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1 Introduction 

The area of computing with encrypted integers has been 
developing steadily over the past couple of years (Lagendijk 
and Barni, 2013). Many applications are known, where 
different parties need to compute with encrypted data, 
without having to decrypt intermediate values, to assure that 
sensitive data is not leaked. Although a high level of 
security can be achieved in this way, current solutions still 
suffer from efficiency drawbacks, which delay their 
exploitation. In the current paper we introduce a framework 
that contributes to mitigating these disadvantages. 

We consider a semi-honest security model, where  
two parties jointly compute with encrypted data using 
efficient coding schemes that are designed and fine-tuned 
for this purpose. In particular, we deploy the common 
setting of party A  having all encrypted values, and  
party B  holding the decryption key (Lagendijk and Barni, 
2013). This setting, which originates from the domain of 
encrypted signal processing (Lagendijk and Barni, 2013), is 

different from several efficient secure multi-party 
computation platforms that have been developed over the 
last few years (Keller et al., 2016; Furukawa et al., 2017). 
Although the crypto system can be any additively 
homomorphic scheme, the well-known Paillier scheme 
(Paillier, 1999) is used. 

In our model, party A  is able to add different encrypted 
values without needing support from party ,B  due to the 
additively homomorphic property of the scheme. For more 
complicated operations such as multiplications or 
comparisons, a common approach is to have party A  
additively blind encrypted values by adding a large random 
number, which can safely be decrypted by party ,B  and 
using this decrypted value in a protocol between A  and ,B  
which implements the required operation (Damgård et al., 
2008) at the cost of additional communication and 
computation. 

An important cause of the lack of efficiency when 
computing with encrypted data is the blow-up of integers 
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during encryption. For security reasons, each encryption has 
a size of one or more kilobit (Kb), irrespective of the size of 
the plaintext integer. This increases both communication 
and computational complexity. Therefore, the main goal of 
our framework is to reduce the difference in size between 
plaintext and ciphertext. For integer operations like 
additions and multiplications, this is achieved by using 
coding schemes that put many small integers into one large 
integer. More complex, bit-wise operations like 
comparisons and equality tests are implemented by binary 
secret sharings, where the size of the ‘ciphertext’ is very 
small. 

Since encoding (putting many small values into one 
large integer) and decoding in the encrypted domain takes 
some effort, the best approach is to do this in the plain 
domain, or to perform most operations in the encrypted 
domain on encoded data, and to only decode in the end. 
This also limits the number of decryptions, which are quite 
costly. 

An interesting alternative, avoiding additional 
communication, would be to use fully homomorphic 
encryption, for which similar coding techniques are known 
(Smart and Vercauteren, 2014). However, despite some 
recent advances, to date fully homomorphic encryption 
schemes are mainly of theoretical interest and far too 
inefficient to be used in practice (Lagendijk and Barni, 
2013). Additively homomorphic schemes sincerely reduce 
the computational effort, but require some additional 
communication to enable secure multiplications. 

In the next subsection, we explain our contribution more 
explicitly, followed by the notation used throughout the 
paper. In Sections 2 and 3, we introduce the two coding 
schemes, namely packing and batching. Section 4 shows 
how bit-wise secret sharing can be used to implement the 
more complicated bit-wise operations in the encrypted 
domain. This is combined in Section 5 with secure 
comparison of packed, or batched, encryptions. A couple of 
new applications, which require batching, are illustrated in 
Section 6. In Section 7, the security properties of the 
framework are explained. The performance of our 
framework is compared to state-of-the-art solutions in 
Section 8, and we end by giving directions for further 
research and our conclusions. 

1.1 Our contribution 

We show two efficient coding schemes for basic 
computations, such as additions and multiplications, on 
encrypted integers, in the semi-honest two-party model. For 
more complicated, bit-wise operations, such as comparison 
and equality, we propose a bit-wise secret sharing scheme. 
Decoding is preferably performed in the plain domain, since 
secure comparison protocols are needed to decode in the 
encrypted domain. In terms of computation and 
communication, the most intensive part of this secret 
sharing scheme can be precomputed, and is independent of 
the actual data. We propose efficient solutions that allow the 
two parties to jointly precompute. Alternatively, a trusted 
dealer can be used. 

We show how to securely compare batched, or packed, 
integers in the encrypted domain, and how to determine 
whether they are equal. We show how our framework can 
be used to improve the efficiency of state-of-the-art 
solutions to generic operations like secure multiplications, 
secure comparison, and secure equality, but also secure set 
intersection. This results, amongst others, in seven new 
cryptographic protocols, shown throughout the paper. 

1.2 Notation and parameters 

Throughout this paper we make use of various symbols, 
which we have defined in Table 1. The remainder of x after 
reduction modulo M is denoted by y = x mod M, such that 0 
≤ y < M. On the other hand, y = x (mod M) refers to the 
equivalence relation, so (y – x) mod M = 0, but not 
necessarily 0 ≤ y < M. 

Table 1 Notation 

ℓ Bit length of inputs 
n Number of compartments 

ν Size of one packed compartment 

N Size of plaintext 
[.] (Paillier) encryption 

,A B  Parties 

X Packed, or batched, integer 
(x < y) The bit representing the Boolean x < y 
γi, δi Binary outcomes of comparison or equality 
θ Blinded batch, or packing 
(.)B Batch 
÷ Integer division 
K Decryption key 
κ Statistical security parameter 
σ Bit length of one batched compartment 
mi Size of batched compartment i 
M Modulus of one batch 

〈.〉 Secret sharing 

,x xA B  Privately known integers 

xi Content of compartment i 
(x = y) The bit representing the Boolean x = y 
x(i) The ith bit of integer x, x(0) being the right-most bit 
R Random number used for additive blinding 
(.)P Packing 

⊕ Exclusive-or 

We assume that the plaintext size N has 2,048 bits, a 
reasonable security parameter nowadays, and that the 
statistical security parameter κ = 80. Because we choose 
Paillier as the additively homomorphic crypto system, all 
computations on cipher texts are done modulo N2. However, 
we will omit this modulo reduction to avoid distracting the 
reader with details. Furthermore, we sometimes write log2, 
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the logarithm with base two, but neglect that this is usually 
not an integer value, and the outcome should be rounded up. 

2 Batching 

We use a technique known from fully homomorphic 
encryption called batching (Smart and Vercauteren, 2014). 
We optimise this coding scheme for additively 
homomorphic encryption, show efficient methods for 
encoding and decoding in the encrypted domain, and an 
efficient approach for multiplying encrypted batches. These 
methods use a new addition chain algorithm for vectors of 
width two. 

Let mi, 1 ≤ i ≤ n, be a collection of integers, which are 

pairwise coprime. Let 
1

n
ii

M m
=

= ∏  be their product. The 

idea is that n small integers, each of size mi, can be batched 
into one large integer of size M, and additions and 
multiplications on the large integer will translate to identical 
operations on the n small integers, according to the  
well-known Chinese remainder theorem. 

To be able to compute with batchings in the encrypted 
domain, we need log2 M + κ < log2 N, where κ = 80 is the 
security parameter, and N is the modulus of the crypto 
system. 

2.1 Encoding and decoding in the plain domain 

To batch n integers into one large integer, we compute 

( )1 2
1

, , , ,
n

n i iB
ii

Mx x x μ x
m=

=∑…  

where μi is the multiplicative inverse of 
i

M
m

 modulo mi 

(Knuth, 1997). 
Decoding a batched integer X into n integers is simply 

computing xi = X mod mi. 

2.2 Encoding and decoding in the encrypted domain 

To encode n encrypted integers into one encrypted batch 
[X], we can use the additively homomorphic property of the 
crypto system: 

[ ]
1

[ ] .
Mi mi

n
μ

i
i

X x
=

= ∏  

This product can be computed efficiently by means of a 
vector addition chain. The algorithm provided in  
Appendix A takes roughly (1 + log2 n) · 0.8 · σn 
multiplications of two encryptions, where σ = log2 mi. 

To decode an encrypted batch [X] to n encrypted 
integers, we compute [X mod mi] for all i, 1 ≤ i ≤ n, in 
parallel, as shown in Protocol 1. 

 

 

Protocol 1 Debatching in the encrypted domain 

Party A  B  

Input [X] K 
Output  [xi], 1 ≤ i ≤ n  
Constraints  X = (x1, x2, …, xn)B and  

0 ≤ xi < mi, 1 ≤ i ≤ n,  
0 ≤ X < N · 2–κ 

1 Party A  generates a large random variable R, and 
additively blinds X: [θ] = [X] · [R] = [X + R]. 

2 Party A  sends [θ] to B . 

3 Party B  decrypts it, ‘debatches’ θ, and sends the n integers 
θi = θ mod mi, 1 ≤ i ≤ n, separately encrypted, to party A . 

4 Parties A  and B  perform n parallel secure comparisons, 
such that A  obtains n encrypted comparison bits [δi], 
where δi = (θi < (R mod mi)). 

5 Party A  computes [xi] = [θi] · [–R mod mi] · [ ] ,im
iδ  for 

each i, 1 ≤ i ≤ n. 

The correctness of debatching in the encrypted domain is 
shown in Veugen (2014). In Subsection 4.3, a secure 
comparison protocol is described to compute the δi’s. The 
exponentiation [ ] im

iδ  can be avoided by translating 〈δi〉 
directly to [mi · δi]. 

2.3 Multiplication of encrypted batches 

The main advantage of batched coding is that many 
multiplications can be combined into one (secure) 
multiplication: 

( ) ( )
( )

1 2 1 2

1 1 2 2

, , , , , ,

, , , (mod ).
n nB B

n n B

x x x y y y

x y x y x y M

⋅ =

⋅ ⋅ ⋅

… …

…
 

To take full advantage, the number of compartments n, and 
therefore also the number M, should be as large as possible. 
However, the secure multiplication is computed modulo N, 
the plaintext size of the crypto system, and a carry-over 
modulo N would destroy the correctness of the result. The 
easiest way to avoid a carry-over modulo N, is to ensure  
M2 < N. This halves the number of compartments we can 
put into one encryption. Furthermore, since we also want to 
be able to additively blind (and debatch) intermediate 
results, we require M2 < N · 2–κ. 

After one secure multiplication, the batched result has 
grown from size M to M2. This does not pose a serious 
problem if the remaining batched operations are additions. 
However, to be able to compute another batched 
multiplication, we need to reduce the size of the batch, 
without affecting its result modulo M. Computing the exact 
result modulo M would require a large secure comparison 
(Bianchi et al., 2009), so we approximate the result, similar 
to the approach of Veugen (2014), which computes the 
modular remainder, possibly added with M. This can be 
combined with a standard secure multiplication (Erkin et al., 
2012) to Protocol 2. 
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Protocol 2 Multiplying two encrypted batches 

Party A  B  

Input [X] and [Y] K 
Output [A]  
Constraints 0 ≤ X, Y < N · 2–κ and  

A = (X · Y) (mod M), 0 ≤ A < 4M2 

1 Party A  has the encrypted batches [X] and [Y]. He 
generates two large random numbers RX and RY, to 
additively blind them: [θX] = [X] · [RX] and [θY] = [Y] · [RY]. 

2 Party A  sends [θX] and [θY] to party B , who decrypts 
them. 

3 Party B  computes (θX mod M), (θY mod M), and their 
product (θX mod M) · (θY mod M), encrypts them, and 
returns the three encryptions to .A 

4 Party A  computes the approximate modular remainder of 
the product X · Y: 
[A] = [(θX mod M) · (θY mod M)] · ( ) mod[ mod ] YR M

Xθ M − ⋅  
( ) mod[ mod ] XR M

Yθ M −  · [((–RX) mod M) · ((–RY) mod M)]. 

In Veugen (2014), it is shown that (θX mod M) + ((–RX) mod 
M) equals either (X mod M) or (X mod M) + M, and 
similarly for (θY mod M) + ((–RY) mod M). Therefore, A, 
which is the product of these two approximations, equals XY 
modulo M, and is upper bounded by (2M) · (2M) = 4M2. 

This secure multiplication protocol for batches takes one 
communication round, and mainly costs two decryptions by 

,B  and two exponentiations by .A It approximates the 
product XY, and reduces the size of the approximate product 
A to order M2, without disturbing its remainder modulo M. 
The two exponentiations by A  can be efficiently computed 
by a vector addition chain, as explained in Subsection A.1. 

2.4 Partial debatching in the encrypted domain 

Obviously, instead of debatching all compartments, it is 
possible to retrieve the contents of only a small number of 
compartments. This makes it possible to, for example, 
change the contents of a particular compartment, or switch 
the content of two different compartments. The  
switching can be accomplished by computing [X] · [(0, 0, 
…, xj – xi, 0, …, xi – xj, 0, …, 0)B], which switches the 
content of compartments i and j, 1 ≤ i < j ≤ n. To compute 
the latter encrypted batch, containing only [xj – xi]  

and [xi – xj], we compute ([ ] [ ] )
M

m mi j j i i jμ m μ m
j i i jx x x x− ⋅ − =  

( )[ ] ,
Mi j j i m mi j

μ m μ m
j ix x −−  which is easier than computing a 

complete batch in the encrypted domain. 

2.5 Choosing the mi 

To be able to batch, we need to find n coprime numbers mi, 
which should not be too large. For example, when all 
integers are at most ℓ bits, we need to find n coprime 
numbers between 2ℓ and 2ℓ+1. The average number of primes 
smaller than x is x/ln x, so the average number of primes in 

this interval is 12
( 1) ln 2

−
+

 (see also Table 2). Common 

values for log2 N and κ are 2,048 and 80, so assuming our 
goal is a full batch, we need at least n ≈ (2,048 – 80)/(ℓ + 1) 
coprime numbers of ℓ + 1 bits. If we only allowed the mi to 

be prime, we would need 12 1,968,
ln 2
− ≥  thus ℓ ≥ 11. 

Since they only need to be pairwise coprime, we have more 
options, but for smaller ℓ it seems that some of the mi should 
be chosen somewhat larger than 2ℓ+1 in order to have 
sufficient coprime numbers. We should also take into 
account that the compartment size σ usually exceeds the 
input size ℓ, since an output value, which must fit into one 
compartment, is the result of a series of operations on 
inputs, and the size of the intermediate results grows during 
these operations. 

Table 2 Number of primes per bit size 

# bits 3 4 5 6 7 
# primes 2 2 5 7 13 

# bits 8 9 10 11 12 
# primes 23 43 75 137 255 

3 Packing 

A different technique for putting multiple integers into one 
encryption, and performing parallel operations on all 
integers, is called packing (Erkin et al., 2012). We introduce 
a way of unpacking in the encrypted domain, which is more 
efficient than existing methods. 

In packing, the (encrypted) integers are simply 
concatenated, which enables parallel additions with 
integers. Packing also allows parallel multiplications with a 
constant value: (x1, x2, …, xn)P · y = (x1 · y, x2 · y, …, xn · y)P, 
but not with different values as in batching. 

Although it is possible to have a different size for each 
compartment, the compartment size is usually constant. We 
denote the compartment size with ν, which is often a power 
of two. 

3.1 Encoding and decoding in the plain domain 

In packing, n integers of size ν are packed together into one 
large integer, by concatenating them: 

( ) 1
1 2

1

, , , .
n

i
n iP

i

x x x x−

=

=∑… ν  

Decoding a packed integer, also called unpacking, is the 
reconstruction of the n integers of size ν: 

1 X = (x1, x2, …, xn)P 

2 for i = 1 to n – 1 do 

{X = (xi, xi+1, …, xn)P} 
a xi = X mod ν 
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b X = (X – xi)/ν 

3 xn = X. 

If ν is a power of two, unpacking is simply grouping the bits 
of X into n integers. 

3.2 Encoding and decoding in the encrypted domain 

If the n integers are encrypted with an additively 
homomorphic crypto system, packing can be done 
efficiently using Horner’s rule: 

1 [X] = [xn] 

2 for i = n – 1 down to 1 do {[X] = [(xi+1, …, xn)P]} 
a [X] = [X]ν 
b [X] = [X] · [xi] 

This mainly requires n – 1 exponentiations to the power ν, 
which costs roughly (n – 1) · 1.5 log2 ν multiplications of 
large integers. 

Unpacking in the encrypted domain is a bit more 
involved. The algorithm from Bianchi et al. (2009) 
translates the unpacking algorithm from the plain domain 
straightforward to the encrypted domain, which requires a 
large exponentation in each iteration in order to divide by ν. 
Moreover, since the encrypted content of each compartment 
is computed one-by-one, the number of communication 
rounds is linear in n, and n decryptions are needed. 

We suggest an alternative approach, similar to 
debatching in the encrypted domain. We additively blind X 
with a large random number R, and ask B  to unpack θ = X 
+ R. The addition of R might cause an overflow in some 
compartments. The difference with batching is that these 
overflows create a carry-over, which influences the content 
of the next compartment: θi = (xi + Ri + ci–1) mod ν, where 
ci–1 is the carry-over bit from the previous compartment. 
This can be solved by unpacking 2X instead of X, and 
dividing the content of each compartment by two, 
discarding the remainder. Since adding one (carry-over) bit 
to the even number 2xi will not change the outcome xi = (2xi 
+ ci–1) ÷ 2, we have a solution that is redundant to possible 
carry-covers. We only need to increase the compartment 
size with one bit to ensure 2xi < ν. We also assume ν is 
even. Protocol 3 shows how to unpack in the encrypted 
domain. 

Before step 6, we have θi = (2xi + Ri + ci–1) mod ν, 1 ≤ i 
≤ n, so either 2xi + ci–1 = θi – Ri, or 2xi + ci–1 = (θi + ν) – Ri. 
To decide whether there was an overflow in the ith 
compartment, we need to compute the n encrypted 
comparison bits [δi], where δi = (θi < Ri). These can be 
computed efficiently using n parallel secure comparisons, as 
described in Subsection 4.3. 

The correctness of the computation of xi in step 8 
follows from observing 2xi + ci–1 = θi – Ri. In this case, xi = 
(2xi + ci–1) ÷ 2 = (θi ÷ 2) – (Ri ÷ 2) – (θi mod 2 < Ri mod 2) 
(Veugen, 2014). Only if θi is even, and Ri is odd, does the 
result of the integer division need to be corrected by one. If 
we have an overflow in the ith compartment, then δi = 1, and 

we have the relation 2xi + ci–1 = (θi + ν) – Ri, for which 
similarly holds xi = ((θi + ν) ÷ 2) – (Ri ÷ 2) – ((θi + ν) mod 2 
< Ri mod 2). Since ν is even, (θi + ν) ÷ 2 = (θi ÷ 2) + ν/2, 
and (θi + ν) mod 2 = θi mod 2. 

Protocol 3 Unpacking in the encrypted domain 

Party A  B  

Input [X] K 
Output [xi], 1 ≤ i ≤ n  
Constraints X = (x1, x2. …, xn)P and 

0 ≤ 2xi < ν, 1 ≤ i ≤ n and ν is even and 
0 ≤ X < N · 2–(κ+1) 

1 Party A  generates a large random variable R, and 
additively blinds 2X: [θ] = [X]2 · [R] = [2X + R]. 

2 Party A  sends [θ] to .B  

3 Party B  decrypts it, and unpacks θ mod νn to θi, 1 ≤ i ≤ n. 

4 For each i, party B  computes θi ÷ 2 and θi mod 2, and 
sends the 2n integers, separately encrypted, to party .A 

5 Party A  unpacks R mod νn to Ri, 1 ≤ i ≤ n. 

6 Parties A  and B  perform n parallel secure comparisons, 
such that A  obtains n encrypted comparison bits [δi], 
where δi = (θi < Ri). 

7 For each i, party A  computes [γi] = [–(θi mod 2 < Ri mod 
2)]. If Ri mod 2 = 0, [γi] = [0], else [γi] = [(θi mod 2) – 1] = 
[θi mod 2] · [–1]. 

8 Party A  computes [xi] = [θi ÷ 2] · [–Ri ÷ 2] · [γi] · [δi]ν/2, 
for each i, 1 ≤ i ≤ n. 

3.3 Packing versus batching 

Packing and batching are both techniques for putting many 
integers into one encryption, and allowing parallel 
operations on them. From a functional point of view, the 
main difference is that batching allows both adding and 
multiplying, while packing only allows adding. Encoding a 
batch is more complex and computationally more intensive 
than encoding a packing, both in the plain and in the 
encrypted domain. The effort required for decoding them is 
comparable, although debatching in the encrypted domain is 
slightly less intensive than unpacking in the encrypted 
domain. 

In batching, adding a single constant to a batched 
integer results in adding the constant to all compartments. In 
packing, the constant is only added to the first compartment. 
To add the same constant value to all compartments, the 
constant needs to be packed first. Multiplying a packing 
with a constant results in multiplying each compartment 
with this constant, similar to batching. By batching 
different, publicly known constants, each compartment can 
be multiplied with a different value. This is not possible 
with packing. 

An important difference is that packing allows for more 
compartments than batching, since a multiplication of two 
batched values doubles its bit size (which has to be reduced 
afterwards). For both techniques, partial decoding, i.e., 
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obtaining the (encrypted) result of a few compartments, is 
possible. 

4 Bit-wise operations on private integers 

Batching can be used for additions and multiplications of 
encrypted integers. For more complex, bit-wise operations, 
like comparisons and equalities, we suggest a different 
cryptographic tool. This setting, which, as we will see later, 
combines nicely with packing and batching is where both 
parties privately hold an integer, on which they would like 
to perform a bit-wise operation. 

4.1 Bit-wise secret sharing 

A common solution for comparing two privately held 
integers is by Damgård et al. (2008, 2009). Although it uses 
a fine-tuned homomorphic crypto system, in the  
semi-honest model the protocol can be significantly sped up 
by using secret sharing modulo two (De Cock et al., 2017). 
In this crypto system, secrets are binary values that are 
secret-shared between party A  and .B More precisely, let c 
∈ {0, 1} be a bit, then the sharing 〈c〉 consists of a bit ,cA  
held by party ,A  and a bit ,cB  held by party ,B  such that 

,c c c⊕ =A B  where ⊕ denotes exclusive-or, the addition 
modulo two. 

Two shared secrets can be added, by locally adding the 
shares. To multiply two shared secrets, we need two random 
sharings 〈r1〉 and 〈r2〉, and the sharing of their product  
〈r1 · r2〉. The multiplication protocol by Beaver (1998) is as 
follows: 

1 parties A  and B  secretly share bits b1 and b2 

2 they locally compute 〈β1〉 = 〈b1〉 ⊕ 〈r1〉 = 〈b1 ⊕ r1〉 and 
〈β2〉 = 〈b2〉 ⊕ 〈r2〉 = 〈b2 ⊕ r2〉 

3 the parties open β1 and β2, which means they show each 
other shares 

4 they locally compute 〈b1 · b2〉 = 〈r1 · r2〉 ⊕ (β2 · 〈r1〉)  
⊕  (β1 · 〈r2〉) ⊕ (β1 · β2) = 〈(r1r2) ⊕ (β2r1) ⊕ (β1r2) ⊕ 
(β1β2)〉. 

Correctness follows from (β1 ⊕ r1)(β2 ⊕ r2) = (β1β2) ⊕ 
(β1r2) ⊕ (r1β2) ⊕ (r1r2). 

4.2 Precomputing triplets 

The only open question remaining is how to generate the 
random triplets (〈r1〉, 〈r2〉, 〈r1 · r2〉), especially since each 
multiplication requires a different triplet. De Cock et al. 
(2017) suggest to use a trusted dealer, who could easily 
generate the triplets and distribute the shares to A  and .B  
In our setting such a dealer is not available. However, it is 
possible for A  and B  to jointly precompute the triplets. 
Protocol 4 computes log2 N sharings of the product of two 
(random) bits, with each bit held by a different party. It uses 
additively homomorphic encryption and packing. 

Protocol 4 Secure multiplication of private bits 

Party A  B  

Input ,irA  0 ≤ i < log2 N ,irB  0 ≤ i < log2 N 
and K 

Output  ,iρA  0 ≤ i < log2 N ,iρB  0 ≤ i < log2 N 

Constraints ,i i i iρ ρ r r⊕ = ⋅A B A B  0 ≤ i < log2 N 

1 Party B  encrypts its bits irB  separately, with Paillier, and 
sends them to .A  

2 Party A  multiplies, for each i, irB  with :irA   

if 0,ir =A  [ ] [0],i ir r⋅ =A B  else [ ] [ ].i i ir r r⋅ =A B B  

3 For each i, party A  generates a random bit ,iρA  and 
computes [ ] [( ) ]:i i i ic r r ρ= ⋅ ⊕A B A   

if 0,iρ =A  [ ] [ ],i i ic r r= ⋅A B  else 1[ ] [1] [ ] .i i ic r r −= ⋅ ⋅A B  

4 Party A  packs all bits [ci] into one encryption [C] = 
20 1 (log ) 1[( , , , ) ],N Pc c c −…  with compartment size ν = 2, and 

sends [C] to party .B  

5 Party B  decrypts C, and unpacks it to ,iiρ c=B  0 ≤ i <  
log2 N. 

At the end, the parties have log2 N sharings 〈ρi〉, such that 
.i i i i iρ ρ ρ r r= ⊕ = ⋅A AB B  This building block can be used to 

compute log2 N multiplication triplets, by using the 
following protocol. 

1 Party A  generates log2 N pairs of random bits 1irA  and 

2 ,irA  and similarly for party B . 

2 The parties use Protocol 4 twice. First to compute  
log2 N sharings 1 2 ,i ir r〈 ⋅ 〉A B  and second to compute  
log2 N sharings 2 1 .i ir r〈 ⋅ 〉A B  

3 The parties compute, for each i, 〈r1i · r2i〉 = 1 2( )i ir r⋅A A  

1 2 2 1 1 2( ).i i i i i ir r r r r r⊕ 〈 ⋅ 〉⊕ 〈 ⋅ 〉⊕ ⋅A AB B B B  

The products 1 2i ir r⋅A A  can be computed locally by party ,A  
and similarly 1 2i ir r⋅B B  by party .B  This protocol generates 
log2 N multiplication triplets, which can be used to securely 
multiply log2 N sharings. It requires an average total of 8.75 
log2 N multiplications of Paillier encryptions. 

Since each shared secret is binary, these triplets can also 
be generated by oblivious transfers. Suppose party A  
constructs 0 ( 0)x r ρ= ⋅ ⊕A A  and 1 ( 1) ,x r ρ= ⋅ ⊕A A  then 
obliviously transferring rρ x= B

B  to party B  generates the 
same sharing 〈ρ〉 as above. A recent result for extending 
oblivious transfers by Kolesnikov and Kumaresan (2013) 
can be used to efficiently generate multiplication triplets. 
Although the method described above fits nicely into our 
framework, extended oblivious transfers will sincerely 
reduce the precomputation effort, because less public key 
cryptography is involved. They require 130 bits of 
communication for the oblivious transfer of one bit 
(Kolesnikov and Kumaresan, 2013). We need to send one 
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Paillier encryption of 2,048 bits (and one additional bit) to 
achieve the same transfer, which suggests an improvement 
by roughly a factor 16. 

4.3 Secure comparison of private integers 

De Cock et al. (2017) translated the DGK comparison 
protocol to this secret sharing setting. We slightly improve 
their secure comparison protocol. 

To obtain sharings of the bits of privately held integers  
x and y, we simply define ( ) ,iix x=A  0,ix =B  and similarly 

0,iy =A  ( ) ,iiy y=B  0 ≤ i < ℓ. 

1 Let 〈x(i)〉 and 〈y(i)〉, 0 ≤ i < ℓ, be secret sharings of the 
bits of integers x and y, 0 ≤ x, y < 2ℓ. 

2 For each i, 0 ≤ i < ℓ, parties A  and B  derive sharings 
of the bits di = (x(i) < y(i)), by computing in parallel  
〈di〉 = 〈y(i)〉 · (1 ⊕ 〈x(i)〉), requiring ℓ multiplications of 
sharings in total. 

3 They locally compute sharings of ei = (x(i) = y(i)) by  
〈ei〉 = 〈x(i)〉 ⊕ 〈y(i)〉 ⊕ 1, 1 ≤ i < ℓ. 

4 For each i, 0 ≤ i < ℓ, parties A  and B  compute  

〈ci〉 = 
1

1
.i jj i

d e
−

= +
〈 〉 〈 〉∏  

5 They locally compute 
1

0
1 .ii

δ c
−

=
〈 〉 = ⊕ 〈 〉∑  

It can be shown that the shared bit δ is the outcome of the 
comparison (x ≤ y) (De Cock et al., 2017). To minimise the 
number of multiplications of shares, we suggest to combine 
the computation of ci and δ to δ = 1 ⊕ eℓ · (dℓ–1 ⊕ eℓ–1 
· (dℓ–2 ⊕ … ⊕ e2 · (d1 ⊕ e1 · d0) …)). In this way, the 
computational and communication complexity for 
comparing two privately held ℓ-bit integers comes down to 
a total of 2ℓ multiplications of shares. Since only binary 
sharings are used, the total amount of communication and 
computation is very small, even negligible when comparing 
it to the complexity of computing with large encryptions. 
The number of communication rounds is ℓ + 1, but could be 
reduced to 1 + log2 ℓ (Veugen, 2018). 

When precomputing the 2ℓ multiplications triplets by 
means of packed encryptions, the precomputation costs for 
comparing two privately held integers is 8.75ℓ 
multiplications of Paillier encryptions, for inputs consisting 
of ℓ bits. This is much lower than the average of 7.5 + 
151.5ℓ multiplications needed for standard DGK 
comparison (Veugen, 2012). 

5 Secure comparison 

The main advantage of securely comparing batched, or 
packed, encrypted integers is that we can additively blind all 
integers at once, and party B  only needs one decryption. 
The output of the batched (or packed) secure comparison 
protocol will be n, separately encrypted bits [γi], 1 ≤ i ≤ n. In 
order to securely compare two batches or packings of 

encrypted integers, we need a protocol for securely 
comparing two privately held integers, as described in the 
previous section. 

Although the size of each compartment may vary, for 
simplicity we assume each encrypted integer has at most ℓ 
bits. As shown in Subsection 5.3, bounding the number of 
bits also allows us to reduce the precomputation costs. Since 
we need a little extra room to compute the comparison, we 
have 2ℓ+1 ≤ mi, in case of batching, and 2ℓ+2 ≤ ν, in case of 
packing. 

5.1 Secure comparison of batched values 

Instead of adding, or multiplying, batched values, it is also 
possible to securely compare batched values. Suppose we 
have an encrypted batch [X], containing (encrypted) integers 
xi, 1 ≤ i ≤ n, a similar batch [Y], and we would like to 
securely compute the encrypted bit γi = (xi < yi), for all i. 
Assume 0 ≤ xi, yi < 2ℓ, and 2ℓ+1 ≤ mi, then γi = (zi < 2ℓ), 
where zi = xi – yi + 2ℓ has at most ℓ + 1 bits. Protocol 5 
computes the comparison bits γi. 

Protocol 5 Secure comparison of batched values 

party A  B  

Input [X] and [Y] K 
Output [γi], 1 ≤ i ≤ n  
Constraints X = (x1, x2, …, xn)B and  

Y = (y1, y2, …, yn)B,  
0 ≤ X, Y < N · 2–(κ+1),  

0 ≤ xi, yi < 2ℓ ≤ mi/2, 1 ≤ i ≤ n,  
γi = (xi < yi), 1 ≤ i ≤ n. 

1 Party A  computes the encrypted batch [Z], such that zi = xi 
– yi + 2ℓ, for each i: [Z] = [X] · [Y]–1 · [2ℓ]. 

2 Party A  computes a large random number R, and 
additively blinds Z with it: [θ] = [Z] · [R]. 

3 Party A  sends [θ] = [Z + R] to .B  

4 Party B  decrypts it, and ‘debatches’ θ to θi = mod mi, 1 ≤ i 
≤ n. 

5 Parties A  and B  jointly compute the comparison bits [δi], 
[ ],iδ′  and [ ],iδ′′  for each i, 1 ≤ i ≤ n, where δi = (θi < (R 

mod mi)), iδ′  (θi + mi < (R mod mi) + 2ℓ), and iδ′′  = (θi < (R 
mod mi) + 2ℓ), by executing in parallel 3n secure 
comparison protocols on private inputs. 

6 Using [δi], [ ],iδ′  and [ ],iδ′′  party A  computes [γi] = 
1[ (1 ) ] [ ] [ ] [ ] [ ] .i i i i i i i i i iδ δ δ δ δ δ δ δ δ δ −′ ′′ ′ ′′ ′ ′′⋅ + − ⋅ = + − = ⋅ ⋅  

This is done for each i. 

In step 1, we have the relation zi = (X – Y + 2ℓ) mod mi, even 
if X – Y + 2ℓ < 0, and since R always exceeds | X – Y + 2ℓ|, 
there is no reduction modulo N in the computation of θ in  
step 3. 

In step 5, we have (θ – R) mod mi = zi, so either zi = θi – 
(R mod mi), or zi = θi – (R mod mi) + mi. Just as in secure 
debatching, [δi] is computed to find out whether there was 
an overflow in the ith compartment. If δi = 0, then θi ≥ R 
mod mi, so zi = θi – (R mod mi), and .i iγ δ′′=  Otherwise, 
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there was an overflow in the ith compartment, and .i iγ δ′=  
By construction of the δi’s, we have 0 1,i i iδ δ δ′ ′′≤ ≤ ≤ ≤  
which explains the correctness of computing [γi] in the final 
step. 

For the three secure comparison protocols from step 5, 
we use the comparison protocol based on sharings modulo 
two. This means that the secret-shared outputs of these 
comparison protocols have to be translated to encrypted 
bits. This can be done in a fairly straightforward way. Party 
B  encrypts his share ,δB  and sends the encryption to party 

,A  who computes [ ],δ δ⊕A B  by flipping the encrypted bit 
in case 1.δ =A  

5.2 Secure comparison of packed values 

Suppose we have [X] = [(x1, x2, …, xn)P], [Y] = [(y1, y2, …, 
yn)P], and we would like to compute [γi] = [(xi < yi)], 1 ≤ i ≤ 
n. Just as in the previous batched case, assume 0 ≤ xi, yi < 2ℓ. 

Protocol 6 Secure comparison of packed values 

Party A  B  

Input [X] and [Y] K 
Output [γi], 1 ≤ i ≤ n  
Constraints X = (x1, x2, …, xn)P and  

Y = (y1; y2; …, yn)P ,  
0 ≤ X, Y < N · 2–(κ+1),  

0 ≤ xi, yi < 2ℓ ≤ ν/4, 1 ≤ i ≤ n,  
γi = (xi < yi), 1 ≤ i ≤ n. 

1 Party A  computes the encrypted packing [Z], such that zi = 
xi – yi + 2ℓ, for each i: [Z] = [X] · [Y]–1 · [(2ℓ, 2ℓ, …, 2ℓ)P]. 

2 Party A  computes a large random number R, and 
additively blinds 2Z with it: [θ] = [Z]2 · [R]. 

3 Party A  sends [θ] = [2Z + R] to .B  

4 Party B  decrypts it, and unpacks θ mod νn to θi, 1 ≤ i ≤ n. 

5 Party A  unpacks R mod νn to Ri, 1 ≤ i ≤ n. 

6 Parties A  and B  jointly compute the comparison bits [δi], 
[ ],iδ′  and [ ],iδ′′  for each i, 1 ≤ i ≤ n, where δi = (θi < Ri), 

iδ′  = (θi + ν < Ri + 2ℓ+1), and iδ′′  = (θi < Ri + 2ℓ+1), by 
executing in parallel 3n secure comparison protocols on 
private inputs. 

7 Using [δi], [ ],iδ′  and [ ],iδ′′  party A  computes [γi] = 

[ (1 ) ] [ ].i i i i i i iδ δ δ δ δ δ δ′ ′′ ′ ′′⋅ + − ⋅ = + −  This is done for  
each i. 

Our solution will be similar to the previous batched case. 
We additively blind Z with a large random number R, and 
ask B  to unpack θ = Z + R. The addition of R might cause 
an overflow in some compartments. The difference with 
batching is that these overflows create a carry-over, which 
influences the content of the next compartment: θi = (zi + Ri 
+ ci–1) mod ν, where ci–1 is the carry-over bit from the 
previous compartment. This can be solved by not computing 
γi = (zi < 2ℓ), but γi = (2zi + ci–1 < 2ℓ+1). Since adding one 
(carry-over) bit to the even number 2zi will not change the 
outcome γi of the comparison, we have a solution, which is 

redundant to possible carry-covers. We only need to 
increase the compartment size with one bit: 2ℓ+2 ≤ ν. 

The entire protocol for securely comparing n pairs from 
two packed encrypted integers is Protocol 6. 

In step 6, we have θi = (2zi + ci–1 + Ri) mod ν, so either 
2zi + ci–1 = θi – Ri, or 2zi + ci–1 = θi – Ri + ν. Just as in secure 
unpacking, [δi] is computed to find out whether there was an 
overflow in the ith compartment. If δi = 0, then θi ≥ Ri, so 2zi 
+ ci–1 = θi – Ri, and .i iγ δ′=  Otherwise, there was an 
overflow in the ith compartment, and .i iγ δ′=  By 
construction of the δi’s, we have 0 1,i i iδ δ δ′ ′′≤ ≤ ≤ ≤  which 
explains the correctness of computing [γi] in the final step. 

5.3 Combining the three comparisons of private 
integers 

In the batched secure comparison protocol, we use, for each 
i, three subprotocols for securely comparing two privately 
held integers. More precisely, we compute δi = (θi < (R mod 
mi)), iδ′  = (θi + mi < (R mod mi) + 2ℓ), and iδ′′  = (θi < (R 
mod mi) + 2ℓ). The computations of δi and iδ′′  can be 
combined, by first computing i²  = (θi mod 2ℓ < (R mod mi) 
mod 2ℓ), and extending the result to both δi and .iδ′′  This is 
shown in Appendix B. 

In the packed secure comparison protocol, we need to 
compute δi = (δi < Ri), iδ′  = (θi + ν < Ri + 2ℓ+1), and iδ′′  = (θi 
< Ri + 2ℓ+1). We can similarly combine the computation of δi 
and .iδ′′  But since we can choose ν = 2ℓ+2, this also holds for 
δi and .iδ′  Consequently, instead of 3 · 2(ℓ + 2), we only 
need 2ℓ + 3 · 4 multiplications of sharings, which reduces 
the precomputation costs. 

5.4 Secure equality 

Just as secure comparison, one can perform secure equality 
with packed, and batched, encryptions. The protocols for 
equality or comparison are nearly identical, expect for the 
subprotocols on private inputs. In case of batching, we batch 
zi = (xi – yi) mod mi, where 0 ≤ xi, yi < mi, and compute  
δi = (θi = (R mod mi)). Since (θ – R) mod mi = zi, we have  
δi = (zi = 0). 

In case of packing, we pack 2zi, where zi = xi – yi + 2ℓ, 
and choose ν = 2ℓ+2. When B  unpacks θ mod n, it has θi = 
(2zi + ci–1 + Ri) mod ν. Since 0 < zi < 2ℓ+1 and ν = 2ℓ+2, we 
have zi = 2ℓ, if and only if, (θi – Ri) mod 2ℓ+1 = ci–1. 
Therefore, it is sufficient to compute δi = (θi mod 2ℓ+1 = Ri 
mod 2ℓ+1) and iδ′  = (θi mod 2ℓ+1 = (Ri + 1) mod 2ℓ+1), to 
obtain γi = δi + iδ′  = (xi = yi). 

The subprotocol, securely computing a sharing of δ =  
(x = y), given privately held integers x and y, is similar to 
the protocol for securely comparing them. In fact, it is 
sufficient to locally compute sharings 〈ei〉, for each bit i of 
the inputs, where ei = (x(i) = y(i)), just as in the comparison 
protocol, and securely multiply them to ,ii

δ e〈 〉 〈 〉∏  

requiring ℓ – 1 multiplications of sharings. 
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6 Security 

In our framework, we combine two different techniques, 
each with their own security properties, and assume a  
semi-honest security model. The first technique is additively 
homomorphic encryption, which we use in the standard 
two-party setting, party B  having the decryption key. By 
additively blinding all values sent to ,B  using a random 
integer that has κ more bits, we achieve statistical security 
towards B  (Veugen, 2014). The security towards party A  
is guaranteed by the semantic security of the homomorphic 
crypto system, leading to computational security (Veugen, 
2014). 

The second technique is (bit-wise) secret sharing, which 
by itself is unconditionally secure (De Cock et al., 2017). 
However, this is only true in case of a trusted dealer, who 
computes and distributes the multiplication triplets to both 
parties. When generating the multiplication triplets by 
additively homomorphic encryption, as described in 
Subsection 4.2, we achieve the same security properties as 
described above. 

Therefore, our framework achieves statistical security 
towards ,B  and computational security towards .A  

We give a formal security proof for Protocol 1, the other 
security proofs are analogous. We closely follow 
Goldreich’s (2001) notation so ’sA  input is ,x  ’sB  input 
is ,y  and the output ( , )f x y  equals the pair 1( ( , ),f x y  

2 ( , )),f x y  where f1 denotes ’sA  output function and f2 ’sB  
output function. The following definition precisely states 
what we have to prove, which loosely speaking comes down 
to “whatever can be computed by A  or B  from their view 
of a protocol execution, can be computed from their input 
and output”. 

Definition of privacy with respect to semi-honest behaviour 
[Goldreich, (2001), Definition 7.2.1]: Let Π be a two-party 
protocol for computing f. The view of party A  (resp., )B  
during an execution of Π on ( , ),x y  denoted 1 ( , )πV x y  
(resp., 2 ( , )),πV x y  is 1( , , , , )tx r m m…  (resp., 

1( , , , , )),ty r m m…  where r represents the outcome of party 
’sA  (resp., party ’s)B  internal coin tosses, and mi 

represents the ith message it has received. 

For a deterministic functionality f, we say that Π privately 
computes f if there exist probabilistic polynomial-time 
algorithms, denoted S1 and S2, such that 

( )( ){ } ( ){ }

( )( ){ } ( ){ }

1 1 1 , {0,1}, {0,1}

2 2 2 , {0,1}, {0,1}

, , , , and

, , , ,

c π
x yx y

c π
x yx y

S x f x y V x y

S x f x y V x y

∗∗

∗∗

∈∈

∈∈

≡

≡
 

where c≡  denotes computational indistinguishability. 

Theorem: Assume the additively homomorphic 
cryptosystem denoted by [.] is semantically secure, and 
assume the secure comparison protocol used in step 4 
privately computes the encrypted comparison result of both 
private inputs. 

Then on inputs ([ ])x X=  and ( ),y K=  Protocol 1 
privately computes the output ( , )f x y  = (([x1], …, [xn]), 
⊥). 

Proof: Since we use the comparison protocol as a building 
block of f, we can present it as an oracle in our proofs and 
use Goldreich’s Composition Theorem (7.3.3) (2001). The 
only assumption we made about the private comparison 
protocol is that the comparison result is privately computed, 
which fulfils Goldreich’s premise for applying the 
composition theorem. 

In Protocol 1, the view of A  consists of its private 
number [X], its random number R (of log2 N – 1 bits), its 
output ([x1], …, [xn]), and all intermediate messages 
received from :B  the encrypted batches [ θi], 1 ≤ i ≤ n, and 
the encrypted comparison bits [δi], 1 ≤ i ≤ n. Summarising, 
the view of A  equals 

[ ] [ ] [ ] [ ] [ ] [ ]( )1 1 1 1[ ], , , , , , , , , , .n n nV X R x x θ θ δ δ= … … …  

According to Definition 7.2.1 (Goldreich, 2001), it suffices 
to show that there exists a probabilistic polynomial-time 
algorithm S1 such that 1 1( , , ( , ))S x f x y  is computationally 
indistinguishable from V1. Since the encryption algorithm is 
semantically secure, every pair of encryptions is 
computationally indistinguishable (Goldreich, 2001), so by 
letting S1 randomly generate 3n encrypted integers [xi], [θi], 
[δi], 1 ≤ i ≤ n, and a random number rR of log2 N – 1 bits, 
this condition is easily verified. 

The view of B  consists of the decryption key K, and all 
intermediate messages received from :A  the encrypted 
number [θ], where θ = X + R. Since B  owns the decryption 
key, [θ] can be decrypted to θ. Summarising, the view of B  
is equivalent to 

2 ( , ).V K θ=  

Again, we have to show that there exists a probabilistic 
polynomial-time algorithm S2 such that 2 2( , ( , ))S y f x y  is 
computationally indistinguishable from V2. This is easily 
satisfied by letting S2 randomly generate an integer rθ of 
log2 N – 1 bits. For any value of rθ, we have 

2

0
(log 1)

Pr( ) Pr( ) Pr( )

2 Pr( ).

θr
θ θx

N
θ

θ r X x R r x

X r
=

− −

= = = = −

= ≤
∑  

Let Xmax be the maximal value of X, then Xmax · 2κ < N. It 
follows that 

( )( )
( )

( ) ( )
( )

( )
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which decreases faster than the reciprocal of any 
polynomial for sufficiently large security parameter κ, so θ 
and rθ are statistically indistinguishable, and thus also 
computationally indistinguishable (Goldreich, 2001).  

We conclude that Protocol 1 privately computes ’sA  output 
([x1], …, [xn]) in the semi-honest model. In fact, we showed 
that the integer X is even statistically secure towards .B  
Whether this holds for the entire protocol will depend on the 
chosen comparison protocol. 

7 Applications of batching 

The applications of packing (Bianchi et al., 2009; Erkin  
et al., 2012) have been illustrated by others. We have 
already shown how to perform multiple secure comparisons 
in parallel using both packing and batching. Since batching 
with additively homomorphic encryption is less well 
known, we illustrate a few other possibilities. 

As shown in Protocol 2, batching can be used to perform 
n secure multiplications by means of only one secure 
multiplication of two batched integers. The principle of 
parallel secure multiplications could be extended to secure 
inner products, and even matrix-vector multiplications. For 
small matrices, it is possible to first batch each column, and 
second batch all columns into one matrix batch. Then one 
secure multiplication with a batched vector performs a 
secure matrix-vector multiplication. A different application 
of batching is secure set intersection. 

7.1 Set intersection 

Securely computing the intersection of two sets is needed 
for several applications, for example when checking which 
users are on a revocation list or not. In secure set 
intersection, party A  holds k integers x1, x2, …, xk, party B  
privately holds n integers y1, y2, …, yn, and both parties 
want to jointly compute the elements of their intersection, 
without leaking information on the remaining elements. 

Many solutions are known to solve secure set 
intersection, for example by using fully homomorphic 
encryption (Chen et al., 2017), or somewhat homomorphic 
encryption (Saha and Koshiba, 2016). Since our setting is 
based on additively homomorphic encryption, we give an 
efficient solution based on earlier work by Freedman et al. 
(2004). We follow their solution, and show how batching 
(and packing) can be used to improve its efficiency. We 
assume p is a public prime number, (slightly) larger than the 
inputs xj of party .A  Protocol 7 shows our solution. 

The ith element of the batched integer Y equals 

0
( mod ) ( mod ),

k j
j ij

p y p
=

⋅∑ α  which equals p(yi) modulo 

p. Since p(yi) mod p = 0, if and only if, p(yi) = 0, the parties 
compute γi = ((Y mod mi) mod p = 0), which is one, if and 
only if, yi is in the intersection. If δi = 0, then there was no 
overflow in the ith compartment, and Y mod mi = θi – (R 
mod mi), and otherwise, Y mod mi = θi – (R mod mi) + mi. In 

the first case ,i iγ δ′=  otherwise .i iγ δ′′=  This shows the 
correctness of the computation of the bit γi. 

Protocol 7 Secure set intersection 
Party A  B  
Input x1, x2, …, xk and p y1, y2, …, yn, p and K 
Output  {x1, x2, …, xk} ∩ 

{y1, y2, …, yn} 
Constraints  0 ≤ xi < p, 1 ≤ i ≤ k,  

p is prime, and (k · p2)n < N · 2–κ 
1 Party B  computes the k batched integers Yj = 1( jy  mod p, 

2
jy  mod p, …, j

ny  mod p)B, 1 ≤ j ≤ k, encrypts them, and 
sends them to .A  

2 Party A  computes k + 1 integers αj, possibly negative, 

such that p(x) = 
1
( )

k
j

j
x x

=
−∏  = 

0
.

k
j j

j
x

=∑ α  Clearly, 

p(y) = 0, if and only if, y is in the set {x1, x2, …, xk}. 

3 Party A  computes [Y] ≈ [(p(y1), p(y2), …, p(yn))B]:  

[Y] = [α0 mod p] · mod
1
[ ] .j

k
pj

j
Y

=∏ α  

4 Party A  additively blinds Y, by computing a large random 
number R: [θ] = [Y] · [R], and sends [θ] to .B  

5 Party B  decrypts θ, and ‘debatches’ it to θi = θ mod mi,  
1 ≤ i ≤ n. 

6 Parties A  and B  run n secure comparison protocols, and 
2n secure equality protocols in parallel, to compute sharings 
〈δi〉, iδ′〈 〉  and iδ′′〈 〉  of δi = (θi < R mod mi), iδ′  = ((θ mod 
mi) mod p = (R mod mi) mod p), and iδ′′  = ((θ mod mi + mi) 
mod p = (R mod mi) mod p). 

7 The parties compute ( ),i i i i iγ δ δ δ δ′ ′′ ′〈 〉 = 〈 〉 + 〈 〉 ⋅ 〈 〉 − 〈 〉  and 
open the sharings of γi, 1 ≤ i ≤ n, to party ,B  who learns the 
elements of the set intersection. 

In Freedman et al. (2004), the encryptions [p(yi)] are 
computed one-by-one, and each [p(yi) · ri + yi] is sent to 
party .B  The multiplicative blinding with random number ri 
is expensive, and so are the n Paillier decryptions needed by 

,B  which we reduce to one decryption of θ, by means of 
batching. Since we computed the shared bits γi, it is also 
easy to securely compute the cardinality of the set 
intersection: .ii

γ∑  

The set intersection will be computed correctly and 
securely, as long as mi > p – 1 + k(p – 1)2, and M < N · 2–κ, 
so nσ < log2 N – κ, where compartment size σ = log2 k +  
2 log2 p. This means that for integers xj of bit size ℓ = 10 
(and log2 p = 11), for example, we can compute the set 
intersection up to k = n = 64 elements, using only one 
encrypted batch. For larger sets we need to split Y into 
several batched encryptions, each computing a part of the n 
bits γi. 

8 Performance 

In order to determine the computational complexity, we 
compute the average number of multiplications of 
encryptions. To estimate the improvement of our solution, 
we compare the complexity of our solution with the  
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state-of-the-art. First for computing secure multiplications, 
then for doing secure comparisons and secure equalities, 
and finally for securely computing set intersections. 

Although decoding is preferably done in the plain 
domain, or only once at the end of all computations, we also 
present the performance of including decoding in the 
encrypted domain. In our framework, an important part of 
the bit-wise operations is generating the multiplication 
triplets. Since the triplets can be precomputed by additively 
homomorphic encryption, we mention this effort separately. 
Especially when extended oblivious transfers are used for 
precomputing the triplets, as described in Subsection 4.2, 
the precomputation effort seems to be negligible compared 
to the remaining computations. 

8.1 Secure multiplication 

We compare one secure multiplication with the batched 
approach, and compute the average number of 
multiplications of encryptions to measure the computational 
complexity per secure multiplication. The number n of 
compartments is determined by 2n · σ = log2 N – κ, where 
compartment size σ = 2ℓ. 

For one standard secure multiplication protocol, we 
roughly need two decryptions and two exponentiations with 
a power of σ + κ bits. A Paillier decryption takes on  

average 2
3 log
8

N  multiplications, so we need 2(σ + κ)1.5 + 

2
3 log
4

N  multiplications in total. 

In the batched approach, we first batch the 2n 
encryptions into two encryptions, then securely multiply 
them, and finally unbatch the multiplication result. This 

would take 2(1 + log2 n) · 0.8 · σn + 2
3( log
4

N  + 1.6n · σ) + 

2
3( log
8

N  + n · 8.75 · σ) multiplications. 

Figure 1 Average computational complexity per secure 
multiplication (see online version for colours) 

 

In Figure 1, the light blue line ‘-.’ indicates the performance 
of the standard protocol, the dark blue line ‘..’ the average 
costs per compartment when multiplying two encrypted 
batches, and the red line ‘-’ the batched multiplication, 
including the costs for batching and debatching. We let ℓ 
increase from 5 to 100, and set n accordingly to get a full 
batch. 

For ℓ = 5, a batched multiplication reduces the average 
costs of a secure multiplication from 1,791 to  
33 multiplications of encrypted integers. Even when 
including the costs for batching and debatching, the average 
costs are still smaller when ℓ < 50. 

Table 3 Number of communicated encryptions for n secure 
multiplications 

 Standard Batch Batching Debatching
Computing 
triplets for 
debatching

Encryptions 
sent 

3n 3 0 n + 1 4σn 

We also compare the number of communicated encryptions, 
see Table 3. During a standard secure multiplication, three 
encryptions need to be sent. Two by party ,A  and one by 
party .B  This is the same for a secure multiplication of two 
encrypted batches, which combines n secure multiplications 
(excluding the two additional encryptions needed for 
reducing the size of the product). For batching n encrypted 
integers into one encryption, no communication is needed. 
Furthermore, for debatching we need n + 1 encryptions: A  
sends the batched encryption to ,B  and gets n encryptions 
back. And finally, we need to precompute the multiplication 
triplets for debatching, which we assume is done with 
packing and additively homomorphic encryption. There are 
n · 2σ triplets needed, and for each triplet two encryptions 
are sent from B  to .A  Therefore, the batched 
multiplication reduces the communication costs with a 
factor n. In a setting where batching is used for only one 
batched multiplication, the reduction factor is almost 3, 
excluding the effort for precomputing multiplication triplets. 

8.2 Secure comparison 

A well-known solution for securely comparing two 
encrypted integers is the DGK protocol. In this secure 
comparison algorithm it is common to intermediately switch 
to the DGK crypto system, which is fine-tuned to small 
plain texts. Since the size of a cipher text in DGK is N 
instead of N2, we count four multiplications of  
DGK-encrypted numbers as one multiplication of  
Paillier encryptions. Then the average computational 

complexity of DGK is comparable to 7.5 + 2
3 log
8

N  + 

151.5ℓ multiplications of integers of size N2 (Veugen, 
2012). We will compare n secure DGK comparisons with 
our packed approach, by counting the number of 
multiplications of integers of size N2. 



12 T. Veugen  

To securely compare n pairs of encrypted integers through 
packing, we follow the solution described in Subsection 5.2, 
which consists of: 

1 party A  computing the encrypted packings [X], [Y], 
and [Z] 

2 blinding Z to get [θ] 

3 party B  decrypting [θ] and unpacking it 

4 performing n secure comparisons of privately held 
integers, as described in Subsection 5.3 

5 obtaining the [γi] from the three [δi]’s. 

We choose the compartment size ν = 2ℓ+2, and maximise n, 
such that n · (ℓ + 2) < log2 N – κ. The packed secure 
comparisons will take (1) 3 + 2(n – 1) · 1.5 log2 (ℓ + 2)  

+ (2) 2 + (3) 2
3 log
8

N  + (4) n(2ℓ + 12)8.75 + (5) 3n 

multiplications. 
The performance of securely comparing n pairs of 

encrypted integers by means of packing is depicted in 
Figure 2. Because of the large differences, the complexity 
axis has a logarithmic scale. Since the DGK protocol 
communicates one encryption per input bit, our packed 
version reduces the communication complexity with 
roughly a factor ℓ. 

Figure 2 Average computational complexity per secure 
comparison (see online version for colours) 

 

8.3 Secure equality 

Suppose party A  holds 1,000 pairs of encrypted integers, 
[xi], [yi], 1 ≤ i ≤ 1,000, for which A  and B  jointly want to 
determine whether they are equal or not, such that A  
obtains [δi] = [(xi = yi)]. The state-of-the-art solution for 
performing this, is described by Nateghizad et al. (2016), 
who also consider 1,000 equality tests. They improve other 
existing cryptographic protocols by using, among other 
techniques, packing. 
 

We suggest to use batching, and compare their results 
with our secure equality approach. We vary the bit length of 
the inputs from ℓ = 10 to ℓ = 40, and compute the number of 
multiplications with Paillier encryptions, as a measure for 
the computational complexity. We batch the encrypted 
integers [zi] = [xi + 2ℓ – yi] into a small number of 
encryptions, and determine sharings of δi= (zi = 2ℓ). The 
maximal number n of compartments we can have in one 
encryption is determined by n · σ < log2 N – κ, where σ = ℓ + 
1 and varies from n = 48 (for ℓ = 40) to n = 178 (for ℓ = 10). 
This exceeds the number of compartments from Nateghizad 
et al. (2016), since they need n · (ℓ + κ + 1) < log2 N, which 
gives n = 22 (for ℓ = 10) only. 

Figure 3 shows the computational improvement of our 
equality protocol compared to the protocol NEL-I 
(Nateghizad et al., 2016), the gain of which increases for 
growing input size. The communication complexity of both 
solutions is comparable. 

Figure 3 Average computational complexity for 1,000 secure 
equalities (see online version for colours) 

 

In step 8 of NEL-I, the authors use coefficients αi of a 
Lagrange polynomial. They oversaw that these coefficients 
are rational numbers, which destroys the efficiency of their 
solution. However, this can be solved by computing  
[ti · α–1], instead of [ti], 1 ≤ i ≤ log2 ℓ, where α–1 is the 

multiplicative inverse of 2log

2
( 1) modulo .

i
i N

=
= −∏α  

8.4 Set intersection 

We compare our batched solution for securely computing 
the set intersection, with the protocol of Freedman et al. 
(2004). We fix the number of bits ℓ of the set elements to 
10, and let n = k increase from 10 till 1,000. The results are 
depicted in Figure 4. 

Our approach shows a decreased computational 
complexity, the gain of which grows for larger sets. Because 
of the large differences, the complexity axis has a 
logarithmic scale. 
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Figure 4 Computational complexity of set intersection  
(see online version for colours) 

 

8.5 Summary 

The highest gain of our platform is achieved in case many 
numbers need to be securely compared. Packing will reduce 
the computational complexity by roughly a factor thousand, 
and the communication complexity by a factor ℓ (ignoring 
precomputations). A similar gain in computational 
complexity is experienced when using batching for secure 
set intersection. 

For the multiplication and equality operations, the 
advantage of batching w.r.t. computational complexity is 
less, but still remarkable. On the other hand, the average 
communication complexity of a secure multiplication is 
reduced by a factor n. 

9 Conclusions and further research 

We introduced a framework that can be used for efficiently 
computing with encrypted data between two parties in the 
semi-honest security model. It uses additively homomorphic 
encryption for adding and multiplying a large number of 
encrypted integers, and bit-wise secret sharing for more 
complicated operations on the encrypted integers. The 
framework is shown to be computationally and 
communication-wise more efficient than state-of-the-art 
solutions for a number of generic operations. To increase its 
performance, an important, data-independent part can be 
precomputed. This includes the decoding operations in case 
they need to be performed in the encrypted domain. 

Our framework is expected to improve the performance 
of several applications, when computing in the encrypted 
domain is required. Ideally, encoding is performed once 
during the input phase, and decoding is done at the end. The 
exact implications have yet to be determined. We currently 
precompute the multiplication triplets by additively  
 
 
 
 

homomorphic encryption, but the efficiency is likely to be 
improved by using extended oblivious transfers as shown in 
Subsection 4.2. 
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A Vector addition chain 

We can efficiently compute 
1

[ ] [ ]
Mi mi

n μ
ii

X x
=

= ∏  with a 

vector addition chain (Veugen, 1991). 

A.1 Vector of width two 

When computing 1 2
1 2 ,e ex x⋅  for certain positive integers x1, 

x2, e1 and e2, the straightforward approach is to first 
compute the two exponentiations separately, and then 

multiply them together. This would roughly require 1 + 1.5 
log2 e1 + 1.5 log2 e2 multiplications. 

However, this can be improved as follows (Veugen, 
1991). Assuming e1 < e2, one can compute e2 ÷ e1 and e2 
mod e1, such that e2 = (e2 ÷ e1) · e1 + (e2 mod e1). Then, by 
rewriting 1 2

1 2
e ex x⋅  as 2 1 2 11 mod

1 2 2( ) ,e e e eex x x÷⋅ ⋅  the sizes of the 
exponents e1 and e2 have been reduced to the sizes of (e2 ÷ 
e1) · e1 and e2 mod e1. The same trick can be applied to the 
reduced exponents, yielding a recursive solution. The 
average number of multiplications of this recursive solution 
can be determined as 1.6 log2 e2, which is only slightly more 
than the average number of multiplications for computing 
only 2

2 .ex  

A.2 Divide and conquer 

Using the algorithm from the previous subsection, we 
propose a ‘divide and conquer’ approach for batching. 
Given integers i and j, 1 ≤ i ≤ j ≤ n, define [i, j] as the set of 
integers {i, i + 1, …, , j}. Further define, given integer set S, 

[ ]( ) ,Ξ .
ss S s ii

mμ
S i

i S

x ∈ ≠

∈

=
∏∏  

In order to compute Ξ[1,n], we propose to first compute 
Ξ[1,(n+1)÷2] and Ξ[(n+1)÷2+1,n], and then combine the two: 

( )
( )

[1,( 1) 2]

[( 1) 2 1, ]

[1, ] [1,( 1) 2]

[( 1) 2 1, ]

Ξ Ξ

Ξ .

ss n

ss n n

m
n n

m
n n

∈ + ÷

∈ + ÷ +

+ ÷

+ ÷ +

=

⋅

∏

∏
 

The combining of these two integers requires a vector 
addition chain of width two, for which we can apply the 
previous recursive solution. 

A.3 Number of multiplications 

We can determine the average number of multiplications to 
compute one batch, i.e., to compute Ξ[1,n] from [xi], 1 ≤ i ≤ n. 
Let σ be the maximal number of bits of the numbers mi, 1 ≤ 
i ≤ n. Let A(n) be the average number of multiplications to 
compute a batch of n encrypted integers. Using the previous 
subsections, we can derive the following recurrent equation: 

( ) 2 ( 2) 1.6 ( 2) .A n A n n σ= ⋅ + ⋅  

For n = 2, we have A(2) = 1.6 · 2σ. Therefore, if n is a power 
of two, we have A(n) = (1 + log2 n) · 0.8 · σn. If n is not a 
power of two, the interval [1, n] will at some point in the 
recurrence relation not split up in two exactly equal parts, 
but our formula for A(n) will still be a good approximation. 

B Combining secure comparison protocols 

Let x and y be two privately held integers, 0 ≤ x, y < 2ℓ+2. 
Suppose we have securely computed ²  = (x mod 2ℓ < y mod 
2ℓ), and want to extend this result to δ = (x < y). The 
following relation between δ and ²  is easily derived. 
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( ) ( )( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )δ x x y y x x y y+ + + += = ⋅ + <²  

In this expression, x(ℓ+1)x(ℓ) denotes the binary representation 
of a two-bit number. To compute δ, we first compute 
sharings of eℓ+1 = (x(ℓ+1) = y(ℓ+1)) and eℓ = (x(ℓ) = y(ℓ)), like in 
our secure comparison protocol, by local additions. The 
same for dℓ+1 = (x(ℓ+1) < y(ℓ+1)) and dℓ = (x(ℓ) < y(ℓ)), costing 
one sharing multiplication each. These shared bits are then 
used to compute δ = eℓ+1 · eℓ · ²  + dℓ+1 + eℓ+1 · dℓ = dℓ+1 + 
eℓ+1 · (²  · eℓ + dℓ), which requires two secure multiplications 
of sharings, for a total of four secure multiplications of 
shares. 


