
DEFEATING THE HART ET AL, BEULLENS-BLACKBURN,

KOTOV-MENSHOV-USHAKOV, AND MERZ-PETIT ATTACKS ON

WALNUTDSATM

IRIS ANSHEL, DEREK ATKINS, DORIAN GOLDFELD, AND PAUL E. GUNNELLS
SECURERF CORPORATION

100 BEARD SAWMILL RD #350, SHELTON, CT 06484

Abstract. The Walnut Digital Signature Algorithm (WalnutDSA) brings together methods in
group theory, representation theory, and number theory, to yield a public-key method that pro-

vides a means for messages to be signed and signatures to be verified, on platforms where tra-
ditional approaches cannot be executed. After briefly reviewing the various heuristic/practical
attacks that have be posited by Hart et al, Beullens-Blackburn, Kotov-Menshov-Ushakov, and

Merz-Petit, we detail the parameter choices that defeat each attack, ensure the security of the of
the method, and demonstrate its continued utility.

1. Introduction

The Walnut Digital Signature Algorithm (WalnutDSA) is a group-theoretic, public-key, method
that enables messages to be signed and signatures of said messages to be verified on platforms where
legacy protocols cannot be efficiently executed. Recently, various cryptography and cryptology
researchers have proposed a range of attacks on WalnutDSA using methods that involve linear
algebra, combinatorics, and canonical forms, all of which have been successfully blocked. These
approaches rely on algorithms that are exponential in run–time and can be addressed with suitable
choices of parameters. It is a feature of WalnutDSA that there are, in fact, many parameters
which can be adjusted: this is a benefit in contemporary implementations where there may be
constraints on energy, memory, or processing which make parameters for common cryptographic
choices unusable.

This paper proceeds as follows. First, it provides an introduction to WalnutDSA along with
a survey of the requisite mathematics. It, then, reviews WalnutDSA signature generation and
verification. The foregoing serves as the foundation and reference for understanding how the attacks
were defeated. Next, it examines each of the attacks as of the date of publication and explains the
techniques to defeat each specific attack. In each instance, this paper specifies and details the
appropriate parameter choices to defeat the various heuristic and practical attacks and explains
why such choices do not alter the utility of the method. In addition, the paper identifies the
parameter choices that ensure the security of the method.

1

2. Brief Introduction to WalnutDSATM

For, N ≥ 2, let BN denote the N -strand braid group with Artin generators {b1, b2, . . . , bN−1},
subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),(1)

bibj = bjbi, (|i− j| ≥ 2).(2)

Thus any β ∈ BN can be expressed as a product of the form

(3) β = bǫ1i1 bǫ2i2 · · · bǫkik ,
where ij ∈ {1, . . . , N−1}, and ǫj ∈ {±1}. Note that β is not uniquely represented by (3); any braid
has infinitely many different expressions in terms of the Artin generators, thanks to the relations
(1) and (2).

Each braid β ∈ BN determines a permutation in SN (group of permutations of N letters)
as follows: For 1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps i →
i + 1, i + 1 → i, and leaves {1, . . . , i − 1, i + 2, . . . , N} fixed. Then σi is associated to the Artin
generator bi. Further, if β ∈ BN is written as in (3), we take β to be associated to the permutation
σβ = σi1 · · ·σik . A braid is called pure if its underlying permutation is trivial (i.e., the identity
permutation).

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t
−1
1 , . . . , tN , t−1

N]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. Next, we introduce
the colored Burau representation

ΠCB : BN → GL
(

N,Fq[t1, t
−1
1 , . . . , tN , t−1

N]
)

× SN .

First, we define the N × N colored Burau matrix (denoted CB) of each Artin generator as
follows[?].

(4) CB(b1) =

−t1 1
1

1
. . .

1

,

For 2 ≤ i ≤ N − 1, the matrix CB(bi) is defined by

(5) CB(bi) =

1
. . .

ti −ti 1
. . .

1

,

where the indicated variables appear in row i, and if i = 1 the leftmost t1 is omitted.
2

We similarly define CB(b−1
i) by modifying (5) slightly:

CB(b−1
i) =

1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

,

where again the indicated variables appear in row i, and if i = 1 the leftmost 1 is omitted.

Recall that each bi has an associated permutation σi. We may then associate to each braid
generator bi (respectively, inverse generator b−1

i) a colored Burau/permutation pair (CB(bi), σi)

(resp., (CB(b−1
i), σi)). We now wish to define a multiplication of such colored Burau pairs. To

accomplish this, we require the following observation. Given a Laurent polynomial f(t1, . . . , tN)
in N variables, a permutation in σ ∈ SN can act (on the left) by permuting the indices of the
variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each
entry in the matrix, and denote the action by M 7→ σM . The general definition for multiplying two
colored Burau pairs is now defined as follows: given b±i , b

±

j , the colored Burau/permutation pair

associated with the product b±i · b±j is

(CB(b±i), σi) · (CB(b±j), σj) =
(

CB(b±i) · (σiCB(b±j)), σi · σj

)

.

We extend this definition to the braid group inductively: given any braid

β = bǫ1i1 b
ǫ2
i2
· · · bǫkik ,

we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) = (CB(bǫ1i1)·
σi1CB(bǫ2i2)·

σi1
σi2CB(bǫ3i3)) · · · σi1

σi2
···σik−1CB(bǫkik), σi1σi2 · · ·σik).

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .

3. E-Multiplication and Cloaking Elements

In brief, E-Multiplication is an action of a group of ordered pairs associated with BN on a direct
product of two groups. Given an element β ∈ BN , we can associate with β both the colored Burau
matrix CB(β) (whose entries are Laurent polynomials in N variables) and the natural permutation
σβ of the braid which is an element in SN . Since permutations themselves act on the colored Burau
matrices, the ordered pairs (CB(β), σβ) form a group under the semi-direct product operation. By
fixing a field Fq, and a collection of N invertible elements in Fq, {τ1, . . . , τN}, termed t-values, we
can define the right action of (CB(β), σβ) on the ordered pair (M,σ) ∈ GLN (Fq)× SN :

(M,σ) ⋆ (CB(β), σβ) =
(

M · σ
(

CB(β
)

) ↓t-values, σ ◦ σβ

)

,
3

where the ↓t-values indicates the polynomials are evaluated at the t-values. While the Laurent
polynomials which would naturally occur as entries of the colored Burau matrices would become
computationally unmanageable, the generators bi of BN have sparse colored Burau matrices, and,
hence, E-Multiplication can be evaluated very efficiently and rapidly.

The above discussion of an infinite group acting on a finite group necessitates the existence of
stabilizing elements in the group BN . With this in mind, we have the following:

Definition (Cloaking element) Let m ∈ GL(N,Fq) and σ ∈ SN . An element v in the pure braid
subgroup of BN (i.e., the permutation associated to v is the identity) is termed a cloaking element
of (m,σ) if it satisfies (m,σ) ⋆ v = (m,σ).

Thus a cloaking element will essentially disappear when E-Multiplication is evaluated. Since
stabilizing elements of a group action form a subgroup, the following proposition is immediate:

Proposition 3.1. The set of braids that cloak a specific ordered pair (m,σ) forms a subgroup of
BN .

It should be remarked that when cloaking elements are constructed in the manner above, such
elements only depend on the permutation σ. Thus, with a small abuse of language, we can say the
element v cloaks for the permutation σ without any ambiguity.

When we fix a braid β, say

β = bǫ1i1 · · · b
ǫℓ
iℓ
,

and choose some point 1 ≤ k ≤ ℓ. Clearly, β = x1 · x2 where x1 = bǫ1i1 · · · b
ǫk−1

ik−1
and x2 = bǫkik · · · bǫℓiℓ ,

and, hence, for any matrix/permutation pair (m0, σ0), we have that (m0, σ0) ⋆β = ((m0, σ0) ⋆ x1) ⋆
x2.

Assume we have a method to generate a cloaking element v for the product of σ0 · σx1
where

σx1
deotes the permutation associated with x1. By construction, given any matrix M we have that

(M,σ0 · σx1
) ⋆ v = (M,σ0 · σx1

). Since (m0, σ0) ⋆ x1 takes the form (m0, σ0) ⋆ x1 = (M, , σ0 · σx1
).

It follows that

(m0, σ0) ⋆ β = ((m0, σ0) ⋆ x1) ⋆ x2

= (M,σ0 · σx1
) ⋆ x2

= (M,σ0 · σx1
) ⋆ v ⋆ x2

= ((m0, σ0) ⋆ x1) ⋆ v ⋆ x2 = (m0, σ0) ⋆ x1 ⋆ v ⋆ x2.

Hence we have generated a new braid β′ which contains v,

β′ = x1 · v · x2,

which has the property that (m0, σ0) ⋆ β = (m0, σ0) ⋆ β′. We shall refer to this inserted cloaking
element as a concealed cloaking element.

Definition (κ cloaking) Given an element β ∈ BN , the output of randomly inserting κ concealed
cloaking elements into the braid β is defined to be a κ–cloaking of β and is denoted by κ(β).

4

4. WalnutDSATM Signature Generation and Verification

Let R : BN → BN denote a braid group rewriting algorithm. Well known examples are the
Garside canonical form [5], Birman-Ko-Lee canonical form [3], and the Dehornoy handle reduction
algorithm [4]. For β ∈ BN let P(β) denote the E-multiplication of β against the identity element,
i.e.,

P(β) = (IdN , IdSN
) ⋆ β

where IdN is the N×N identity matrix and IdSN
is the identity element in the symmtric group SN .

The Signer’s private key consists of two random freely reduced braids w,w′ ∈ BN . The Signer’s
public key is

(

P(w), P(w′)
)

.

Fix a hash function H. To sign a message m ∈ {0, 1}∗ the Signer performs the following steps:

Digital Signature Generation:

1. Compute H(m).

2. Generate cloaking elements v, v1, and v2 such that

− v cloaks (IdN , IdSN
),

− v1 cloaks P(w).

− v2 cloaks P(w′).

3. Generate the encoded message E(H(m)).

4. Compute Sig = R
(

κ
(

v1 · w−1 · v · E(H(m)) · w′ · v2
))

, which is a rewritten braid.

5. The final signature for the message m is the ordered pair (H(m), Sig).

Signature Verification: The signature (m, Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ⋆ Sig.

4. Test the equality

(6) Matrix
(

P(w) ⋆ Sig
)

?
= Matrix

(

P
(

E(H(m))
)

)

·Matrix
(

P
(

w′
)

)

,

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on
the right is the usual matrix multiplication. The signature is valid if and only if (6) holds and the
signature has length ≤ 2L where L is a certain positive integer such that all valid WalnutDSATM

signatures have length in the range [L, 2L].

The security of WalnutDSATM is based on the hard problems known as Reversing E-multiplication
(REM) together with the problem of removing the κ randomly inserted concealed cloaking elements.

5

5. The Hart, Kim, Micheli, Pascual-Perez, Petit, Quek Attack

Hart et al [13] proposed a practical forgery attack on WalnutDSATM. As pointed out by the
authors, the attack can be defeated by increasing the parameter sizes, and that even in the range
where the attack is successful, it produces forgeries that are many orders of magnitude larger than
the signatures allowed in the protocol, i.e., the attack is blocked because the WalnutDSATM protocol
specifies a length limit on the signatures. In fact, the run time of the attack is exponential and can
be easily defeated while still retaining the high efficiency and low power consumption advantages of
WalnutDSATM for constrained devices. For example, the attack can be completely (see §6) thwarted
and a 2128 (respectively 2256) security level can be maintained by running WalnutDSATM on the
braid group B10 and the finite field FM31

, where M31 is the Mersenne prime 231 − 1 (respectively
B10,M61).

The Hart et al attack [13] is a universal forgery attack that works in the special case when the two
private keys w, w′ are equal. The attack is based on a solution of the following group factorization
problem in GL(N,Fq).

Definition (Group Factorization Problem) Let G be a finitely generated group with generators
{g1, . . . , gr}. Given h ∈ G find a small integer L and sequences (m1, . . . ,mL) ∈ {1, 2, . . . , r}L and
(ǫ1, . . . ǫL) ∈ {±1}L such that

h =

L
∏

i=1

gǫimi
.

We now explain how a solution to the group factorization problem can be used to forge signatures.
Assume an attacker is in possession of many messages mi and WalnutDSATM signatures si with
i ∈ I in a finite indexing set. Let E(H(mi)) denote the encoding of the hash of the message mi

into the braid group BN and define gi := Matrix
(

P(E(H(mi))
)

∈ GL(N,Fq).

Assume that the attacker wants to forge a signature for a messagem. Let h = Matrix
(

P(E(H(m))
)

.
Suppose the attacker can find ǫij ∈ {±1} and a small positive integer L such that

h =

L
∏

j=1

g
ǫij
ij

where ij ∈ I for j = 1, 2, . . . , L. Then as shown in [13] a valid signature form is given by s =
L
∏

j=1

s
ǫij
ij

.

The basic strategy for the attack is to build forgeries iteratively using a nested sequence of
subgroups. In particular, there is a chain of subgroups A1 ⊂ A2 ⊂ · · · ⊂ AN−1 in GL(N,Fq), and
a corresponding sequence of subgroups P1 ⊂ P2 ⊂ · · · ⊂ PN−1 of the braid group BN . The two are
related in that the matrix part under E-multiplication of any braid in Pi lands in Ai. The main step
of the attack attempts to improve a partial solution of the problem in Ai, Pi to a more complete one
in the smaller subgroups Ai−1, Pi−1. An essential role in building and improving solutions is played
by the distinguished point method, which is a general collision attack on all one-way functions that
has nothing to do with E-multiplication in particular.

6

6. Defeating the The Hart, Kim, Micheli, Pascual-Perez, Petit, Quek Attack

In the Hart et al paper [13], the time complexity, memory complexity, and signature length are
carefully estimated. Assume we are running WalnutDSATM on the braid group Bn and finite field
Fq. They show that the running time complexity of the algorithm is

≈ 2 · γ · qN−1

2 ,

the memory complexity is

log2(q) ·N2q
N−1

2 ,

while the forged signature length is

ℓ · q
(

logγ(q)
)2N−3

N ! (N − 2)!,

where ℓ is the length of the original signature. Here the constant γ ≥ 1 can be chosen by the attacker.
They point out that if the parameters N, q are chosen as q = 216 and N = 14 then their attack is
defeated with time complexity 2100. It is clear that if we choose q = M31 = 231 − 1, N = 10 then
the attack is completely defeated with security level > 2128 while if we choose q = M61 = 261 − 1,
N = 10, then we achieve security level at least 2256. Even with much smaller choices of q,N the
attack is still defeated because the forged signatures produced are significantly longer than the
actual signatures.

Increasing N and q does affect the performance of WalnutDSA. In a software implementation,
each E-Multiplication step requires N multiplications and 2N additions within Fq. This means
that increasing N from 8 to 10 changes the number of basic operations from 8 to 10 multiplications
and 16 to 20 additions, a 25% increase in the number of operations per E-Multiplication.

Increasing N also affects the length of the signature. The length increase can be obtained
heuristically through testing. Using N = 8 the average length of a signature was 1399 Artin
generators whereas increasing to N = 10 increased the length to 1909, a 36% increase in signature
length (and an equivalent increase in signature verification time due to the 36% increase in the
number of E-Multiplications required).

It should be noted that the increase of N also affects the signature storage size, because with
N = 8 each generator only needs 4 bits, whereas 5 bits are required for N = 10. This increases the
storage requirements by an additional 25%, for a total storage increase of 70%.

Increasing N and q affect the public key size, because the matrix is an N ×N matrix over Fq,
which requires N2log2(q) bits for each matrix. Increasing from N = 8, q = 32 to N = 10, q = M31

results in an increase in public key matrices from 320 to 3100 bits each (a 10x increase). However,
this 10x increase still results in public keys significantly shorter than the majority of NIST signature
candidates.

Finally, increasing q from 32 toM31 does change the implementation of operations in Fq. Whereas
on F32 the operations could be implemented as a table lookup, using M31 no longer provides for that
option. The primary consideration for performance of Fq is the state of the multiplier. Specifically,
if the platform has a 32 × 32 → 64 bit multiplier then the operation can be performed in only
two instructions (multiplication and reduction). Some platforms don’t provide this, but do provide
a 32 × 32 → 32(high) and 32 × 32 → 32(low) operation. Other platforms truncate the result.
And finally, some very small platforms don’t provide for a 32-bit multiplier at all. The resulting

7

performance degredation is determined by the available multiplier. We note that even on small
platforms like an ARM Cortex M4, the multiplier is sufficient to compute the result in the single
multiply instruction. The use of Mersenne primes like M31 affords a simple reduction methodology,
which is simply a shift, addition, and possibly overflow subtraction.

All in, the signature verification times of WalnutDSA on the NIST test platform increased from
160,000 to 230,000 cycles due to these changes, a performance degredation of only 43%.

7. The Beullens-Blackburn Forgery Attacks

Following in the footsteps of Hart et al [13], Blackburn and Beullens [10] modified the Hart et
al attack to the case w 6= w′. The forgeries produces satisfy the length constraints specified in
WalnutDSA, but the attacks are exponential in running time and can be completely thwarted by
running the protocol on B10,FM31

, where M31 is the Mersenne prime 231 − 1 for 128-bit security
and B10,FM61

for 256-bit security. Furthermore, even with these increased parameter sizes, the
high efficiency and low power consumption advantages of WalnutDSATM for constrained devices
are still retained.

In addition to the modified factorization attack, Blackburn and Beullens [10] present a birthday
attack on reversing E-Multiplication (which is a hard problem underlying the WalnutDSA), together
with a collision search forgery method. Each of these attacks is again exponential in running time
and is thwarted by running the WalnutDSATM protocol on B10,FM31

, for 128-bit security and
B10,FM61

for 256-bit security.

Factorization Attack: In order to remove the assumption that the private keys (w,w′) may
not be equal which is required for the Hart et al attack [13] Blackburn and Beullens point out that if
one has 3 messages m,m1,m2 with h = Matrix

(

P (E(H(m))
)

, h1 = Matrix
(

P (E(H(m1))
)

, h2 =

Matrix
(

P (E(H(m2))
)

, and three private keys w1, w2, w3 then the following holds:

• If h = h−1
1 and s1 is a valid signature for m1 under the public key (P(v1),P(v2)) then s−1

1 is
a valid signature for h under the public key (P(v2),P(v1));

• If h = h1h2 and s1, s2 are valid signatures for m1,m2 under the public keys (P(v1),P(v2)),
(P(v2),P(v1)), respectively, then s1·s2 is a valid signature form under the public key (P(v1),P(v3)).

Assume the attacker knows message signature pairs (mi, si) and associated matrices hi =
Matrix

(

P (E(H(mi))
)

, (i = 1, 2, . . . , r) that are valid under the same public key (P(v1),P(v2)).
Then it easily follows that for an odd number of factors

si1 · s−1
i2

· · · s−1
iL−1

· siL
is a valid signature under the public key (P(v1),P(v2)) for any message m satisfying

Matrix
(

P (E(H(m))
)

= hi1 · h−1
i2

· · · h−1
iL−1

· hiL .

At this point the attacker may implement the Hart et al factorization attack [13], but the forged
signatures will be way too long and the running time will still be exponential so the attack will be
completely thwarted on B10,FM31

and B10,FM61
with security levels at least 2128, 2256, respectively.
8

Collision Search Attack:

The second forgery attack introduced in [10] seeks to find two messages m1,m2 such that

P (E(H(m1)) = P (E(H(m2)) .

Finding such a collision breaks EUF-CMA. The method used in [10] to find a collision is based
on the Oorschot and Wiener algorithm [12] which is a parallelizing collision search algorithm built
upon the Pollard rho-method. Clearly, to determine the probability of a collision it is enough to

find the size of P
(

E ({0, 1}∗)
)

. Let PN denote the pure braid subgroup of BN whose index in BN

is N !. Since the encoding function E takes values in PN it is enough to obtain the size of P(PN)

which they estimate as ≈ q(N−2)2+1 in [10].

As also pointed out in [10] any braid output by the encoding mechanism E is a product of the
image (under P) of the encoding braids used and, thus, it is essential that the subspace spanned
by said images is sufficiently large. An example of an encoding that yields sufficient security, and
hence, defeats this avenue of attack is given as follows. Let N = 12 and let S be the periodic
sequence of tuples

{(5, 7, 9, 11), (4, 6, 8, 10), (3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), (3, 5, 7, 9), (4, 6, 8, 10), ...}.
One can check that this dimension is 122, so using q = 32 or 256 results in sufficiently large spaces.
For the case of N = 10, S can be the sequence {(3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), ...} which
results in a dimension of 82.

8. Defeating the Beullens-Blackburn Forgery Attacks

The forgery attacks presented by Blackburn and Beullens in [10] are all exponential in running
time as explained above. They can be completely thwarted by running the protocol on B10,FM31

for 128-bit security and B10,FM61
for 256-bit security.

9. Defeating the Beullens-Blackburn REM Attack

The third attack discussed in [10] is an exponential attack to reverse E-Multiplication (REM)
which is a hard problem underlying the security of WalnutDSATM . The running time of this attack
is estimated as qN/2−1 in [10]. Here is a direct quote from the Blackburn-Beullens paper [10].

“There does not seem to be a better way to block the attack other than just increasing the param-
eters to ensure that qN/2−1 is higher than the desired security level. One way to do this is to take
N = 10, q = 232 to achieve 128 bits of security, and N = 10, q = 264 for 256 bits of security.”

Recall that the T-values for E-Multiplication are just a subset of N invertible elements in Fq

denoted {τ1, τ2, . . . , τN}. The Beullens-Blackburn REM attack assumed that for two integers a, b
with 1 ≤ a < b ≤ N we specify that τa = τb = 1. If we instead we choose τa, τb so that τa · τb = −1
then the running time of the REM attack is much higher. In fact, an additional factor of

√
q · √x

is added to the runtime, where x is a parameter in their attack (they set x = 60 for N = 8 and we
expect x = 96 for N = 10). This results in an (unverified) search time of at least

√
x · q(N−1)/2.

Here again, the parameters B10,FM31
for 128-bit security and B10,FM61

for 256-bit security
effectively defeat the REM attack.

9

10. The Kotov, Menshov, Ushakov Attack

Kotov et al [8] proposed a heuristic algorithm to search for and remove cloaking elements from
a WalnutDSA signature to produce a surrogate signer private key that would enable an attacker
to forge signatures of any message. We show that by using appropriately chosen cloaking elements
with the WalnutDSA signature, we can defeat this attack without any significant degredation to
size or performance. The use of these cloaking elements renders WalnutDSA completely secure
against this attack.

The attack proceeds by collecting a number of messages, together with their associated Wal-
nutDSA signatures, which have all been generated by a single user whose private key is denoted
by (w,w′). Next, a heuristic method is used on each of the signatures to search and remove the
specified cloaking elements v, v1, v2 from each of the signatures. The search relies on the attacker
knowing the permutations that each of the three cloaking elements v, v1, v2 are cloaking for. Letting
σ denote one of these permutations, the attacker searches for locations in a signature where σ−1(a)
and σ−1(b) are switched (see [1] for the discussion of τa, τb). This can be explained as follows.
Since a braid in BN is a configuration of strands connecting N equally spaced points on a line
with another N equally spaced points on a parallel line, one can search for subwords of the braid
with the property that the strand starting at the point σ−1(a) crosses the strand starting at the
point σ−1(b). The attack further assumes that cloaking elements are of the form ub±2

i u−1 (i.e., a
conjugate) where the permutation associated to u maps i to σ−1(a) and i + 1 to σ−1(b). Writing
ub±2

i u−1 = ubǫib
ǫ
iu

−1 with ǫ = ±1 the attack attempts to find the location of bǫi and replaces it
with its inverse b−ǫ

i resulting in the cloaking element turning into ub−ǫ
i bǫiu

−1 = Id where Id is the
identity element in the braid group. If successful, this procedure effectively deletes the cloaking
element. These manipulations do not always work. To make the attack more effective Kotov et al
[8] perform the above procedure many times on a pair of signatures S1, S2 generating two lists of

altered signatures {S(1)
1 , . . . , S

(k)
1 }, {S(1)

2 , . . . , S
(ℓ)
2 }. The attack attempts to braid minimize

(

S
(i)
1

)

·
(

S
(j)
2

)−1

, (for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ),

which may remove the cloaking element. Since it is assumed that there are only three cloaking ele-
ments which cloak for known permutations the heuristic attack proceeds as above to systematically
remove the three cloaking elements.

If the three cloaking elements are successfully removed it is then possible to construct a surrogate
for the private key (w,w′) of the signer as follows. With the cloaking elements removed, the
signature of a message mi takes the form

Sig(mi) = w−1 · E(H(mi)) · w′.

Assuming that the attacker has signatures for k messages, m1, . . . ,mk, the sequence of products

Sig(mi) · Sig(mi+1)
−1 = w−1 · E(H(mi)) · E(H(mi+1))

−1 · w,

yield a set of simultaneous conjugacy equations whose solution will be a surrogate of the signer’s
private key. This surrogate private key can then be used to forge signatures of further messages.

10

11. Defeating the Kotov, Menshov, Ushakov attack

The heuristic attack of Kotov et al [8] can be easily defeated by introducing concealed cloaking
elements into the WalnutDSA signature. Following [1], we fix a braid β, say

β = bǫ1i1 · · · b
ǫℓ
iℓ
,

and choose some point 1 ≤ k ≤ ℓ. Clearly, β = x1 · x2 where x1 = bǫ1i1 · · · b
ǫk−1

ik−1
and x2 = bǫkik · · · bǫℓiℓ ,

and, hence, for any matrix/permutation pair (m0, σ0), we have that (m0, σ0) ⋆β = ((m0, σ0) ⋆ x1) ⋆
x2.

We can generate a cloaking element v for the product of σ0 ·σx1
where σx1

deotes the permutation
associated with x1. By construction, given any matrixM we have that (M,σ0·σx1

)⋆v = (M,σ0·σx1
).

Since (m0, σ0) ⋆ x1 takes the form (m0, σ0) ⋆ x1 = (M, , σ0 · σx1
). It follows that

(m0, σ0) ⋆ β = ((m0, σ0) ⋆ x1) ⋆ x2

= (M,σ0 · σx1
) ⋆ x2

= (M,σ0 · σx1
) ⋆ v ⋆ x2

= ((m0, σ0) ⋆ x1) ⋆ v ⋆ x2 = (m0, σ0) ⋆ x1 ⋆ v ⋆ x2.

Hence we have generated a new braid β′ which contains v,

β′ = x1 · v · x2,

which has the property that (m0, σ0) ⋆ β = (m0, σ0) ⋆ β′. We shall refer to this inserted cloaking
element as a concealed cloaking element.

It is the presence of κ concealed cloaking elements (for sufficiently large κ) that effectively blocks
this attack. The key point is that for concealed cloaking elements we do not know the permutation
that is being cloaked. In general, knowing that κ concealed cloaking elements have been placed in
a nested fashion in a known braid, it would require (N !)κ searches to find them. To insure κ-bit
security we would require

(N !)κ > 2κ,

and hence

κ > Security Level/ log2(N !).

We have explored possible birthday attacks and have ruled out obvious ways to use a birthday
attack to discover all the concealed cloaking elements. Indeed, multiple cloaking elements could use
the same permutation but each would still need to individually be discovered. Without access to a
birthday attack, in the case of N = 10, and a security level of 128 we can comfortably take κ = 6
(which results in a work factor of 2130.74). Likewise, when N = 10 and the security level is 256,
taking κ = 12 is sufficient (resulting in a work factor of 2261.49).

We also note that concealed cloaking elements have a secondary purpose in blocking this attack.
Recall that the attack not only relies on knowing the permutation being cloaked, but it also relies
on a cloaking element being in the form of a conjugate. By placing a concealed cloaking element
inside one side, e.g. converting v = ub±2

i u−1 to v = κ(u)b±2
i u−1, we block the attack in both ways.

Specifically, while the permutation v is cloaking for is known, it is no longer a conjugate, and while
the inner-most concealed cloaking element is a conjugate, the permutation it is cloaking for is not
known.

11

With N = 10, a cloaking element using a random permutation for u averages 87.16 Artin gener-
ators (with a standard deviation of 22.03). This can be shortened by choosing the permutation of
u carefully (note that this is different than the permutation being cloaked). If we add 6 concealed
cloaking elements (necessary for 128-bit security), this implies an average signature-size increase of
approximately 523 generators. However, after running BKL and Dehornoy, additional size reduc-
tions can be made. This results in an average signature increase from 1909 to 2037 Artin generators,
or an increase in only 6.7%.

Because signature validation performance is linearly correlated with the length of the signature,
this 6.7% average length increase results in a 6.7% increase in the average time required to validate
signatures.

12. The Merz–Petit Attack and Mitigation

Recently, Merz and Petit [6] proposed a practical forgery attack on WalnutDSATM. They found
that using the Garside Normal Form of the signature allowed them to find commonalities with the
Garside form of the encoded message, and using those commonalities they could create a forgery.
As pointed out by the authors, the attack can be defeated by adding cloaking elements into the
encoded message. Specifically, they conjecture that each additional cloaking element effectively
mutates approximately five (5) permutation braids in the Garside Normal Form, but, when mutated,
their attack no longer succeeds. We will confirm that sufficient insertions of cloaking elements will
prevent the attack from producing forgeries.

Before describing the Garside based approach proposed by Merz–Petit [6] we review some of the
basic components Garside introduced to the field which date back to 1965. Recalling that the Artin
presentation of the N strand braid group has generators {b1, b2, . . . , bN−1}, subject to the following
relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),

bibj = bjbi, (|i− j| ≥ 2).

A brief summary of Garside’s approach [5] proceeds as follows. The fundamental braid ∆N , which
is defined to be

∆N = (b1 · · · bN−1)(b1 · · · bN−2) · · · (b1b2) b1,
satisfies the properties: for i = 1, . . . , N − 1,

bi∆ = ∆bN−i b−1
i = xi∆

−1,

where xi is a positive word in the generators (i.e., a word without negative exponents). Focussing
on positive words in the braid generators, denoted B+

N enabled Garside to introduce an ordering

of positive words: given two positive words a, b ∈ B+
N then a ≤ b if there exists a c ∈ B+

N such

that ac = b. Further, given said a, b ∈ B+
N we can look for the smallest positive braid d such that

d ≤ a and d ≤ b. Garside proved such a smallest d exists and is unique (it is often denoted a ∧ b).
Garside’s seminal theorem states that every braid β can be uniquely expressed in the form

∆r A1 · · ·Ak,

where r ∈ Z, 1 < Ai < ∆, and Ai Ai+1 ∧∆ = Ai.

The underlying mathematical structure supporting the WalnutDSA protocol is the action of the
braid group on a direct product of a large finite matrix group and a symmetric group. The action

12

is inherently algorithmically difficult to reverse, and finding stabilizers (termed cloaking elements)
is likewise a difficult problem. However, specialized classes of cloaking elements can be explicitly
generated and it is, hence, possible to use them as a means of obscuring a braid: by inserting
sufficiently many cloaking elements the structure of the original braid cannot be recovered in a
tractable way.

The Merz and Petit universal forgery attack is a heuristic method that, using knowledge of a
valid signature of a message M , aims to generate a signature of a second message M ′ that will be
validated by a receiver. The decomposition algorithm introduced in their paper (which uses the
Garside canonical for as its basis) can be applied because a Walnut signature has the form

W1E(H(M))W2

and, critically, the braid element E(H(M)) is known to everyone. Knowledge of E(H(M)) allows
the algorithm to try to derive braids W ′

1,W
′
2 which satisfy the conditions Wi ≡ W ′

i (Mod ∆2), and
W1 ·W2 = W ′

1 ·W ′
2. Once a forger has said elements in place, the braid W ′

1 · E
(

H(M ′)
)

·W ′
2 will

verify as a signature of a message M ′.

In fact, knowledge of the entire E(H(M)) is not actually requisite. Were one to insert a single
concealed cloaking element into the encoding E(H(M)) it is still possible that the Ai’s in the
Garside normal form (see above) of said encoding still appear in the Garside normal form for the
signature. While the forgery in this case would be longer than the average signature, it might
be within the acceptable length range. Thus, in order to completely thwart the heuristic attack,
the signer must insert sufficiently many concealed cloaking elements into the braid E(H(M)) to
completely alter the Garside normal form. We have done significant testing and have concluded
that inserting cloaking elements every 7-12 generators will successfully block this attack. It should
be noted that the approaches to removing cloaking elements required the attacker to be able to
reduce the problem to a conjugacy search problem, Finding concealed cloaking elements in the
encoded message does not fit into that effort.

13. Conclusion

The Walnut Digital Signature Algorithm (WalnutDSA) is a group-theoretic, public-key method
which has been introduced as a means for signing messages and verifying signatures when legacy
methods are not viable due to the nature of the platform in question. This paper demonstrated
that WalnutDSA is particularly effective on platforms where legacy methods are not viable because
of platform constraints. By making appropriate parameter choices, i.e., N = 10, p = 231 − 1, and
by ensuring that the cardinality of the set of concealed cloaks are sufficiently large, WalnutDSA is
secure and immune to the range of attacks reviewed in this paper. Moreover, the protocol maintains
its novel feature of being viable on embedded and low resource devices.

References

[1] Anshel, I., Atkins, D., Goldfeld, D., Gunnells, P.E.:WalnutDSATM : a quantum-resistant digital signature algo-
rithm. Cryptology ePrint Archive, Report 2017/058 (2017).

[2] E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126.

[3] J. Birman; K. H. Ko; S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv.

Math. 139 (1998), no. 2, 322–353.

[4] P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997), no. 2, 200–235.

13

[5] Garside, F.A., The braid group and other groups. The Quarterly Journal of Mathematics bf 20(1), 235–254
(1969).

[6] Merz S.P., Petit C. (2018) Factoring Products of Braids via Garside Normal Form,

https://eprint.iacr.org/2018/1142.

[7] H.R. Morton, The multivariable Alexander polynomial for a closed braid, Low-dimensional topology, (Funchal,

1998), 167–172, Contemp. Math., 233, Amer. Math. Soc., Providence, RI, 1999.

[8] M. Kotov; A. Menshov; A. Ushakov, An attack on the Walnut digital signature algorithm, Cryptology ePrint
Archive: Report 2018/393 (2018).

[9] I. Anshel, D. Atkins, D. Goldfeld, P.E. Gunnells, Defeating the Hart, Kim, Micheli, Pascual-Perez, Petit, Quek
Attack on WalnutDSATM, To appear.

[10] S. Blackburn, W. Beullens, Practical attacks against the Walnut digital signature scheme, Cryptology ePrint
Archive, Report 2018/318 (2018).

[11] D. Hart, D. Kim, G. Micheli, G. Pascual-Perez, C. Petit, Y. Quek. A Practical Cryptanalysis of WalnutDSA TM.
In: Abdalla M., Dahab R. (eds) Public-Key Cryptography – PKC 2018. PKC 2018. Lecture Notes in Computer
Science, vol 10769. Springer, Cham. (2018)

[12] P.C. Van Oorschot, M.J. Wiener, Parallel collision search with cryptanalytic applications. Journal of cryptology
12(1), 1–28 (1999).

[13] Hart D., Kim D., Micheli G., Pascual-Perez G., Petit C., Quek Y. (2018) A Practical Cryptanalysis of Wal-
nutDSA TM. In: Abdalla M., Dahab R. (eds) Public-Key Cryptography – PKC 2018. PKC 2018. Lecture Notes
in Computer Science, vol 10769. Springer, Cham.

Email address: IANSHEL@SECURERF.COM, DATKINS@SECURERF.COM, DGOLDFELD@SECURERF.COM, PGUNNELLS@SECURERF.COM

14

