc-
tion of schemes based on hard instances of this problem more applicable.
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We are essentially concerned about this problem because it can be used to build a post-
quantum signature scheme based on the hardness of solving random instances of PKP.
In fact and due to the call for post-quantum standards of the NIST, there has been
renewed interest in the transformed Zero-Knowledge Identification Schemes into Dig-
ital Signatures Schemes (DSS) via the Fiat-Shamir paradigm [3]. This transformation
method is important since it yields to efficient signature schemes in terms of minimal
and sufficient security assumptions. Hence, a post-quantum signature scheme based on
PKP (PKP-DSS) was proposed in [12]. This scheme takes part of the chinese competi-
tion for the standarization of new post-quantum schemes. (PKP-DSS) [12] is therefore
a potential candidate for the design of new cryptographic standards.
Therefore, it is important to reconsider some NP-hard problems ( for example PKP)
whose security relies on the fact that there is no quantum algorithms known to solve
such problems [4].
Previous works and Main results. Since quantum computers are expected to be inca-
pable to solve NP-hard problems [4], algebraic problems such PKP, are very interesting
nowadays.
The main contribution of this paper is to present an updated complexity analysis of the
most efficient algorithm for solving instances of the Permuted Kernel Problem.
In [7], J. Georgiades proposed the first algorithm to solve PKP. The author presents
symmetric polynomials equations which will be utilized by all the other attacks.
The authors of [8] investigate also the security of PKP, where a time-memory trade-
off was introduced. Moreover, J. Patarin and P. Chauvaud improve algorithms for the
Permuted Kernel Problem[9]. Also, in [10], a new time-memory trade-off was proposed
and believed to be the most efficient attack against PKP.
All the suggested attacks combine exhaustive search with some form of time-memory
tradeoff.
In this paper we perform a complexity analysis of all the existing attacks for solving
the Permuted Kernel Problem. Interestingly, it appears that the complexity bound given
in Joux-Jaulmes paper [10] is not quite precise. Therefore, we show that Joux-Jaulmes
attack is not the best algorithm for solving PKP.
In order to estimate a concrete security of PKP, we review and compare the best known
attack’s effeciency, in terms of the number of operations performed, for different finite
fields.
After all, we have been able to bring together Patarin-Chauvaud attack [9] and Poupard
algorithm [5] to provide an accurate program. This latter yields better security estimates
that contribute for secure parameters sets of the Permuted Kernel Problem.
After updating the complexity bounds of PKP’s solving tools, we use a Magma imple-
mentation for our software to compare all the attacks in order to define several sets of
parameters for different security levels.
Our results have been used in the post-quantum signature scheme based on PKP: PKP-
DSS [12]. Moreover, these results may be very useful for the improved scheme of PKP-
DSS proposed in [13].
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2 The Permuted Kernel Problem

In this section, we first present the PKP problem [1] over a finite field Fp.

2.1 Description of PKP

PKP [1,2] is the problem on which the security of the Identification scheme proposed by
A. SHAMIR is based. PKP is a linear algebra problem which asks to find a kernel vector
of given matrix under a vector-entries constraint. It’s a generalization of the Partition
problem [2, pg.224]. More precisely, it is defined as follows:

Input. A finite field Fp, a matrix A ∈Mm×n(Fp) and a n-vector V ∈ Fp
n.

Question. Find a permutation π over (1, . . . ,n) such that A×Vπ = 0, where
Vπ = (Vπ(1), . . . ,Vπ(n)).

2.2 Practical complexity considerations

First, for the problem to be hard, n−m must be large enough so that the kernel of A has
sufficiently enough elements. Then, since the problem is unchanged by manipulation
on lines of A, one may assume that the matrix A is of rank exactly m. Otherwise an
equivalent matrix of A could be expressed with fewer significant lines.
By denoting Aσ = (aiσ( j)), the effect of a permutation σ over the columns of A, it’s easy
to see that AσVσ = AV. Also, up to a reordering of the columns of A, we may assume
that it is given in a systematic form:

A = (ai j)1≤i≤m,1≤ j≤n =
[
A′|I
]
,

where A′ = (a′i j)1≤i≤m,1≤ j≤n−m ∈Mm×n−m(Fp) and I is the identity matrix of size m.
Note that, to reach higher security levels, it’s more desirable that the n-vector V has dis-
tinct coordinates, since it reduce the number of solutions, or otherwise said, it enlarges
the search space. If the vector V is drawn at random in the kernel of A and is expected
to have this property, then one should draw at random the first distinct n−m variables,
computes the m last ones and checks if suitable. So one should have (p−n+m)!

pm(p−n)! high.
Also, it is most suitable that pm ≈ n! so that the number of solutions is close to 1.
A reduction of the 3-Partition problem proves PKP to be NP-hard [2] in the good rea-
soning (i.e.its hardness grows exponentially with p). The solidity of PKP comes from,
on one hand, the big number of permutations, on the other hand, from the small number
of possible permutations which may suit the kernel equations. More precisely, PKP is
hard because it obligates the choice of a vector, with already fixed set of entries, from
the kernel of the matrix A.

3 Solving PKP: best known algorithms

The implementation’s efficiency of the first IDS, proposed by A. SHAMIR [1], based on
PKP problem has led to several solving tools, which are all exponential.
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As a reference, we mention the exhaustive search consisting in examining all the possi-
ble permutations. Its complexity is obviously n!.
We detail here the previously well-known attacks for the so-called PKP problem over a
finite field. As well, we discuss the complexity analysis of solving this problem.

3.1 J. GEORGIADES method

J. GEORGIADES [7] was the first to publish an improvement of the exhaustive search.
The basic idea is to find some new equations in order to reduce the set of suitable per-
mutations. Since the rank of A is equal to m, then dim

(
ker(A)

)
= n−m. There exists in

the kernel of the considered matrix n−m vectors which are linearly independent. So,
we can fix the first n−m coordinates of each vector and the last m coordinates are con-
stants depending on A. Consequently, it is possible to give the kernel of A the following
form:

Ker(A) = λ1



u1,1
u1,2

...
u1,m

1
0
...
0


+λ2



u2,1
u2,2

...
u2,m

0
1
...
0


+ · · ·+λn−m



un−m,1
un−m,2

...
un−m,m

0
0
...
1


, (1)

where u1,1, . . . ,un−m,m, . . . belong to Fp, and so does the λis.
Thus, we can conclude that the kernel is the set of vectors:(

f1, f2, . . . , fm,λ1,λ2, . . . ,λn−m

)
, (2)

where f j =
n−m
∑

i=1
ui, jλi, j ∈ {1, . . . ,m} .

Thus, to find the find the secret permutation π , it suffices to exactly place n−m coordi-
nates of the corresponding vector Vπ , and then, the other m coordinates will be deduced
from the kernel equations 1 and 2. It is equivalent to pick (n−m) values out of n and
correctly place them. This will decrease the number of permutations to be considered
from n! to:

n!(
n− (n−m)

)
!
=

n!
m!

.

Moreover, since the coordinates of Vπ are known, all their symmetrical expressions are
also known, for example their sum, the sum of their squares, etc... Then, this cost may
be diminished if we successfully use relations between the λis. As a matter of fact,
V = (v1, . . . ,vn) is known, and its permutation Vπ = (x1, . . . ,xn) ∈ Ker(A) has the form
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given in 2. Hence, it’s feasible to get the following relations in Fp:

n

∑
i=1

vr
i mod p =

n

∑
i=1

xr
i mod p =

m

∑
i=1

f r
i +

n−m

∑
i=1

λ
r
i mod p, (Gr)

where r is a positive integer. Such equations Gr are very useful and, for small values
of r (for example r = 1,2) , are simple to calculate. For r = 1 (resp. r = 2), it is easy
to represent some λi (resp. λ j 6=i) as a linear combination (resp. quadratic equation) of
the other n−m−1 (resp. n−m−2) parameters. This will reduce, by taking r = 2, the
possible permutations to:

n!(
n− (n−m−2)

)
!
=

n!
(m+2)!

.

So far, it is not obvious how to use symmetric equations with higher degree, and de-
crease more the complexity.

3.2 A time-memory trade-off

Another attack on PKP uses the time-memory trade-off. It was introduced by T. BAR-
ITAUD, M. CAMPANA, P. CHAUVAUD and H. GILBERT in [8]. The proposed scheme
reduces the time and space required to solve the PKP problem.
Recall that, solving PKP is equivalent to find a permutation π of a vector V such that
A×Vπ = 0. Thus, using the reduced form of A, we can represent PKP as:

 a′1,1 . . . a′1,n−m 1
...

...
. . .

a′m,1 . . . a′m,n−m 1


 Vπ(1)

...
Vπ(n)

=

 0
...
0


Consequently, solving PKP is equivalent to solve a system S of m equations in n vari-
ables given by the entries of the matrix product given above. The algorithm is accom-
plished by considering k equations of S, where 0 ≤ k ≤ m is a parameter of the algo-
rithm. Due to the block form of A, one can easily see that only n−m+ k variables,
namely Vπ(1), . . . ,Vπ(n−m+k), are involved in the sub-system of S formed by k relations.
Another parameter 0 ≤ k′ ≤ n−m+ k is used to indicate the amount of storage to be
computed in the first step of the algorithm.
This method is composed by two essential steps:
Step1: precomputation. Recall that the aim is to solve k relations of S. Hence, for each
k′−uple (Vπ(1), . . . ,Vπ(k′)), the corresponding values are computed as follows:

b1 =
k′

∑
j=1

a′1, jVπ( j)

...
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bk =
k′

∑
j=1

a′k, jVπ( j)

Then, the n!
(n−k′)! possible values of the k′−uples and its corresponding results (b1, · · · ,bk)

are stored. Note that, for each of the pk possible value of the vector (b1, · · · ,bk) the
k′−uple (Vπ(1), . . . ,Vπ(k′)) are quickly accessed.
This step costs n!

(n−k′)! matrix-vector product. The memory required is about n!
(n−k′)!

k′−uples. Also, for each (b1, · · · ,bk) value corresponds approx. p−k n!
(n−k′)! k′−uples.

Step2: exhaustive trial. The exhaustive search is performed over the remaining com-
ponents (Vπ(k′+1), . . . ,Vπ(n−m+k)). There is n!

(m+k′−k)! possible value of such vector.
For each tested vector, the corresponding values are computed from the k equations:

c1 =
n−m+k

∑
j=k′+1

a′1, jVπ( j)

...

ck =
n−m+k

∑
j=k+1

a′k, jVπ( j)

Now, using the precomputation step, a list of probable (Vπ(1), . . . ,Vπ(k′)) is obtained.
Obviously, the k relations can be represented as:

b1 + c1 = 0

...

bk + ck = 0.

Moreover, the k′−uple (Vπ(1), . . . ,Vπ(k′)) is certainly one of the possible k′−uples for
the (−c1, . . . ,−ck) value of (b1, . . . ,bk).
For every vector (Vπ(k′+1), . . . ,Vπ(n−m+k)) generated, there are in average p−k n!

(n−k′)!
(Vπ(1), . . . ,Vπ(k′)) values. For each probable solution (Vπ(1), . . . ,Vπ(n−m+k)), the remain-
ing unsolved equations from (k′+ 1) to (m) give successively only one possible value
for the last components Vπ(n−m+k+1), . . . ,Vπ(n).
The required space of this step is negligible. In contrast, the required time is about
sup(

n!
(m+k′−k)!

n!
(n−k′)! p−k, n!

(m+k′−k) ) matrix vector product.
Thus, for every pair (k,k′), the total time complexity of solving PKP, using this time-
memory attack is about:

n!
(n− k′)!

+ sup(
n!

(m+ k′− k)!
n!

(n− k′)!
p−k,

n!
(m+ k′− k)

),

and the total space required is about:

n!
(n− k′)!

k’-vectors.
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3.3 Joux-Jaulmes algorithm

In [10], A. Joux and E. Jaulmes introduce a new time-memory trade-off algorithm
which is an application of the algorithm described in [11] to the Permuted Kernel Prob-
lem. This technique includes the so-called 4SET problem (see [14,10] for more details)
which is defined as follows:

Input. An n-vector P = (p1, . . . , pn) where the pis are primes, four sets Si of
n−vectors such that |Si|= Ni for i = 1 . . .4, and n sets D1, . . . ,Dn.
Question. Find v(1) ∈ S1, . . . ,v(4) ∈ S4, d1 ∈ D1, . . . ,dn ∈ Dn such that:

∀i ∈ [1, . . . ,n], v(1)i + v(2)i + v(3)i + v(4)i ≡ di (mod pi)

The solving strategy of 4SET is composed of two phases: the A-Phase which is a pre-
computation step, and the B-Phase which is a main loop consisting two enumeration
steps (detailed in [10]). The authors of [10] specify reasonable choice of parameters for
the solving technique of 4SET. Thus, the its time complexity is given by:

O
(
(n− k)ψN1N2N3N4

)
,

Where ψ =
k
∏
i=1

|Di|
pi

for suitable choices of 1≤ k ≤ n. As shown in [10], we can reduce

an instance of PKP to the 4SET problem. According to [7], it is useful to add the Gr
equations. The linear equation Gr, for r = 1, represents the fact that the sum σ of the
coordinates of the vector V is independent of the secret permutation π . By considering
this linear equation the kernel vector Vπ verify:

(A′0|Im+1)Vπ =


σ

0
...
0

 ,

as said in 2.1, A =
[
A′|I
]
. Thus, A′0 ∈M(m+1)×(n−m−1)(Fp), and Im+1 is the identity

matrix of order (m+1).
Now, A′0 is divided into four roughly equal parts, so:

(A′1A′2A′3A′4|Im+1)Vπ =


σ

0
...
0

 , (3)

where A′i is a (m+1)× (ni) matrix and n1 +n2 +n3 +n4 = n−m−1.
Recall that V is known and Vπ is its permutation vector. In order to apply the 4SET
problem, we need to construct the sets Si. Since A′i is an (m+1)× (ni) matrix, Si is the
set of m+ 1-vectors: the product resulting of A′i by all the possible ni combinations of
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the coordinates of V . So, the size of Si is equal to Ni = n!
(n−ni)!

.
In this case, all the primes pis are equal to the prime number p given by the PKP
instance. Now, to determine the m+ 1 sets Di, lets decompose, similarly to the matrix
A′0, the vector Vπ = (V (π)

1 V (π)
2 V (π)

3 V (π)
4 V (π)

5 ) such that for i ∈ [1, . . . ,4], V (π)
i is an ni-

vector where, as we quoted before, n1 +n2 +n3 +n4 = n−m−1. So, V (π)
5 is the vector

formed by the last (m+ 1) coordinates of Vπ . Hence, we can reformulate the matrix-
vector product (3) as follow:

A′1V (π)
1 +A′2V (π)

2 +A′3V (π)
3 +A′4V (π)

4 =


σ

0
...
0

−V (π)
5 =


σ − v(π)n−m

−v(π)n−m+1
...

−v(π)n

=D

It’s obvious that the value of V (π)
5 depends on the V π

i s , for i ∈ [1, . . . ,4], so does the

m+1-vector D. The first component of D depends on v(π)n−m which has n possible values.
Thus, D1 is the set of these n possible values. Since V has no double, the set D2 is formed
by n−1 elements, and so on. In this way, the sets D1, . . . ,Dm+1 are built such that each
one has in average:

n+(n−1)+, . . . ,+(n−m)

m+1
elements.

Note that we are dealing with bit operations. So, in order to define the solving time
complexity, it is indispensable to pack 32 or even 64 = 26 bit operations in one word
operation. It’s equivalent to divide the complexity by 26. In summary, the authors of
[10] gives the following time complexity for their algorithm (see [10] for more details):

O
(
(m+1− k)×ψ× n!2

(n−n1−n2)!(n−n3−n4)!
×2−6

)
,

Where k = log |Di |
p
(ψ).

It appears in [10] that this new approach is the most efficient to solve PKP.
But, we show in the next section that the performance of Joux-Jaulmes attack on PKP
had been misjudged. Joux-Jaulmes attack is much more complicated than expected.
Thus, in the next section, we detail the choice of the most efficient solving tool for PKP.

4 Concrete security of the Permuted Kernel Problem

In this section, we present the main contributions of this paper. The aim here is double:
correcting the complexity bound of Joux-Jaulmes algorithm, and providing the best
method for solving PKP.

4.1 Complexity Analysis of Joux-Jaulmes algorithm

Note that, in this section we use the notations of Section 3.3.
Recall that we can reduce an instance of PKP to the 4SET problem, so we can apply its
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solving strategy to PKP. Then as well, the algorithm of JOUX-JAULMES consists of a
main loop containing two enumerations phases: A-Phase and B-Phase. The authors of
[10] assume that the B-Phase controls the time complexity of this approach. Without
going too far into the analysis of this technique, we found that the overall complexity is
wrongly estimated. By considering a reasonable choices of parameters, it turns out that
the time complexity of the algorithm is dominated most cases by the A-Phase. Recall
from [10],the analysis of JOUX-JAULMES algortihm:
The number of operations needed to execute the A-Phase is in:

CA−Phase = O
(

max
{

N1 log(N2)ψφ , (m+1− k)ψ
n!

(n−n1−n2)!
} )

.

While the B-phase requires:

CB−Phase = O
(

max
{

N3 log(N4),(m+1− k)ψ
n!2

(n−n1−n2)!(n−n3−n4)!
φ
−1} ),

Where, Ni = n!
(n−ni)!

. Hence, by considering the effect of the main loop which contains
the 2 Phases, the total time complexity can be expressed as:

2−6×φ ×
(
CA−Phase +CB−Phase

)
,

Where φ = pk is the cost of the main loop containing the two phases A and B, and 2−6

is for packing bit operations.
The following table confirms what we claimed earlier, that the overall complexity is
dominated by the A-phase.
Note that, we use here the same parameters sets, of the form

(
PKPp(m,n)

)
, given in

[10].

Parameters Sets A-phase Complexity B-phase Complexity Overall Complexity(
PKP251(16,32)

)
245.72 218.02 293.55(

PKP251(15,32)
)

246.13 218.02 293.96(
PKP251(24,48)

)
294.45 232.09 2190.1(

PKP251(34,64)
)

2135.67 240.67 2270.19

Table 1. The A/B-Phase complexity of JOUX-JAULMES algorithm

Experimental results show that for the set of parameter that minimize the total time
complexity, the phase A dominates, and the total is much higher as announced. There-
fore, the JOUX-JAULMES algorithm is not efficient for solving PKP.

4.2 Simplest and most efficient algorithm

Here, we try to estimate a lower complexity bound of the algorithms that serve for
solving PKP. As a simplification, we assume that the elementary operation is the com-
putation of a tuple, namely a vector-matrix product in Fp or whatever should be more
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efficient to accomplish it, as for instance a result can be deduced from another one,
where few changes have to be made. For the same reason, we assume also that the
memory unit is the space needed to store a tuple.

Improvement and Generalisation of already existing attacks. As already recalled in
Section 3.2, the time-memory trade-off method [8] reduces the time required to solve
the PKP problem at the cost of use of significantly large memory. The idea for speeding
up the solving time is to perform a pre-computation on a smaller search space involving
an A-sub-matrix and the corresponding subsystem.
Then naturally in [9], J. Patarin and P. Chauvaud combine this method with the idea
of J. Georgiades. Hence, adding the ”free” linear symmetric equation leads to a reduc-
tion in the time required to attack PKP. They present also some new ideas in order to
reduce the memory usage. Due to the different variants presented, we will ony cite the
following (See [9] for further details):

– ”Set introduction” : make an exhaustive search on a sub-set of values, instead of or-
dered tuples of values. This leads to diminish the size of the initial pre-computation.

– ”Middle values” : make an exhaustive search on the value of a sub-system,
– ”Pre-computation on A”: search if a sub-system could be expressed with less vari-

ables. This leads to probabilistic algorithms.

G. Poupard, in [5] gives a nice generalization of the ”Middle values” method, and a
corresponding complexity analysis, but it seems to be flawed since the details of the
complexity are not clearly given.
Thus, in the next section, we consider all the existing attacks and their improvements in
order to obtain a fresher look at the algorithm for effectively solving PKP.

Our method : Extension of the most efficient attacks. In this section, we bring to-
gether most of the previously known methods to solve PKP. We provide a new software
which leads to an efficient complexity measurement, and we establish its approximate
space and time complexity.
We will use the following notation: k-V is a tuple of k values, where k notes conve-
niently at the same time a subset of indexes and the number of elements of this subset.
In the same spirit, k.i-A is a sub-matrix of A with the given subsets of indexes.
Mainly, we build upon the work of Patarin-Chauvaud [9] and Poupard [5], combining
their techniques, and pushing further the implementation to hold higher security levels.
More specifically, four variations are essentials:

1. Use the symmetric polynomial equations Gr of small degrees.
2. Reduce the time complexity: Perform a precomputation step and an exhaustive

search on a sub-set of variables, instead of ordered tuples of variables [8,9].
3. Reduce the memory: Introduce some middle values leading to solve a simple sys-

tem of equations [9].
4. Carry out a pre-computation on the matrix A which leads to probabilstic algorithms

(See Section 4.2).
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Our starting point will be to combine, in Alg. 1, the first two ideas given above (Section
4.2) for solving PKP. This method exploits usefully the special form of the matrix
A = (A′‖I).

Algorithm 1 A1 : Solve PKP (n,m, p)
Require: 0≤ k ≤ m and l + r+m− k = n
1: select k equations, and split their variables into two sets l and r
2: for all l-tuple l-V do
3: compute C← k.l-A× l-V
4: store efficiently (C, l-V ) in a file F0 so that given a value C, one can retrieve efficiently all

the associated l-tuples
5: end for
6: for all r-tuple r-V do
7: compute C←−k.r-A× r-V
8: retrieve from F0 a list L of l-tuples associated with C
9: filter the list L keeping only the l-tuples compatible with r-V

10: for all l-tuple l-V in L do
11: compute the last variables s-V ← (m− k).(l + r)-A× (l + r)-V
12: if the values s are compatible with (l + r) then
13: (l + r+ s) is a solution
14: end if
15: end for
16: end for

For this algorithm, we can summarize the time and space complexities by these
formulas :

space =
n!

(n− l)!
(4)

time =
n!

(n− l)!
+

n!
(n− r)!

+
n!

pk(n− (l + r))!
(5)

In order to provide a fisrt clear image on the parameter sets, we have collected, using
Alg. 1, several tests on prime fields for different values of n. So, in Fig. 1, we show the
time complexity for solving PKP by Alg. 1.
Note that, the number m of equations is implicitly estimated as the closest integer of
log(n!)/ log(p).
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Fig. 1. Time complexity of Alg. 1 for various values of p

Our second point is to combine almost all of the variations (Section 4.2). Thus,
in Alg. 2 we give a more synthetic description of Poupard’s algorithm mixed with the
techniques of precomputed files and ”Middle values”. Moreover, we provide its detailed
complexity which was not estimated before (cf. equations 6 and 7 below).
Notations are the ones in [5, Fig. 3].
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Algorithm 2 A2 : Solve PKP (n,m, p)
Require: i+ j+ r+m = n and c+ c′ ≤ m and d ≤ c and l + k = r+d
1: for all j-tuple j-V do
2: compute C0← c. j-A× j-V
3: store efficiently (C0, j-V ) in a file F0 so that given a value C0, one can retrieve efficiently

all the associated j-tuples
4: end for
5: for all l-tuple l-V do
6: compute C2← d.l-A× l-V
7: store efficiently (C2, l-V ) in a file F2 so that given a value C2, one can retrieve efficiently

all the associated l-tuples
8: end for
9: for all c-tuple of ”Middle values” c-C do

10: for all i-tuple i-V do
11: compute C0← c-C− c.i-A× i-V
12: retrieve from F0 a list L of j-tuples associated with C0
13: filter the list L0 keeping only the j-tuples compatible with i-V and get ( j+ i)-tuples
14: for all ( j+ i)-tuple j+ i-V of L0 do
15: compute C1← c′.( j+ i)-A× ( j+ i)-V
16: store efficiently (C1,( j+ i)-V ) in a file F1 so that given a value C1, one can retrieve

efficiently all the associated ( j+ i)-tuples
17: end for
18: for all k-tuple k-V do
19: compute C2← d-C−d.k-A× k-V
20: retrieve from F2 a list L2 of l-tuples associated with C2
21: filter the list L2 keeping only the l-tuples compatible with k-V and get (l+k)-tuples
22: for all (l + k)-tuple (l + k)-V of L2 do
23: compute (c−d)-V ← (c−d)-C−(c−d).(l + k)-A×(l + k)-V and keep only val-

ues compatible with (l + k)-V and get (r+ c)-tuples
24: for all c′-tuple c′-V compatible with (r+ c)-V do
25: compute C1←−(c′).(r+ c)-A× (r+ c)-V
26: retrieve from F1 a list L1 of j+ i-tuples associated with C1
27: filter the list L1 keeping only the ( j + i)-tuples compatible with r+ c+ c′-V

and get ( j+ i+ r+ c+ c′)-tuples
28: for all ( j+ i+ r+ c+ c′)-tuple ( j+ i+ r+ c+ c′)-V in L1 do
29: compute the last variables s-V ← (m− c− c′).( j+ i+ r+ c+ c′)-A ×

( j+ i+ r+ c+ c′)-V
30: if the values s are compatible with ( j+ i+ r+ c+ c′) then
31: ( j+ i+ r+ c+ c′+ s) is a solution
32: end if
33: end for
34: end for
35: end for
36: end for
37: end for
38: end for
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For this algorithm, we can approximately estimate the time and space complexities
as follows:

space =
n!

(n− j)!
+

n!
(n− l)!

+
n!

pc(n− (i+ j))!
(6)

time =
n!

(n− j)!
+

n!
(n− l)!

+
n!

(n− (i+ j))!
+

pcn!
(n− k)!

+
pc−dn!

(n− (k+ l))!
+

pc−d(n− (c−d))!
(n− (r+ c+ c′))!

+
(n− (c−d))!

pd(n− (i+ j+ r+ c+ c′))!

(7)

As said in [5], the interest of this algorithm is for realistic attacks, where memory is
limited. However from a theoretical point of view, the previous algorithm is the most
efficient.

Probabilistic method We here discuss the method named ”Pre-computation on the A
matrix” of [9]. Like previous methods, this new method aims at decreasing the com-
plexity. Its specificity is to search for subsets of equations with fewer variables than
expected. We first give an estimation of the probability that among a given set of m
random equations in n variables over Fp, there exists a subset of k equations in only r
variables. Such a probability was given in [9], but here we explain how to compute it
more accurately. Lets start with the following results.

Claim. The probability that a random linear equation in n variables over Fp is indeed
in r variables is

(n
r

)
( 1

p )
n−r( p−1

p )r.

Proof. Let a random linear equation in n variables over Fp. Each of its coefficients is
assumed to be randomly and uniformly distributed if Fp. Therefore the probability that
a given variable does not occur in the equation is the probability that its coefficient
is 0, or so 1

p . All the coefficients are assumed to be independently drawn at random.
Therefore, the number of variables that appears in the equation follows the binomial
distribution with parameters n and 1

p ; hence the result.

Claim. The probability that a set of k random linear equations in n variables over Fp is
indeed in r variables is

(n
r

)
( 1

pk )
n−r(1− 1

pk )
r.

Proof. The probability that a given variable does not occur in the k equations 1
pk . There-

fore, the number of variables that appears in the k equations follows the binomial dis-
tribution with parameters n and 1

pk ; hence the result.

Claim. In a linear space of m linear equations over Fp, the number of distinct linear
subspaces of k equations is

k−1

∏
i=0

pm− pi

pk− pi
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Proof. The number of k-tuples of linearly independent equations is given by :

k−1

∏
i=0

pm− pi.

All the tuples that are equivalent bases of the same subspace are related by a given
isomorphism over Fk

p. These isomorphisms amount to ∏
k−1
i=0 pk− pi. Hence the result.

Claim. In a linear space of m linear equations over Fp, the number of distinct linear
subspaces of k equations that can be expressed in r variables is approx.

(
n
r

)
(

1
pk )

n−r(1− 1
pk )

r
k−1

∏
i=0

pm− pi

pk− pi .

Proof. Although the subspaces of dimension k in the linear space are not uniformly
distributed over all possibilities, a good approximation is the product of the number of
subspaces by the probability that one subspace has the required property. This result
has been experimentally verified.

Although the method of using subspaces of equations with less variables speeds in-
deed the searching algorithm, it appears that the probability of finding such subsets is
overwhelming small. Example: For PKP(64,37,251), the optimum value for k is 19.
Therefore, finding k equations expressed in r = n−m+ k = 45 is easy. The expected
number of subspaces expressed in only 44 variables is ≈ 2−98.5.

4.3 Secure Parameters Sets And PKP application.

As said before, PKP was used in 1989 to build a Zero-Knowledge Identification scheme
(IDS) [1]. There has been renewed interest in the PKP-based IDS. In fact, the authors of
[12] convert the PKP-based IDS to a post-quatum digital signature scheme. This latter
takes part in the chinese competition for the design of post-quantum cryptographic al-
gorithms (organized by the Chinese Association CACR). Thus, it is important to define
the complexity bound of each solving tool for the Permuted Kernel Problem.
Since we have now a realistic picture of the efficiency and the complexity bound of
nearly all of the known methods for solving PKP, it is possible to compare the perfor-
mance of each technique. Consequently, we can define by now secure parameters sets
for the PKP instances.
The following table shows that the most efficient attack to solve PKP is the extended
version of Patarin-Chauvaud [9]and Poupard [5]. Our complexity bound for this ver-
sion which is established in Section 4.2, is computed using a Magma code given in
Appendix A.
Note that, we will recall the same parameters sets, of the form

(
PKPp(m,n)

)
, used in

[12]

http://before.cast.org.cn/n57811438/n57811577/n57820161/c345754/content.html
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Parameters Sets
(
PKP251(41,69)

) (
PKP509(54,94)

) (
PKP4093(47,106)

)
Security level 2128 2192 2256

Brute force attack 2326 2485 2565

J. Georgiades attack 2151 2236 2356

Time-memory trade-off 2131 2196 2262

Joux-Jaulmes attack 2286 2413 2432

Patarin-Chauvaud / Poupard 2130 2193 2257

Table 2. Complexity bounds for PKP’s best known algorithms

5 Conclusion

In this paper, we have seen the best known methods for solving PKP. We presented
briefly each one and updated some results that were not accurate or genuine. More
specifically, we have found that the Joux-Jaulmes algorithm [10] is not the most effi-
cient technique to solve the Permuted Kernel Problem.
Combining methods, namely the approach of Patarin-Chauvaud and Poupard [5], we
have been able to provide an explicit complexity formula (cf. equations 6 and 7 above)
of the best algorithm for solving hard instances of PKP. Also, we have built a program
which gives a realistic picture on the security level of PKP instances. This program is
very useful to establish secure sets of parameters in order to arise hard instances of
PKP.
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Appendix A

Magma code for the complexity of PKP

/ / The f i r s t a l g o r i t h m A1
m:= Round ( Log ( p , F a c t o r i a l ( n ) ) ) ;
m+ : = 1 ; / / georgA1 := f u n c t i o n ( n , p ) ; i a d e s
SpaceMax : = 8∗1 0 ˆ 1 5 ;
TimeMin : = 2 ˆ 1 0 0 0 ;

f o r k i n [ 1 . .m] do ;
l : = ( n−m+k ) d i v 2 ;
r := n−m+k−r ;
F0 : = 1 . 0∗ F a c t o r i a l ( n ) / F a c t o r i a l ( n−l ) ;
s i z e 0 := F0 ;

i f s i z e 0 g t SpaceMax t h e n c o n t i n u e ; end i f ;
nb1 : = 1 . 0∗ F a c t o r i a l ( n ) / F a c t o r i a l ( n−r ) ;
nb2 : = 1 . 0∗ F a c t o r i a l ( n ) / F a c t o r i a l ( n−( l + r ) ) / p ˆ k ;
t p s 0 := F0 ; / / ∗ ( k∗ l ) ;
t p s 1 := nb1 ; / / ∗ ( r−k )∗ k ;
t p s 2 := nb2 ; / / ∗ ( l +r−k ) ∗ (m−k ) ;
t p s := t p s 0 + t p s 1 + t p s 2 ;

i f t p s l t TimeMin t h e n
TimeMin := t p s ;
U:=<Log ( 2 , t p s ) , Log ( 1 0 , s i z e 0 ) , Log ( 2 , t p s 0 ) , Log ( 2 , t p s 1 ) ,
Log ( 2 , t p s 2 ) , Log ( 2 , nb1 ) , Log ( 2 , nb2 ) , l , r , k>;

end i f ;
end f o r ;

r e t u r n U;
end f u n c t i o n ;

/ / The second a l g o r i t h m : A2
/ / Here we use s e t s i n s t e a d o f t u p l e s
f o r g i v e n n , p ;
m:= Round ( Log ( p , F a c t o r i a l ( n ) ) ) ;
m+ : = 1 ; / / g e o r g i a d e s
SpaceMax : = 8∗1 0 ˆ 1 5 ;
TimeMin : = 2 ˆ 1 0 0 0 ;

f o r k i n [ 1 . .m] , l i n [ 1 . . n−m] do ;
r := n−m−l +k ;
nb0 := Binomia l ( n , r ) ;
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F0 : = 1 . 0∗ F a c t o r i a l ( n−r ) / F a c t o r i a l ( n−l−r ) ;
s i z e 0 := F0∗ l ;

i f s i z e 0 g t SpaceMax t h e n c o n t i n u e ; end i f ;
nb1 : = 1 . 0∗ F a c t o r i a l ( r ) ;
nb2 : = 1 . 0∗ nb1∗F0 / p ˆ k ;
t p s 0 := F0 ; / / ∗ ( k∗ l ) ;
t p s 1 := nb1 ; / / ∗ ( r−k )∗ k ;
t p s 2 := nb2 ; / / ∗ ( l +r−k ) ∗ (m−k ) ;
t p s := nb0 ∗ ( t p s 0 + t p s 1 + t p s 2 ) ;

i f t p s l t TimeMin t h e n
TimeMin := t p s ;
U:=<Log ( 2 , t p s ) , Log ( 1 0 , s i z e 0 ) , Log ( 2 , t p s 0 ) , Log ( 2 , t p s 1 ) ,
Log ( 2 , t p s 2 ) , Log ( 2 , nb1 ) , Log ( 2 , nb2 ) , l , r , k>;

end i f ;
end f o r ;

U; e x i t ;

poupard := f u n c t i o n ( n , p ) ; / / poupard
m:= Round ( Log ( p , F a c t o r i a l ( n ) ) ) ;
m+ : = 1 ; / / g e o r g i a d e s
SpaceMax : = 8∗1 0 ˆ 1 5 0 ;
TimeMin : = 2 ˆ 1 0 0 0 ;

f o r j i n [ 0 . . n−m] , i i n [ 0 . . n−m−j ] ,
l i n [ 0 . . n−m−j−i ] , c i n [ 0 . .m] , d i n [ 0 . . c ] , cc i n [ 0 . . m−c ] do ;

r := n−m−i−j ;
k := r +d−l ;
mm:= c−d ;
n f0 := F a c t o r i a l ( n ) / F a c t o r i a l ( n−j ) ;
s i z e f 0 := nf0 ∗ j ;
t i m e f 0 := nf0 ∗ ( j ∗c ) ;
n f2 := F a c t o r i a l ( n ) / F a c t o r i a l ( n−l ) ;
s i z e f 2 := nf2 ∗ l ;
t i m e f 2 := nf2 ∗ ( l ∗d ) ;
n f1 := C e i l i n g ( F a c t o r i a l ( n ) / F a c t o r i a l ( n−( i + j ) ) / p ˆ c ) ;
s i z e f 1 := nf1 ∗ ( i + j ) ;
t i m e f 1 := F a c t o r i a l ( n ) / F a c t o r i a l ( n−i ) ∗ ( c∗ i ) / / −> compute c a n d i d a t e F0
+ nf1 ∗ ( ( i + j )∗ cc ) ;
s i z e 0 := s i z e f 0 + s i z e f 1 + s i z e f 2 ;

i f s i z e 0 g t SpaceMax t h e n c o n t i n u e ; end i f ;
/ / c h o i c e o f k− t u p l e s
nb1 := F a c t o r i a l ( n ) / F a c t o r i a l ( n−k ) ; / / k−t u p l e s V
t i m e 1 := nb1 ∗ ( ( r−l )∗ d ) ; / / c a l c u l e n t r e F2

/ / s o l u t i o n F2 i n ( l +k )
nb2 : = 1 . 0∗ F a c t o r i a l ( n ) / F a c t o r i a l ( n−(k+ l ) ) / p ˆ d ;
t i m e 2 :=1+ nb2 ∗ ( r ∗mm) ; //−> donne c a n d i d a t M
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/ /M ( c o m p a t i b l e KL)
nb3 : = 1 . 0∗ nb2∗ F a c t o r i a l ( n−mm)∗ F a c t o r i a l ( n−(k+ l ) )

/ F a c t o r i a l ( n ) / F a c t o r i a l ( n−(k+ l +mm) ) ;
nb3 : = 1 . 0∗ F a c t o r i a l ( n−mm) / F a c t o r i a l ( n−(k+ l +mm) ) / p ˆ d ;

/ / We c o m p l e t e wi th N
nb4 := nb3∗ F a c t o r i a l ( n−(k+ l +mm) ) / F a c t o r i a l ( n−(k+ l +mm+cc ) ) ;
t i m e 4 := nb4 ∗ ( cc ) ; //−> c a n d i d a t F1

/ / We r e a d F1
nb5 := C e i l i n g ( nb4∗ nf1 / ( p ˆ cc )∗ F a c t o r i a l ( n−( i + j ) ) ∗ F a c t o r i a l ( n−( l +k+mm+cc ) )
/ F a c t o r i a l ( n ) / F a c t o r i a l ( n−( i + j + l +k+mm+cc ) ) ) ;

t i m e 5 := nb5 ∗ ( (m+1)−( c+cc ) ) ∗ ( i + j + r ) ;
t p s := t i m e f 0 + t i m e f 2 + p ˆ c ∗
( t i m e f 1 + t i m e 1 + t i m e 2
+ t i m e 4 + t i m e 5 ) ;

i f t p s l t TimeMin t h e n
TimeMin := t p s ;
U:=<Log ( 2 , t p s ) , Log ( 1 0 , s i z e 0 ) ,
j , i , l , r , k>;

end i f ;
end f o r ;
r e t u r n U;
end f u n c t i o n ;
U;
e x i t ;
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