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Abstract. Multivariate public key signature scheme has a good perfor-
mance on speed and signature size. But most of them have a huge public
key size. In this paper, we propose a new method to reduce the public
key size of unbalance oil and vinegar (UOV) signature scheme. We can
reduce the public key size of UOV scheme to about 4KB for 128 bits
security level. This method can be used to reduce the public key sizes of
other multivariate public key cryptosystems.
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1 Introduction

Multivariate public key cryptosystem is one of the main candidates for post
quantum cryptosystem. Multivariate public key cryptography is one of the ma-
jor candidate for post quantum cryptography. It’s security base on the hardness
of solving multivariate polynomials equations over a finite field. A problem of
solving a system of multivariate polynomials equations whose degrees are no less
than 2 over a finite field is called multivariate polynomials (MP for short) prob-
lem. The MP problem is proved to be NP-complete. More precisely, MP problem
is equivalent to the 3-SAT problem [1]. In practically, most of multivariate pub-
lic key cryptosystems (MPKC for short) are restricted to multivariate quadratic
polynomials because of efficiency. A problem of solving a system of multivariate
quadratic (MQ for short) polynomials equations over a finite field is called MQ
problem. The MQ problem is also proved to be NP-complete [1].

In the last three decades, many multivariate public key signature schemes
have been proposed but most of them are broken, except some UOV-based (such
as UOV [2] and Rainbow [3][3]) signature schemes. Moreover, Rainbow which
is UOV-based signature scheme is acceptance of the third round of National
Institute of Standards and Technology Post-Quantum Cryptography Projects
for signature.

In 1997, Patarin firstly used oil-vinegar polynomials to build a signature
scheme, namely oil and vinegar signature scheme(OV scheme) [7]. But in 1998,
Kipnis and Shamir showed that the OV scheme is insecure [8].

In 1999, Kipnis et al. improved the OV scheme and proposed Unbalance Oil
and Vinegar scheme (UOV scheme)[2]. However, the security UOV scheme has
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at lest 3 times more variables than polynomials, this means that signature size
of UOV is at least 3 times longer than hash value of document. Moreover, the
public key size of UOV scheme is too large.

In order to improving the efficiency of UOV scheme, Ding and Schmidt pro-
posed Rainbow signature scheme, which is a multi-layer construction using un-
balance oil and vinegar polynomial at each layer. Rainbow scheme can generate
a more shorter signature than UOV scheme, but the public key size is still very
large.

In order to reducing the public key size of UOV, some methods have been
tried. In [16], Beullens et al. used field lifting method to reduce the UOV public
key size and obtain a small public key size, namely LUOV signature scheme,
but the signature size becomes more longer than the origin UOV scheme on the
same security level. However, LUOV was broken by Jintai Ding et al.[23]. In
[18,19], Petzold et al. used linear recurring sequences to reduce the public key
size, they managed to reduce the key size by a factor of 8 in the case of UOV
and a factor of 3 in the case of the Rainbow signature scheme without expanding
the signature size on the same security level.

In this paper, we propose a new method to reduce the public key size of UOV
scheme. We can reduce the public key size to 4.096KB for 128 bits security level.
This method can be used to reduce the public key size of other multivariate
public key cryptosystems.

In order to distinguish the original UOV signature scheme, the optimized
UOV scheme by using our method are called Hufu1-UOV signature scheme. We
place all software described in this paper into the public domain and make it
available online at https://github.com/hufuuov/hufu_uov.git.

The paper is organized as follows. In Sect.2, we introduce general multi-
variate public key signature scheme. In Sect.3, we introduce the original UOV
signature scheme. In Sect.4, we introduce Hufu-UOV signature scheme. In Sec-
t.5, we present cryptanalysis of Hufu-UOV scheme. In Sect.6, we proposed some
parameters for Hufu-UOV . Finally, we conclude the paper in Sect.7.

2 General Multivariate Public Key Signature Scheme

Let N be a set of positive integers, m,n, q ∈ N, and Fq be a finite field with q
elements. Let Fq[x1, x2, · · · , xn] be a polynomial ring over Fq . In generally, the
public key of a multivariate public key cryptosystem (MPKC for short) is a set
of multivariate quadratic polynomials:{

p(1)(x1, x2, · · · , xn), · · · , p(m)(x1, x2, · · · , xn)
}
,

1 The Hufu is a tiger-shaped metal military vouchers of Ancient China. It was divided
into two halves and issued by the emperor to the general. The right half is held by
the emperor, the left half is sent to the general. Each army has a corresponding Hufu.
When the troops are mobilized, the two halves must be combined, if they match,
then the general accepts the command, otherwise, rejects the command. This is
similar to signature and verification. So we call our new signature scheme to Hufu.

https://github.com/hufuuov/hufu_uov.git
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or equivalently, a multivariate quadratic map:

P : Fn
q 7→ Fm

q

P = (p(1)(x1, x2, · · · , xn), · · · , p(m)(x1, x2, · · · , xn)),

where

p(k) =
∑

1≤i≤j≤n

a
(k)
ij xixj +

n∑
i=1

b
(k)
i xi + c(k),

a
(k)
ij , b

(k)
i , c(k) ∈ Fq, (k = 1, · · · ,m).

To build a MPKC, we start to build a trapdoor function (central map):
F : Fn

q 7→ Fm
q . In generally, central map is a quadratic multivariate map, and

easy to inverse. In order to hide the structure of central map in the public key,
we compose it with two invertible linear or affine transformations L1 : Fn

q 7→ Fn
q

and L2 : Fm
q 7→ Fm

q .

Key generation. The public key is quadratic multivariate map: P = L2 ◦ F ◦
L1. The private key is L−1

2 , F and L−1
1 . In generally, the public key size of

multivariate public key cryptosystem is

Sizepk =

{
m · (n+1)(n+2)

2 if q 6= 2,

m ·
(

n(n+1)
2 + 1

)
if q = 2,

field elements. The private key can be generated by a randomly choosing seed,
therefore the private key size is equal to the size of seed.

Signature generation. Let m be a document to be signed, h = hash(m) ∈ Fm
q be

the hash value of m. The signer computes recursively y = L−1
2 (h), z = F−1(y),

and s = L−1
1 (z). Then s is the signature of document m.

Signature verification. To verify the s is indeed a valid signature of document
m, the recipient computes h = hash(m) and P(s). If P(s) = h, the recipient
accepts signature, otherwise the recipient rejects signature.

3 Original UOV Signature Scheme

Let o, v be positive integers, and n = o + v,m = o. The central map of UOV
signature scheme is built by some oil and vinegar polynomials which are defined
as follow:

Definition 1. An oil and vinegar polynomial is any total degree two polynomial
f ∈ Fq[x1, x2, · · · , xn] of the form

f(x1, x2, · · · , xn) =

n∑
i=o+1

n∑
j=1

aijxixj +

n∑
i=1

bixi + c,

where aij , bi, c ∈ Fq.
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The variables x1, · · · , xo are called the oil variables, and the variables xo+1, · · · , xn
are called the vinegar variables. If we fix the values of vinegar variables, the oil
and vinegar polynomial will become a linear polynomial.

Key generation. The polynomials in the central map of UOV scheme are the oil
and vinegar polynomials, namely the central map

F = (f1, f2, · · · , fo) : Fn
q → Fo

q,

where f1, f2, · · · , fo are the oil and vinegar polynomials. The public key of UOV
scheme is P = F ◦ L1, where L1 : Fn

q → Fn
q is invertible affine transformation.

The private key consists of F and L−1
1 .

Signature generation. Let m be a document to be signed, h = (h1, h2, · · · , ho) =
hash(m) ∈ Fo

q be the hash value of m. The process of signature generation is as
follows:

1. Compute F−1(h1, h2, · · · , ho). By randomly choosing (x́o+1, · · · , x́n) ∈ Fv
q

to give the values of the vinegar variables, we obtain a linear system in the
oil variables x1, x2, · · · , xo given by

F(x1, x2, · · · , xo, x́o+1, · · · , x́n) = (h1, · · · , ho).

The probability of this linear system will has a solution is roughly 1 − 1
q .

If the linear system has no solution, we choose different values for the vine-
gar variables, until the system has a solution. Finally, we solve the lin-
ear system and obtain a vector (x́1, · · · , x́o, x́o+1, · · · , x́n) ∈ Fn

q such that
(x́1, · · · , x́o, x́o+1, · · · , x́n) = F−1(y1, y2, · · · , yo).

2. We compute

(z1, z2, · · · , zn) = L−1
1 (x́1, · · · , x́o, x́o+1, · · · , x́n),

then (z1, z2, · · · , zn) is the signature of document m .

Signature verification. To verify the (z1, · · · , zn) is indeed a valid signature
of document m, the recipient computes h = hash(m) and P(z1, z2 · · · , zn). If
P(z1, z2 · · · , zn) = h, the recipient accepts signature, otherwise the recipient
rejects signature.

When o = v, the UOV scheme is the original oil and vinegar signature scheme
proposed by Patarin[7]. It was called the balanced oil and vinegar scheme and
broken by Kipnis and Shamir[8]. When o < v, it was called the unbalanced
oil and vinegar scheme. When v < 2o, the attack complexity is O(o4qn−2o−1)
by using separation of oil and vinegar variables attack[2]. When v ≥ 2o, the
security of UOV scheme is still an open question. However, when v ≥ 2o, the
UOV scheme has 3 times more variables than polynomials.



A Method to Reduce the Key Size of UOV Signature Scheme 5

3.1 Equivalent Keys of UOV

Let (P, (F ,L1)) be a key pair of UOV and Ω : Fn
q → Fn

q be an invertible affine
transformation, then we get

P = F ◦ L1 = F ◦Ω ◦Ω−1 ◦ L1.

Theorem 1. Let (F ,L1) be a private key of UOV, Ω : Fn
q → Fn

q be an invertible
affine transformation whose linear part has the form(

Ω
(1)
v×v 0v×o

Ω
(2)
o×v Ω

(3)
o×o

)
. (1)

Then (F ◦Ω,Ω−1 ◦ L1) is an equivalent key of UOV.

Proof. see [20].

Theorem 2. Let P be a public key of UOV, then with overwhelming probability,
there exists a equivalent key F̃ , L̃1 such that linear part of L̃1 has the form(

Iv×v Sv×o

0o×v Io×o

)
, (2)

where Iv×v is v×v unit matrix, Io×o is o×o unit matrix, Sv×o is a v×o matrix.

Proof. see [17], Theorem 3.2.

We will use this equivalent key and circulant matrix to reduce the public key
size of UOV.

4 Hufu-UOV Signature Scheme

In this section, we reduce the public key size of UOV scheme by using circulant
matrix and Toeplitz matrix.

Definition 2. A matrix of the form

a0 b1 b2 · · · · · · bn−1

a1 a0 b1
. . .

. . .
...

a2 a1 a0
. . .

. . .
...

...
. . .

. . .
. . . b1 b2

...
. . . a1 a0 b1

an−1 · · · · · · a2 a1 a0


is called Toeplitz matrix.
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Note that the set of n × n Toeplitz matrices is a vector space under matrix
addition and scalar multiplication. A n × n Toeplitz matrix is determined by
2n− 1 elements of the first row and column.

Definition 3. A matrix of the form
c0 c1 · · · cn−2 cn−1

cn−1 c0 · · · cn−3 cn−2

...
...

. . .
...

...
c2 c3 · · · c0 c1
c1 c2 · · · cn−1 c0


is called circulant matrix.

Note that a circulant matrix is determined by the entries of the first row, the
other rows are obtained by shifting the previous rows, therefore, we only need
to store the first row. Moreover, the multiplication of two circulant matrixes
is circulant matrix. The linear combination of circulant matrixes is circulant
matrix. The Transpose of circulant matrix is circulant matrix. A n×n circulant
matrix is determined by n elements of the first row.

For simplicity, we set m = o, v = 3o, n = o+ v = 4o. Let the linear transfor-
mation L1 in Hufu-UOV scheme be

L1 = L1x : Fn
q → Fn

q , (3)

where L1 ∈ Fn×n
q is an invertible matrix defined as follow:

L1 =

(
Iv×v S

0 Io×o

)
,

where S ∈ Fv×o
q is the first o column of v × v circulant matrix, Iv×v is v × v

identity matrix and Io×o is o× o identity matrix.
Let the central map of Hufu-UOV scheme be

F = {f (1), f (2), · · · , f (m)} : Fn
q → Fm

q , (4)

where

f (k)(x1, · · · , xn) = xTQ(k)x,

and

Q(k) =

(
Q

(k)
1 Q

(k)
2

Q
(k)
3 λ(k)A

)
,

where Q
(k)
1 are v×v circulant matrixes, Q

(k)
2 are the first o columns of some v×v

circulant matrixes, Q
(k)
3 are the first o rows of some v × v circulant matrixes. A

is a o× o Toeplitz matrix and λ(k) ∈ Fq.
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Let L2 = L2x : Fm
q → Fm

q be an randomly choosen invertible transformation,
where L2 ∈ Fm×m

q is an invertible matrix, then the public key map of Hufu-UOV
is generated as follow:

P = L2 ◦ F ◦ L1.

According to the properties of circulant matrix and Toeplitz matrix, the
public key polynomials p(k)(k = 1, 2, · · · ,m) of Hufu-UOV can be expressed as
follow:

p(k)(x1, · · · , xn) = xTP (k)x,

where xT = (x1, · · · , xn) is a row vector,

P (k) =

(
P

(k)
1 P

(k)
2

P
(k)
3 P

(k)
4

)

where P
(k)
1 are v×v circulant matrixes, P

(k)
2 are the first o columns of some v×v

circulant matrixes, P
(k)
3 are the first o rows of some v × v circulant matrixes,

P
(k)
4 are top left o× o submatrixes of some v× v circulant matrixes. In fact P

(k)
4

are Toeplitz matrixes.
The key generation, signature generation and verification algorithms of Hufu-

UOV signature scheme are described in Algorithms 1, 2, 3, 4.

Algorithm 1 Hufu-UOVKeyGen: Key Generation of Hufu-UOV

Input:
The Hufu-UOV parameters (q, o, v)

Output:
Hufu-UOV key pairs (sk, pk)

1: Randomly generate invertible transformation L1 : Fn
q → Fn

q as (3).
2: Randomly generate invertible transformation L2 = L2x : Fm

q → Fm
q .

3: Randomly generate central map F : Fn
q → Fm

q as (4).
4: Compute P = L2 ◦ F ◦ L1.
5: sk = (L1,F ,L2).
6: pk = P.
7: return (sk, pk);

Algorithm 2 HUFU-UOVSmallKeyGen: Key Generation of HUFU-UOV

Input:
The Hufu-UOV parameters (q, o, v).

Output:
HUFU-UOV key pairs (sk, pk)

1: (s1, s2) ← CryptoRandomBytes(|s1|, |s2|), where |s1| and |s2| are the bit
sizes of s1 and s2 respectively;

2: Randomly generate matrix triples
(
〈P (1)

1 , P
(1)
2 , P

(1)
3 〉, · · · , 〈P

(o)
1 , P

(o)
2 , P

(o)
3 〉

)
by using seed s1, where P

(k)
1 is a v × v circulant matrixes, P

(k)
2 is a v × o

matrixes which is the first o columns of some v × v circulant matrixes, and
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P
(k)
3 is a o × v matrixes which is the first o rows of some v × v circulant

matrixes, (k = 1, 2, · · · , o).
3: S ← a v × o matrix which is the first o columns of a v × v circulant matrix

and generated by using seed s2 .
4: Randomly generate a o× o Toeplitz matrix A by using seed s2.
5: Randomly generate λ(k) ∈ Fq(k = 1, · · · , o) by using seed s2.
6: Randomly generate o× o invertible matrix L2 by using seed s2. .
7: Compute matrix triples(
〈G(1)

1 , G
(1)
2 , G

(1)
3 〉, · · · , 〈G

(o)
1 , G

(o)
2 , G

(o)
3 〉
)
← L−1

2

(
〈P (1)

1 , P
(1)
2 , P

(1)
3 〉, · · · , 〈P

(o)
1 , P

(o)
2 , P

(o)
3 〉

)
.

8: Q
(k)
1 ← G

(k)
1 , (k = 1, · · · , o).

9: Q
(k)
2 ← G

(k)
2 −G(k)

1 S, (k = 1, · · · , o).
10: Q

(k)
3 ← G

(k)
3 − STG

(k)
1 , (k = 1, · · · , o).

11: G
(k)
4 ← STQ

(k)
1 S +Q

(k)
3 S + STQ

(k)
2 + λ(k)A, (k = 1, · · · , o).

12: (P
(1)
4 , · · · , P (o)

4 )← L2

(
G

(1)
4 , · · · , G(o)

4

)
.

13: sk ← (s1, s2) or Q
(k)
1 , Q

(k)
2 , Q

(k)
3 , λ(k), A, S, L2, (k = 1, · · · , o).

14: pk ← s1, P
(k)
4 , (k = 1, · · · , o).

15: return (sk, pk);

Algorithm 2 return a key pair of Hufu-UOV signature scheme. The function
CryptoRandomBytes() returns a randomly string which is cryptography secure.
If we want to get a small private key, we can only store seeds s1, s2 and generate
central map and linear transformation by using s1, s2 in process of signature
generation. If we want to speed up signature generation, we will store central map

and the inverse linear transformations. Since P
(k)
4 (k = 1, 2, · · · , o) are Toeplitz

matrixes. Therefore the public key size of HUFU-UOV is

|pk| = 2o2 − o+ |s1|

field elements. Comparing to original UOV scheme, we reduce the public key
size by a factor which is approximately equal to b4.5oc.

Algorithm 3 Hufu-UOVSign: Signature Generation of Hufu-UOV

Input:
Document m and sk

Output:
Signature (s1, · · · , sn)||r

1: r← ` bits string which is generated randomly.
2: (h1, · · · , hm)← H(H(m)||r).
3: Compute (y1, · · · , ym) = L−1

2 (h1, · · · , hm)
4: eof ← 0.
5: while eof == 0 do
6: Randomly choose(x̄1, · · · , x̄v) ∈ Fv

q .
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7: Substitute these values into F(x̄1, · · · , x̄v, xv+1, · · · , xn) = (y1, · · · , ym).
We can obtain a linear system and a multivariate quadratic equation with
unknowns xv+1, · · · , xn.

8: Solve the linear system and obtain a solution x̄v+1 = a1xn, x̄v+2 = a2xn, · · · , x̄n−1 =
ao−1xn.

9: Substitute (x̄1, · · · , x̄n−1, xn) into the multivariate quadratic equation. We
can obtain a univariate quadratic equation with unknown xn.

10: if The univariate quadratic equation has solution then
11: Solve this univariate quadratic equation and get a solution xn = x̄n. Fi-

nally, we get a solution (x̄1, · · · , x̄n) such that F(x̄1, · · · , x̄n) = (y1, · · · , ym).

12: eof ← 1.
13: end if
14: end while
15: (s1, · · · , sn)← L−1

1 (x̄1, · · · , x̄n).
16: return (s1, · · · , sn)||r;

Algorithm 3 generates a signature for a given document. The signature in-
cludes ` bits salt r.

Algorithm 4 Hufu-UOVVer: Verification of Hufu-UOV

Input:
Signature (s1, · · · , sn)||r, document m and public key pk

Output:
True if (s1, · · · , sn) is a valid signature for m, False otherwise

1: (h1, · · · , hm)← H(H(m)|r).
2: (h′1, · · · , h′m)← P(s1, s2, · · · , sn).
3: if (h′1, · · · , h′m) == (h1, · · · , hm) then
4: return True
5: else
6: return False
7: end if

Algorithm 4 verify whether the signature (s1, · · · , sn)||r is indeed a valid
signature.

5 Security of Hufu-UOV

The security of UOV and Rainbow signature schemes have been well studied.
The methods which can be used to attack Hufu-UOV scheme are showed in
table 1.

5.1 Direct Attack

Given a document y = (y1, · · · , ym) ∈ Fm
q , a straightforward method to attack

Hufu-UOV scheme is to try to solve the public system P(x) = y. If we find a
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Table 1. Methods of attacking Hufu-UOV.

Attack methods
Complexity

Classic Quantum

Direct attack[12,13] O
(
qk

(n−k+dreg(k)

dreg(k)

)ω)
O

(
qk/2

(n−k+dreg(k)

dreg(k)

)ω)
UOV attack [2] O

(
qv−on4

)
O

(
q

v−o
2 n4

)

vector x̄ = (x̄1, · · · , x̄n) ∈ Fn
q satisfies P(x̄) = y, then x̄ is the forgery signature

of y. This is so called direct attack. To achieve this, the attacker can use a
Gröbner Basis method such as F4 or F5 algorithm [12,13]. Since the public key
system of Hufu-UOV scheme is underdetermined (m < n), one usually fixes
some of the variables before applying F4 or F5 algorithm. In [15], Barget et al.
determined the computation complexity for F4 and F5 algorithms over the finite
field Fq to be

O
(
qk
(
n− k + dreg(k)

dreg(k)

)ω)
where ω = 3 in the usual Gaussian elimination algorithm and ω = 2.3766 in
improved algorithm, dreg(k) is the degree of regularity of the ideal formed by
the polynomials in the system after fixing k variables; it is given by the degree
of the first term with negative coefficient in the expansion of

m∏
i=1

(1− zdi)

(1− z)n
,

with di being the total degree of the i-th equations.
Since Grovers algorithm can be used to speed up the brute force part of

the direct attack by using quantum computer, thought there are no specialized
quantum algorithms have been found to solve polynomial system over finite
fields, thus the new complexity of direct attack by using quantum computer is

O
(
qk/2

(
n− k + dreg(k)

dreg(k)

)ω)
.

5.2 UOV attack

The UOV attack was proposed by Kipnis and Shamir [8]. The goal of this attack
is to find the pre-image of the so called Oil subspace. Finding this space allows
to separate the oil from the vinegar variables and recovering the private key. the
complexity of UOV attack is showed in table 1.

6 Parameters

Based on the security analysis in the previous section, we propose some param-
eters for Hufu-UOV signature scheme.
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6.1 Parameters of Hufu-UOV

We choose the parameters m = o, v = 3o, n = o+ v = 4o for Hufu-UOV scheme
as the following table 2 shows. The size of signature include 16 bytes salt, that
is ` = 128 .

Table 2. Parameters of HUFU-UOV signature scheme.

Parameters security public key private key hash value signature size
(Fq, o, v) level(bits) size (KB) size (Bytes) size (Bytes) (Bytes)

(F16, 64, 128) 128 4.096 64 32 112

(F16, 96, 192) 192 9.216 96 48 144

(F16, 128, 256) 256 16.384 128 64 192

(F256, 48, 96) 128 4.592 64 48 160

(F256, 72, 144) 192 10.344 96 72 232

(F256, 96, 192) 256 18.4 128 96 304

6.2 Comparison of UOV-based Signature Schemes

Table 3 compares the key and signature sizes of UOV-based signature schemes
on 128 bits security level. Note that Hufu-UOV signature scheme includes 128
bits salt in signatures.

Table 3. Comparison the key and signature sizes of UOV-based signature schemes.

scheme public key hash size signature size quantum
size (KB) (Bytes) (Bytes) resistant

UOV 508.08 48 144 yes

Rainbow[3] 187.7 48 88 yes

UOVrand[17] 52.531 45 135 yes

RainbowLRS2[17] 44.5 43 79 yes

Hufu-UOV 4.096 32 112 yes

7 Conclusion

In this paper, we propose a new method to reduce the public key size of UOV
signature scheme. This method can make UOV more practical. For example. we
can use Hufu-UOV to build a quantum resistant block chain.
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without Reduction to Zero (F5). In Proceedings of the 2002 International Sym-
posium on Symbolic and Algebraic Computation, ISSAC, pages 75-83. ACM,
2002.

14. Enrico Thomae and Christopher Wolf. Solving underdetermined systems of mul-
tivariate quadratic equations revisited. In International Workshop on Public
Key Cryptography, pages 156C171. Springer, 2012.

15. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis com-
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