
Int. J. Applied Cryptography, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

Efficient coding for secure computing with
additively-homomorphic encrypted data

Thijs Veugen
Unit ICT, TNO,
The Hague, The Netherlands
and
Research Group Cryptology, CWI,
Amsterdam, The Netherlands
Email: thijs.veugen@tno.nl

Abstract: A framework is introduced for efficiently computing with encrypted data. We assume
a semi-honest security model with two computing parties. Two different coding techniques are
used with additively homomorphic encryption, such that many values can be put into one large
encryption, and additions and multiplications can be performed on all values simultaneously. For
more complicated operations such as comparisons and equality tests, bit-wise secret sharing is
proposed as an additional technique that has a low computational and communication
complexity, and which allows for precomputing. The framework is shown to significantly
improve the computational complexity of state-of-the-art solutions on generic operations such as
secure comparisons and secure set intersection.

Keywords: packing; batching; homomorphic encryption; secure comparison; secure equality;
secure set intersection; vector addition chain.

Reference to this paper should be made as follows: Veugen, T. (xxxx) ‘Efficient coding for
secure computing with additively-homomorphic encrypted data’, Int. J. Applied Cryptography,
Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Thijs Veugen received his two MSc degrees, in Mathematics and Computer
Science, both cum laude, and a PhD in Information Theory, all from Eindhoven University of
Technology. After that, he worked as a Scientic Software Engineer at Statistics Netherlands,
Heerlen, the Netherlands. Since 1999, he has been a Senior Scientist Applied Cryptography at
TNO, currently within the unit ICT in The Hague, the Netherlands. From 2008 till 2016, he was
also affiliated as a Senior Researcher with the Cyber Security group of Delft University of
Technology. Since 2016, he has been part-time member of the Cryptology group at CWI in
Amsterdam, the Netherlands. He has written many scientific papers on computing with encrypted
data, serves frequently as a member of the program committee board of information security
related conferences, and holds numerous related patents in various countries.

1 Introduction

The area of computing with encrypted integers has been
developing steadily over the past couple of years (Lagendijk
and Barni, 2013). Many applications are known, where
different parties need to compute with encrypted data,
without having to decrypt intermediate values, to assure that
sensitive data is not leaked. Although a high level of
security can be achieved in this way, current solutions still
suffer from efficiency drawbacks, which delay their
exploitation. In the current paper we introduce a framework
that contributes to mitigating these disadvantages.

We consider a semi-honest security model, where
two parties jointly compute with encrypted data using
efficient coding schemes that are designed and fine-tuned
for this purpose. In particular, we deploy the common
setting of party A having all encrypted values, and
party B holding the decryption key (Lagendijk and Barni,
2013). This setting, which originates from the domain of
encrypted signal processing (Lagendijk and Barni, 2013), is

different from several efficient secure multi-party
computation platforms that have been developed over the
last few years (Keller et al., 2016; Furukawa et al., 2017).
Although the crypto system can be any additively
homomorphic scheme, the well-known Paillier scheme
(Paillier, 1999) is used.

In our model, party A is able to add different encrypted
values without needing support from party ,B due to the
additively homomorphic property of the scheme. For more
complicated operations such as multiplications or
comparisons, a common approach is to have party A
additively blind encrypted values by adding a large random
number, which can safely be decrypted by party ,B and
using this decrypted value in a protocol between A and ,B
which implements the required operation (Damgård et al.,
2008) at the cost of additional communication and
computation.

An important cause of the lack of efficiency when
computing with encrypted data is the blow-up of integers

2 T. Veugen

during encryption. For security reasons, each encryption has
a size of one or more kilobit (Kb), irrespective of the size of
the plaintext integer. This increases both communication
and computational complexity. Therefore, the main goal of
our framework is to reduce the difference in size between
plaintext and ciphertext. For integer operations like
additions and multiplications, this is achieved by using
coding schemes that put many small integers into one large
integer. More complex, bit-wise operations like
comparisons and equality tests are implemented by binary
secret sharings, where the size of the ‘ciphertext’ is very
small.

Since encoding (putting many small values into one
large integer) and decoding in the encrypted domain takes
some effort, the best approach is to do this in the plain
domain, or to perform most operations in the encrypted
domain on encoded data, and to only decode in the end.
This also limits the number of decryptions, which are quite
costly.

An interesting alternative, avoiding additional
communication, would be to use fully homomorphic
encryption, for which similar coding techniques are known
(Smart and Vercauteren, 2014). However, despite some
recent advances, to date fully homomorphic encryption
schemes are mainly of theoretical interest and far too
inefficient to be used in practice (Lagendijk and Barni,
2013). Additively homomorphic schemes sincerely reduce
the computational effort, but require some additional
communication to enable secure multiplications.

In the next subsection, we explain our contribution more
explicitly, followed by the notation used throughout the
paper. In Sections 2 and 3, we introduce the two coding
schemes, namely packing and batching. Section 4 shows
how bit-wise secret sharing can be used to implement the
more complicated bit-wise operations in the encrypted
domain. This is combined in Section 5 with secure
comparison of packed, or batched, encryptions. A couple of
new applications, which require batching, are illustrated in
Section 6. In Section 7, the security properties of the
framework are explained. The performance of our
framework is compared to state-of-the-art solutions in
Section 8, and we end by giving directions for further
research and our conclusions.

1.1 Our contribution

We show two efficient coding schemes for basic
computations, such as additions and multiplications, on
encrypted integers, in the semi-honest two-party model. For
more complicated, bit-wise operations, such as comparison
and equality, we propose a bit-wise secret sharing scheme.
Decoding is preferably performed in the plain domain, since
secure comparison protocols are needed to decode in the
encrypted domain. In terms of computation and
communication, the most intensive part of this secret
sharing scheme can be precomputed, and is independent of
the actual data. We propose efficient solutions that allow the
two parties to jointly precompute. Alternatively, a trusted
dealer can be used.

We show how to securely compare batched, or packed,
integers in the encrypted domain, and how to determine
whether they are equal. We show how our framework can
be used to improve the efficiency of state-of-the-art
solutions to generic operations like secure multiplications,
secure comparison, and secure equality, but also secure set
intersection. This results, amongst others, in seven new
cryptographic protocols, shown throughout the paper.

1.2 Notation and parameters

Throughout this paper we make use of various symbols,
which we have defined in Table 1. The remainder of x after
reduction modulo M is denoted by y = x mod M, such that 0
≤ y < M. On the other hand, y = x (mod M) refers to the
equivalence relation, so (y – x) mod M = 0, but not
necessarily 0 ≤ y < M.

Table 1 Notation

ℓ Bit length of inputs
n Number of compartments

ν Size of one packed compartment

N Size of plaintext
[.] (Paillier) encryption

,A B Parties

X Packed, or batched, integer
(x < y) The bit representing the Boolean x < y
γi, δi Binary outcomes of comparison or equality
θ Blinded batch, or packing
(.)B Batch
÷ Integer division
K Decryption key
κ Statistical security parameter
σ Bit length of one batched compartment
mi Size of batched compartment i
M Modulus of one batch

〈.〉 Secret sharing

,x xA B Privately known integers

xi Content of compartment i
(x = y) The bit representing the Boolean x = y
x(i) The ith bit of integer x, x(0) being the right-most bit
R Random number used for additive blinding
(.)P Packing

⊕ Exclusive-or

We assume that the plaintext size N has 2,048 bits, a
reasonable security parameter nowadays, and that the
statistical security parameter κ = 80. Because we choose
Paillier as the additively homomorphic crypto system, all
computations on cipher texts are done modulo N2. However,
we will omit this modulo reduction to avoid distracting the
reader with details. Furthermore, we sometimes write log2,

 Efficient coding for secure computing with additively-homomorphic encrypted data 3

the logarithm with base two, but neglect that this is usually
not an integer value, and the outcome should be rounded up.

2 Batching

We use a technique known from fully homomorphic
encryption called batching (Smart and Vercauteren, 2014).
We optimise this coding scheme for additively
homomorphic encryption, show efficient methods for
encoding and decoding in the encrypted domain, and an
efficient approach for multiplying encrypted batches. These
methods use a new addition chain algorithm for vectors of
width two.

Let mi, 1 ≤ i ≤ n, be a collection of integers, which are

pairwise coprime. Let
1

n
ii

M m
=

= ∏ be their product. The

idea is that n small integers, each of size mi, can be batched
into one large integer of size M, and additions and
multiplications on the large integer will translate to identical
operations on the n small integers, according to the
well-known Chinese remainder theorem.

To be able to compute with batchings in the encrypted
domain, we need log2 M + κ < log2 N, where κ = 80 is the
security parameter, and N is the modulus of the crypto
system.

2.1 Encoding and decoding in the plain domain

To batch n integers into one large integer, we compute

()1 2
1

, , , ,
n

n i iB
ii

Mx x x μ x
m=

=∑…

where μi is the multiplicative inverse of
i

M
m

 modulo mi

(Knuth, 1997).
Decoding a batched integer X into n integers is simply

computing xi = X mod mi.

2.2 Encoding and decoding in the encrypted domain

To encode n encrypted integers into one encrypted batch
[X], we can use the additively homomorphic property of the
crypto system:

[]
1

[] .
Mi mi

n
μ

i
i

X x
=

= ∏

This product can be computed efficiently by means of a
vector addition chain. The algorithm provided in
Appendix A takes roughly (1 + log2 n) · 0.8 · σn
multiplications of two encryptions, where σ = log2 mi.

To decode an encrypted batch [X] to n encrypted
integers, we compute [X mod mi] for all i, 1 ≤ i ≤ n, in
parallel, as shown in Protocol 1.

Protocol 1 Debatching in the encrypted domain

Party A B

Input [X] K
Output [xi], 1 ≤ i ≤ n
Constraints X = (x1, x2, …, xn)B and

0 ≤ xi < mi, 1 ≤ i ≤ n,
0 ≤ X < N · 2–κ

1 Party A generates a large random variable R, and
additively blinds X: [θ] = [X] · [R] = [X + R].

2 Party A sends [θ] to B .

3 Party B decrypts it, ‘debatches’ θ, and sends the n integers
θi = θ mod mi, 1 ≤ i ≤ n, separately encrypted, to party A .

4 Parties A and B perform n parallel secure comparisons,
such that A obtains n encrypted comparison bits [δi],
where δi = (θi < (R mod mi)).

5 Party A computes [xi] = [θi] · [–R mod mi] · [] ,im
iδ for

each i, 1 ≤ i ≤ n.

The correctness of debatching in the encrypted domain is
shown in Veugen (2014). In Subsection 4.3, a secure
comparison protocol is described to compute the δi’s. The
exponentiation [] im

iδ can be avoided by translating 〈δi〉
directly to [mi · δi].

2.3 Multiplication of encrypted batches

The main advantage of batched coding is that many
multiplications can be combined into one (secure)
multiplication:

() ()
()

1 2 1 2

1 1 2 2

, , , , , ,

, , , (mod).
n nB B

n n B

x x x y y y

x y x y x y M

⋅ =

⋅ ⋅ ⋅

… …

…

To take full advantage, the number of compartments n, and
therefore also the number M, should be as large as possible.
However, the secure multiplication is computed modulo N,
the plaintext size of the crypto system, and a carry-over
modulo N would destroy the correctness of the result. The
easiest way to avoid a carry-over modulo N, is to ensure
M2 < N. This halves the number of compartments we can
put into one encryption. Furthermore, since we also want to
be able to additively blind (and debatch) intermediate
results, we require M2 < N · 2–κ.

After one secure multiplication, the batched result has
grown from size M to M2. This does not pose a serious
problem if the remaining batched operations are additions.
However, to be able to compute another batched
multiplication, we need to reduce the size of the batch,
without affecting its result modulo M. Computing the exact
result modulo M would require a large secure comparison
(Bianchi et al., 2009), so we approximate the result, similar
to the approach of Veugen (2014), which computes the
modular remainder, possibly added with M. This can be
combined with a standard secure multiplication (Erkin et al.,
2012) to Protocol 2.

4 T. Veugen

Protocol 2 Multiplying two encrypted batches

Party A B

Input [X] and [Y] K
Output [A]
Constraints 0 ≤ X, Y < N · 2–κ and

A = (X · Y) (mod M), 0 ≤ A < 4M2

1 Party A has the encrypted batches [X] and [Y]. He
generates two large random numbers RX and RY, to
additively blind them: [θX] = [X] · [RX] and [θY] = [Y] · [RY].

2 Party A sends [θX] and [θY] to party B , who decrypts
them.

3 Party B computes (θX mod M), (θY mod M), and their
product (θX mod M) · (θY mod M), encrypts them, and
returns the three encryptions to .A

4 Party A computes the approximate modular remainder of
the product X · Y:
[A] = [(θX mod M) · (θY mod M)] · () mod[mod] YR M

Xθ M − ⋅
() mod[mod] XR M

Yθ M − · [((–RX) mod M) · ((–RY) mod M)].

In Veugen (2014), it is shown that (θX mod M) + ((–RX) mod
M) equals either (X mod M) or (X mod M) + M, and
similarly for (θY mod M) + ((–RY) mod M). Therefore, A,
which is the product of these two approximations, equals XY
modulo M, and is upper bounded by (2M) · (2M) = 4M2.

This secure multiplication protocol for batches takes one
communication round, and mainly costs two decryptions by

,B and two exponentiations by .A It approximates the
product XY, and reduces the size of the approximate product
A to order M2, without disturbing its remainder modulo M.
The two exponentiations by A can be efficiently computed
by a vector addition chain, as explained in Subsection A.1.

2.4 Partial debatching in the encrypted domain

Obviously, instead of debatching all compartments, it is
possible to retrieve the contents of only a small number of
compartments. This makes it possible to, for example,
change the contents of a particular compartment, or switch
the content of two different compartments. The
switching can be accomplished by computing [X] · [(0, 0,
…, xj – xi, 0, …, xi – xj, 0, …, 0)B], which switches the
content of compartments i and j, 1 ≤ i < j ≤ n. To compute
the latter encrypted batch, containing only [xj – xi]

and [xi – xj], we compute ([] [])
M

m mi j j i i jμ m μ m
j i i jx x x x− ⋅ − =

()[] ,
Mi j j i m mi j

μ m μ m
j ix x −− which is easier than computing a

complete batch in the encrypted domain.

2.5 Choosing the mi

To be able to batch, we need to find n coprime numbers mi,
which should not be too large. For example, when all
integers are at most ℓ bits, we need to find n coprime
numbers between 2ℓ and 2ℓ+1. The average number of primes
smaller than x is x/ln x, so the average number of primes in

this interval is 12
(1) ln 2

−
+

 (see also Table 2). Common

values for log2 N and κ are 2,048 and 80, so assuming our
goal is a full batch, we need at least n ≈ (2,048 – 80)/(ℓ + 1)
coprime numbers of ℓ + 1 bits. If we only allowed the mi to

be prime, we would need 12 1,968,
ln 2
− ≥ thus ℓ ≥ 11.

Since they only need to be pairwise coprime, we have more
options, but for smaller ℓ it seems that some of the mi should
be chosen somewhat larger than 2ℓ+1 in order to have
sufficient coprime numbers. We should also take into
account that the compartment size σ usually exceeds the
input size ℓ, since an output value, which must fit into one
compartment, is the result of a series of operations on
inputs, and the size of the intermediate results grows during
these operations.

Table 2 Number of primes per bit size

bits 3 4 5 6 7
primes 2 2 5 7 13

bits 8 9 10 11 12
primes 23 43 75 137 255

3 Packing

A different technique for putting multiple integers into one
encryption, and performing parallel operations on all
integers, is called packing (Erkin et al., 2012). We introduce
a way of unpacking in the encrypted domain, which is more
efficient than existing methods.

In packing, the (encrypted) integers are simply
concatenated, which enables parallel additions with
integers. Packing also allows parallel multiplications with a
constant value: (x1, x2, …, xn)P · y = (x1 · y, x2 · y, …, xn · y)P,
but not with different values as in batching.

Although it is possible to have a different size for each
compartment, the compartment size is usually constant. We
denote the compartment size with ν, which is often a power
of two.

3.1 Encoding and decoding in the plain domain

In packing, n integers of size ν are packed together into one
large integer, by concatenating them:

() 1
1 2

1

, , , .
n

i
n iP

i

x x x x−

=

=∑… ν

Decoding a packed integer, also called unpacking, is the
reconstruction of the n integers of size ν:

1 X = (x1, x2, …, xn)P

2 for i = 1 to n – 1 do

{X = (xi, xi+1, …, xn)P}
a xi = X mod ν

 Efficient coding for secure computing with additively-homomorphic encrypted data 5

b X = (X – xi)/ν

3 xn = X.

If ν is a power of two, unpacking is simply grouping the bits
of X into n integers.

3.2 Encoding and decoding in the encrypted domain

If the n integers are encrypted with an additively
homomorphic crypto system, packing can be done
efficiently using Horner’s rule:

1 [X] = [xn]

2 for i = n – 1 down to 1 do {[X] = [(xi+1, …, xn)P]}
a [X] = [X]ν
b [X] = [X] · [xi]

This mainly requires n – 1 exponentiations to the power ν,
which costs roughly (n – 1) · 1.5 log2 ν multiplications of
large integers.

Unpacking in the encrypted domain is a bit more
involved. The algorithm from Bianchi et al. (2009)
translates the unpacking algorithm from the plain domain
straightforward to the encrypted domain, which requires a
large exponentation in each iteration in order to divide by ν.
Moreover, since the encrypted content of each compartment
is computed one-by-one, the number of communication
rounds is linear in n, and n decryptions are needed.

We suggest an alternative approach, similar to
debatching in the encrypted domain. We additively blind X
with a large random number R, and ask B to unpack θ = X
+ R. The addition of R might cause an overflow in some
compartments. The difference with batching is that these
overflows create a carry-over, which influences the content
of the next compartment: θi = (xi + Ri + ci–1) mod ν, where
ci–1 is the carry-over bit from the previous compartment.
This can be solved by unpacking 2X instead of X, and
dividing the content of each compartment by two,
discarding the remainder. Since adding one (carry-over) bit
to the even number 2xi will not change the outcome xi = (2xi
+ ci–1) ÷ 2, we have a solution that is redundant to possible
carry-covers. We only need to increase the compartment
size with one bit to ensure 2xi < ν. We also assume ν is
even. Protocol 3 shows how to unpack in the encrypted
domain.

Before step 6, we have θi = (2xi + Ri + ci–1) mod ν, 1 ≤ i
≤ n, so either 2xi + ci–1 = θi – Ri, or 2xi + ci–1 = (θi + ν) – Ri.
To decide whether there was an overflow in the ith
compartment, we need to compute the n encrypted
comparison bits [δi], where δi = (θi < Ri). These can be
computed efficiently using n parallel secure comparisons, as
described in Subsection 4.3.

The correctness of the computation of xi in step 8
follows from observing 2xi + ci–1 = θi – Ri. In this case, xi =
(2xi + ci–1) ÷ 2 = (θi ÷ 2) – (Ri ÷ 2) – (θi mod 2 < Ri mod 2)
(Veugen, 2014). Only if θi is even, and Ri is odd, does the
result of the integer division need to be corrected by one. If
we have an overflow in the ith compartment, then δi = 1, and

we have the relation 2xi + ci–1 = (θi + ν) – Ri, for which
similarly holds xi = ((θi + ν) ÷ 2) – (Ri ÷ 2) – ((θi + ν) mod 2
< Ri mod 2). Since ν is even, (θi + ν) ÷ 2 = (θi ÷ 2) + ν/2,
and (θi + ν) mod 2 = θi mod 2.

Protocol 3 Unpacking in the encrypted domain

Party A B

Input [X] K
Output [xi], 1 ≤ i ≤ n
Constraints X = (x1, x2. …, xn)P and

0 ≤ 2xi < ν, 1 ≤ i ≤ n and ν is even and
0 ≤ X < N · 2–(κ+1)

1 Party A generates a large random variable R, and
additively blinds 2X: [θ] = [X]2 · [R] = [2X + R].

2 Party A sends [θ] to .B

3 Party B decrypts it, and unpacks θ mod νn to θi, 1 ≤ i ≤ n.

4 For each i, party B computes θi ÷ 2 and θi mod 2, and
sends the 2n integers, separately encrypted, to party .A

5 Party A unpacks R mod νn to Ri, 1 ≤ i ≤ n.

6 Parties A and B perform n parallel secure comparisons,
such that A obtains n encrypted comparison bits [δi],
where δi = (θi < Ri).

7 For each i, party A computes [γi] = [–(θi mod 2 < Ri mod
2)]. If Ri mod 2 = 0, [γi] = [0], else [γi] = [(θi mod 2) – 1] =
[θi mod 2] · [–1].

8 Party A computes [xi] = [θi ÷ 2] · [–Ri ÷ 2] · [γi] · [δi]ν/2,
for each i, 1 ≤ i ≤ n.

3.3 Packing versus batching

Packing and batching are both techniques for putting many
integers into one encryption, and allowing parallel
operations on them. From a functional point of view, the
main difference is that batching allows both adding and
multiplying, while packing only allows adding. Encoding a
batch is more complex and computationally more intensive
than encoding a packing, both in the plain and in the
encrypted domain. The effort required for decoding them is
comparable, although debatching in the encrypted domain is
slightly less intensive than unpacking in the encrypted
domain.

In batching, adding a single constant to a batched
integer results in adding the constant to all compartments. In
packing, the constant is only added to the first compartment.
To add the same constant value to all compartments, the
constant needs to be packed first. Multiplying a packing
with a constant results in multiplying each compartment
with this constant, similar to batching. By batching
different, publicly known constants, each compartment can
be multiplied with a different value. This is not possible
with packing.

An important difference is that packing allows for more
compartments than batching, since a multiplication of two
batched values doubles its bit size (which has to be reduced
afterwards). For both techniques, partial decoding, i.e.,

6 T. Veugen

obtaining the (encrypted) result of a few compartments, is
possible.

4 Bit-wise operations on private integers

Batching can be used for additions and multiplications of
encrypted integers. For more complex, bit-wise operations,
like comparisons and equalities, we suggest a different
cryptographic tool. This setting, which, as we will see later,
combines nicely with packing and batching is where both
parties privately hold an integer, on which they would like
to perform a bit-wise operation.

4.1 Bit-wise secret sharing

A common solution for comparing two privately held
integers is by Damgård et al. (2008, 2009). Although it uses
a fine-tuned homomorphic crypto system, in the
semi-honest model the protocol can be significantly sped up
by using secret sharing modulo two (De Cock et al., 2017).
In this crypto system, secrets are binary values that are
secret-shared between party A and .B More precisely, let c
∈ {0, 1} be a bit, then the sharing 〈c〉 consists of a bit ,cA
held by party ,A and a bit ,cB held by party ,B such that

,c c c⊕ =A B where ⊕ denotes exclusive-or, the addition
modulo two.

Two shared secrets can be added, by locally adding the
shares. To multiply two shared secrets, we need two random
sharings 〈r1〉 and 〈r2〉, and the sharing of their product
〈r1 · r2〉. The multiplication protocol by Beaver (1998) is as
follows:

1 parties A and B secretly share bits b1 and b2

2 they locally compute 〈β1〉 = 〈b1〉 ⊕ 〈r1〉 = 〈b1 ⊕ r1〉 and
〈β2〉 = 〈b2〉 ⊕ 〈r2〉 = 〈b2 ⊕ r2〉

3 the parties open β1 and β2, which means they show each
other shares

4 they locally compute 〈b1 · b2〉 = 〈r1 · r2〉 ⊕ (β2 · 〈r1〉)
⊕ (β1 · 〈r2〉) ⊕ (β1 · β2) = 〈(r1r2) ⊕ (β2r1) ⊕ (β1r2) ⊕
(β1β2)〉.

Correctness follows from (β1 ⊕ r1)(β2 ⊕ r2) = (β1β2) ⊕
(β1r2) ⊕ (r1β2) ⊕ (r1r2).

4.2 Precomputing triplets

The only open question remaining is how to generate the
random triplets (〈r1〉, 〈r2〉, 〈r1 · r2〉), especially since each
multiplication requires a different triplet. De Cock et al.
(2017) suggest to use a trusted dealer, who could easily
generate the triplets and distribute the shares to A and .B
In our setting such a dealer is not available. However, it is
possible for A and B to jointly precompute the triplets.
Protocol 4 computes log2 N sharings of the product of two
(random) bits, with each bit held by a different party. It uses
additively homomorphic encryption and packing.

Protocol 4 Secure multiplication of private bits

Party A B

Input ,irA 0 ≤ i < log2 N ,irB 0 ≤ i < log2 N
and K

Output ,iρA 0 ≤ i < log2 N ,iρB 0 ≤ i < log2 N

Constraints ,i i i iρ ρ r r⊕ = ⋅A B A B 0 ≤ i < log2 N

1 Party B encrypts its bits irB separately, with Paillier, and
sends them to .A

2 Party A multiplies, for each i, irB with :irA

if 0,ir =A [] [0],i ir r⋅ =A B else [] [].i i ir r r⋅ =A B B

3 For each i, party A generates a random bit ,iρA and
computes [] [()]:i i i ic r r ρ= ⋅ ⊕A B A

if 0,iρ =A [] [],i i ic r r= ⋅A B else 1[] [1] [] .i i ic r r −= ⋅ ⋅A B

4 Party A packs all bits [ci] into one encryption [C] =
20 1 (log) 1[(, , ,)],N Pc c c −… with compartment size ν = 2, and

sends [C] to party .B

5 Party B decrypts C, and unpacks it to ,iiρ c=B 0 ≤ i <
log2 N.

At the end, the parties have log2 N sharings 〈ρi〉, such that
.i i i i iρ ρ ρ r r= ⊕ = ⋅A AB B This building block can be used to

compute log2 N multiplication triplets, by using the
following protocol.

1 Party A generates log2 N pairs of random bits 1irA and

2 ,irA and similarly for party B .

2 The parties use Protocol 4 twice. First to compute
log2 N sharings 1 2 ,i ir r〈 ⋅ 〉A B and second to compute
log2 N sharings 2 1 .i ir r〈 ⋅ 〉A B

3 The parties compute, for each i, 〈r1i · r2i〉 = 1 2()i ir r⋅A A

1 2 2 1 1 2().i i i i i ir r r r r r⊕ 〈 ⋅ 〉⊕ 〈 ⋅ 〉⊕ ⋅A AB B B B

The products 1 2i ir r⋅A A can be computed locally by party ,A
and similarly 1 2i ir r⋅B B by party .B This protocol generates
log2 N multiplication triplets, which can be used to securely
multiply log2 N sharings. It requires an average total of 8.75
log2 N multiplications of Paillier encryptions.

Since each shared secret is binary, these triplets can also
be generated by oblivious transfers. Suppose party A
constructs 0 (0)x r ρ= ⋅ ⊕A A and 1 (1) ,x r ρ= ⋅ ⊕A A then
obliviously transferring rρ x= B

B to party B generates the
same sharing 〈ρ〉 as above. A recent result for extending
oblivious transfers by Kolesnikov and Kumaresan (2013)
can be used to efficiently generate multiplication triplets.
Although the method described above fits nicely into our
framework, extended oblivious transfers will sincerely
reduce the precomputation effort, because less public key
cryptography is involved. They require 130 bits of
communication for the oblivious transfer of one bit
(Kolesnikov and Kumaresan, 2013). We need to send one

 Efficient coding for secure computing with additively-homomorphic encrypted data 7

Paillier encryption of 2,048 bits (and one additional bit) to
achieve the same transfer, which suggests an improvement
by roughly a factor 16.

4.3 Secure comparison of private integers

De Cock et al. (2017) translated the DGK comparison
protocol to this secret sharing setting. We slightly improve
their secure comparison protocol.

To obtain sharings of the bits of privately held integers
x and y, we simply define () ,iix x=A 0,ix =B and similarly

0,iy =A () ,iiy y=B 0 ≤ i < ℓ.

1 Let 〈x(i)〉 and 〈y(i)〉, 0 ≤ i < ℓ, be secret sharings of the
bits of integers x and y, 0 ≤ x, y < 2ℓ.

2 For each i, 0 ≤ i < ℓ, parties A and B derive sharings
of the bits di = (x(i) < y(i)), by computing in parallel
〈di〉 = 〈y(i)〉 · (1 ⊕ 〈x(i)〉), requiring ℓ multiplications of
sharings in total.

3 They locally compute sharings of ei = (x(i) = y(i)) by
〈ei〉 = 〈x(i)〉 ⊕ 〈y(i)〉 ⊕ 1, 1 ≤ i < ℓ.

4 For each i, 0 ≤ i < ℓ, parties A and B compute

〈ci〉 =
1

1
.i jj i

d e
−

= +
〈 〉 〈 〉∏

5 They locally compute
1

0
1 .ii

δ c
−

=
〈 〉 = ⊕ 〈 〉∑

It can be shown that the shared bit δ is the outcome of the
comparison (x ≤ y) (De Cock et al., 2017). To minimise the
number of multiplications of shares, we suggest to combine
the computation of ci and δ to δ = 1 ⊕ eℓ · (dℓ–1 ⊕ eℓ–1
· (dℓ–2 ⊕ … ⊕ e2 · (d1 ⊕ e1 · d0) …)). In this way, the
computational and communication complexity for
comparing two privately held ℓ-bit integers comes down to
a total of 2ℓ multiplications of shares. Since only binary
sharings are used, the total amount of communication and
computation is very small, even negligible when comparing
it to the complexity of computing with large encryptions.
The number of communication rounds is ℓ + 1, but could be
reduced to 1 + log2 ℓ (Veugen, 2018).

When precomputing the 2ℓ multiplications triplets by
means of packed encryptions, the precomputation costs for
comparing two privately held integers is 8.75ℓ
multiplications of Paillier encryptions, for inputs consisting
of ℓ bits. This is much lower than the average of 7.5 +
151.5ℓ multiplications needed for standard DGK
comparison (Veugen, 2012).

5 Secure comparison

The main advantage of securely comparing batched, or
packed, encrypted integers is that we can additively blind all
integers at once, and party B only needs one decryption.
The output of the batched (or packed) secure comparison
protocol will be n, separately encrypted bits [γi], 1 ≤ i ≤ n. In
order to securely compare two batches or packings of

encrypted integers, we need a protocol for securely
comparing two privately held integers, as described in the
previous section.

Although the size of each compartment may vary, for
simplicity we assume each encrypted integer has at most ℓ
bits. As shown in Subsection 5.3, bounding the number of
bits also allows us to reduce the precomputation costs. Since
we need a little extra room to compute the comparison, we
have 2ℓ+1 ≤ mi, in case of batching, and 2ℓ+2 ≤ ν, in case of
packing.

5.1 Secure comparison of batched values

Instead of adding, or multiplying, batched values, it is also
possible to securely compare batched values. Suppose we
have an encrypted batch [X], containing (encrypted) integers
xi, 1 ≤ i ≤ n, a similar batch [Y], and we would like to
securely compute the encrypted bit γi = (xi < yi), for all i.
Assume 0 ≤ xi, yi < 2ℓ, and 2ℓ+1 ≤ mi, then γi = (zi < 2ℓ),
where zi = xi – yi + 2ℓ has at most ℓ + 1 bits. Protocol 5
computes the comparison bits γi.

Protocol 5 Secure comparison of batched values

party A B

Input [X] and [Y] K
Output [γi], 1 ≤ i ≤ n
Constraints X = (x1, x2, …, xn)B and

Y = (y1, y2, …, yn)B,
0 ≤ X, Y < N · 2–(κ+1),

0 ≤ xi, yi < 2ℓ ≤ mi/2, 1 ≤ i ≤ n,
γi = (xi < yi), 1 ≤ i ≤ n.

1 Party A computes the encrypted batch [Z], such that zi = xi
– yi + 2ℓ, for each i: [Z] = [X] · [Y]–1 · [2ℓ].

2 Party A computes a large random number R, and
additively blinds Z with it: [θ] = [Z] · [R].

3 Party A sends [θ] = [Z + R] to .B

4 Party B decrypts it, and ‘debatches’ θ to θi = mod mi, 1 ≤ i
≤ n.

5 Parties A and B jointly compute the comparison bits [δi],
[],iδ′ and [],iδ′′ for each i, 1 ≤ i ≤ n, where δi = (θi < (R

mod mi)), iδ′ (θi + mi < (R mod mi) + 2ℓ), and iδ′′ = (θi < (R
mod mi) + 2ℓ), by executing in parallel 3n secure
comparison protocols on private inputs.

6 Using [δi], [],iδ′ and [],iδ′′ party A computes [γi] =
1[(1)] [] [] [] [] .i i i i i i i i i iδ δ δ δ δ δ δ δ δ δ −′ ′′ ′ ′′ ′ ′′⋅ + − ⋅ = + − = ⋅ ⋅

This is done for each i.

In step 1, we have the relation zi = (X – Y + 2ℓ) mod mi, even
if X – Y + 2ℓ < 0, and since R always exceeds | X – Y + 2ℓ|,
there is no reduction modulo N in the computation of θ in
step 3.

In step 5, we have (θ – R) mod mi = zi, so either zi = θi –
(R mod mi), or zi = θi – (R mod mi) + mi. Just as in secure
debatching, [δi] is computed to find out whether there was
an overflow in the ith compartment. If δi = 0, then θi ≥ R
mod mi, so zi = θi – (R mod mi), and .i iγ δ′′= Otherwise,

8 T. Veugen

there was an overflow in the ith compartment, and .i iγ δ′=
By construction of the δi’s, we have 0 1,i i iδ δ δ′ ′′≤ ≤ ≤ ≤
which explains the correctness of computing [γi] in the final
step.

For the three secure comparison protocols from step 5,
we use the comparison protocol based on sharings modulo
two. This means that the secret-shared outputs of these
comparison protocols have to be translated to encrypted
bits. This can be done in a fairly straightforward way. Party
B encrypts his share ,δB and sends the encryption to party

,A who computes [],δ δ⊕A B by flipping the encrypted bit
in case 1.δ =A

5.2 Secure comparison of packed values

Suppose we have [X] = [(x1, x2, …, xn)P], [Y] = [(y1, y2, …,
yn)P], and we would like to compute [γi] = [(xi < yi)], 1 ≤ i ≤
n. Just as in the previous batched case, assume 0 ≤ xi, yi < 2ℓ.

Protocol 6 Secure comparison of packed values

Party A B

Input [X] and [Y] K
Output [γi], 1 ≤ i ≤ n
Constraints X = (x1, x2, …, xn)P and

Y = (y1; y2; …, yn)P ,
0 ≤ X, Y < N · 2–(κ+1),

0 ≤ xi, yi < 2ℓ ≤ ν/4, 1 ≤ i ≤ n,
γi = (xi < yi), 1 ≤ i ≤ n.

1 Party A computes the encrypted packing [Z], such that zi =
xi – yi + 2ℓ, for each i: [Z] = [X] · [Y]–1 · [(2ℓ, 2ℓ, …, 2ℓ)P].

2 Party A computes a large random number R, and
additively blinds 2Z with it: [θ] = [Z]2 · [R].

3 Party A sends [θ] = [2Z + R] to .B

4 Party B decrypts it, and unpacks θ mod νn to θi, 1 ≤ i ≤ n.

5 Party A unpacks R mod νn to Ri, 1 ≤ i ≤ n.

6 Parties A and B jointly compute the comparison bits [δi],
[],iδ′ and [],iδ′′ for each i, 1 ≤ i ≤ n, where δi = (θi < Ri),

iδ′ = (θi + ν < Ri + 2ℓ+1), and iδ′′ = (θi < Ri + 2ℓ+1), by
executing in parallel 3n secure comparison protocols on
private inputs.

7 Using [δi], [],iδ′ and [],iδ′′ party A computes [γi] =

[(1)] [].i i i i i i iδ δ δ δ δ δ δ′ ′′ ′ ′′⋅ + − ⋅ = + − This is done for
each i.

Our solution will be similar to the previous batched case.
We additively blind Z with a large random number R, and
ask B to unpack θ = Z + R. The addition of R might cause
an overflow in some compartments. The difference with
batching is that these overflows create a carry-over, which
influences the content of the next compartment: θi = (zi + Ri
+ ci–1) mod ν, where ci–1 is the carry-over bit from the
previous compartment. This can be solved by not computing
γi = (zi < 2ℓ), but γi = (2zi + ci–1 < 2ℓ+1). Since adding one
(carry-over) bit to the even number 2zi will not change the
outcome γi of the comparison, we have a solution, which is

redundant to possible carry-covers. We only need to
increase the compartment size with one bit: 2ℓ+2 ≤ ν.

The entire protocol for securely comparing n pairs from
two packed encrypted integers is Protocol 6.

In step 6, we have θi = (2zi + ci–1 + Ri) mod ν, so either
2zi + ci–1 = θi – Ri, or 2zi + ci–1 = θi – Ri + ν. Just as in secure
unpacking, [δi] is computed to find out whether there was an
overflow in the ith compartment. If δi = 0, then θi ≥ Ri, so 2zi
+ ci–1 = θi – Ri, and .i iγ δ′= Otherwise, there was an
overflow in the ith compartment, and .i iγ δ′= By
construction of the δi’s, we have 0 1,i i iδ δ δ′ ′′≤ ≤ ≤ ≤ which
explains the correctness of computing [γi] in the final step.

5.3 Combining the three comparisons of private
integers

In the batched secure comparison protocol, we use, for each
i, three subprotocols for securely comparing two privately
held integers. More precisely, we compute δi = (θi < (R mod
mi)), iδ′ = (θi + mi < (R mod mi) + 2ℓ), and iδ′′ = (θi < (R
mod mi) + 2ℓ). The computations of δi and iδ′′ can be
combined, by first computing i² = (θi mod 2ℓ < (R mod mi)
mod 2ℓ), and extending the result to both δi and .iδ′′ This is
shown in Appendix B.

In the packed secure comparison protocol, we need to
compute δi = (δi < Ri), iδ′ = (θi + ν < Ri + 2ℓ+1), and iδ′′ = (θi
< Ri + 2ℓ+1). We can similarly combine the computation of δi
and .iδ′′ But since we can choose ν = 2ℓ+2, this also holds for
δi and .iδ′ Consequently, instead of 3 · 2(ℓ + 2), we only
need 2ℓ + 3 · 4 multiplications of sharings, which reduces
the precomputation costs.

5.4 Secure equality

Just as secure comparison, one can perform secure equality
with packed, and batched, encryptions. The protocols for
equality or comparison are nearly identical, expect for the
subprotocols on private inputs. In case of batching, we batch
zi = (xi – yi) mod mi, where 0 ≤ xi, yi < mi, and compute
δi = (θi = (R mod mi)). Since (θ – R) mod mi = zi, we have
δi = (zi = 0).

In case of packing, we pack 2zi, where zi = xi – yi + 2ℓ,
and choose ν = 2ℓ+2. When B unpacks θ mod n, it has θi =
(2zi + ci–1 + Ri) mod ν. Since 0 < zi < 2ℓ+1 and ν = 2ℓ+2, we
have zi = 2ℓ, if and only if, (θi – Ri) mod 2ℓ+1 = ci–1.
Therefore, it is sufficient to compute δi = (θi mod 2ℓ+1 = Ri
mod 2ℓ+1) and iδ′ = (θi mod 2ℓ+1 = (Ri + 1) mod 2ℓ+1), to
obtain γi = δi + iδ′ = (xi = yi).

The subprotocol, securely computing a sharing of δ =
(x = y), given privately held integers x and y, is similar to
the protocol for securely comparing them. In fact, it is
sufficient to locally compute sharings 〈ei〉, for each bit i of
the inputs, where ei = (x(i) = y(i)), just as in the comparison
protocol, and securely multiply them to ,ii

δ e〈 〉 〈 〉∏

requiring ℓ – 1 multiplications of sharings.

 Efficient coding for secure computing with additively-homomorphic encrypted data 9

6 Security

In our framework, we combine two different techniques,
each with their own security properties, and assume a
semi-honest security model. The first technique is additively
homomorphic encryption, which we use in the standard
two-party setting, party B having the decryption key. By
additively blinding all values sent to ,B using a random
integer that has κ more bits, we achieve statistical security
towards B (Veugen, 2014). The security towards party A
is guaranteed by the semantic security of the homomorphic
crypto system, leading to computational security (Veugen,
2014).

The second technique is (bit-wise) secret sharing, which
by itself is unconditionally secure (De Cock et al., 2017).
However, this is only true in case of a trusted dealer, who
computes and distributes the multiplication triplets to both
parties. When generating the multiplication triplets by
additively homomorphic encryption, as described in
Subsection 4.2, we achieve the same security properties as
described above.

Therefore, our framework achieves statistical security
towards ,B and computational security towards .A

We give a formal security proof for Protocol 1, the other
security proofs are analogous. We closely follow
Goldreich’s (2001) notation so ’sA input is ,x ’sB input
is ,y and the output (,)f x y equals the pair 1((,),f x y

2 (,)),f x y where f1 denotes ’sA output function and f2 ’sB
output function. The following definition precisely states
what we have to prove, which loosely speaking comes down
to “whatever can be computed by A or B from their view
of a protocol execution, can be computed from their input
and output”.

Definition of privacy with respect to semi-honest behaviour
[Goldreich, (2001), Definition 7.2.1]: Let Π be a two-party
protocol for computing f. The view of party A (resp.,)B
during an execution of Π on (,),x y denoted 1 (,)πV x y
(resp., 2 (,)),πV x y is 1(, , , ,)tx r m m… (resp.,

1(, , , ,)),ty r m m… where r represents the outcome of party
’sA (resp., party ’s)B internal coin tosses, and mi

represents the ith message it has received.

For a deterministic functionality f, we say that Π privately
computes f if there exist probabilistic polynomial-time
algorithms, denoted S1 and S2, such that

()(){ } (){ }

()(){ } (){ }

1 1 1 , {0,1}, {0,1}

2 2 2 , {0,1}, {0,1}

, , , , and

, , , ,

c π
x yx y

c π
x yx y

S x f x y V x y

S x f x y V x y

∗∗

∗∗

∈∈

∈∈

≡

≡

where c≡ denotes computational indistinguishability.

Theorem: Assume the additively homomorphic
cryptosystem denoted by [.] is semantically secure, and
assume the secure comparison protocol used in step 4
privately computes the encrypted comparison result of both
private inputs.

Then on inputs ([])x X= and (),y K= Protocol 1
privately computes the output (,)f x y = (([x1], …, [xn]),
⊥).

Proof: Since we use the comparison protocol as a building
block of f, we can present it as an oracle in our proofs and
use Goldreich’s Composition Theorem (7.3.3) (2001). The
only assumption we made about the private comparison
protocol is that the comparison result is privately computed,
which fulfils Goldreich’s premise for applying the
composition theorem.

In Protocol 1, the view of A consists of its private
number [X], its random number R (of log2 N – 1 bits), its
output ([x1], …, [xn]), and all intermediate messages
received from :B the encrypted batches [θi], 1 ≤ i ≤ n, and
the encrypted comparison bits [δi], 1 ≤ i ≤ n. Summarising,
the view of A equals

[] [] [] [] [] []()1 1 1 1[], , , , , , , , , , .n n nV X R x x θ θ δ δ= … … …

According to Definition 7.2.1 (Goldreich, 2001), it suffices
to show that there exists a probabilistic polynomial-time
algorithm S1 such that 1 1(, , (,))S x f x y is computationally
indistinguishable from V1. Since the encryption algorithm is
semantically secure, every pair of encryptions is
computationally indistinguishable (Goldreich, 2001), so by
letting S1 randomly generate 3n encrypted integers [xi], [θi],
[δi], 1 ≤ i ≤ n, and a random number rR of log2 N – 1 bits,
this condition is easily verified.

The view of B consists of the decryption key K, and all
intermediate messages received from :A the encrypted
number [θ], where θ = X + R. Since B owns the decryption
key, [θ] can be decrypted to θ. Summarising, the view of B
is equivalent to

2 (,).V K θ=

Again, we have to show that there exists a probabilistic
polynomial-time algorithm S2 such that 2 2(, (,))S y f x y is
computationally indistinguishable from V2. This is easily
satisfied by letting S2 randomly generate an integer rθ of
log2 N – 1 bits. For any value of rθ, we have

2

0
(log 1)

Pr() Pr() Pr()

2 Pr().

θr
θ θx

N
θ

θ r X x R r x

X r
=

− −

= = = = −

= ≤
∑

Let Xmax be the maximal value of X, then Xmax · 2κ < N. It
follows that

()()
()

() ()
()

()

2

2

2

2

2

(log 1)

(log 1)

log 1

log 1

log 1 max 1

Pr() Pr() 2 1 Pr

2 Pr

2 Pr

2 ()

2 2 ,

θ θ

θ

θ

N
θ θr r

N
θr

N
θ θr

N

N κ

r θ X r

X r

X r r

E X

X

− −

− −

− −

− −

− − −

− = − ≤

= >

= = ⋅

=

≤ <

∑ ∑
∑
∑

10 T. Veugen

which decreases faster than the reciprocal of any
polynomial for sufficiently large security parameter κ, so θ
and rθ are statistically indistinguishable, and thus also
computationally indistinguishable (Goldreich, 2001).

We conclude that Protocol 1 privately computes ’sA output
([x1], …, [xn]) in the semi-honest model. In fact, we showed
that the integer X is even statistically secure towards .B
Whether this holds for the entire protocol will depend on the
chosen comparison protocol.

7 Applications of batching

The applications of packing (Bianchi et al., 2009; Erkin
et al., 2012) have been illustrated by others. We have
already shown how to perform multiple secure comparisons
in parallel using both packing and batching. Since batching
with additively homomorphic encryption is less well
known, we illustrate a few other possibilities.

As shown in Protocol 2, batching can be used to perform
n secure multiplications by means of only one secure
multiplication of two batched integers. The principle of
parallel secure multiplications could be extended to secure
inner products, and even matrix-vector multiplications. For
small matrices, it is possible to first batch each column, and
second batch all columns into one matrix batch. Then one
secure multiplication with a batched vector performs a
secure matrix-vector multiplication. A different application
of batching is secure set intersection.

7.1 Set intersection

Securely computing the intersection of two sets is needed
for several applications, for example when checking which
users are on a revocation list or not. In secure set
intersection, party A holds k integers x1, x2, …, xk, party B
privately holds n integers y1, y2, …, yn, and both parties
want to jointly compute the elements of their intersection,
without leaking information on the remaining elements.

Many solutions are known to solve secure set
intersection, for example by using fully homomorphic
encryption (Chen et al., 2017), or somewhat homomorphic
encryption (Saha and Koshiba, 2016). Since our setting is
based on additively homomorphic encryption, we give an
efficient solution based on earlier work by Freedman et al.
(2004). We follow their solution, and show how batching
(and packing) can be used to improve its efficiency. We
assume p is a public prime number, (slightly) larger than the
inputs xj of party .A Protocol 7 shows our solution.

The ith element of the batched integer Y equals

0
(mod) (mod),

k j
j ij

p y p
=

⋅∑ α which equals p(yi) modulo

p. Since p(yi) mod p = 0, if and only if, p(yi) = 0, the parties
compute γi = ((Y mod mi) mod p = 0), which is one, if and
only if, yi is in the intersection. If δi = 0, then there was no
overflow in the ith compartment, and Y mod mi = θi – (R
mod mi), and otherwise, Y mod mi = θi – (R mod mi) + mi. In

the first case ,i iγ δ′= otherwise .i iγ δ′′= This shows the
correctness of the computation of the bit γi.

Protocol 7 Secure set intersection
Party A B
Input x1, x2, …, xk and p y1, y2, …, yn, p and K
Output {x1, x2, …, xk} ∩

{y1, y2, …, yn}
Constraints 0 ≤ xi < p, 1 ≤ i ≤ k,

p is prime, and (k · p2)n < N · 2–κ
1 Party B computes the k batched integers Yj = 1(jy mod p,

2
jy mod p, …, j

ny mod p)B, 1 ≤ j ≤ k, encrypts them, and
sends them to .A

2 Party A computes k + 1 integers αj, possibly negative,

such that p(x) =
1
()

k
j

j
x x

=
−∏ =

0
.

k
j j

j
x

=∑ α Clearly,

p(y) = 0, if and only if, y is in the set {x1, x2, …, xk}.

3 Party A computes [Y] ≈ [(p(y1), p(y2), …, p(yn))B]:

[Y] = [α0 mod p] · mod
1
[] .j

k
pj

j
Y

=∏ α

4 Party A additively blinds Y, by computing a large random
number R: [θ] = [Y] · [R], and sends [θ] to .B

5 Party B decrypts θ, and ‘debatches’ it to θi = θ mod mi,
1 ≤ i ≤ n.

6 Parties A and B run n secure comparison protocols, and
2n secure equality protocols in parallel, to compute sharings
〈δi〉, iδ′〈 〉 and iδ′′〈 〉 of δi = (θi < R mod mi), iδ′ = ((θ mod
mi) mod p = (R mod mi) mod p), and iδ′′ = ((θ mod mi + mi)
mod p = (R mod mi) mod p).

7 The parties compute (),i i i i iγ δ δ δ δ′ ′′ ′〈 〉 = 〈 〉 + 〈 〉 ⋅ 〈 〉 − 〈 〉 and
open the sharings of γi, 1 ≤ i ≤ n, to party ,B who learns the
elements of the set intersection.

In Freedman et al. (2004), the encryptions [p(yi)] are
computed one-by-one, and each [p(yi) · ri + yi] is sent to
party .B The multiplicative blinding with random number ri
is expensive, and so are the n Paillier decryptions needed by

,B which we reduce to one decryption of θ, by means of
batching. Since we computed the shared bits γi, it is also
easy to securely compute the cardinality of the set
intersection: .ii

γ∑

The set intersection will be computed correctly and
securely, as long as mi > p – 1 + k(p – 1)2, and M < N · 2–κ,
so nσ < log2 N – κ, where compartment size σ = log2 k +
2 log2 p. This means that for integers xj of bit size ℓ = 10
(and log2 p = 11), for example, we can compute the set
intersection up to k = n = 64 elements, using only one
encrypted batch. For larger sets we need to split Y into
several batched encryptions, each computing a part of the n
bits γi.

8 Performance

In order to determine the computational complexity, we
compute the average number of multiplications of
encryptions. To estimate the improvement of our solution,
we compare the complexity of our solution with the

 Efficient coding for secure computing with additively-homomorphic encrypted data 11

state-of-the-art. First for computing secure multiplications,
then for doing secure comparisons and secure equalities,
and finally for securely computing set intersections.

Although decoding is preferably done in the plain
domain, or only once at the end of all computations, we also
present the performance of including decoding in the
encrypted domain. In our framework, an important part of
the bit-wise operations is generating the multiplication
triplets. Since the triplets can be precomputed by additively
homomorphic encryption, we mention this effort separately.
Especially when extended oblivious transfers are used for
precomputing the triplets, as described in Subsection 4.2,
the precomputation effort seems to be negligible compared
to the remaining computations.

8.1 Secure multiplication

We compare one secure multiplication with the batched
approach, and compute the average number of
multiplications of encryptions to measure the computational
complexity per secure multiplication. The number n of
compartments is determined by 2n · σ = log2 N – κ, where
compartment size σ = 2ℓ.

For one standard secure multiplication protocol, we
roughly need two decryptions and two exponentiations with
a power of σ + κ bits. A Paillier decryption takes on

average 2
3 log
8

N multiplications, so we need 2(σ + κ)1.5 +

2
3 log
4

N multiplications in total.

In the batched approach, we first batch the 2n
encryptions into two encryptions, then securely multiply
them, and finally unbatch the multiplication result. This

would take 2(1 + log2 n) · 0.8 · σn + 2
3(log
4

N + 1.6n · σ) +

2
3(log
8

N + n · 8.75 · σ) multiplications.

Figure 1 Average computational complexity per secure
multiplication (see online version for colours)

In Figure 1, the light blue line ‘-.’ indicates the performance
of the standard protocol, the dark blue line ‘..’ the average
costs per compartment when multiplying two encrypted
batches, and the red line ‘-’ the batched multiplication,
including the costs for batching and debatching. We let ℓ
increase from 5 to 100, and set n accordingly to get a full
batch.

For ℓ = 5, a batched multiplication reduces the average
costs of a secure multiplication from 1,791 to
33 multiplications of encrypted integers. Even when
including the costs for batching and debatching, the average
costs are still smaller when ℓ < 50.

Table 3 Number of communicated encryptions for n secure
multiplications

 Standard Batch Batching Debatching
Computing
triplets for
debatching

Encryptions
sent

3n 3 0 n + 1 4σn

We also compare the number of communicated encryptions,
see Table 3. During a standard secure multiplication, three
encryptions need to be sent. Two by party ,A and one by
party .B This is the same for a secure multiplication of two
encrypted batches, which combines n secure multiplications
(excluding the two additional encryptions needed for
reducing the size of the product). For batching n encrypted
integers into one encryption, no communication is needed.
Furthermore, for debatching we need n + 1 encryptions: A
sends the batched encryption to ,B and gets n encryptions
back. And finally, we need to precompute the multiplication
triplets for debatching, which we assume is done with
packing and additively homomorphic encryption. There are
n · 2σ triplets needed, and for each triplet two encryptions
are sent from B to .A Therefore, the batched
multiplication reduces the communication costs with a
factor n. In a setting where batching is used for only one
batched multiplication, the reduction factor is almost 3,
excluding the effort for precomputing multiplication triplets.

8.2 Secure comparison

A well-known solution for securely comparing two
encrypted integers is the DGK protocol. In this secure
comparison algorithm it is common to intermediately switch
to the DGK crypto system, which is fine-tuned to small
plain texts. Since the size of a cipher text in DGK is N
instead of N2, we count four multiplications of
DGK-encrypted numbers as one multiplication of
Paillier encryptions. Then the average computational

complexity of DGK is comparable to 7.5 + 2
3 log
8

N +

151.5ℓ multiplications of integers of size N2 (Veugen,
2012). We will compare n secure DGK comparisons with
our packed approach, by counting the number of
multiplications of integers of size N2.

12 T. Veugen

To securely compare n pairs of encrypted integers through
packing, we follow the solution described in Subsection 5.2,
which consists of:

1 party A computing the encrypted packings [X], [Y],
and [Z]

2 blinding Z to get [θ]

3 party B decrypting [θ] and unpacking it

4 performing n secure comparisons of privately held
integers, as described in Subsection 5.3

5 obtaining the [γi] from the three [δi]’s.

We choose the compartment size ν = 2ℓ+2, and maximise n,
such that n · (ℓ + 2) < log2 N – κ. The packed secure
comparisons will take (1) 3 + 2(n – 1) · 1.5 log2 (ℓ + 2)

+ (2) 2 + (3) 2
3 log
8

N + (4) n(2ℓ + 12)8.75 + (5) 3n

multiplications.
The performance of securely comparing n pairs of

encrypted integers by means of packing is depicted in
Figure 2. Because of the large differences, the complexity
axis has a logarithmic scale. Since the DGK protocol
communicates one encryption per input bit, our packed
version reduces the communication complexity with
roughly a factor ℓ.

Figure 2 Average computational complexity per secure
comparison (see online version for colours)

8.3 Secure equality

Suppose party A holds 1,000 pairs of encrypted integers,
[xi], [yi], 1 ≤ i ≤ 1,000, for which A and B jointly want to
determine whether they are equal or not, such that A
obtains [δi] = [(xi = yi)]. The state-of-the-art solution for
performing this, is described by Nateghizad et al. (2016),
who also consider 1,000 equality tests. They improve other
existing cryptographic protocols by using, among other
techniques, packing.

We suggest to use batching, and compare their results
with our secure equality approach. We vary the bit length of
the inputs from ℓ = 10 to ℓ = 40, and compute the number of
multiplications with Paillier encryptions, as a measure for
the computational complexity. We batch the encrypted
integers [zi] = [xi + 2ℓ – yi] into a small number of
encryptions, and determine sharings of δi= (zi = 2ℓ). The
maximal number n of compartments we can have in one
encryption is determined by n · σ < log2 N – κ, where σ = ℓ +
1 and varies from n = 48 (for ℓ = 40) to n = 178 (for ℓ = 10).
This exceeds the number of compartments from Nateghizad
et al. (2016), since they need n · (ℓ + κ + 1) < log2 N, which
gives n = 22 (for ℓ = 10) only.

Figure 3 shows the computational improvement of our
equality protocol compared to the protocol NEL-I
(Nateghizad et al., 2016), the gain of which increases for
growing input size. The communication complexity of both
solutions is comparable.

Figure 3 Average computational complexity for 1,000 secure
equalities (see online version for colours)

In step 8 of NEL-I, the authors use coefficients αi of a
Lagrange polynomial. They oversaw that these coefficients
are rational numbers, which destroys the efficiency of their
solution. However, this can be solved by computing
[ti · α–1], instead of [ti], 1 ≤ i ≤ log2 ℓ, where α–1 is the

multiplicative inverse of 2log

2
(1) modulo .

i
i N

=
= −∏α

8.4 Set intersection

We compare our batched solution for securely computing
the set intersection, with the protocol of Freedman et al.
(2004). We fix the number of bits ℓ of the set elements to
10, and let n = k increase from 10 till 1,000. The results are
depicted in Figure 4.

Our approach shows a decreased computational
complexity, the gain of which grows for larger sets. Because
of the large differences, the complexity axis has a
logarithmic scale.

 Efficient coding for secure computing with additively-homomorphic encrypted data 13

Figure 4 Computational complexity of set intersection
(see online version for colours)

8.5 Summary

The highest gain of our platform is achieved in case many
numbers need to be securely compared. Packing will reduce
the computational complexity by roughly a factor thousand,
and the communication complexity by a factor ℓ (ignoring
precomputations). A similar gain in computational
complexity is experienced when using batching for secure
set intersection.

For the multiplication and equality operations, the
advantage of batching w.r.t. computational complexity is
less, but still remarkable. On the other hand, the average
communication complexity of a secure multiplication is
reduced by a factor n.

9 Conclusions and further research

We introduced a framework that can be used for efficiently
computing with encrypted data between two parties in the
semi-honest security model. It uses additively homomorphic
encryption for adding and multiplying a large number of
encrypted integers, and bit-wise secret sharing for more
complicated operations on the encrypted integers. The
framework is shown to be computationally and
communication-wise more efficient than state-of-the-art
solutions for a number of generic operations. To increase its
performance, an important, data-independent part can be
precomputed. This includes the decoding operations in case
they need to be performed in the encrypted domain.

Our framework is expected to improve the performance
of several applications, when computing in the encrypted
domain is required. Ideally, encoding is performed once
during the input phase, and decoding is done at the end. The
exact implications have yet to be determined. We currently
precompute the multiplication triplets by additively

homomorphic encryption, but the efficiency is likely to be
improved by using extended oblivious transfers as shown in
Subsection 4.2.

References
Beaver, D. (1998) ‘One-time tables for two-party computation’, in

Goos, G., Hartmanis, J., van Leeuwen, J., Hsu, W-L. and
Kao, M-Y. (Eds.): Computing and Combinatorics, Vol. 1449,
pp.361–370, Springer Berlin Heidelberg, Berlin, Heidelberg
[online] http://link.springer.com/10.1007/3-540-68535-9_40.

Bianchi, T., Veugen, T., Piva, A. and Barni, M. (2009) ‘Processing
in the encrypted domain using a composite signal
representation: pros and cons’, IEEE International Workshop
on Information Forensics and Security.

Chen, H., Laine, K. and Rindal, P. (2017) ‘Fast private set
intersection from homomorphic encryption’, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security – CCS ‘17, Dallas, Texas, USA,
pp.1243–1255, ACM Press [online] http://dl.acm.org/
citation.cfm?doid=3133956.3134061.

Damgård, I., Geisler, M. and Krøigaard, M. (2008) ‘Homomorphic
encryption and secure comparison’, Journal of Applied
Cryptology, Vol. 1, No. 1, pp.22–31.

Damgård, I., Geisler, M. and Krøigaard, M. (2009) ‘A correction
to efficient and secure comparison for online auctions’,
Journal of Applied Cryptology, Vol. 1, No. 4, pp.323–324.

De Cock, M., Dowsley, R., Horst, C., Katti, R., Nascimento, A.,
Poon, W-S. and Truex, S. (2017) ‘Efficient and private
scoring of decision trees, support vector machines and logistic
regression models based on pre-computation’, IEEE
Transactions on Dependable and Secure Computing, p.1
[online] http://ieeexplore.ieee.org/document/7873244/.

Erkin, Z., Veugen, T., Toft, T. and Lagendijk, R.L. (2012)
‘Generating private recommendations efficiently using
homomorphic encryption and data packing’, IEEE
Transactions on Information Forensics and Security, Vol. 7,
No. 3, pp.1053–1066.

Freedman, M.J., Nissim, K. and Pinkas, B. (2004) ‘Efficient
private matching and set intersection’, in Kanade, T.,
Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C.,
Nierstrasz, O., Pandu Rangan, C., Steffen, B., Terzopoulos,
D., Tygar, D., Vardi, M.Y., Cachin, C. and Camenisch, J.L.
(Eds.): Advances in Cryptology – EUROCRYPT 2004,
Vol. 3027, pp.1–19, Springer Berlin Heidelberg [online]
http://link.springer.com/10.1007/978-3-540-24676-3_1.

Furukawa, J., Lindell, Y., Nof, A. and Weinstein, O. (2017)
‘High-throughput secure three-party computation for
malicious adversaries and an honest majority’, Coron, J-S.
and Nielsen, J.B. (Eds.): Advances in Cryptology –
EUROCRYPT 2017, Vol. 10211, pp.225–255, Springer
International Publishing, Cham [online] http://link.springer.
com/10.1007/978-3-319-56614-6_8.

Goldreich, O. (2001) Foundations of Cryptography: Basic
Applications, Vol. 2, Cambridge University Press, New York.

Keller, M., Orsini, E. and Scholl, P. (2016) ‘MASCOT: faster
malicious arithmetic secure computation with oblivious
transfer’, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security – CCS’16,
Vienna, Austria, pp.830–842, ACM Press [online]
http://dl.acm.org/citation.cfm?doid=2976749.2978357.

14 T. Veugen

Knuth, D.E. (1997) The Art of Computer Programming, 3rd ed.,
Addison-Wesley, Reading, Mass.

Kolesnikov, V. and Kumaresan, R. (2013) ‘Improved OT
extension for transferring short secrets’, in Canetti, R. and
Garay, J.A. (Eds.): Advances in Cryptology – CRYPTO 2013,
Vol. 8043, pp.54–70, Springer Berlin Heidelberg, Berlin,
Heidelberg [online] http: //link.springer.com/10.1007/978-3-
642-40084-1_4.

Lagendijk, R.L. and Barni, M. (2013) ‘Encrypted signal processing
for privacy protection: conveying the utility of homomorphic
encryption and multiparty computation’, IEEE Signal
Processing Magazine, January, Vol. 30, No. 1, pp.82–105
[online] http://ieeexplore.ieee.org/document/6375935/.

Nateghizad, M., Erkin, Z. and Lagendijk, R.L. (2016) ‘Efficient
and secure equality tests’, 2016 IEEE International Workshop
on Information Forensics and Security (WIFS), December,
Abu Dhabi, United Arab Emirates, pp.1–6, IEEE [online]
http://ieeexplore.ieee.org/document/7823915/.

Paillier, P. (1999) ‘Public-key cryptosystems based on composite
degree residuosity classes’, Proceedings of Eurocrypt 1999,
Lecture Notes in Computer Science, Vol. 1592, pp.223–238,
Springer-Verlag [online] http://citeseer.ist.psu.edu/article/
paillier99publickey.html.

Saha, T.K. and Koshiba, T. (2016) ‘Private equality test using
ring-LWE somewhat homomorphic encryption’, 2016 3rd
Asia-Pacific World Congress on Computer Science and
Engineering (APWC on CSE), December, Nadi, Fiji, pp.1–9,
IEEE [online] http://ieeexplore.ieee.org/document/7941933/.

Smart, N.P. and Vercauteren, F. (2014) ‘Fully homomorphic
SIMD operations’, Designs, Codes and Cryptography, April,
Vol. 71, No. 1, pp.57–81 [online] http://link.springer.com/
10.1007/s10623-012-9720-4.

Veugen, T. (1991) Some Mathematical and Computational Aspects
of Electronic Cash, Master Thesis, Eindhoven University of
Technology, The Netherlands.

Veugen, T. (2012) ‘Improving the DGK comparison protocol’,
2012 IEEE International Workshop on Information Forensics
and Security (WIFS), December, Costa Adeje, Tenerife,
Spain, pp.49–54, IEEE [online] http://ieeexplore.ieee.org/
document/6412624/.

Veugen, T. (2014) ‘Encrypted integer division and secure
comparison’, International Journal of Applied Cryptography,
Vol. 3, No. 2, p.166 [online] http://www.inderscience.com/
link.php?id=62738.

Veugen, T. (2018) ‘Secure comparison through simple bit
operations’, in Spreeuwers, L. and Goseling, J. (Eds.): 2018
Symposium on Information Theory and Signal Processing in
the Benelux, May, University of Twente, Enschede, The
Netherlands, pp.203–206, IEEE.

A Vector addition chain

We can efficiently compute
1

[] []
Mi mi

n μ
ii

X x
=

= ∏ with a

vector addition chain (Veugen, 1991).

A.1 Vector of width two

When computing 1 2
1 2 ,e ex x⋅ for certain positive integers x1,

x2, e1 and e2, the straightforward approach is to first
compute the two exponentiations separately, and then

multiply them together. This would roughly require 1 + 1.5
log2 e1 + 1.5 log2 e2 multiplications.

However, this can be improved as follows (Veugen,
1991). Assuming e1 < e2, one can compute e2 ÷ e1 and e2
mod e1, such that e2 = (e2 ÷ e1) · e1 + (e2 mod e1). Then, by
rewriting 1 2

1 2
e ex x⋅ as 2 1 2 11 mod

1 2 2() ,e e e eex x x÷⋅ ⋅ the sizes of the
exponents e1 and e2 have been reduced to the sizes of (e2 ÷
e1) · e1 and e2 mod e1. The same trick can be applied to the
reduced exponents, yielding a recursive solution. The
average number of multiplications of this recursive solution
can be determined as 1.6 log2 e2, which is only slightly more
than the average number of multiplications for computing
only 2

2 .ex

A.2 Divide and conquer

Using the algorithm from the previous subsection, we
propose a ‘divide and conquer’ approach for batching.
Given integers i and j, 1 ≤ i ≤ j ≤ n, define [i, j] as the set of
integers {i, i + 1, …, , j}. Further define, given integer set S,

[]() ,Ξ .
ss S s ii

mμ
S i

i S

x ∈ ≠

∈

=
∏∏

In order to compute Ξ[1,n], we propose to first compute
Ξ[1,(n+1)÷2] and Ξ[(n+1)÷2+1,n], and then combine the two:

()
()

[1,(1) 2]

[(1) 2 1,]

[1,] [1,(1) 2]

[(1) 2 1,]

Ξ Ξ

Ξ .

ss n

ss n n

m
n n

m
n n

∈ + ÷

∈ + ÷ +

+ ÷

+ ÷ +

=

⋅

∏

∏

The combining of these two integers requires a vector
addition chain of width two, for which we can apply the
previous recursive solution.

A.3 Number of multiplications

We can determine the average number of multiplications to
compute one batch, i.e., to compute Ξ[1,n] from [xi], 1 ≤ i ≤ n.
Let σ be the maximal number of bits of the numbers mi, 1 ≤
i ≤ n. Let A(n) be the average number of multiplications to
compute a batch of n encrypted integers. Using the previous
subsections, we can derive the following recurrent equation:

() 2 (2) 1.6 (2) .A n A n n σ= ⋅ + ⋅

For n = 2, we have A(2) = 1.6 · 2σ. Therefore, if n is a power
of two, we have A(n) = (1 + log2 n) · 0.8 · σn. If n is not a
power of two, the interval [1, n] will at some point in the
recurrence relation not split up in two exactly equal parts,
but our formula for A(n) will still be a good approximation.

B Combining secure comparison protocols

Let x and y be two privately held integers, 0 ≤ x, y < 2ℓ+2.
Suppose we have securely computed ² = (x mod 2ℓ < y mod
2ℓ), and want to extend this result to δ = (x < y). The
following relation between δ and ² is easily derived.

 Efficient coding for secure computing with additively-homomorphic encrypted data 15

() ()(1) () (1) () (1) () (1) ()δ x x y y x x y y+ + + += = ⋅ + <²

In this expression, x(ℓ+1)x(ℓ) denotes the binary representation
of a two-bit number. To compute δ, we first compute
sharings of eℓ+1 = (x(ℓ+1) = y(ℓ+1)) and eℓ = (x(ℓ) = y(ℓ)), like in
our secure comparison protocol, by local additions. The
same for dℓ+1 = (x(ℓ+1) < y(ℓ+1)) and dℓ = (x(ℓ) < y(ℓ)), costing
one sharing multiplication each. These shared bits are then
used to compute δ = eℓ+1 · eℓ · ² + dℓ+1 + eℓ+1 · dℓ = dℓ+1 +
eℓ+1 · (² · eℓ + dℓ), which requires two secure multiplications
of sharings, for a total of four secure multiplications of
shares.

