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Abstract. In this note, we leverage the results of [CG21] to produce a concise and rigorous
proof for the complexity of the generalized MinRank Problem in the under-defined and well-
defined case. Our main theorem recovers and extends the main results of [FSS10, FSS13].

1. Introduction

The MinRank Problem asks to find an element of least rank in a given space of matrices.
In its classical formulation, one searches for a matrix of minimum rank in a vector space,
given via a system of generators.

Classical MinRank Problem. Let k be a field and let m,n, r, k be positive integers. Given as
input k matrices M1, . . . ,Mk with entries in k, find x1, . . . , xk ∈ k such that the corresponding
linear combination satisfies

rank

 k∑
i=1

xiMi

 ≤ r.

The entries of the matrix M =
∑k

i=1 xiMi are linear polynomials in the variables x1, . . . , xk.
The following is a natural generalization of the MinRank Problem.

Generalized MinRank Problem. Let k be a field and let m,n, r, k be positive integers. Given
as input a matrix M with entries in k[x1, . . . , xk], compute the set of points in kk at which the
evaluation of M has rank at most r.

Both of these problems arise naturally within cryptography and coding theory, as well as
in numerous other applications. Within multivariate cryptography, the MinRank Problem
plays a central role in the cryptanalysis of several systems, including HFE and its vari-
ants [KS99, BFP13, CSV17, VS17, DPPS18], the TTM Cryptosystem [GC00], and the ABC
Cryptosystem [MPS14, MPS17]. Within coding theory, the problem of decoding a linear
rank-metric code is always an instance of the MinRank Problem, and in some cases it can be
modeled as a generalized MinRank Problem, where some entries of the matrix have degree
greater than one, see e.g. [MGR08, GMR12]. Further applications of the generalized Min-
Rank Problem to nonlinear computational geometry, real geometry and optimization, and
other problems in symbolic computation are discussed in the introduction of [FSS13].

Following [KS99], we distinguish the following three situations.

Definition 1. A MinRank Problem is under-defined if k > (n − r)(m − r), well-defined if k =
(n− r)(m− r), and over-determined if k < (n− r)(m− r).

There are at least three ways of approaching the MinRank Problem: the Kipnis-Shamir
modeling [KS99], the linear algebra search [GC00], and the minors modeling. We concentrate
on the latter. The minors modeling relies on the following observation: A vector (a1, . . . , ak) is
a solution of the (classical or generalized) MinRank Problem for a matrix M if and only if all
minors of size r + 1 of M vanish at this point. Thus we can find the solutions of the generalized
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MinRank Problem by solving the polynomial system consisting of all minors of size r + 1
of M. This is a system of multivariate polynomial equations F = { f1, . . . , fs}, so one may
attempt to solve it by means of the usual Gröbner bases methods. The complexity of these
methods is controlled by the solving degree of F , that is the highest degree of polynomials
appearing during the computation of a degree reverse lexicographic Gröbner basis of F .

In this paper, we take another look at the complexity of solving the generalized MinRank
Problem with the minors modeling. We focus on the under-defined and well-defined situa-
tions, which we treat with a unified approach. Notice that no fully provable, general results
on the complexity of the over-defined case are currently available.

The results from [CG21], in combination with classical commutative algebra results, pro-
vide us with a simple provable estimate for the complexity of the homogeneous version of
the generalized MinRank Problem. As a special case of our main result, we obtain a simple
and concise proof of the main results from [FSS10, FSS13], which avoids lengthy technical
computations.

2. Main Results

We fix an infinite field k and positive integers m,n, r, k. Without loss of generality, we
assume that n ≥ m and r < m. We focus on the MinRank Problem in the under-defined and
well-defined case. We state the results in increasing order of generality.

Theorem 1 ([FSS10, Corollary 4]). The solving degree of the minors modeling of a generic classical
well-defined square MinRank Problem (m = n and k = (n− r)2) is upper bounded by

solv.deg(F ) ≤ nr− r2 + 1.

Theorem 2 ([FSS13, Lemma 18, Corollary 19, Lemma 22, Corollary 23]). Let M be an m × n
matrix whose entries are generic homogeneous polynomials of degree d in k[x1, . . . , xk] and assume
k ≥ (m− r)(n− r). Let F be the polynomial system of the minors of size r + 1 of M. Then the solving
degree of F is upper bounded by

solv.deg(F ) ≤ (m− r)(nd− n + r) + 1.

The previous theorems recover the main results of [FSS10, FSS13]. We obtain them as a
consequence of our more general Theorem 3, by letting m = n and di, j = 1 (Theorem 1), or
di, j = d (Theorem 2).

We consider an m× n matrix M, whose entry in position (i, j) is a polynomial of degree di, j
in k[x1, . . . , xk], for all i, j. Up to permuting the rows of M, we may assume that d1,1 ≤ d2,1 ≤

· · · ≤ dm,1. Moreover, assume that the following two conditions hold:
(1) di, j > 0 for all i, j.
(2) di, j + dh,` = di,` + dh, j for all i, j, `, h.

Finally, we assume that the entries of M are generic polynomials. One may think of this
assumption as the coefficients of each polynomial being randomly chosen.

Theorem 3. Let M be an m × n matrix as above and assume k ≥ (m − r)(n − r). Let F be the
polynomial system of the minors of size r + 1 of M. Then the solving degree of F is upper bounded by

solv.deg(F ) ≤ (m− r)
r∑

i=1

di,i +

m∑
i=r+1

n∑
j=r+1

di, j − (m− r)(n− r) + 1.

Proof. Under our assumptions, the homogenizations of the (r + 1)-minors of M are the (r + 1)-
minors of the matrix obtained from M by homogenizing its entries. Therefore, we may
assume without loss of generality that the entries of M are generic homogeneous polynomi-
als. The main result of [CG21, Section 3.3] implies that

solv.deg(F ) ≤ reg I,
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where I is the ideal generated by the polynomials of F and reg I denotes the Castelnuovo-
Mumford regularity of I. We can compute it as follows.

First, since the polynomials of M are generic and the matrix M is homogeneous, by
combining Eagon-Northcott’s Theorem [EN62, Theorem 3] with [BV88, Theorem 2.5] one
obtains that the quotient ring S = k[x1, . . . , xk]/I is Cohen-Macaulay and the ideal I has
codimension codim(I) = (m− r)(n− r). Recall that the codimension of a homogeneous ideal
in a polynomial ring k[x1, . . . , xk] is the difference between k and the Krull dimension of the
quotient of the polynomial ring by the ideal.

Now consider the quotient ring T = k[X]/Ir+1(X), where X = (xi, j) is a matrix of size m× n
whose entries are distinct variables, deg(xi, j) = di, j, k[X] is the polynomial ring over k with
variables the entries of X, and Ir+1(X) denotes the ideal generated by the minors of size r + 1
of X. By [HE71, Corollary 4] codim(Ir+1(X)) = (m− r)(n− r), see also [BH98, Theorem 3.7.1].

Since codim(I) = codim(Ir+1(X)), by [BV88, Theorem 3.5] a minimal graded free resolution
of S is obtained from a minimal graded free resolution of T by substituting xi, j with the entry
of M in position (i, j), for all i and j. In particular

regk[x1,...,xk](S) = regk[X](T),

where reg(S) = reg(I)− 1 and reg(T) = reg(Ir+1(X))− 1. Moreover, since T is Cohen-Macaulay,
we can express its regularity in terms of its a-invariant (see [BH98, Definition 3.6.13]) and of
the codimension of Ir+1(X). We have

reg(T) = a(T)− a(k[X])− codim(Ir+1(X)) = a(T) +

m∑
i=1

n∑
j=1

di, j − (m− r)(n− r),

where a denotes the a-invariant, the first equality follows from [BH98, Examples 3.6.15
b)], and the second from [BH98, Examples 3.6.15 a)] and codim(Ir+1(X)) = (m − r)(n − r).
By [BH92, Corollary 1.5]

a(T) = −r
m∑

i=1

di,i −

r∑
i=1

n∑
j=m+1

di, j,

where di, j = ei + f j in the notation of [BH92]. Putting everything together we obtain

reg(I) = reg(S) + 1 = a(T) +

m∑
i=1

n∑
j=1

di, j − (m− r)(n− r) + 1

= (m− r)
r∑

i=1

di,i +

m∑
i=r+1

n∑
j=r+1

di, j − (m− r)(n− r) + 1,

which proves the statement. �

Remark 4. Theorem 3 analyzes the under-defined and well-defined situations. In the over-
defined situation, assume that k is sufficiently small and that di, j = 1 for all i and j. Then the
minors of size r + 1 of M generate the maximal ideal to the power r + 1. In particular,

solv.deg(F ) = r + 1.

Remark 5. The word “generic” used in the statements is a technical term from algebraic
geometry, which means “there exists a nonempty open set” of polynomials for which the
result holds. This is exactly the same use of generic as in [FSS10, FSS13]. We stress that the
genericity assumption is often essential to a type of approach that uses algebraic geometry.
To the extent of our knowledge, this assumption appears also in all the previous works that
use similar methods.

Usually one thinks of a generic property as a property that holds for “almost every point”
of the ambient space. In order for this intuition to be true, however, one needs to work over
an infinite field, or at least over a large enough field extension of k (if k is a finite field). In
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fact, a nonempty open set over an infinite field may contain only a few points, or even no
point, over a given finite subfield.

One may therefore be lead to think that theorems with a genericity assumption are of little
use over finite fields. This is however not the case. In fact, if an open set is nonempty over
the algebraic closure, then it will contain most points over a large enough (but finite) field
extension of k. Therefore, if we are willing to take a field extension, we have that a generic
property holds for most points.

In addition, any open set is defined by a finite number of conditions. Whenever one
can explicitly describe them, one can check whether any given point (including points over
any finite field) satisfies them, which is equivalent to checking whether the point belongs to
the open set. These conditions may always be expressed as a set of polynomial equations
which should not all vanish on the point in question. Sometimes, when the polynomials are
difficult to describe explicitly or involve a large number of terms, one may choose to describe
the conditions as equivalent properties that can be checked directly. E.g., in the proof of
Theorem 3, for any minor of the matrix M one can check whether the homogenization of the
minor is equal to the corresponding minor of the matrix obtained from M by homogenizing
its entries. This condition can be expressed also as a polynomial in the coefficients of the
entries of M, namely the condition on the homogenization holds if and only if the polynomial
does not vanish on the coefficients of the entries of M. In particular, whenever we are able to
explicitly state the genericity conditions, one can directly check whether a given system of
equations satisfies the genericity properties, independently of the field of definition (which
can also have small cardinality).

In the next theorem we explicitly state the genericity conditions of Theorem 3, so that they
can be checked directly over any finite field. This provides a version of Theorem 3 over finite
fields.

Theorem 6. Let k be a finite field. Let M be an m × n matrix whose entry in position (i, j)
is a polynomial of degree di, j > 0 in k[x1, . . . , xk], for all i, j. Assume that k ≥ (m − r)(n − r),
d1,1 ≤ d2,1 ≤ · · · ≤ dm,1, and di, j + dh,` = di,`+ dh, j for all i, j, `, h. LetF be the polynomial system of the
minors of size r + 1 of M. Let t be a new variable, let Mh be the matrix obtained from M by homogenizing
its entries with respect to t, and let J = Ir+1(Mh). Suppose that codim(J) = (m− r)(n− r), that t - 0
modulo J, and that the homogenization with respect to t of each (r + 1)-minor of M equals the
corresponding (r + 1)-minor of Mh. Then the solving degree of F is upper bounded by

solv.deg(F ) ≤ (m− r)
r∑

i=1

di,i +

m∑
i=r+1

n∑
j=r+1

di, j − (m− r)(n− r) + 1.
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