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Abstract. Code-based cryptography has a long history but did suffer
from periods of slow development. The field has recently attracted a lot
of attention as one of the major branches of post-quantum cryptography.
However, its subfield of privacy-preserving cryptographic constructions is
still rather underdeveloped, e.g., important building blocks such as zero-
knowledge range proofs and set membership proofs, and even proofs of
knowledge of a hash preimage, have not been known under code-based
assumptions. Moreover, almost no substantial technical development has
been introduced in the last several years.

This work introduces several new code-based privacy-preserving cryp-
tographic constructions that considerably advance the state-of-the-art
in code-based cryptography. Specifically, we present 3 major contribu-
tions, each of which potentially yields various other applications. Our
first contribution is a code-based statistically hiding and computation-
ally binding commitment scheme with companion zero-knowledge (ZK)
argument of knowledge of a valid opening that can be easily extended
to prove that the committed bits satisfy other relations. Our second
contribution is the first code-based zero-knowledge range argument for
committed values, with communication cost logarithmic in the size of
the range. A special feature of our range argument is that, while previ-
ous works on range proofs/arguments (in all branches of cryptography)
only address ranges of non-negative integers, our protocol can handle
signed fractional numbers, and hence, can potentially find a larger scope
of applications. Our third contribution is the first code-based Merkle-tree
accumulator supported by ZK argument of membership, which has been
known to enable various interesting applications. In particular, it allows
us to obtain the first code-based ring signatures and group signatures
with logarithmic signature sizes.

1 Introduction

Code-based cryptography, pioneered by McEliece [55] in 1978, is the study of
cryptosystems based on conjectured hard problems from coding theory and is
one of the oldest branches of public-key cryptography. The field did suffer from
periods of relatively slow development, but recent years have witnessed its resur-
gence. On the one hand, solutions to important theoretical problems such as con-
structing identity-based encryption [37,16] and obtaining worst-case hardness for



Learning Parity with Noise (LPN) [17] have been introduced. On the other hand,
plausible algorithms for practical applications are being recognized by the com-
munity: with 7 PKE/KEM from codes accepted into the second round of the
NIST Post-Quantum Cryptography Standardization process, the field stands to-
gether with lattice-based cryptography [2] as the two most promising candidates
for post-quantum cryptography. Nevertheless, many interesting questions are
still left open in the scope of code-based cryptography.

A prominent subfield of cryptography research is the designs of advanced
schemes aiming to protect both privacy and security of users, namely, privacy-
preserving cryptographic constructions. The major tools for building those con-
structions are zero-knowledge (ZK) proof [40] and argument [38,19] systems that
allow to prove the truth of a statement while revealing no additional information.
Almost all known zero-knowledge proof/argument systems used in code-based
cryptography follow Stern’s framework [67], in which the main technical idea
is to employ random permutations to prove some specific properties of binary
secret vectors, e.g., the secret vectors have a fixed Hamming weight. Variants
of Stern’s protocol have been employed to design a few privacy-preserving con-
structions, e.g., proofs of plaintext knowledge for code-based encryption [59],
linear-size ring signatures [56,30,57,18], linear-size and sublinear-size group sig-
natures [35,3], proofs of valid openings for LPN-based computationally hiding
commitments [46] and proofs for general relations [46]. However, this line of re-
search is still rather underdeveloped, since many important building blocks for
privacy-preserving code-based cryptography are still missing, ranging from very
basic ones like proof of knowledge of a hash preimage to advanced ones such
as range proofs and set membership proofs. Even more worrisome is the slow
progress in the field, with almost no substantial technical development being
introduced in the last 6 years. This unsatisfactory state-of-affairs motivates our
work.

Our Results. In this work, we introduce several new privacy-preserving con-
structions that we believe will considerably advance the state-of-the-art in code-
based cryptography. Specifically, we provide 3 main contributions, each of which
potentially yields various other applications.

First, we put forward a code-based statistically hiding and computation-
ally binding commitment scheme with companion zero-knowledge argument of
knowledge (ZKAoK) of a valid opening. The commitment scheme is based on
a family of collision-resistant hash functions introduced by Augot, Finiasz and
Sendrier (AFS) [6,7], similar variants of which was recently studied in [4,68,17].
The design of the scheme is quite standard, in which we plug in a randomness
with sufficient min-entropy and make use of the left-over hash lemma [39]. Our
non-trivial contribution here is a companion ZK argument system that makes the
commitment scheme much more useful for privacy-preserving protocols. In many
advanced protocols, one typically works with different sub-protocols that share
a common secret, and a commitment supported by ZK proofs/arguments can
greatly help in bridging these layers. In the code-based setting, such a commit-
ment was proposed in [46], but it relies on the hardness of the LPN problem and
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operates in the computationally-hiding setting. In our setting, to base security
on a variant of the Syndrome Decoding problem, the committed message has to
be non-linearly encoded into a low-weight vector of larger dimension before be-
ing hashed. This makes proving knowledge of a valid opening quite challenging,
since one has to prove that the non-linear encoding process is done correctly. We
overcome this problem by employing a specific permuting technique that works
in the framework of Stern’s protocol [67] and that enables us to keep fine-grained
control on how each bit of the message behaves in the encoding process. The fact
that we can “keep track” of the secret committed bits indeed makes our protocol
composable with other privacy-preserving protocols, where we can additionally
prove that these bits satisfy other relations. In particular, it paves the way for
our next 2 contributions.

Second, we provide zero-knowledge range arguments for signed fractional
numbers committed via our code-based commitment. For ` > 0 and f ≥ 0,
we consider fractional numbers X represented as x`x`−1 . . . x0 • x−1x−2 . . . x−f ,
where x` is the sign bit, x`−1, . . . , x0 are the integer bits, and x−1, . . . , x−f are
the fractional bits. Our techniques allow to prove in zero-knowledge that a com-
mitted number X satisfies inequalities X ≤ Y or X < Y , where Y is another
signed fractional number (that could be publicly given or be committed). These
techniques directly yield range arguments addressing both public and hidden
ranges with communication cost logarithmic in the sizes of the ranges. This
not only solves an open problem in code-based cryptography but also brings a
novel feature to the topic of range proofs in general. Range proofs, introduced
by Brickell et al. [20], serve as building blocks in various applications, includ-
ing anonymous credentials [25], auctions [53], e-voting [43] and anonymous e-
cash [23]. Efficient constructions [22,52,44,27,29,41,51,34] have been proposed in
almost all major branches of cryptography, but up to our knowledge, they only
address non-negative integers. Negative numbers do often appear in our daily
life in the forms of financial loss, bad reputation, medical data, etc., and it would
be desirable to be able to handle them in a privacy-preserving manner. More-
over, these data values could be stored as fractional numbers, e.g., bank account
balances, GPAs and tax records, and hence, a protocol addressing them directly
in such forms would potentially be interesting. This inspires our investigation of
range arguments for signed fractional numbers.

Our third contribution is the first code-based accumulator [10] supported by
ZK arguments of valid accumulated values, which directly imply ZK arguments of
set membership. Accumulators are essential building blocks in numerous authen-
tication mechanisms, including ring and group signatures [32,50,31], anonymous
credentials [26,24,1], e-cash [5], and authenticated data structures [64,63]. Accu-
mulators with companion ZK proofs have been proposed from number-theoretic
assumptions [10,61], lattice assumptions [50] and from symmetric-key primi-
tives [31,15], but have not been known in the scope of code-based cryptography.
Our construction fills in this gap and opens up a wide range of applications that
have not been achieved from code-based assumptions. Our design resembles Lib-
ert et al.’s approach for lattices [50], which relies on Merkle hash trees [58] and
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ZKAoK of a tree path from the root to a secret leaf. However, unlike the lat-
tice setting where smallness (and computational hardness) can be defined with
respect to various metrics and the output of each hashing can be easily decom-
posed into binary to serve as the input of the next step, the binary linear code
setting with Hamming metric makes the problem more challenging. At each step,
we have to encode the hash output to a small-weight vector (with respect to its
dimension) before going to the next step, and prove that the whole recursive
process is done correctly. Fortunately, this difficulty can be overcome with our
ZK techniques. As applications, we put forward 2 prominent anonymity-oriented
constructions: ring signature [66] and group signature [28].

Our ring signature scheme is the first one from code-based assumptions
that achieves signature size logarithmic in the cardinality of the ring. Previ-
ous constructions [56,30,57,18] all suffer from linear-size signatures. Designing
logarithmic-size ring signatures is generally a hard problem, which usually re-
quires a powerful supporting technique, which is - in this case - an accumulator
that enables logarithmic-size arguments of set membership.

Our group signature scheme is also the first one that produces logarithmic-
size signatures in the scope of code-based cryptography. Compared with previ-
ous works [35,3], our scheme not only has shorter signatures (for large groups),
but also achieve the stronger notion of CCA-anonymity. The scheme is also ap-
pealing in the sense that it is the first time in all branches of cryptography a
CCA-anonymous group signature scheme is achieved before a standard-model
signature compatible with ZK proofs is known. (The latter is traditionally con-
sidered to be a necessary ingredient for building the former in a generic manner.)

Our Techniques. Let us first discuss our basic techniques for proving in zero-
knowledge the knowledge of a preimage of a hash, computed via the AFS hash

function Hafs : {0, 1}k → {0, 1}n. Let B
$←− Zn×2c·k/c

2 , for some constant c di-
viding k. Let RE: {0, 1}k → {0, 1}2c·k/c be an encoding function that maps x
to RE(x), defined as follows. First, write x block-wise as x = (x1‖ . . . ‖xk/c),
where xj = (xj,1, . . . , xj,c)

> for j ∈ [k/c]. Denote by ∆2c(xj) the binary vec-
tor of dimension 2c and Hamming weight 1 whose sole 1 entry is at the tj-th
position, for tj = Σc

i=12c−i · xj,i ∈ [0, 2c − 1]. Then RE(x) is defined to be
(∆2c(x1)‖ . . . ‖∆2c(xk/c)), and the hash output is set as u = B · RE(x). Given
(B,u), to prove that we know x such that Hafs(x) = u, we have to demonstrate
that the encoding RE(·) is done correctly for x. To this end, we introduce the
following permuting technique.

For every vector s = (s1, . . . , sc) ∈ {0, 1}c, define the permutation Es that
transforms vector x = (x0,0,...,0, . . . , xi1,...,ic , . . . , x1,1,...,1) ∈ {0, 1}2c

into vector
Es(x) = (x′0,0,...,0, . . . , x

′
1,1,...,1), where for each (i1, . . . , ic) ∈ {0, 1}c, we have

xi1,...,ic = x′i1⊕s1,...,ic⊕sc .

Note that, for any s,v ∈ {0, 1}c, we have:

x = ∆2c(v) ⇐⇒ Es(x) = ∆2c(v ⊕ s). (1)

For t = (t1‖ . . . ‖tk/c) ∈ {0, 1}k consisting of k/c blocks of length c, define

the permutation E′t that transforms vector y = (y1‖ . . . ‖yk/c) ∈ {0, 1}2
c·k/c
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consisting of k/c blocks of length 2c into vector of the following form E′t(y) =(
Et1(y1)‖ . . . ‖Etn/c

(yn/c)
)
. Note that, for any t,x ∈ {0, 1}k, we have:

y = RE(x) ⇐⇒ E′t(y) = RE(x⊕ t). (2)

In the framework of Stern’s protocol [67], the equivalence in (2) enables us
to prove that y is the correct encoding of x, as follows. The prover samples
uniformly random t and demonstrates to the verifier that the right-hand side
of (2) holds. The verifier is thus convinced that its left-hand side also holds,
while learning no additional information about x, thanks to the “one-time pad”
t. Moreover, this permuting technique allows us to keep control over the bits of
x, in order to prove that they satisfy other relations. To this end, it suffices to
use the same “one-time pad” at other appearances of x.

Our discussed above technique then readily extends to handle the case when
there are two inputs to the hash function, i.e., Hafs : {0, 1}`×{0, 1}k → {0, 1}n.
If we set k sufficiently large so that the leftover hash lemma [39] applies, then
we obtain a statistically hiding commitment scheme that is supported by our
ZK technique. On the other hand, if we set ` = k = n, then we get a function
that compresses two child-inputs of n bits to one parent-output, which is then
can be used to build a Merkle hash tree. Then, by combining the ZK techniques
from [50] and our techniques for proving correctness of re-encoding at each step
in a tree path, we get a Merkle-tree-accumulator supported by logarithmic-size
zero-knowledge arguments.

To build a ring signature, we add one more level of secret under every leaf
in the tree, so that each leaf corresponds to a user’s public key, and define
the signing process as the process of proving knowledge of an extended path
from beneath a leaf up to the root of the tree. Furthermore, as in [50], by
adding a CCA2-secure encryption layer supported by zero-knowledge arguments
of plaintext knowledge, we can build a secure group signature. To this end, we
employ the randomized McEliece scheme [62] and make it CCA2-secure in the
random oracle model via the Naor-Yung transformation [60]. Both our ring and
group signatures feature logarithmic-size signatures, thanks to the tree structure.

Let us next discuss our techniques for handling inequalities among signed
fractional numbers, which lead to our range arguments. Comparing signed frac-
tional numbers in zero-knowledge is highly non-trivial, due to 2 main reasons.
First, unlike for non-negative numbers, the order of (binary) signed numbers is
not lexicographical, e.g., for (`, f) = (5, 2), the number 110110•11 is lexicograph-
ically larger than 000011 • 00, yet its decimal value is −9.25, which is smaller
than than the decimal value 3 of the latter. Thus, it is counterintuitive when we
compare them in zero-knowledge. Second, the approach of proving X ≤ Y via
demonstrating the existence of Z ≥ 0 such that X+Z = Y (as used in [51]) is not
easily applicable here, due to the problem of overflows. For instance, the binary
addition (with carries) of 011110 • 11 and 000011 • 00 would yield 100001 • 11,
which is translated into an incorrect expression 30.75 + 3 = −30.25. Therefore,
we have to carefully address the complications caused by the signed bits and to
ensure that overflows do not occur.
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Our idea is to derive necessary and sufficient conditions for X ≤ Y , in a way
such that these conditions can be correctly and efficiently proved in ZK. Let
(x`, . . . , x0, x−1, . . . , x−f ), (y`, . . . , y0, y−1, . . . , y−f ) be the bits representing X
and Y , respectively. We observe and then formally prove that X ≤ Y if and only
if there exist bits z`, z`−1, . . . , z0, z−1, . . . , z−f , c`+1, c`, c`−1, . . . , c0, c−1, . . . , c−f+1

satisfying

c−f+1 = x−f · z−f
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, `+ 1]

y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, `]

y` = x` ⊕ c`+1.

This simple-yet-vital result allows us to reduce the inequality relations among
signed fractional numbers to simple relations among bits, which can be effectively
addressed using existing techniques [50,49] for Stern’s protocol.

Organization. The rest of the paper is organized as follows. In Section 2, we
recall the background on code-based hash functions, ZK arguments and previous
Stern-like techniques. Our commitment scheme together with our techniques
for proving knowledge of code-based hash preimages and committed values are
described in Section 3. In Section 4, we present our treatment of signed fractional
numbers and construct ZK range arguments for committed signed fractional
numbers. Our accumulator and its supporting ZK argument of membership are
given in Section 5. Applications of to ring signatures and group signatures are
then discussed in Section 6. The descriptions and analyses of our ring and group
signature schemes are deferred to Appendix C and Appendix D, respectively.

2 Background

2.1 Code-Based Collision-Resistant Hash Functions

This section recalls the family of code-based hash functions proposed by Au-
got, Finiasz and Sendrier (AFS) [6,7], which is based on the hardness of the
2-Regular Null Syndrome Decoding (2-RNSD) problem. We note that the more
recent proposals of code-based hash functions [4,68,17], although relying on dif-
ferent assumptions, are syntactically similar to the AFS family at a high level.
Working with the AFS family allows us to derive practical parameters, based on
the analyses of [14,13]. Let us begin by introducing some supporting notations.

Notations. We identify Z2 as the set {0, 1}. The set {a, . . . , b} is denoted by
[a, b]. We often write [b] when a = 1. Let ⊕ denote the bit-wise addition operation

modulo 2. If S is a finite set, then x
$←− S means that x is chosen uniformly at

random from S. Throughout this paper, all vectors are column vectors. When
concatenating vectors x ∈ Zm2 and y ∈ Zk2 , for simplicity, we use the notation
(x‖y) ∈ Zm+k

2 instead of (x>‖y>)>. Denote B(n, ω) to be the set of all binary
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vectors of length n with weight ω and the symmetric group of all permutations
of n elements to be Sn.

For c ∈ Z+ and for k divisible by c, define the following.

– Regular(k, c): the set of all vectors w = (w1‖ . . . ‖wk/c) ∈ {0, 1}2
c·k/c con-

sisting of k/c blocks, each of which is an element of B1
2c . Here B1

2c is the
set that contains all the elements in {0, 1}2c

with Hamming weight 1. If
w ∈ Regular(k, c) for some k, c, then we call w a regular word.

– RE: {0, 1}k → {0, 1}2c·k/c, a regular encoding function that maps x to RE(x),
defined as follows. Denote x = (x1‖ . . . ‖xk/c), where xj = (xj,1, . . . , xj,c)

>

for j ∈ [k/c]. Then compute tj = Σc
i=12c−i · xj,i. Denote by ∆2c(xj) the

element in B1
2c whose sole 1 entry is at the tj-th position for tj ∈ [0, 2c − 1].

RE(x) is then defined to be (∆2c(x1)‖ . . . ‖∆2c(xk/c)). One can check that
RE(x) ∈ Regular(k, c).

– 2-Regular(k, c): the set of all vectors x ∈ {0, 1}2c·k/c, such that there ex-
ist regular words v,w ∈ Regular(k, c) satisfying x = v ⊕ w. Note that,
x ∈ 2-Regular(k, c) if and only if x can be written as the concatenation
of k/c blocks of length 2c, each of which has Hamming weight 0 or 2. If
x ∈ 2-Regular(k, c) for some k, c, then we call x a 2-regular word.

The 2-RNSD problem. Introduced by Augot, Finiasz and Sendrier [6,7], the
2-RNSD problem asks to find low-weight 2-regular codewords in random binary
linear codes. This problem is closely related to the Small Codeword Problem [54]
and binary Shortest Vector Problem [4], with an additional and strong constraint
that the solution codeword must be 2-regular.

Definition 1. The 2-RNSDn,k,c problem, parameterized by integers n, k, c, is as
follows. Given a uniformly random matrix B ∈ Zn×m2 , where m = 2c · k/c, find
a non-zero vector z ∈ 2-Regular(k, c) ⊆ {0, 1}m such that B · z = 0.

The problem is shown to be NP-complete in the worst case [6]. In practice,
for appropriate choices of n, k, c, the best known algorithms require exponential
times in the security parameter. See [13] for a comprehensive discussion of known
attacks and parameter settings.

The AFS hash functions. Let λ be the security parameter. The AFS family
of hash functions Hafs maps {0, 1}k to {0, 1}n, where n, k = Ω(λ) and k > n.

Each function in the family is associated with a matrix B
$←− Zn×2c·k/c

2 , for
some properly chosen constant c dividing k. To compute the hash value of x ∈
{0, 1}k, one encodes it to the corresponding regular word RE(x) ∈ {0, 1}2c·k/c

and outputs B · RE(x).
The above hash functions are collision-resistant assuming the hardnes of the

2-RNSDn,k,c problem. Suppose that the adversary can produce distinct x0,x1

such that B · RE(x0) = B · RE(x1). Let z = RE(x0) ⊕ RE(x1) 6= 0 then we
have z ∈ 2-Regular(k, c) and B · z = 0. In other words, z is a solution to the
2-RNSDn,k,c problem associated with matrix B.
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In this work, we rely on the above hash function family to develop two tools
for privacy-preserving code-based cryptography: (i) computationally binding and
statistically hiding commitments supporting by ZK arguments of knowledge of
valid openings; (ii) Cryptographic accumulators supporting by ZK arguments of
accumulated values.

2.2 Zero-Knowledge Argument Systems and Stern-like Protocols

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[
〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. If (y, w) 6∈ R, then ∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(y) having oracle access to any V̂(y) and producing a simulated
transcript that is statistically close to the one of the real interaction between
P(y, w) and V̂(y). A related notion is argument of knowledge, which requires
the witness-extended emulation property. For protocols consisting of 3 moves
(i.e., commitment-challenge-response), witness-extended emulation is implied by
special soundness [42], where the latter assumes that there exists a PPT extractor
which takes as input a set of valid transcripts w.r.t. all possible values of the
“challenge” to the same “commitment”, and outputs w′ such that (y, w′) ∈ R.

Stern-like protocols. The statistical zero-knowledge arguments of knowledge
presented in this work are Stern-like [67] protocols. In particular, they are Σ-
protocols in the generalized sense defined in [46,12] (where 3 valid transcripts are
needed for extraction, instead of just 2). The basic protocol consists of 3 moves:
commitment, challenge, response. If we employ our first explicit construction
of statistically hiding string commitment from a code-based assumption in the
first move, then one obtains a statistical zero-knowledge argument of knowledge
(ZKAoK) with perfect completeness, constant soundness error 2/3. In many ap-
plications, the protocol is repeated a sufficient number of times to make the
soundness error negligibly small. For instance, to achieve soundness error 2−80,
it suffices to repeat the basic protocol 137 times.

An abstraction of Stern’s protocols. We recall an abstraction, adapted
from [48], which captures the sufficient conditions to run a Stern-like protocol.
Looking ahead, this abstraction will be helpful for us in presenting our ZK
argument systems: we will reduce the relations we need to prove to instances
of the abstract protocol, using our specific techniques. We recall an abstraction
proposed in [48]. Let K,L be positive integers, where L ≥ K, and let VALID be a
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subset of {0, 1}L. Suppose that S is a finite set such that one can associate every
φ ∈ S with a permutation Γφ of L elements, satisfying the following conditions:{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(3)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{

(M,v),w ∈ ZK×L2 × ZK2 × VALID : M ·w = v
}
.

The conditions in (3) play a crucial role in proving in ZK that w ∈ VALID: To

do so, the prover samples φ
$←− S and lets the verifier check that Γφ(w) ∈ VALID,

while the latter cannot learn any additional information about w thanks to the
randomness of φ. Furthermore, to prove in ZK that the linear equation holds,

the prover samples a masking vector rw
$←− ZL2 , and convinces the verifier instead

that M · (w ⊕ rw) = M · rw ⊕ v.
The interaction between prover P and verifier V is described in Figure 1.

The protocol employs a statistically hiding and computationally binding string
commitment scheme COM.

1. Commitment: Prover samples rw
$←− ZL2 , φ

$←− S and randomness ρ1, ρ2, ρ3 for
COM. Then he sends CMT =

(
C1, C2, C3

)
to the verifier, where

C1 = COM(φ,M · rw; ρ1), C2 = COM(Γφ(rw); ρ2),

C3 = COM(Γφ(w ⊕ rw); ρ3).

2. Challenge: The verifier sends a challenge Ch
$←− {1, 2, 3} to the prover.

3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).

– Ch = 2: Let φ2 = φ, w2 = w ⊕ rw, and RSP = (φ2,w2, ρ1, ρ3).

– Ch = 3: Let φ3 = φ, w3 = rw, and RSP = (φ3,w3, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw ⊕ tr; ρ3).

– Ch = 2: Check that C1 = COM(φ2,M ·w2 ⊕ v; ρ1), C3 = COM(Γφ2(w2); ρ3).

– Ch = 3: Check that C1 = COM(φ3,M ·w3; ρ1), C2 = COM(Γφ3(w3); ρ2).

In each case, the verifier outputs 1 if and only if all the conditions hold.

Fig. 1: Stern-like ZKAoK for the relation Rabstract.

The properties of the protocols are summarized in Theorem1, whose proof is
given in Appendix A.
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Theorem 1 ([48]). Assume that COM is a statistically hiding and computa-
tionally binding string commitment scheme. Then, the protocol in Figure 1 is a
statistical ZKAoK with perfect completeness, soundness error 2/3, and commu-
nication cost O(L). In particular:

– There exists a polynomial-time simulator that, on input (M,v), outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists a polynomial-time knowledge extractor that, on input a com-
mitment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible
values of the challenge Ch, outputs w′ ∈ VALID such that M ·w′ = v.

2.3 Previous Extending-then-Permuting Techniques

We next recall the extending-then-permuting techniques for proving in Stern’s
framework the knowledge of a single secret bit x and a product of 2 secret bits
x1 · x2, presented in [50] and [49], respectively.

Let ⊕ denote the bit-wise addition operation modulo 2. For any bit b ∈ {0, 1},
denote by b the bit b = b ⊕ 1. Note that, for any b, c ∈ {0, 1}, we have b⊕ c =
b⊕ c⊕ 1 = b⊕ c. For any bit b, let enc(b) = (b, b) ∈ {0, 1}2.

For any bit c ∈ {0, 1}, define Fc as the permutation that transforms integer
vector v = (v0, v1) ∈ Z2 into vector Fc(v) = (vc, vc). Namely, if c = 0 then Fc
keeps the arrangement the coordinates of v; or swaps them if c = 1. Note that:

v = enc(b) ⇐⇒ Fc(v) = enc(b⊕ c). (4)

The authors of [50] showed that the equivalence (4) is helpful for proving
knowledge of a secret bit x that may appear in several correlated linear equations.
To this end, one extends x to enc(x) ∈ {0, 1}2, and permutes the latter using Fc,
where c is a uniformly random bit. Then one demonstrates to the verifier that
the permuted vector is enc(x⊕ c), which implies that the original vector enc(x)
is well-formed - which in turn implies knowledge of some bit x. Meanwhile, the
bit c acts as a “one-time pad” that completely hides x.

In [49], Libert et al. proposed a method for proving the well-formedness of
the product of two secret bits x1, x2, based on the following technique.

– For any two bits b1, b2, define the vector

ext(b1, b2) = ( b1 · b2, b1 · b2, b1 · b2, b1 · b2 ) ∈ {0, 1}4,

that is an extension of the bit product b1 · b2.
– For any two bits c1, c2 ∈ {0, 1}, define Tc1,c2 as the permutation that trans-

forms vector v = (v0,0, v0,1, v1,0, v1,1) ∈ Z4 into vector

Tc1,c2(v) =
(
vc1,c2 , vc1,c2 , vc1,c2 , vc1,c2

)
∈ Z4.

Then, the following equivalence holds. For any bits b1, b2, c1, c2 and any vector
v = (v0,0, v0,1, v1,0, v1,1) ∈ Z4,

v = ext(b1, b2) ⇐⇒ Tc1,c2(v) = ext(b1 ⊕ c1, b2 ⊕ c2). (5)
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As a result, to prove that a bit has the form x1 · x2, one can extend it to
vector ext(x1, x2), then permute the latter using Tc1,c2 , where c1, c2 are uniformly
random bits. One then demonstrates to the verifier that the permuted vector is
ext(x1 ⊕ c1, x2 ⊕ c2). This convinces the verifier that the original vector, i.e.,
ext(x1, x2), is well-formed, while learning no additional information about x1

and x2, thanks to the randomness of c1 and c2.

3 Code-Based Statistically Hiding Commitments With
Companion Zero-Knowledge Protocols

In Section 3.1, we develop the AFS hash function to obtain a code-based com-
putationally binding and statistically hiding commitment scheme. Then, in Sec-
tion 3.2, we build up our techniques for proving in zero-knowledge the correct
encoding of binary strings into regular words. Relying on these techniques, we
put forward in Section 3.3 a ZKAoK of a valid opening for the given commitment
scheme. This building block will further be used in other advances constructions,
which will be presented later in the paper.

3.1 Our Construction

Given security parameter λ, choose n = O(λ), k ≥ n + 2λ + O(1). Let the
message space be M = {0, 1}L, and let c be a constant dividing L and k. Let
m0 = 2c · L/c, m1 = 2c · k/c and m = m0 +m1. Our scheme works as follows.

– KGen: Sample B0
$←− Zn×m0

2 , B1
$←− Zn×m1

2 , and output commitment key
pk = B = [B0 | B1] ∈ Zn×m2 .

– Com: On input a message x ∈ {0, 1}L and commitment key pk, sample ran-

domness s
$←− {0, 1}k, compute c = B0 · RE(x)⊕B1 · RE(s) ∈ Zn2 , and output

commitment c together with opening s. Here, RE(·) is the regular encoding
function from Section 2.1.

– Open: On input commitment key pk, a commitment c ∈ Zn2 , a message x ∈
{0, 1}L and an opening s ∈ {0, 1}k, output 1 if c = B0 · RE(x) ⊕ B1 · RE(s),
or 0 otherwise.

One can check that the proposed scheme is correct. Let us now prove the
computationally binding and statistically hiding properties.

Lemma 1. The scheme is computationally binding, assuming the hardness of
the 2-RNSDn,L+k,c problem.

Proof. Suppose that the adversary outputs c,x,x′, s, s′ such that x 6= x′ and

c = B0 · RE(x)⊕B1 · RE(s) = B0 · RE(x′)⊕B1 · RE(s′).

Let z = RE(x)⊕ RE(x′) 6= 0 and y = RE(s)⊕ RE(s′). Then B0 · z + B1 · y = 0.
Next, let t = (z‖y) then we have t 6= 0, t ∈ 2-Regular(L + k, c) and B · t = 0.
In other words, t is a solution to the 2-RNSDn,L+k,c problem associated with
uniformly random matrix B. ut
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The statistically hiding property of the scheme is based on the following
leftover hash lemma.

Lemma 2 (Leftover hash lemma, adapted from [39]). Let D be a distribu-
tion over {0, 1}t with min-entropy k. For any ε > 0 and n ≤ k−2 log(1/ε)−O(1),

the statistical distance between the joint distribution of (B,B · t), where B
$←−

Zn×t2 and t ∈ {0, 1}t is drawn from distribution D, and the uniform distribution
over Zn×t2 × Zn2 is at most ε.

If t is uniformly random over {0, 1}k, then the distribution of RE(t) over {0, 1}m1

has min-entropy exactly k. Since k ≥ n+2λ+O(1), the distribution of B1·RE(s) is
at most 2−λ-far from the uniform distribution over Zn2 . Then, for any x ∈ {0, 1}L,
the distribution of c = B0 · RE(x) ⊕B1 · RE(s) is statistically close to uniform
over Zn2 . As a result, the scheme is statistically hiding.

Remark 1. As for the lattice-based commitment scheme from [47], we can extend
the message space of our scheme to {0, 1}L for arbitrary L = poly(λ) using the
Merkle-Damgard technique together with the AFS hash function.

3.2 Techniques for Handling Well-Formed Regular Words

In our ZKAoK of a valid opening for the given commitment scheme, which will
be presented in Section 3.3, as well as in all subsequent argument systems of
this paper, we need a special mechanism allowing to prove the correctness of the
(non-linear) encoding process from v ∈ {0, 1}m, for some m ∈ Z+, to regular
word y = RE(v) ∈ Regular(m, c), where c divides m. To this end, we introduce
the following notations and techniques.

– Let c ∈ Z+. For every s = (s1, . . . , sc) ∈ {0, 1}c, define the permutation Es

that transforms vector x = (x0,0,...,0, . . . , xi1,...,ic , . . . , x1,1,...,1) ∈ {0, 1}2c

into vector Es(x) = (x′0,0,...,0, . . . , x
′
1,1,...,1), where for each (i1, . . . , ic) ∈

{0, 1}c, we have xi1,...,ic = x′i1⊕s1,...,ic⊕sc .

Note that, for any s,v ∈ {0, 1}c, we have:

x = ∆2c(v) ⇐⇒ Es(x) = ∆2c(v ⊕ s). (6)

– For t = (t1‖ . . . ‖tn/c) ∈ {0, 1}n consisting of n/c blocks of length c, define

the permutation E′t that transforms vector y = (y1‖ . . . ‖yn/c) ∈ {0, 1}2
c·n/c

consisting of n/c blocks of length 2c into vector of the following form E′t(y) =(
Et1(y1)‖ . . . ‖Etn/c

(yn/c)
)
. Note that, for any t,v ∈ {0, 1}n, we have:

y = RE(v) ⇐⇒ E′t(y) = RE(v ⊕ t). (7)

The equivalence in (7) enables us to prove that y is the correct encoding of
v, as follows. The prover samples uniformly random t and demonstrates to the
verifier that the right-hand side of (7) holds. The verifier is thus convinced that
its left-hand side also holds, while learning no additional information about v,
thanks to the “one-time pad” t.
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3.3 ZKAoK of a Valid Opening

We now describe a ZKAoK of a valid opening for the commitment scheme from
Section 3.1. Specifically, we consider the relation Rcom, defined as:

Rcom =
{(

(B = [B0 | B1], c),x, s
)

: B0 · RE(x) + B1 · RE(s) = c
}
.

The protocol is realized based on the permuting technique of Section 3.2. Let
z = (x ‖ s) ∈ {0, 1}L+k and wcom = RE(z) ∈ Regular(L+k, c) ⊂ {0, 1}2c·(L+k)/c.
Then the equation B0 · RE(x) + B1 · RE(s) = c can be written as B ·wcom = c.

Next, define the sets VALIDcom = Regular(L + k, c) and S = {0, 1}L+k. For
t = (t1‖ . . . ‖t(L+k)/c) ∈ S consisting of (L + k)/c blocks of length c, it follows
from (7) that we have

wcom = RE(z) ⇐⇒ E′t(wcom) = RE(z⊕ t). (8)

Moreover, if t is chosen uniformly at random in S, then E′t(wcom) is uniformly
random in VALIDcom. In other words, the conditions of (3) hold, and relationRcom

can be reduced to an instance of Rabstract in Section 2.2. As a result, we can run
the interactive protocol in Figure 1 with public input (B, c) and prover’s witness
wcom, and obtain a ZKAoK for Rcom.

4 Range Arguments for Signed Fractional Numbers

In this section, we present our techniques for obtaining zero-knowledge argu-
ments that signed fractional numbers, committed via the code-based commit-
ment scheme of Section 3, belong to a (hidden or given) range. We first describe
our method for handling signed fractional numbers and establish the crucial the-
oretical foundations of our range arguments in Section 4.1. Next, in Section 4.2,
we present our protocol for proving in zero-knowledge that two committed signed
fractional numbers X,Y satisfies the inequality X ≤ Y . In Section 4.3, we then
discuss how to handily derive various variants of range arguments, based on the
results of Section 4.1 and 4.2.
Notations. For a, b ∈ Z and c ∈ Q, we let [a, b] denote the set of all integers
between a and b (inclusive), and let c · [a, b] denote the set {c · x | x ∈ [a, b]}.

4.1 A Treatment of Signed Fractional Numbers

We will work with signed fractional numbers represented in fixed-point binary
format. For integers ` > 0, f ≥ 0, define the set

Q〈` • f〉 = 2−f · [−2`+f , 2`+f − 1]

=
{
− 2` · x` +

`−1∑
i=−f

2i · xi | (x`, x`−1, . . . , x0, x−1, . . . , x−f ) ∈ {0, 1}1+`+f
}
.
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Each element X ∈ Q〈` • f〉 can be represented as x`x`−1 . . . x0 •x−1x−2 . . . x−f ,
where x` is the sign bit, x`−1, . . . , x0 are the integer bits, and x−1, . . . , x−f are
the fractional bits.

The binary vector (x`, x`−1, . . . , x0, x−1, . . . , x−f ) ∈ {0, 1}1+`+f representing
X is denoted as sbin`,f (A). For notational convenience, we write A = sbin−1

`,f (a)

if a = sbin`,f (A). In this way, we have Q〈` • f〉 = {sbin−1
`,f (a) | a ∈ {0, 1}1+`+f}.

We aim to prove in zero-knowledge inequality relations among elements of
Q〈` • f〉, e.g., to prove that X ≤ Y for secret/committed X,Y . As we have
discussed in Section 1, handling inequalities over Q〈`•f〉 is highly non-trivial, due
to 2 main reasons: the existence of the signed bit and the problem of overflows.

Our idea is to derive necessary and sufficient conditions for X ≤ Y , with
X,Y ∈ Q〈` • f〉, in a way such that these conditions can be correctly and effi-
ciently proved in zero-knowledge. Theorem 2 captures this idea via the existence
of 2(`+ f + 1) extra bits that are related to the bits representing X and Y via
2(`+ f) + 3 simple equations modulo 2. This result lays the vital foundation for
the argument system we will construct in Section 4.2.

Theorem 2. Let X,Y ∈ Q〈`•f〉 and let sbin`,f (X) = (x`, . . . , x0, x−1, . . . , x−f ),
sbin`,f (Y ) = (y`, . . . , y0, y−1, . . . , y−f ). Then, X ≤ Y if and only if there exist
bits z`, z`−1, . . . , z0, z−1, . . . , z−f , c`+1, c`, c`−1, . . . , c0, c−1, . . . , c−f+1 satisfying

c−f+1 = x−f · z−f
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, `+ 1]

y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, `]

y` = x` ⊕ c`+1.

(9)

Before proving Theorem 2, we first introduce a few notations, definitions and a
technical lemma.

Additions. To avoid the problem of overflows, we will treat elements of Q〈`•f〉
as elements of Q〈(`+2)•f〉. If X ∈ Q〈`•f〉 with sbin`,f (X) = (x`, x`−1, . . . , x−f )
then we have

A = −2` · x` +

`−1∑
i=−f

2i · xi = (−2`+2 + 2`+1 + 2`) · x` +

`−1∑
i=−f

2i · xi,

and thus sbin`+2,f (X) = (x`, x`, x`, x`−1, . . . , x−f ) ∈ {0, 1}3+`+f .

Now, let X,Z ∈ Q〈(`+ 2) • f〉. The addition of X and Z when executed in a
conventional computer is indeed the addition of two fractional binary numbers
whose decimal encodings are equal to X and Z. Such addition is formally defined
as follows.

Definition 2 (Signed Fractional Additions in Binary). Let X,Z be ele-
ments of Q〈(`+ 2) • f〉. The sum sbin`+2,f (X) �`+2,f sbin`+2,f (Z) is a vector
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y = (y`+2, y`+1, . . . , y−f ) associated with a vector c = (c`+2, c`+1, . . . , c−f+1)
such that

c−f+1 = x−f · z−f
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, `+ 2]

y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, `+ 2].

The above definition is similar to computing sum of two’s complement inte-
gers up to a scaled factor [65, Section 3.2]. Intuitively, Definition 2 can be viewed
as a binary addition of two binary numbers x,y while sequence c plays a role as
a sequence of carries computed in each step (the last carry-out bit is discarded).

c`+2 c`+1 . . . c1 c0 . . . c−f+1 0
x`+2 x`+1 . . . x1 x0 . . . x−f+1 x−f

+ z`+2 z`+1 . . . z1 z0 . . . z−f+1 z−f
y`+2 y`+1 . . . y1 y0 . . . y−f+1 y−f

It is clear that y−f = x−f ⊕ z−f and, ∀i ∈ [−f + 1, `+ 2], yi = xi ⊕ zi ⊕ ci.
Regarding computing carries, ci = (xi−1 · zi−1) ⊕ (ci−1 · (xi−1 ⊕ zi−1)), ∀i ∈
[−f + 1, ` + 2] and c−f = 0. It is easy to verify that, ∀i ∈ [−f + 1, ` + 2],
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1.

Overflows. Note that Q〈(`+ 2) • f〉 = 2−f · [−22+`+f , 22+`+f − 1]. For X,Y ∈
Q〈(`+2)•f〉, where X+Y falls out of the range 2−f · [−22+`+f , 22+`+f −1], i.e.,
X + Y < −22+` or X + Y > 22+` − 2−f , the addition would yield an overflow.
This phenomenon is formally defined as follows.

Definition 3 (Overflows). Let X,Y ∈ Q〈(`+2)•f〉 and let x = sbin`+2,f (X),
y = sbin`+2,f (Y ). The signed fractional addition x �`+2,f y is called to cause
an overflow (with respect to ` + 2 and f) if and only if X + Y < −22+` or
X + Y > 22+` − 2−f .

The following lemma implies that, if we are given X,Y ∈ Q〈` • f〉 but we
compute their sum over Q〈(`+ 2) • f〉, then we can avoid overflows, and hence,
can reliably capture the inequality X ≤ Y via addition.

Lemma 3. Let X,Y ∈ Q〈`•f〉 ⊂ Q〈(`+2)•f〉 . Then X ≤ Y if and only if Z =
Y −X ∈ 2−f ·[0, 21+`+f−1] ⊂ Q〈(`+2)•f〉 and sbin`+2,f (X) �`+2,f sbin`+2,f (Z)
does not cause an overflow. As a corollary, sbin`+2,f (X) �`+2,f sbin`+2,f (Z) =
sbin`+2,f (Y ) and sbin`+2,f (Z) = (0, 0, z`, z`−1, . . . , z−f ).

Proof. Assume that X ≤ Y and let Z = Y −X (over Q). Since we have X,Y ∈
2−f · [−2`+f , 2`+f − 1], it follows that

Z ∈ 2−f · [0, 21+`+f − 1] ⊂ 2−f · [−2`+2+f , 2`+2+f − 1] = Q〈(`+ 2) • f〉.

Furthermore, X+Z ∈ 2−f · [−2`+f , 21+`+f + 2`+f −2]. Hence, we have −2`+2 <
X +Z < 2`+2− 2−f . As a result, the addition sbin`+2,f (X) �`+2,f sbin`+2,f (Z)
does not cause an overflow and produces the correct result sbin`+2,f (Y ).
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For the reverse direction, if sbin`+2,f (X) �`+2,f sbin`+2,f (Z) does not cause
an overflow, then sbin`+2,f (X) �`+2,f sbin`+2,f (Z) = sbin`+2,f (Y ) and hence
X + Z = Y . Moreover, since Z ∈ 2−f · [0, 21+`+f − 1], we have Z ≥ 0. It then
follows that X ≤ Y .

To see that the first two bits of sbin`+2,f (Z) are 0, let Z ′ := 2f · Z. Then
Z ′ is a non-negative integer in the range [0, 21+`+f − 1] ⊂ [−22+`+f , 22+`+f −
1] which needs exactly 1 + ` + f bits to store in place of 3 + ` + f bits.
Therefore, sbin`+2,f (Z ′) = (0, 0, z′`+f , z

′
`+f−1, . . . , z

′
0) and thus sbin`+2,f (Z) =

(0, 0, z`, z`−1, . . . , z−f ). ut

We are now ready to prove Theorem 2.

Proof of Theorem 2. We first assume that X,Y ∈ Q〈` • f〉 and X ≤ Y. Let x =
sbin`+2,f (X) = (x`, x`, x`, x`−1, . . . , x−f ) and y = sbin`+2,f (Y ) = (y`, y`, y`, y`−1,
. . . , y−f ). By Lemma 3, Z = Y −X ∈ Q〈(` + 2) • f〉 such that sbin`+2,f (Z) =
(0, 0, z`, . . . , z−f ) and sbin`+2,f (X)�`+2,f sbin`+2,f (Z) = sbin`+2,f (Y ) where the
signed fractional addition does not cause an overflow. Let c be the sequence of
carries as in Definition 2. It follows that

c−f+1 = x−f · z−f
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, `+ 1]

c`+2 = y` · c`+1 ⊕ c`+1

y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, `]

y` = x` ⊕ c`+i, ∀i ∈ [1, 2].

We can deduce that c`+1 = y` ⊕ x` = c`+2. Hence, we obtain the system of
equations in (9).

We now prove the reverse direction. If there exists bits z`, z`−1, . . . , z−f , c`+1,
c`, . . . , c−f+1 satisfying (9), then we can construct the following vectors: x =
(x′`+2, x

′
`+1, . . . , x

′
−f ) = (x`, x`, x`, x`−1, . . . , x−f ),y = (y′`+2, y

′
`+1, . . . , y

′
−f ) =

(y`, y`, y`, y`−1, . . . , y−f ), z = (z′`+2, z
′
`+1, . . . , z

′
−f ) = (0, 0, z`, z`−1, . . . , z−f ), and

c = (c′`+2, c
′
`+1, . . . , c

′
−f+1) = (c`+1, c`+1, c`, c`−1, . . . , c−f+1). From the assump-

tion, we deduce that
c′−f+1 = x′−f · z′−f
c′i = x′i−1 · z′i−1 ⊕ y′i−1 · c′i−1 ⊕ c′i−1, ∀i ∈ [−f + 2, `+ 1]

y′−f = x′−f ⊕ z′−f
y′i = x′i ⊕ z′i ⊕ c′i, ∀i ∈ [−f + 1, `+ 2].

It remains to show that c′`+2 = x′`+1 · z′`+1 ⊕ y′`+1 · c′`+1 ⊕ c′`+1. We have

y′`+1 · c′`+1 ⊕ c′`+1 = y` · c`+1 ⊕ c`+1

= y` · (x` · z` ⊕ y` · c` ⊕ c`)⊕ c`+1 = y` · x` · z` ⊕ c`+1.

We claim that y` · x` · z` = 0. To prove this claim, we assume by contradiction
that y` · x` · z` = 1. This is equivalent to x` = z` = y` = 1. Hence c′` = 1
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because y′` = x′` ⊕ z′` ⊕ c′`. This also implies that x′`+1 = 1 and c′`+1 = 1 because
c′`+1 = x′` · z′` ⊕ y′` · c′` ⊕ c′`. Since y′`+1 = x′`+1 ⊕ z′`+1 ⊕ c′`+1 and z′`+1 = 0, we
have y′`+1 = 0 6= y′`, which is a contradiction. Therefore, the claim follows. Thus
y′`+1 · c′`+1 ⊕ c′`+1 = c`+1 and, since z′`+1 = 0, we deduce that x′`+1 · z′`+1 ⊕ y′`+1 ·
c′`+1 ⊕ c′`+1 = c`+1 = c′`+2.

By Definition 2, the above facts imply that x �`+2,f z = y. It is clear that
X = sbin−1

`+2,f (x) and Y = sbin−1
`+2,f (y) ∈ Q〈` • f〉. Let Z := sbin−1

`+2,f (z) ∈
2−f · [0, 21+`+f − 1]. By Definition 3, the addition x �`+2,f z does not cause an
overflow. Therefore, X + Z = Y , and since Z ≥ 0, we obtain that X ≤ Y . This
completes the proof. ut
We also obtain necessary and sufficient conditions for strict inequalities of ele-
ments in Q〈` • f〉, which allow us to handle those of the form X < Y in zero-
knowledge. This result is stated in Theorem 3, whose proof follows the same
lines as that of Theorem 2, and is thus omitted.

Theorem 3. Let X,Y ∈ Q〈`•f〉 and let sbin`,f (X) = (x`, . . . , x0, x−1, . . . , x−f ),
sbin`,f (Y ) = (y`, . . . , y0, y−1, . . . , y−f ). Then, X < Y if and only if there exist
bits z`, z`−1, . . . , z0, z−1, . . . , z−f , c`+1, c`, c`−1, . . . , c0, c−1, . . . , c−f+1 satisfying

c−f+1 = x−f · z−f ⊕ y−f ⊕ 1

ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, `+ 1]

y−f = x−f ⊕ z−f ⊕ 1

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, `]

y` = x` ⊕ c`+1.

4.2 Proving Inequalities Between Committed Elements of Q〈` • f〉

Let ` > 0, f ≥ 0 be integers, and let L = 1 + ` + f . Consider the code-based
commitment scheme of Section 3 with parameters n, k, c, m0, m1, m and L and
commitment key B = [B0 | B1] ∈ Zn×m2 .

Let X,Y ∈ Q〈` • f〉, whose binary representations

x = sbin`,f (X) = (x`, x`−1, . . . , x0, x−1, . . . , x−f ) ∈ {0, 1}L,
y = sbin`,f (Y ) = (y`, y`−1, . . . , y0, y−1, . . . , y−f ) ∈ {0, 1}L.

are committed as

ex = B0 · RE(x)⊕B1 · RE(sx) ∈ Zn2 , ey = B0 · RE(y)⊕B1 · RE(sy) ∈ Zn2 ,

respectively. Our goal is to design an argument system allowing the prover to
convince the verifier in zero-knowledge that the vectors x,y committed in ex, ey
satisfy sbin−1

`,f (x) ≤ sbin−1
`,f (y), i.e., they represent numbers X,Y ∈ Q〈` • f〉 such

that X ≤ Y . Formally, we will build a ZKAoK for the relation Rineq defined as
follows.
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Rineq =
{(

(B = [B0 | B1], ex, ey),x,y, sx, sy
)

: sbin−1
`,f (x) ≤ sbin−1

`,f (y) ∧
ex = B0 · RE(x)⊕B1 · RE(sx) ∧ ey = B0 · RE(y)⊕B1 · RE(sy)

}
.

To prove in zero-knowledge that the inequality sbin−1
`,f (x) ≤ sbin−1

`,f (y) holds,
we rely on the results established in Section 4.1. Specifically, based on Theorem 2,
we can equivalently prove the existence of bits z`, z`−1, . . . , z0, z−1, . . . , z−f , c`+1,
c`, c`−1, . . . , c0, c−1, . . . , c−f+1 satisfying the following 2(` + f) + 3 = 2L + 1
equations modulo 2:

c−f+1 ⊕ x−f · z−f = 0,

ci ⊕ xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1 = 0, ∀i ∈ [−f + 2, `+ 1]

y−f ⊕ x−f ⊕ z−f = 0,

yi ⊕ xi ⊕ zi ⊕ ci = 0, ∀i ∈ [−f + 1, `]

y` ⊕ x` ⊕ c`+1 = 0.

(10)

Now, to handle (10) in zero-knowledge, we can use the extending-then-permuting
techniques of Section 2.3. To this end, we first perform the following extensions
for each i ∈ [−f, `]

xi 7→ xi = enc(xi), yi 7→ yi = enc(yi), zi 7→ zi = enc(zi), ci+1 7→ enc(ci+1),

as well as the following extensions

∀i ∈ [−f + 1, `+ 1] : xi−1 · zi−1 7→ ti−1 = ext(xi−1, zi−1);

∀i ∈ [−f + 2, `+ 1] : yi−1 · ci−1 7→ gi−1 = ext(yi−1, ci−1).

Let M2 = (0, 1) ∈ Z1×2
2 and M4 = (0, 0, 0, 1) ∈ Z1×4

2 . Then (10) can be
rewritten as

M2 · c−f+1 ⊕ M4 · t−f = 0,

M2 · ci ⊕ M4 · ti−1 ⊕ M4 · gi−1 ⊕ M2 · ci−1 = 0, ∀i ∈ [−f + 2, `+ 1]

M2 · y−f ⊕ M2 · x−f ⊕ M2 · z−f = 0,

M2 · yi ⊕ M2 · xi ⊕ M2 · zi ⊕ M2 · ci = 0, ∀i ∈ [−f + 1, `]

M2 · y` ⊕ M2 · x` ⊕ M2 · c`+1 = 0,

which then can be combined via linear algebra into one equation of the form

M0 ·w0 = 0, where M0 ∈ Z(2L+1)×16L
2 is a public matrix, and w0 ∈ {0, 1}16L

has the form:

w0 =
(
x` ‖ . . . ‖ x−f ‖ y` ‖ . . . ‖ y−f ‖ z` ‖ . . . ‖ z−f ‖ c`+1 ‖ . . . ‖ c−f+1 ‖

t` ‖ . . . ‖ t−f ‖g`+1 ‖ . . . ‖ g−f+1

)
. (11)

Next, by combining equation M0 ·w0 = 0 with the two equations underlying
the commitments ex, ey, we can obtain a unified equation of the form M ·w =

18



v, where M ∈ Z(2L+2n+1)×(16L+2m)
2 and v ∈ Z2L+2n+1

2 are public, and w ∈
{0, 1}16L+2m has the form

w =
(

w0 ‖ RE(x) ‖ RE(y) ‖ RE(sx) ‖ RE(sy)
)
. (12)

At this point, we have translated our task into proving knowledge of a well-
formed vector w ∈ {0, 1}16L+2m satisfying equation M · w = v. We next will
reduce the latter task to an instance of the abstraction of Stern’s protocol in
Section 2.2. To this end, we will specify the sets VALIDineq,S and permutations
{Γφ : φ ∈ S} that meet the requirements in (3).

Define VALIDineq as the set of all vectors w ∈ {0, 1}16L+2m that has the
form (12), where sx, sy ∈ {0, 1}k and

� x = (x`, . . . , x0, . . . , x−f ) ∈ {0, 1}L, y = (y`, . . . , y0, . . . , y−f ) ∈ {0, 1}L;
� w0 has the form (11), where: for each i ∈ [−f, `], there exist bits zi, ci+1

satisfying
(i) For each i ∈ [−f, `], one has xi = enc(xi), yi = enc(yi), zi = enc(zi), and

ci+1 = enc(ci+1);
(ii) For each i ∈ [−f + 1, `+ 1], one has ti−1 = ext(xi−1, zi−1);
(iii) For each i ∈ [−f + 2, `+ 1], one has gi−1 = ext(yi−1, ci−1).

It can be observed that the vector w we obtained from the above transfor-
mations is an element of this tailored set VALIDineq. Next, we will employ the
permuting techniques from Section 2.3 and Section 3.2 to handle the special
constraint of w.

Define S as the set {0, 1}4L+2k and for each element φ ∈ S of the form

φ =
(
bx,`, . . . , bx,−f , by,`, . . . , by,−f , bz,`, . . . , bz,−f , bc,`+1, . . . , bc,−f+1,bs,x,bs,y

)
,

where bs,x,bs,y ∈ {0, 1}k, define the permutation Γφ that, when applying to
vector t ∈ Z16L+2m, whose blocks are denoted as(

x` ‖ . . . ‖ x−f ‖ y` ‖ . . . ‖ y−f ‖ z` ‖ . . . ‖ z−f ‖ c`+1 ‖ . . . ‖ c−f+1 ‖
t` ‖ . . . ‖ t−f ‖g`+1 ‖ . . . ‖ g−f+1 ‖ RE(x) ‖ RE(y) ‖ RE(sx) ‖ RE(sy)

)
,

it transforms t as follows:

� ∀i ∈ [−f, `]: xi 7→ Fbx,i(xi); yi 7→ Fby,i(yi); zi 7→ Fbz,i(zi); ci+1 7→ Fbc,i+1(ci+1)
� ∀i ∈ [−f + 1, `+ 1]: ti−1 7→ Tbx,i−1,bz,i−1(ti−1)
� ∀i ∈ [−f + 2, `+ 1]: gi−1 7→ Tby,i−1,bc,i−1

(gi−1)
� RE(x) 7→ E′bx

(RE(x)), where bx = (bx,`, . . . , bx,−f ).
� RE(y) 7→ E′by

(RE(y)), where by = (by,`, . . . , by,−f ).

� RE(sx) 7→ E′bs,x
(RE(sx)), RE(sy) 7→ E′bs,y

(RE(sy)).

Based on the equivalences observed in (4), (5) and (7), one can verify that the
requirements in (3) are satisfied. In other words, we have reduced the considered
relation Rineq to an instance of the relation Rabstract in Section 2.2.

The interactive protocol. Given the above preparations, our protocol now
goes as follows.
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– The public input consists of matrix M and vector v, which are constructed
from the original public input, as discussed above.

– The prover’s witness consists of vector w ∈ VALIDineq, which is built from
the initial secret input, as described above.

The prover and the verifier then interact as in Figure 1. The protocol employs
the statistically hiding and computationally binding string commitment scheme
from Section 3 to obtain the desired statistical ZKAoK. As a corollary of The-
orem 1, we obtain the following theorem, which summarized the properties our
protocol for inequality relation between committed signed fractional numbers.

Theorem 4. There exists a statistical zero-knowledge argument of knowledge
for the relation Rineq with perfect completeness, soundness error 2/3 and com-
munication cost O(L+m) = O(`+ f).

For simulation, we simply invoke the simulator of Theorem 1. For extraction, we
first run the knowledge extractor of Theorem 1 to obtain w′ ∈ VALIDineq such
that M · w′ = v. Then, by backtracking the transformations presented above,
we can obtain x′,y′, s′x, s

′
y such that sbin−1

`,f (x′) ≤ sbin−1
`,f (y′) and

ex = B0 · RE(x′)⊕B1 · RE(s′x) ∧ ey = B0 · RE(y′)⊕B1 · RE(s′y).

In particular, let X ′ = sbin−1
`,f (x′) ∈ Q〈` • f〉 and Y ′ = sbin−1

`,f (Y′) ∈ Q〈` • f〉,
then we have X ′ ≤ Y ′.

4.3 Range Arguments

We now discuss how to use our results in Section 4.1 and Section 4.2 to derive
various variants of range arguments for signed fractional numbers. Depending
on the application contexts, different range types could be considered. Let us
name a few of them.

1. Hidden ranges with non-strict inequalities. This requires to prove that
T ≤ X ≤ Y , where T,X, Y are all committed. Such a range argument can
be easily obtained by running two instances of our protocol of Section 4.2.

2. Hidden ranges with strict inequalities. In this setting, T,X, Y are hid-
den and the range relations are defined as T < X < Y , or T ≤ X < Y .
Here, a zero-knowledge argument of strict inequality is required. Such a pro-
tocol can be obtained by results of Theorem 3 and the techniques used in
Section 4.2.

3. Public ranges: This type of range arguments is the easiest one, where A,B
are publicly given and one proves that A ≤ X ≤ B or A < X < B, for
a committed number X. In fact, inequality X ≤ B can be handled using a
simplified version of the protocol in Section 4.2, where the bits representing B
are not required to be kept secret. Meanwhile, strict inequality X < B can
simply be interpreted as X ≤ B′ for public B′ = B − 2−f .

In all cases considered above, the size of range arguments remains O(`+ f),
i.e., it is logarithmic in the size of the range.
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5 Code-Based Accumulators and Logarithmic-Size
Zero-Knowledge Arguments of Set Membership

In this section, we provide a code-based accumulator scheme supported by zero-
knowledge argument of knowledge of an accumulated value. Such an argument
system is essentially an argument of set membership, in which the prover con-
vinces the verifier in zero-knowledge that his data item (e.g., his public key or
his pseudonym) belongs to a given set, and is a highly desirable building block
in various privacy-preserving applications. Our accumulator relies on a Merkle
hash tree that is built from a suitable variant of the AFS hash function. To
design a supporting zero-knowledge protocol for the hash tree, we first use the
techniques for handling regular words from Section 3.2 to prove knowledge of
hash preimages and images in the path from a leaf to the tree root, and then
adapt Libert et al.’s method [50] to hide the bits determining steps in the path.
As the tree depth is logarithmic in its size, we obtain an argument system for
set membership with size logarithmic in the cardinality of the set.

In Section 5.1, we first recall the definitions and security requirement for cryp-
tographic accumulators. Then, in Section 5.2, we modify the AFS hash function
to support hashing with two inputs, upon which we build our Merkle-tree accu-
mulator in Section 5.3. In Section 5.4, we describe our zero-knowledge argument
system.

5.1 Cryptographic Accumulators

We recall the definitions and security requirement for accumulators.

Definition 4. An accumulator scheme is a tuple of polynomial-time algorithms
(Setup,Accu,WitGen,Verify):

– Setup(1λ) Given a security parameter 1λ, outputs the public parameter pp.
– Accupp(R) Take as input a set R with n data values as R = {d0, . . . ,dN−1},

outputs an accumulator value u.
– WitGenpp(R,d) Take as input the set R and a value d, outputs a witness w

such that d is accumulated in TAcc(R), otherwise returns ⊥ if d 6∈ R.
– Verifypp(u, (d, w)) This deterministic algorithm takes as inputs the accumulator

value u and (d, w), outputs 1 if (d, w) is valid for the accumulator u, otherwise
returns 0 if invalid.

Correctness. For all pp← Setup(n), the following holds:

Verifypp
(
Accupp(R),d,WitGenpp(R,d)

)
= 1 for d ∈ R.

An accumulator is secure, as defined in [8,26], if it is infeasible to output a valid
witness for a value d∗ that is not chosen from the data value set.

Definition 5. An accumulator scheme is secure if for all PPT adversaries A:

Pr
[
pp← Setup(λ); (R,d∗, w∗)← A(pp) :

d∗ 6∈ R ∧ Verifypp(Accupp(R),d∗, w∗) = 1
]

= negl(λ).
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5.2 Hashing with Two Inputs

We aim to build a Merkle-tree accumulator based on the AFS family of hash
functions. Since in Merkle trees, every internal node is the hash of its two children
nodes, we slightly modify the AFS hash functions so that the function takes two
inputs instead of just one.

Definition 6. Let m = 2 · 2c · n/c. The function family H mapping {0, 1}n ×
{0, 1}n to {0, 1}n is defined as H = {hB | B ∈ Zn×m2 }, where for B = [B0|B1]

with B0,B1 ∈ Zn×m/22 , and for any (u0,u1) ∈ {0, 1}n × {0, 1}n, we have:

hB(u0,u1) = B0 · RE(u0)⊕B1 · RE(u1) ∈ {0, 1}n.

Lemma 4. The function family H, defined in Definition 6 is collision-resistant,
assuming the hardness of the 2-RNSDn,2n,c problem.

Proof. Given B = [B0|B1]
$←− Zn×m2 , if one can find two distinct pairs (u0,u1) ∈(

{0, 1}n
)2

and (v0,v1) ∈
(
{0, 1}n

)2
such that hB(u0,u1) = hB(v0,v1), then

one can obtain a non-zero vector z =

(
RE(u0)⊕ RE(v0)
RE(u1)⊕ RE(v1)

)
∈ 2-Regular(2n, c)

such that
B · z = hB(u0,u1)⊕ hB(v0,v1) = 0.

In other words, z is a valid solution to the 2-RNSDn,2n,c problem associated with
matrix B. ut

5.3 Code-Based Merkle-tree Accumulator

We now describe our Merkle-tree accumulator based on the code-based hash
functions H in Definition 6. The construction is adapted from the blueprint by
Libert et al. [50].

Setup(λ). Given n = O(λ), c = O(1) and m = 2 · 2c · n/c. Sample B
$←− Zn×m2 ,

and output the public parameter pp = B.

AccuB(R = {d0, . . . ,dN−1} ⊆ ({0, 1}n)N ). Let the binary representation of j be
(j1, . . . , j`) ∈ {0, 1}`, re-write dj as uj1,...,j` . Build a binary tree with N = 2`

leaves u0,0,...,0, . . . ,u1,1,...,1 in the following way:

1. At depth i ∈ [1, `−1], for the nodes ua1,...,ai,0 ∈ {0, 1}n and ua1,...,ai,1 ∈
{0, 1}n, compute hB(ua1,...,ai,0,ua1,...,ai,1) and define it to be ua1,...,ai
for all (a1, . . . , ai) ∈ {0, 1}i.

2. At depth 0, for the nodes u0 ∈ {0, 1}n and u1 ∈ {0, 1}n, compute
hB(u0,u1) and define it to be the root value u.

Output the accumulated value u.

WitGenB(R,d). If d /∈ R, the algorithm outputs ⊥. Otherwise, it outputs the
witness w for d as follows.
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1. Set d = dj for some j ∈ [0, N − 1]. Re-write dj as uj1,...,j` using the
binary representation of the index j.

2. Consider the path from uj1,...,j` to the root u, the witness w then consists
of the binary representation (j1, . . . , j`) for j as well as all the sibling
nodes of the path. Specifically,

w =
(
(j1, . . . , j`), (uj1,...,j`−1,j̄` , . . . ,uj1,j̄2 ,uj̄1)

)
∈ {0, 1}` ×

(
{0, 1}n

)`
,

VerifyB
(
u,d, w

)
. Let w be of the following form:

w =
(
(j1, . . . , j`), (w`, . . . ,w1)

)
∈ {0, 1}` ×

(
{0, 1}n

)`
.

This algorithm then computes v`, . . . ,v0. Let v` = d and

∀i ∈ {`− 1, . . . , 1, 0} : vi =

{
hB(vi+1,wi+1), if ji+1 = 0;

hB(wi+1,vi+1), if ji+1 = 1.

Output 1 if v0 = u or 0 otherwise.

The correctness of the above Merkle-tree accumulator scheme follows imme-
diately from the construction. Its security is based on the collision resistance
of the hash function family H: if an adversary can break the security of the
accumulator, then one can find a solution to the 2-RNSDn,2n,c problem.

Theorem 5. Assume that the 2-RNSDn,2n,c problem is hard, then the given
accumulator scheme is secure.

Proof. Assume that there exists a PPT adversary B who breaks the security
of the given accumulator scheme with non-negligible probability. By Defini-
tion 5, B first receives a uniformly random matrix B ∈ Zn×m2 generated by
Setup(1λ), and then outputs (R = (d0, . . . ,dN−1),d∗, w∗) such that d∗ 6∈ R and
VerifyB(u∗,d∗, w∗) = 1, where u∗ = AccuB(R).

Let w∗=((j∗1 , . . . , j
∗
` ), (w∗` , . . . ,w

∗
1)) and (j∗1 , . . . , j

∗
` ) be the binary represen-

tation of some index j∗∈ [0, N−1], then we can find a path that starts from dj∗

to the accumulated value u: uj∗1 ,...,j∗` = dj∗ ,uj∗1 ,...,j∗`−1
, . . . ,uj∗1 ,u

∗.

On the other hand, the algorithm VerifyB(u∗,d∗, w∗) can compute another
path: k∗` = d∗,k∗`−1, . . . ,k

∗
1,k
∗
0 = u∗.

Since d∗ 6∈ R, then d∗ 6= dj∗ . Comparing two paths, dj∗ ,uj∗1 ,...,j∗`−1
, . . . ,uj∗1 ,u

∗

and d∗,k∗`−1, . . . ,k
∗
1,u
∗, we can find the smallest integer i ∈ [`], such that

k∗i 6= uj∗1 ,...,j∗i . So we obtain two distinct solutions to form a collision solution to
the hash function hB at the parent node of uj∗1 ,...,j∗i . ut

5.4 Logarithmic-Size Arguments of Set Membership

In this section, we describe a statistical zero-knowledge argument that allows
prover P to convince verifier V in zero-knowledge that P knows a value that was
correctly accumulated into the root of the above code-based Merkle tree. Our
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protocol directly implies a logarithmic-size argument of set membership, with
respect to the set of all data items accumulated into the tree root.

Given a uniformly random matrix B ∈ Zn×m2 and the accumulated value
u ∈ {0, 1}n as input, the goal of P is to convince V that it possesses a value d
and a valid witness w. We define the associated relation Racc as follows:

Racc =
{(

(B,u) ∈ Zn×m2 × {0, 1}n; d ∈ {0, 1}n, w ∈ {0, 1}` × ({0, 1}n)`
)

:

VerifyB
(
u,d, w

)
= 1
}
.

Before constructing a ZKAoK for the above relation, we first present several
additional permuting techniques, which are developed from [50] and from our
permuting technique presented Section 3.2.

– For vector b = (b1, . . . , bn) ∈ {0, 1}n, where n ∈ Z+, denote by Encode(b)
the vector (b̄1, b1, . . . , b̄n, bn) ∈ {0, 1}2n.

– Let I∗n ∈ Zn×2n
2 be an extension of the identity matrix In, obtained by

inserting a zero-column 0n right before each of the columns of In. Note that
if b ∈ {0, 1}n, then b = I∗n · Encode(b).

– For t = (t1, . . . , tn)> ∈ {0, 1}n, define the permutation F ′t that transforms
vector w = (w1,0, w1,1, . . . , wn,0, wn,1)> ∈ {0, 1}2n into:

F ′t(w) = (w1,t1 , w1,t̄1 , . . . , wn,tn , wn,t̄n)>.

Note that, for any t,v ∈ {0, 1}n, we have:

w = Encode(b) ⇐⇒ F ′t(w) = Encode(b⊕ t). (13)

– For b ∈ {0, 1} and v ∈ {0, 1}m/2, we denote Ext(b,v) as

(
b̄ · v
b · v

)
.

– For e ∈ {0, 1}, for t ∈ {0, 1}n, define the permutation Ψe,t that acts on

z =

(
z0

z1

)
∈ {0, 1}m, where z0, z1 ∈ {0, 1}m/2, as follows. It transforms z

to Ψe,t(z) =

(
E′t(ze)
E′t(zē)

)
. Namely, it rearranges the blocks of z according to

e and permutes each block using E′t.

– For any b, e ∈ {0, 1} and v,w, t ∈ {0, 1}n, it follows from (7) that the
following equivalences hold:{

z = Ext(b,RE(v)) ⇐⇒ Ψe,t(z) = Ext(b⊕ e,RE(v ⊕ t))

y = Ext(b̄,RE(w)) ⇐⇒ Ψē,t(y) = Ext(b̄⊕ ē,RE(w ⊕ t)).
(14)

Now let us examine the equations associated with the relation Racc. Note that
algorithm Verify computes the path v` = d,v`−1, . . . ,v1,v0 = u, where vi for
i ∈ {`− 1, . . . , 1, 0} is computed as follows:

vi =

{
hB(vi+1,wi+1), if ji+1 = 0;

hB(wi+1,vi+1), if ji+1 = 1.
(15)
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We translate equation (15) into the following equivalent form.

vi = j̄i+1 · hB(vi+1,wi+1)⊕ ji+1 · hB(wi+1,vi+1)

= j̄i+1 ·
(
B0 ·RE(vi+1)⊕B1 ·RE(wi+1)

)
⊕ji+1 ·

(
B0 ·RE(wi+1)⊕B1 ·RE(vi+1)

)
= B ·

(
j̄i+1 · RE(vi+1)
ji+1 · RE(vi+1)

)
⊕B ·

(
ji+1 · RE(wi+1)
j̄i+1 · RE(wi+1)

)
= B · Ext(ji+1,RE(vi+1))⊕B · Ext(j̄i+1,RE(wi+1))

Therefore, to obtain a ZKAoK for Racc, it is necessary and sufficient to construct
an argument system in which P convinces V in zero-knowledge that P knows
j1, . . . , j` ∈ {0, 1}` and v1, . . . ,v`,w1, . . . ,w` ∈ {0, 1}n satisfying

B · Ext(j1,RE(v1))⊕B · Ext(j̄1,RE(w1)) = u;

B · Ext(j2,RE(v2))⊕B · Ext(j̄2,RE(w2))⊕ v1 = 0.

· · · · · · · · ·
B · Ext(j`,RE(v`))⊕B · Ext(j̄`,RE(w`))⊕ v`−1 = 0.

(16)

Next, we apply the function Encode defined above to vectors v`−1, . . . ,v1.
Let xi = Encode(vi) ∈ {0, 1}2n for i ∈ [` − 1]. Then we have vi = I∗n · xi for
i ∈ [`− 1]. For ease of notation, for i ∈ [`], denote{

yi = Ext(ji,RE(vi)) ∈ {0, 1}m

zi = Ext(j̄i,RE(wi)) ∈ {0, 1}m
(17)

Therefore, the equations in (16) is equivalent to the following.
B · y1 ⊕B · z1 = u;

B · y2 ⊕B · z2 ⊕ I∗n · x1 = 0.

· · · · · · · · ·
B · y` ⊕B · z` ⊕ I∗n · x`−1 = 0.

(18)

Now, using linear algebra, we can transform the equations in (18) into a
unifying equation of the form MA ·wA = vA, where MA ∈ Z`n×L2 ,vA ∈ Z`n2 are
public and wA ∈ {0, 1}L is secret with L = 2`m+ 2(`− 1)n and

wA =
(

y1 ‖ . . . ‖ y` ‖ z1 ‖ . . . ‖ z` ‖ x1 ‖ . . . ‖ x`−1

)
(19)

At this point, let us specify the set VALIDA containing our secret vector wA,
the set SA and permutations {Γφ : φ ∈ SA} such that the conditions in (3) hold.
Let VALIDA be the set of all w′A =

(
y′1‖ . . . ‖y′`‖z′1‖ . . . ‖z′`‖x′1‖ . . . ‖x′`−1

)
∈

{0, 1}L satisfying the following conditions:

– For i ∈ [`], there exists v′i,w
′
i ∈ {0, 1}n, j′i ∈ {0, 1} such that

y′i = Ext(j′i,RE(v′i)) ∈ {0, 1}m, and z′i = Ext(j̄′i,RE(w′i)) ∈ {0, 1}m.
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– For i ∈ [`− 1], x′i = Encode(v′i) ∈ {0, 1}2n.

Let SA =
(
{0, 1}n

)` × ({0, 1}n)` × {0, 1}`. Then, for each element

φ =
(

b1 ‖ . . . ‖ b` ‖ e1 ‖ . . . ‖ e` ‖ g1 ‖ . . . ‖ g`
)
∈ SA,

define the permutation Γφ that transforms

w∗A =
(
y∗1‖ . . . ‖y∗`‖z∗1‖ . . . ‖z∗`‖x∗1‖ . . . ‖x∗`−1

)
∈ {0, 1}L

with y∗i , z
∗
i ∈ {0, 1}m for i ∈ [`] and x∗i ∈ {0, 1}2n for i ∈ [`− 1] into

Γφ(w∗A) =
(
Ψg1,b1

(y∗1)‖ . . . ‖Ψg`,b`
(y∗` )‖Ψḡ1,e1

(z∗1)‖ . . . ‖Ψḡ`,e`
(z∗` )‖

F ′b1
(x∗1)‖ . . . ‖F ′b`−1

(x∗`−1)
)
.

Based on the equivalences observed in (13) and (14), it can be checked that
the conditions in (3) are satisfied. We thus have reduced the considered relation
into an instance of Rabstract.

The interactive protocol. Given the above preparations, our protocol goes
as follows.

– The public input consists of matrix MA and vector vA, which are constructed
from the original public input, as discussed above.

– The prover’s witness consists of vector wA ∈ VALIDA, which is built from
the initial secret input, as described above.

The prover and the verifier then interact as in Figure 1. The protocol utilizes
the statistically hiding and computationally binding string commitment scheme
from Section 3 to obtain the desired statistical ZKAoK. The protocol has com-
munication cost O(L) = ` · O(m+ n) = O(logN) bits.

6 Applications to Ring and Group Signatures

Our Merkle-tree accumulator together with its supporting zero-knowledge argu-
ment of set membership do enable a wide range of applications in code-based
anonymity-oriented cryptographic protocols. In particular, these building blocks
pave the way for the designs of logarithmic-size ring signatures and group sig-
natures from code-based assumptions.

Ring signatures are arguably the most natural applications of accumulators,
due to their decentralized setting and the observation that the ring signing pro-
cedure does capture a proof of ownership of a secret key corresponding to one
of the public keys in the given ring. In our instantiation, the secret x of each
user is an AFS hash preimage, while its image d = B ·RE(x) serves as the user’s
public key. To issue a signature with respect to a ring R = {d0, . . . ,dN−1} con-
taining his public key, the user builds a Merkle tree on top of R, and proves
knowledge of an extended path of hash preimages from his own secret key to the
leaf corresponding to his public key, and then, from there to the tree root. This
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can be done by extending the ZKAoK from Section 5.4 to handle one more layer
of hashing. The obtained interactive zero-knowledge protocol is then repeated a
sufficient number of times to achieve negligibly small soundness error, and then
converted to a ring signature in the random oracle model via the Fiat-Shamir
transformation [36]. The scheme is statistically anonymous and is unforgeable
thanks to the security of the AFS hash function. Details are provided in Ap-
pendix C.

Building group signatures from accumulators is somewhat less intuitive. In
fact, accumulators have been mainly used in group signatures for handling revo-
cations. Libert et al. [50], however, showed that one in fact can design fully-
anonymous group signatures from a Merkle-tree-based ring signature and a
CCA2-secure encryption scheme where the latter admits a zero-knowledge argu-
ment of plaintext knowledge that is compatible with the supporting ZKAoK of
the former. Since we have already obtained the ring signature block, to adapt the
blueprint of [50], it remains to seek a suitable CCA2-secure encryption scheme
and make them work together. To this end, we employ the Naor-Yung double
encryption technique [60] to a randomized variant of the McEliece encryption
scheme [55], suggested in [62]. The resulting CCA2-secure encryption mechanism
is used to encrypt the identity of the signer - which is defined to be the logN bits
determining the path from the tree leaf corresponding to the signer to the tree
root. To complete the picture, we develop a Stern-like zero-knowledge layer for
proving that such CCA2 ciphertexts are well-formed, which works smoothly with
the zero-knowledge underlying the ring signature. Details of our construction are
given in Appendix D.
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A Proof of Theorem 1

Proof. If an honest prover follows the protocol, then he always gets accepted by
the verifier. Thus, the protocol has perfect completeness. It is also easy to see
that the communication cost is bounded by O(L).

We now prove that the protocol is a statistical zero-knowledge argument of
knowledge.

Zero-Knowledge Property. We construct a PPT simulator SIM interacting
with a (possibly dishonest) verifier V̂, such that, given only the public input, SIM
outputs with probability negligibly close to 2/3 a simulated transcript that is
statistically close to the one produced by the honest prover in the real interaction.

The simulator first chooses a random Ch ∈ {1, 2, 3} as a prediction of the

challenge value that V̂ will not choose.

Case Ch = 1: Using basic linear algebra over Z2, SIM computes a vector w′ ∈ ZL2
such that M · w′ = v. Next, it samples rw

$←− ZL2 , φ
$←− S, and randomness

ρ1, ρ2, ρ3 for COM. Then, it sends the commitment CMT =
(
C ′1, C

′
2, C

′
3

)
to V̂,

where

C ′1 = COM(φ,M · rw; ρ1),

C ′2 = COM(Γφ(rw); ρ2), C ′3 = COM(Γφ(w′ ⊕ rw); ρ3).

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send RSP =

(
φ,w′ ⊕ rw, ρ1, ρ3

)
.

– If Ch = 3: Send RSP =
(
φ, rw, ρ1, ρ2

)
.

Case Ch = 2: SIM samples w′
$←− VALID, rw

$←− ZL2 , φ
$←− S, and randomness

ρ1, ρ2, ρ3 for COM. Then it sends the commitment CMT =
(
C ′1, C

′
2, C

′
3

)
to V̂,

where

C ′1 = COM(φ,M · rw; ρ1),

C ′2 = COM(Γφ(rw); ρ2), C ′3 = COM(Γφ(w′ ⊕ rw); ρ3).

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Send RSP =
(
Γφ(w′), Γφ(rw), ρ2, ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
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– If Ch = 3: Send RSP =
(
φ, rw, ρ1, ρ2

)
.

Case Ch = 3: SIM samples w′
$←− VALID, rw

$←− ZL2 , φ
$←− S, and randomness

ρ1, ρ2, ρ3 for COM. Then it sends the commitment CMT =
(
C ′1, C

′
2, C

′
3

)
to V̂,

where C ′2 = COM(Γφ(rw); ρ2), C ′3 = COM(Γφ(w′ ⊕ rw); ρ3) as in the previous
two cases, while

C ′1 = COM(φ,M · (w′ ⊕ rw)⊕ v; ρ1).

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since COM is statis-
tically hiding, the distribution of the commitment CMT and the distribution of
the challenge Ch from V̂ are statistically close to those in the real interaction.
Hence, the probability that the simulator outputs ⊥ is negligibly close to 1/3.
Moreover, one can check that whenever the simulator does not halt, it will pro-
vide an accepted transcript, the distribution of which is statistically close to
that of the prover in the real interaction. In other words, we have constructed a
simulator that can successfully impersonate the honest prover with probability
negligibly close to 2/3.

Argument of Knowledge. Suppose that RSP1 = (tw, tr, ρ2, ρ3), RSP2 =
(φ2,w2, ρ1, ρ3), RSP3 = (φ3,w3, ρ1, ρ2) are 3 valid responses to the same com-
mitment CMT = (C1, C2, C3), with respect to all 3 possible values of the chal-
lenge. The validity of these responses implies that:

tw ∈ VALID;

C1 = COM(φ2,M ·w2 ⊕ v; ρ1) = COM(φ3,M ·w3; ρ1);

C2 = COM(tr; ρ2) = COM(Γφ3(w3); ρ2);

C3 = COM(tw ⊕ tr; ρ3) = COM(Γφ2
(w2); ρ3).

Since COM is computationally binding, we can deduce that{
tw ∈ VALID; φ2 = φ3; tr = Γφ3

(w3); tw ⊕ tr = Γφ2
(w2);

M ·w2 ⊕ v = M ·w3.
(20)

Since tw ∈ VALID, if we let w′ = [Γφ2
]−1(tw), then w′ ∈ VALID. Furthermore,

we have
Γφ2(w′)⊕ Γφ2(w3) = Γφ2(w2) mod 2,

which implies that w′ ⊕ w3 = w2, and that M · w′ ⊕M · w3 = M · w2. As a
result, we have M ·w′ = v. This concludes the proof. ut
Remark 2. In many concrete instances of the protocol, the vector tw = Γφ(w)
sent by the prover in the case Ch = 1 is fully determined by d0 � d bits. Then,
the prover can save the communication cost by sending only the d0 bits that are
sufficient for the verifier to determine tw.
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B Statistically Hiding and Computationally Binding
Commitments

In this section, we recall the standard definitions of statistically hiding and com-
putationally binding commitments.

B.1 Definitions

We recall the definition, statistically hiding and computationally binding prop-
erties for commitment schemes.

Definition 7. A commitment scheme with message space M is a triple of al-
gorithms (KGen,Com,Open) for generating a commitment key, committing to a
message and opening a commitment, respectively.

– KGen: On input 1λ, it outputs a public commitment key pk.

– Com: On input a message x ∈ M and commitment key pk, and it outputs a
commitment/opening pair (c, s).

– Open: On input commitment key pk, a commitment c, a message x and an
opening s, and this algorithm outputs 1 or 0.

Correctness requires that Open evaluates to 1 whenever the inputs were com-
puted by an honest party, namely:

Pr[Open(pk, c,x, s) = 1 : pk ← KGen(1λ); x ∈M, (c, s)← Com(pk,x)] = 1.

Computationally binding property. This property requires that it is infeasible for
any PPT adversary A to output a commitment c, two distinct messages x, x′

and openings s, s′ such that Open(pk, c,x, s) = Open(pk, c,x′, s′) = 1.

Statistically hiding property. This property requires that, given pk ← KGen(1λ),
for any x,x′ ∈ M, the distributions of Com(pk,x) and Com(pk,x′) are statisti-
cally close.

C Code-Based Logarithmic-Size Ring Signatures

In this section, we present a code-based ring signature scheme [66] with signature
size logarithmic in the cardinality of the ring. The construction employs our
accumulator and its associated ZKAoK, given in Section 5.3, as the building
blocks. First, we recall the definitions of ring signatures in Section C.1. Our
code-based instantiation is then described in Section C.2, while its supporting
zero-knowledge argument system is presented in Section C.3. Finally, Section C.4
provides the analysis of the scheme.
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C.1 Definitions and Security Requirements of Ring Signatures

Now we recall the standard definition and security requirements for ring signa-
tures, as put forward in [11,45].

Definition 8. A ring signature scheme consists of a tuple of polynomial-time
algorithms (RSetup,RKgen,RSign,RVerify).

RSetup(1λ): On input the security parameter 1λ, this algorithm outputs the pub-
lic parameter pp, which are available to all users.

RKgen(pp): On input public parameter, it generates a pair of public key and the
corresponding secret signing key (pk, sk).

RSignpp(sk,M,R): Take public parameter, secret key sk, a message M ∈ {0, 1}∗
and R = (pk0, . . . , pkN−1) as inputs, it outputs a signature Σ on the message
M with respect to the ring R. Here, (pk, sk) is a valid key pair output by
RKgen(pp) and pk ∈ R.

RVerifypp(M,R,Σ): This deterministic algorithm verifies a purported ring sig-
nature Σ on the message M with respect to the ring of public keys R, it
outputs 1 if the signature is valid or 0 otherwise.

The correctness requirement says that signatures generated by honest users can
always be accepted as valid ones. This is formalized as follows.

Definition 9 (Correctness). A ring signature (RSetup,RKgen,RSign,RVerify)
is correct if for any pp ← RSetup(1λ), any (pk, sk) ← RKgen(pp), any R such
that pk ∈ R, any M ∈ {0, 1}∗, we have RVerifypp

(
M,R,RSignpp(sk,M,R)

)
= 1.

A ring signature scheme is said to be secure if it satisfies unforgeability with
respect to insider corruption, and statistical anonymity.

A ring signature is unforgeable with respect to insider corruption if it is
infeasible to forge a ring signature without controlling one of the ring members. It
is said to be statistically anonymous if signatures generated by two adversarially
chosen keys are statistically indistinguishable. The formal definitions are given
below.

Definition 10 (Unforgeability w.r.t. insider corruption). A ring signa-
ture scheme (RSetup,RKgen,RSign,RVerify) is unforgeable w.r.t. insider corrup-
tion if for all PPT adversaries A, the probability that A who is given access to
the following oracles succeeds is negligible:

– PKGen on the j-th query runs (pkj , skj)← RKgen(pp) and returns pkj to A.
– A is given access to Sign(j,M,R), which returns RSignpp(skj ,M,R) condi-

tioned on the fact that (pkj , skj) has been generated by PKGen and pkj ∈ R.
– A is given access to a corrupted oracle Corrupt(j), which returns skj, pro-

vided that (pkj , skj) has been generated by PKGen.
– A outputs (M?, R?, Σ?) such that Sign(·,M?, R?) has not been queried. More-

over, R? is non-empty and only contains public keys pkj generated by PKGen
for which j has not been corrupted.
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the probability is

Pr[pp← RSetup(1λ); (M?, R?, Σ?)← APKGen,Sign,Corrupt(pp) :

RVerifypp(M
?, R?, Σ?) = 1] ∈ negl(λ),

Definition 11 (Statistical anonymity). A ring signature scheme provides
statistical anonymity if, for any (possibly unbounded) adversary A,

Pr

[
pp← RSetup(1λ); (M?, j0, j1, R

?)← ARKgen(pp)(pp)

b
$←− {0, 1};Σ∗ ← RSignpp(skjb ,M

?, R?)
: A(Σ?) = b

]
= 1/2 + negl(λ),

where pkj0 , pkj1 ∈ R?.

C.2 Description of Our Ring Signature

The scheme works as follows.

RSetup(1λ) : Let λ be the security parameter, choose n = O(λ), c = O(1)
and m = 2 · 2c · n/c. This algorithm outputs an uniformly random matrix

B
$←− Zn×m2 , and returns pp = B.

RKgen(pp = B) : On input pp = B, choose an uniformly random vector x =(
x(0)

x(1)

)
$←− {0, 1}2n, generates d = hB(x(0),x(1)) ∈ {0, 1}n, and outputs

(pk, sk) = (d,x).
RSignpp(sk,M,R) : On input pp, sk, a message M ∈ {0, 1}∗ and a ring R =

(d0, . . . ,dN−1), where di ∈ {0, 1}nk for every i ∈ [0, N − 1], and sk =

x =

(
x(0)

x(1)

)
∈ {0, 1}2n such that d = hB(x(0),x(1)) ∈ R, outputs a ring

signature Σ on M ∈ {0, 1}∗ with respect to the ring as follows:

1. First, On input the ring R, TAccB(R) is able to build a Merkle tree based
on the ring to obtain the accumulated value u ∈ {0, 1}n.

2. On input ring R and d, we aim to get the witnesses of d with which to find
a path from d to the accumulated value u in the Merkle tree. Run algorithm
TWitnessB(R,d), it outputs the witness

w =
(
(j1, . . . , j`) ∈ {0, 1}`, (w`, . . . ,w1) ∈ ({0, 1}n)`

)
3. Generate a NIZKAoK Πring to show the possession of a valid pair (pk, sk) =

(d,x) such that d is correctly accumulated in u in the Merkle tree. The
details of the protocol is given in Section C.3. The interactive protocol is
repeated κ = ω(log λ) times to achieve negligibly small soundness error
and then made non-interactive via the Fiat-Shamir heuristic as Πring =
({CMTi}κi=1,CH, {RSP}κi=1), where

CH = HFS

(
M, {CMTi}κi=1,B,u, R

)
∈ {1, 2, 3}κ.
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4. Outputs Σ = Πring.

RVerifypp(M,R,Σ) : On input pp = B, a message M , a ring R = (d0, . . . ,dN−1),
and a signature Σ, the algorithm outputs 0/1 as follows:

1. Build a Merkle tree based on the ring R, then the algorithm TAccB(R)
computes the root u of the tree.

2. Parse Σ as Σ = ({CMTi}κi=1, (Ch1, . . . , Chκ), {RSP}κi=1). Return 0 if
(Ch1, . . . , Chκ) 6= HFS

(
M, {CMTi}κi=1,B,u, R

)
. For each i = 1 to κ,

run the verification phase of the protocol from Section C.3 with public
input (B,u) to check the validity of RSPi with respect to CMTi and
Chi. If any of the conditions does not hold, then return 0. Otherwise,
return 1.

C.3 The Underlying Zero-Knowledge Argument System

In this section, we describe the statistical ZKAoK that is invoked by the signer
when producing ring signatures. The protocol is an extension of the one for the
accumulator from Section 5.4. Here, the prover not only convinces the verifier
that a secret value d is properly accumulated to the root of the tree, but it also

shows that he knows x =

(
x(0)

x(1)

)
∈ {0, 1}n × {0, 1}n satisfying

B0 · RE(x(0))⊕B1 · RE(x(1)) = d. (21)

The associated relation Rring is as follows:

Rring =
{ (

(B,u); (d, w,x)
)

: VerifyB
(
u,d, w

)
= 1 ∧

B0 · RE(x(0))⊕B1 · RE(x(1)) = d
}
.

Since the transformation layer for the accumulator has been established in
Section 5.4, we only need to consider the new equation (21). Recall that v` =
d, define x` = Encode(v`) ∈ {0, 1}2n, then we have v` = I∗n · x`. Hence, the
equation (21) is equivalent to the following:

B0 · RE(x(0))⊕B1 · RE(x(1))⊕ I∗n · x` = 0. (22)

Up to this point, one can check that it suffices for P to convince V that he knows
j1, . . . , j` ∈ {0, 1}`, v1, . . . ,v`,w1, . . . ,w` ∈ {0, 1}n, and x(0),x(1) ∈ {0, 1}n
satisfying



B · y1 ⊕B · z1 = u

B · y2 ⊕B · z2 ⊕ I∗n · x1 = 0

· · · · · · · · ·
B · y` ⊕B · z` ⊕ I∗n · x`−1 = 0

B0 · RE(x(0))⊕B1 · RE(x(1))⊕ I∗n · x` = 0,
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where 
yi = Ext(ji,RE(vi)) ∈ {0, 1}m, i ∈ [`]

zi = Ext(j̄i,RE(wi)) ∈ {0, 1}m, i ∈ [`]

xi = Encode(vi) ∈ {0, 1}2n, i ∈ [`].

(23)

By suitably concatenating and extending the matrices and vectors from public
input, we can obtain public matrix MR, public vector vR such that MR ·wR =
vR with secret vector wR ∈ {0, 1}LR with LR = (2`+ 1)m+ 2`n and

wR = (y1‖ . . . ‖y`‖z1‖ . . . ‖z`‖x1‖ . . . ‖x`‖RE(x(0))‖RE(x(1))) (24)

With the desired unifying equation, we now define the set VALIDR that contains
our secret vector wR, the set SR and permutations {ΓφR

: φR ∈ SR} such that
the conditions in (3) hold. Let VALIDR contain all vectors of the form

w′R =
(
y′1‖ . . . ‖y′`‖z′1‖ . . . ‖z′`‖x′1‖ . . . ‖x′`‖u′0‖u′1)

)
∈ {0, 1}LR (25)

satisfying the following conditions:

– For i ∈ [`], there exists v′i,w
′
i ∈ {0, 1}n, j′i ∈ {0, 1} such that

y′i = Ext(j′i,RE(v′i)) ∈ {0, 1}m, and z′i = Ext(j̄′i,RE(w′i)) ∈ {0, 1}m.

– For i ∈ [`], x′i = Encode(v′i) ∈ {0, 1}2n.

– For i ∈ {0, 1}, there exists x(i)′ ∈ {0, 1}n such that u′i = RE(x(i)′) ∈
{0, 1}m/2.

Let SR be of the following form:

SR =
(
{0, 1}n

)` × ({0, 1}n)` × {0, 1}` × ({0, 1}n)2.
Then, for each φR =

(
b1 , . . . , b` , e1 , . . . , e` , g1 , . . . , g` , p0 , p1

)
∈ SR,

define the permutation ΓφR
that transforms

w∗R =
(
y∗1 ‖ . . . ‖y∗` ‖ z∗1 ‖ . . . ‖ z∗` ‖x∗1 ‖ . . . ‖x∗` ‖u∗0 ‖u∗1

)
∈ {0, 1}LR (26)

with y∗i , z
∗
i ∈ {0, 1}m,x∗i ∈ {0, 1}2n for i ∈ [`] and u∗i ∈ {0, 1}m/2 for i ∈ Z2 to

ΓφR
(w∗R) =

(
Ψg1,b1(y∗1) ‖ . . . ‖Ψg`,b`

(y∗` ) ‖Ψḡ1,e1(z∗1) ‖ . . . ‖Ψḡ`,e`
(z∗` ) ‖

F ′b1
(x∗1) ‖ . . . ‖F ′b`

(x∗` ) ‖E′p0
(u∗0) ‖E′p1

(u∗1)
)
.

Based on the equivalences observed in (14), (13) and (7), it can be checked
that the conditions in (3) are satisfied. We thus have reduced the considered
relation into an instance of Rabstract and the desired statistical ZKAoK pro-
tocol can be obtained by running the protocol in Figure 1. The protocol has
communication cost O(LR) = ` · O(m+ n) bits.
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C.4 Analysis of the Scheme

We summarize the properties of the given ring signature scheme in the following
theorem.

Theorem 6. The ring signature scheme described in Section C.2 is correct,
and produces signatures of bit-size O(n · logN). The scheme is unforgeable w.r.t.
insider corruption based on the hardness of the 2-RNSDn,2n,c problem, and it is
statistically anonymous.

The proof of unforgeability employs the following lemma.

Lemma 5. Let h : {0, 1}2n → {0, 1}n be a hash function. Then for x
$←−

{0, 1}2n, the probability that there exists x′ ∈ {0, 1}2n such that h(x′) = h(x) is
at least 1− 2−n.

Proof. There are in total 22n elements x ∈ {0, 1}2n. Among them, there exist
at most 2n − 1 elements that do not have x′ ∈ {0, 1}2n such that h(x′) = h(x).
Thus, the probability that a uniformly random element x has a corresponding

x′ such that h(x′) = h(x) is at least 22n−(2n−1)
22n > 1− 2−n.

With m = 2n and x
$←− {0, 1}m, there exists x′ ∈ {0, 1}m \ {x} such that

B · x = B · x′ with overwhelming probability 1− 2−n.

Theorem 7. The scheme provides unforgeability w.r.t. insider corruption in the
random oracle model if the 2-RNSDn,2n,c problem is hard.

Proof. We prove unforgeability w.r.t. insider corruption by contraposition. Sup-
pose that an adversary A succeeds with non-negligible advantage ε in breaking
unforgeability property, then we are able to construct a PPT algorithm B that
either breaks the security of the accumulator, or breaks the computational sound-
ness of the zero-knowledge protocol, or directly solves an 2-RNSDn,n+k,c problem
with non-negligible probability.

Towards this goal, B first defines the public parameter pp = A. When
A makes queries to the PKGen oracle, B chooses a uniformly random vector

x =

(
x(0)

x(0)

)
∈ {0, 1}2n and computes d = hA(x(0),x(1)). It then providesA with

public key pk = d while keeping the secret key sk = x. For the Corrupt(j) oracle
and Sign(j,M,R) oracle, B is able to answer all the queries made by A since B
possesses all the secret keys. When A halts and outputs (M?, R?, Σ?). Consider
the case that A succeeds in breaking the unforgeability w.r.t. insider corrup-
tion. It then follows that Σ? is a valid signature on message M?, Sign(·,M?, R?)
has not been queried, and R? contains all the public keys pkj generated by
PKGen in which j has not been corrupted. Denote R? = (pki1 , . . . , pki|R?|)
and rewrite it as a set of binary vectors (d0, . . . ,d|R?|−1). Let Σ? = Π?

ring =

({CMT?i }κi=1,CH?, {RSP?}κi=1), where CH? = HFS

(
M?, {CMT?i }κi=1,A,u, R

?
)

and
RSP? is a valid response w.r.t. CMT?i and CH?. Note that the oracle HFS(·) out-
puts uniformly random elements in {1, 2, 3}κ and the same answer is output
when a hash query is made more than once.
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We claim that A had queried
(
M?, {CMT?i }κi=1,A,u

?, R?
)

to the hash or-
acle HFS with overwhelming probability, where u? = TAccA(R?). Otherwise,
the probability of guessing the value of CH? = HFS

(
M?, {CMT?i }κi=1,A,u

?, R?
)

correctly would be at most 3−κ, which is negligible. Therefore, with probabil-
ity at least ε′ := ε − 3−κ, A had queried the hash oracle HFS and we denote
t? ∈ {1, . . . , QH} as the index of this specific query, where QH is the total
number of hash queries made by A.

Algorithm B then runs at most 32 · QH/(ε − 3−κ) extra executions of the
adversary A. In each new run, all queries receive exactly the same answers as in
the original run until the point of t?-th query to the hash oracle. From the t?-th
query on, B replies A with uniformly random and independent values for each
new run. As a result, the input of t?-th query is the same as in the initial run while
the output is uniformly random and independent from the original run. By the
Forking Lemma of Brickell et al. [21], with probability at least 1/2, B can obtain
a 3-fork involving the tuple

(
M?, {CMT?i }κi=1,A,u

?, R?
)

with pairwise distinct

hash values CH
(1)
t? ,CH

(2)
t? ,CH

(3)
t? ∈ {1, 2, 3}κ and corresponding valid responses

RSP
(1)
t? ,RSP

(2)
t? ,RSP

(3)
t? . With probability 1−(7/9)κ, the results of [21] imply that

there exists some j ∈ {1, . . . , κ} such that {CH(1)
t?,j ,CH

(2)
t?,j ,CH

(3)
t?,j} = {1, 2, 3}.

From 3 valid responses (RSP
(1)
t?,j ,RSP

(2)
t?,j ,RSP

(3)
t?,j) w.r.t. the same commit-

ment CMT?j and challenges 1, 2, 3, Theorem 1 ensures that B is able to extract

witnesses (x?,d?, w?), where x? =

(
x?(0)

x?(1)

)
, w? =

(
(j?1 , . . . , j

?
` ), (w?

` , . . . ,w
?
1)
)

such that (j?1 , . . . , j
?
` ) ∈ {0, 1}` is the binary expansion of some index j? ∈

{0, . . . , |R?| − 1} and

hA(x?(0),x?(1)) = d?, (27)

TVerifyA
(
u?,d?, w?

)
= 1. (28)

Since A wins the game, either we have (i) d? 6∈ R? = (d0, . . . ,d|R?|−1) or (ii)
d? ∈ R? = (d0, . . . ,d|R?|−1) and d? = dj? = pkj? .

Case (i) implies that, B can use (d?, R?,u?) to break the security of the
accumulator from equation (28).

Case (ii) implies that, the extracted witnesses (dj? ,x
?) satisfy equation (27)

by the soundness of the argument system. When A queried the PKGen oracle,

B chose skj? = xj? =

(
x

(0)
j?

x
(1)
j?

)
∈ {0, 1}2n satisfying

dj? = A0 · RE(x
(0)
j? )⊕A1 · RE(x

(1)
j? ). (29)

Since R? contains only uncorrupted public keys, we have that xj? 6= x? with
probability at least 1/2 according to Lemma 5. Furthermore, the statistical Wit-
ness Indistinguishability (WI) of the argument system implies that only a neg-
ligible amount of information regarding which witness among x? and xj? is

leaked. Combining equation (27) and equation (29), we obtain A0 · (RE(x
(0)
j? )⊕
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RE(x?(0)))⊕A1 · (RE(x
(1)
j? )⊕ RE(x?(1))) = 0, which yields a valid 2-RNSDn,2n,c

solution w = RE(xj?)⊕ RE(x?).
Therefore, with probability at least 1/2 · (ε− 3−κ) · (1− (7/9)κ) · 1/2, which

is non-negligible, B solves an instance of the 2-RNSDn,2n,c problem. ut

Theorem 8. The scheme provides statistical anonymity in the random oracle
model.

The proof of the above theorem relies on the statistical witness indistinguishabil-
ity of the underlying argument system. The proof is straightforward and omitted.

D Code-Based Logarithmic-Size Group Signatures

This section presents our construction of logarithmic-size group signature from
code-based assumptions. The scheme is based on the ring signature of Section C,
where an encryption layer is introduced to enable the tracing capability. To this
end, the signer is constrained to encrypt his identity, which is the essentially the
bits determining the path from his respective leaf in the Merkle tree to the tree
root. To enable anonymity in the strongest sense, we apply the Naor-Yung double
encryption technique [60] to a randomized variant of the McEliece encryption
scheme [55], suggested in [62], and obtain a CCA2-secure encryption mechanism.

We first recall the definitions and security requirements of group signatures in
Section D.1 and the randomized McEliece encryption scheme is Section D.2. Our
group signature construction is then described in Section D.3. Its supporting
zero-knowledge argument system is presented in Section D.4 and its security
proofs are provided in Section D.5.

D.1 Definitions and Security Requirements of Group Signatures

In this section, we give the syntax and the security model of the static group
signatures [9]. A static group signature means that the group size is determined
when the group is setup and no other new members can be added in, the group
members can issue signatures on behalf of the group anonymously and the opener
is able to trace back the actual signer.

Definition 12. A group signature scheme consists of the following 4 polynomial-
time algorithms (GKgen,GSign,GVerify,GOpen):

– GKgen: The probabilistic group key generation algorithm GKgen takes input
1λ, 1N , where λ is the security parameter and N ∈ N is the number of group
users, outputs the group public key gpk, the group manager’s secret key gmsk
and gsk[k] the secret signing key for each group user of index k ∈ {0, . . . , N−1},
that is, returns a triple (gpk, gmsk,gsk).

– GSign: This probabilistic group signing algorithm on inputs the group public
key gpk, a secret signing key gsk[k] for some signer k ∈ {0, . . . , N − 1}, and a
message M , outputs a group signature Σ on M .
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– GVerify: This deterministic group verify algorithm on inputs gpk, M , a signa-
ture Σ, and outputs either 1 if the signature is valid or 0 otherwise.

– GOpen: On inputs gpk, gmsk, a message M , a signature Σ, and this determin-
istic opening algorithm provides an index k when it succeeds or ⊥ otherwise.

We now recall the requirements for group signature scheme: correctness, full
anonymity and traceability.
Correctness requires that signatures generated by honest group members are
always deemed valid and the opener can always correctly identify the originator
of any signature. Formally, for all λ,N ∈ N, all (gpk, gmsk,gsk) generated by
GKgen(1λ, 1N ), for any k ∈ [0, N−1], and any message M ∈ {0, 1}∗, the following
conditions hold:

GVerify
(
gpk,M,GSign(gpk, gsk[k],M)

)
= 1 and

GOpen
(
gpk, gmsk,M,GSign(gsk[k],M)

)
= k.

Full anonymity requires that it is infeasible for any PPT adversary to distinguish
which of two signers of its choice signed a targeted message even if the adversary
is accessible to all group user’s secret keys, can choose that message and can
query to the opening oracle for any signature except the challenged one. The
requirement is modelled in the first experiment in Figure 2. The advantage of
the adversary A against full anonymity denoted as Advanon

GS,A(λ,N) is defined as
follows:

Advanon
GS,A(λ,N) =

∣∣Pr[Expanon-1
GS,A (λ,N) = 1]− Pr[Expanon-0

GS,A (λ,N) = 1]
∣∣ .

A group signature is fully anonymous if for any PPT adversary A, advantage
Advanon

GS,A(λ,N) is negligible in the security parameter λ.

Full traceability demands that it is infeasible for any PPT adversary to output
a valid group signature that either fails in the opening algorithm or that was
traced to a user who is not in the coalition set even if the adversary could corrupt
the group manager. The requirement is modeled in the second experiment in
Figure 2. The advantage of the adversary A against full traceability is defined
as

SucctraceGS,A(λ,N) = Pr[Exptrace
GS,A(λ,N) = 1].

A group signature scheme is fully traceable if for any PPT adversary A, the
probability SucctraceGS,A(λ,N) is negligible in λ.

D.2 The Randomized McEliece Encryption Scheme

Now we recall a randomized variant of the McEliece [55] encryption scheme as
suggested in [62], which is CPA-secure. The scheme is summarized as follows. It
consists of the following algorithms ME.Setup, ME.KeyGen, ME.Enc, and ME.Dec.

– ME.Setup(1λ): Let ne = ne(λ), ke = ke(λ), te = te(λ) be the parameters for a
binary [ne, ke, 2te + 1] Goppa code. Choose k1, k2 ∈ Z such that ke = k1 + k2.
Let Zk22 be the plaintext space.
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Expanon-b
GS,A(λ,N)

(gpk, gmsk,gsk)
← GKeyGen(1λ, 1N )

(st, j0, j1,M
?)

← AGS.GOpen(gpk,msk,.,.)
1 (gpk,gsk)

Σ? ← GSign(gpk, gsk[jb],M
?)

b′ ← AGS.GOpen(gpk,msk,.,.),¬(M?,Σ?)
2 (st, Σ?)

Return b′

Exptrace
GS,A(λ,N)

(gpk, gmsk,gsk)← GKeygen(1n, 1N )
st← (gmsk, gpk)
C ← ∅ ; K ← ε ; Cont← true
while (Cont = true) do

(Cont, st, j) ←
AGS.GSign(gpk,gsk[·],·)1 (st,K)

if Cont = true then C ← C ∪ {j};
K ← gsk[j]

end if
end while;
(M?, Σ?)← AGS.GSign(gpk,gsk[·],·)2 (st)
if GVerify(gpk,M?, Σ?) = 0, Return 0
if GOpen(gpk, gmsk,M?, Σ?) =⊥,

Return 1
if GOpen(gpk, gmsk,M?, Σ?) = j?

∧ (j? ∈ {0, . . . , N − 1} \ C)
∧ (no signing query involved(j?,M?))

then Return 1 else Return 0

Fig. 2: Experiments for the definitions of anonymity and full traceability

– ME.KeyGen(ne, ke, te): This algorithm outputs the encryption key and decryp-
tion key for the randomized McEliece encryption scheme. It works as follows:

1. Choose a generator matrix G′ ∈ Zne×ke
2 of a randomly selected [ne, ke, 2te+1]

Goppa code. Let S ∈ Zke×ke2 be a random invertible matrix and P ∈ Zne×ne
2

be a random permutation matrix, then compute G = PG′S ∈ Zne×ke
2 .

Output encryption key pkME = G and decryption key skME = (S,G′,P).

– ME.Enc(pkME,m): On input a message m ∈ Zk22 and pkME, sample u
$←− Zk12

and e
$← B(ne, te), and then output the ciphertext c = G ·

(
u
m

)
⊕ e ∈ Zne

2 .

– ME.Dec(skME, c): On input the ciphertext c and decryption key skME, it works
as follows:

1. Multiply P−1 to the left of the ciphertext c, then apply an error-correcting
algorithm. Obtain m′′ = DecodeG′(c · P−1) where Decode is an error-
correcting algorithm with respect to G′. Returns ⊥ if Decode fails.

2. Multiply S−1 to the right of the ciphertext m′′, then m′ = S−1 ·m′′, parse

m′ =

(
u
m

)
, where u ∈ Zk12 and m ∈ Zk22 , and return m.

Assuming the hardness of the Decisional McEliece problem DMcE and the Deci-
sional Learning Parity with (fixed-weight) Noise problem DLPN [62,33], we have
the CPA-security of the randomized McEliece scheme in the standard model.
The definitions of the two problems are given below.
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Definition 13. The DMcE(ne, ke, te) problem asks to determine whether a ma-
trix G ∈ Zne×ke

2 is uniformly chosen from Zne×ke
2 or is generated by the algorithm

ME.KeyGen(ne, ke, te) described above.

When ne = ne(λ), ke = ke(λ), te = te(λ), we say that the DMcE(ne, ke, te)
problem is hard, if the success probability of any PPT distinguisher is at most
1/2 + negl(λ).

Definition 14. The DLPN(ke, ne,B(ne, te)) problem asks to determine whether
a pair (A, s) ∈ Zne×ke

2 ×Zn2 is uniformly chosen from Zne×ke
2 ×Zn2 or is obtained

by choosing A
$← Zne×ke

2 , u
$← Zk2 , e

$← B(ne, te) and outputting (A,A · u⊕ e).

When ke = ke(λ), ne = ne(λ), te = te(λ), we say that the DLPN(ke, ne,B(ne, te))
problem is hard, if the success probability of any PPT distinguisher is at most
1/2 + negl(λ).

D.3 Our Logarithmic-Size Group Signature Scheme

GKeygen(1λ, 1N ) : On input the parameters 1λ, 1N , the algorithm samples a

uniformly random matrix B
$←− Zn×m2 . Then it performs as follows to get

the group public key, group manager’s secret key and secret signing key for
each group user.

1. For each j ∈ [0, N − 1], sample a random binary vector xj =

(
x

(0)
j

x
(1)
j

)
$←−

{0, 1}2n and compute dj = hB(x
(0)
j ,x

(1)
j ) ∈ {0, 1}n. {dj}N−1

j=0 should be
pairwise distinct, otherwise restart the process. Then define the set R =
(d0, . . . ,dN−1).

2. Run algorithm TAccB(R) to build the Merkle tree based on R and the hash
function hB, and obtain the accumulated value u ∈ {0, 1}n.

3. Let ` = dlogNe. For each j ∈ [0, N − 1], let (j1, . . . , j`) be the binary
representation of j. Run algorithm TWitnessB(R,dj) to outputs a witness
w(j) of dj such that dj is correctly accumulated in u.

w(j) =
(
(j1, . . . , j`) ∈ {0, 1}`, (w(j)

` , . . . ,w
(j)
1 ) ∈ ({0, 1}n)`

)
Then define gsk[j] = (xj ,dj , w

(j)).

4. Run ME.KeyGen(ne, ke, te) twice to obtain two key-pairs (pkME
(1) = G1 ∈

Zne×ke
2 , skME

(1)) and (pkME
(2) = G2 ∈ Zne×ke

2 , skME
(2)).

5. Output

gpk := {B,u,G1,G2} ; gmsk := skME
(1); gsk := (gsk[0], . . . , gsk[N − 1]).

GSign(gpk, gsk[j],M): On input M ∈ {0, 1}∗ and the user’s secret signing key

gsk[j] = (xj ,dj , w
(j)), where w(j) =

(
(j1, . . . , j`), (w

(j)
` , . . . ,w

(j)
1 )
)
, the user

performs as follows :
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1. Encrypt the identity bin(j) = (j1, . . . , j`) ∈ {0, 1}` twice using the random-
ized McEliece encryption scheme. More precisely, for each i ∈ {1, 2}, sample

ri
$←− Zke−`2 , ei

$←− B(ne, te) and compute

ci = Gi ·
(

ri
bin(j)

)
⊕ ei ∈ Zne

2 .

2. Generate a NIZKAoK Πgroup to show the possession of a valid tuple τ =(
xj ,dj , w

(j), r1, e1, r2, e2

)
, where

xj =

(
x

(0)
j

x
(1)
j

)
and w(j) =

(
(j1, . . . , j`), (w

(j)
` , . . . ,w

(j)
1 )
)
,

such that:

(a) hB(x
(0)
j ,x

(1)
j ) = dj and TVerifyB

(
u,dj , w

(j)
)

= 1.

(b) c1 and c2 are both correct encryptions of bin(j) = (j1, . . . , j`)
> with

randomness (r1, e1) ∈ Zke−`2 × B(ne, te) and (r2, e2) ∈ Zke−`2 × B(ne, te),
respectively.

This is done by running the interactive argument system of Section D.4
on public input (B,u,G1,G2, c1, c2) and prover’s witness τ defined above.
The protocol is repeated κ = ω(log λ) times to achieve negligible soundness
error and made non-interactive via the Fiat-Shamir heuristic as Πgroup =
({CMTi}κi=1,CH, {RSP}κi=1), where

CH = HFS

(
M, {CMTi}κi=1,B,u,G1,G2, c1, c2

)
∈ {1, 2, 3}κ.

3. Outputs the group signature Σ = (Πgroup, c1, c2).

GVerify(gpk,M,Σ) : On input gpk,M,Σ, the verification algorithm proceeds as
follows:

1. Parse Σ as Σ =
(
{CMTi}κi=1, (Ch1, . . . , Chκ), {RSP}κi=1, c1, c2

)
.

If (Ch1, . . . , Chκ) 6= HFS

(
M, {CMTi}κi=1,B,u,G1,G2, c1, c2

)
, then return

0.

2. For each i = 1 to κ, run the verification phase of the protocol in Section D.4
with public input (A,u,G1,G2, c1, c2) to check the validity of RSPi w.r.t.
CMTi and Chi. If any of the conditions does not hold, then return 0.

3. Return 1.

GOpen(gpk, gmsk, Σ,M): On input gmsk = skME
(1) and a group signature Σ =

(Πgroup, c1, c2) on message M , this algorithm proceeds as follows:

1. Run ME.Dec(skME
(1), c1) to decrypt c1. If decryption fails, then return⊥.

Otherwise, let p = (j′1, . . . , j
′
`)
> ∈ {0, 1}` be the result of decryption.

2. Outputs index j ∈ [0, N − 1] that has binary representation (j′1, . . . , j
′
`).
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D.4 The Supporting Zero-Knowledge Argument System

In this section, we present the zero-knowledge protocol that is exploited by
signers when generating signatures in Section D.3. This protocol is extended
from the one in Section C.3, for which an encryption layer is added. Specifically,
the prover additionally proves possession of secret values r1, r2 ∈ {0, 1}ke−`,
e1, e2 ∈ B(ne, te) such that

c1 = G1 ·
(

r1

bin(j)

)
⊕ e1, and c2 = G2 ·

(
r2

bin(j)

)
⊕ e2, (30)

where G1,G2 ∈ Zne×ke
2 and c1, c2 ∈ {0, 1}ne . The associated relation Rgroup is

given below.

Rgroup =
{ (

(B,u,G1,G2, c1, c2); (d, w,x, r1, r2, e1, e2)
)

:

VerifyB
(
u,d, w

)
= 1 ∧B0 · RE(x(0))⊕B1 · RE(x(1)) = d ∧

c1 = G1 ·
(

r1

bin(j)

)
⊕ e1 ∧ c2 = G2 ·

(
r2

bin(j)

)
⊕ e2

}
.

We first recall the permuting technique to prove in ZK the knowledge of
e ∈ B(ne, te) suggested by Stern [67]. To this end, the prover samples a uniformly
random permutation σ ∈ Sne

and shows the verifier that σ(e) ∈ B(ne, te). Due
to the following equivalence

e ∈ B(ne, te)⇐⇒ σ(e) ∈ B(ne, te), (31)

the verifier should be convinced that e ∈ B(ne, te). Furthermore, σ(e) is uniform
in B(ne, te) since σ is uniform in Sne .

Now let us look at relation Rgroup. As the transformation for the ring signa-
ture layer has been demonstrated in Section C.3, we consider the newly appeared
relations in (30).

Denote bin(j) = (j1, . . . , j`)
> ∈ {0, 1}`, f = Encode(bin(j)) ∈ {0, 1}2`, and

hi = Encode(ri) ∈ {0, 1}2ke−2` for i ∈ {1, 2}. Let G∗i ∈ Zne×(ke+`)
2 be the matrix

obtained by adding a zero-column 0ne right before each of the columns of Gi,
for i ∈ {1, 2}. It is then verifiable that equations in (30) is equivalent to

c1 = G∗1 ·
(

h1

f

)
⊕ e1, and c2 = G∗2 ·

(
h2

f

)
⊕ e2. (32)

Let wg = (f‖h1‖h2‖e1‖e2) ∈ {0, 1}2ne+4ke−2` be the secret vectors appeared
in (32). Before proceeding further, let us recall that for the ring signature layer,
we obtain MR · wR = vR, where wR is of the form (24). Combing the ring
signature layer and the new encryption layer, we are able to obtain a unifying
equation MG · wG = vG, where wG = (wR‖wg) ∈ {0, 1}LG with LG = LR +
2ne + 4ke − 2`.

Up to this point, we have transformed the considered statement into a unified
form. We are now ready to define the set VALIDG that consists of our secret vector
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wG, the set SG and the associated permutation {ΓφG
: φG ∈ SG} such that the

conditions in (3) hold.
Let VALIDG be the set of all vectors of the form w′G = (w′R‖f ′‖h′1‖h′2‖e′1‖e′2) ∈

{0, 1}LG , satisfying the following conditions:

– w′R satisfies the conditions specified in (25).

– f ′ = Encode(bin(j′)) with bin(j′) = (j′1, . . . , j
′
`)
>.

– There exists r′i ∈ {0, 1}ke−` such that h′i = Encode(r′i) for i ∈ {1, 2}.
– e′1, e

′
2 ∈ B(ne, te).

Define the set SG = SR ×
(
{0, 1}ke−`

)2 × (Sne

)2
, where SR is defined in Sec-

tion C.3. Then for each φG = (φR,a1,a2, σ1, σ2) ∈ SG, the associated per-
mutation ΓφG

performs as follows. It transforms vector of the form w∗G =
(w∗R‖f∗‖h∗1‖h∗2‖e∗1‖e∗2) into

ΓφG
(w∗G) = ( ΓφR

(w∗R) ‖ F ′g(f∗) ‖ F ′a1
(h∗1) ‖ F ′a2

(h∗2) ‖ σ1(e∗1) ‖ σ2(e∗2) ),

where g = (g1, . . . , g`)
>, gi is the one appearing in φR for all i ∈ [`], and ΓφR

is
defined as in Section C.3.

Based on the equivalences observed in (14), (13), (7) and (31), it can be
checked that the conditions in (3) are satisfied. We thus have reduced the con-
sidered relation into an instance of Rabstract and the desired statistical ZKAoK
protocol can be obtained by running the protocol in Figure 1. The protocol has
communication cost O(LG) = O((2`+ 1)m+ 2`n+ 2ne + 4ke − 2`) bits.

D.5 Analysis of the Scheme

We summarize the properties of the given group signature scheme in the following
theorem.

Theorem 9. The group signature scheme described in Section D.3 is correct,
and produces signatures of bit-size O((2` + 1)m + 2`n + 2ne + 4ke − 2`) with
` = dlogNe.

Theorem 10. The scheme provides full traceability in the random oracle model
if the 2-RNSDn,2n,c problem is hard.

Proof. The proof is done by contraposition. Assuming that an adversary A suc-
ceeds with non-negligible advantage ε, then we construct a PPT algorithm B
that solves a 2-RNSDn,2n,c problem with non-negligible probability.

Given a matrix A ∈ Zn×m2 , B faithfully runs the GKeygen algorithm and
then provides the adversary with gpk and gmsk. At the same time, B keeps all
the users’ private keys gsk[j] = (xj ,dj , w

(j)), where u = TAccA(d0, . . . ,d1) and

dj = hA(x
(0)
j ,x

(1)
j ) ∈ {0, 1}n for each j ∈ [0, N − 1]. This allows B to answer all

the corruption and signing queries. Note that the oracleHFS(·) outputs uniformly
random elements in {1, 2, 3}κ and the same answer is output when a hash query
is made more than once.
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When A halts and outputs (M?, Σ?). Consider the case that A succeeds in
breaking the traceability. It then follows that Σ? is a valid signature on message
M?. Let (M?, Σ?) open to some uncorrupted user j?, for which (j?,M?) is
not queried to the signing oracle. Parse Σ? as (Π?

group, c
?
1, c

?
2) and Π?

group as
({CMT?i }κi=1,CH

?, {RSP?}κi=1).
We claim that A had queried

(
M?, {CMT?i }κi=1,A,u,G1,G2, c

?
1, c

?
2

)
with

overwhelming probability. Otherwise, the probability of guessing the value of
CH? = HFS

(
M?, {CMT?i }κi=1,A,u,G1,G2, c

?
1, c

?
2

)
would be at most 3−κ, which

is negligible. Therefore, with probability at least ε′ := ε − 3−κ, A had queried
the hash oracle HFS and denote by t? ∈ {1, . . . , QH} the index of this specific
query, where QH is the total number of hash queries made by A.

Algorithm B then runs at most 32 ·QH/(ε− 3−κ) extra executions of the ad-
versary A. In each new run, all queries receive exactly the same answers as in the
original run until the point of t?-th query to the hash oracle. From the t?-th query
on, B replies A with uniformly random and independent values for each new run.
As a result, the input of t?-th query is the same as in the initial run while the
output is uniformly random and independent from the original run. By the Fork-
ing Lemma of Brickell et al. [21], with probability at least 1/2, B can obtain a
3-fork involving the same tuple

(
M?, {CMT?i }κi=1,A,u,G1,G2, c

?
1, c

?
2

)
with pair-

wise distinct hash values CH
(1)
t? ,CH

(2)
t? ,CH

(3)
t? ∈ {1, 2, 3}κ and corresponding valid

responses RSP
(1)
t? ,RSP

(2)
t? ,RSP

(3)
t? . With probability 1− (7/9)κ, the results of [21]

imply that there exists some j ∈ {1, . . . , κ} such that {CH(1)
t?,j ,CH

(2)
t?,j ,CH

(3)
t?,j} =

{1, 2, 3}.
From 3 valid responses (RSP

(1)
t?,j ,RSP

(2)
t?,j ,RSP

(3)
t?,j) w.r.t. the same commit-

ment CMT?j and all challenges 1, 2, 3, Theorem 1 ensures that B is able to extract
witnesses

(x?,d?, w?, r?1, r
?
2, e

?
1, e

?
2),

where x? =

(
x?(0)

x?(1)

)
∈ {0, 1}2n, w? =

(
(j?1 , . . . , j

?
` ), (w?

` , . . . ,w
?
1)
)

such that

(j?1 , . . . , j
?
` ) ∈ {0, 1}` is the binary expansion of some integer j? ∈ [0, N − 1] and

hA(x?0,x
?
1) = d?, (33)

TVerifyA
(
u?,d?, w?

)
= 1. (34)

Since A wins the game, either we have (i) d? 6∈ R = (d0, . . . ,dN−1) or (ii) d? ∈
R = (d0, . . . ,dN−1) and d? = dj? . Note that {dj}N−1

j=0 are pairwise distinct, as
ensured by the GKeyen algorithm.

Case (i) implies a violation of the security of the underlying accumulator.
Case (ii) implies that, c?1 decrypts to (j?1 , . . . , j

?
` ) ∈ {0, 1}` from the soundness

of the argument system. Therefore, A did not obtain the private key gsk[j?],

which contains a vector xj? =

(
x

(0)
j?

x
(1)
j?

)
∈ {0, 1}2n that satisfies

dj? = A0 · RE(x
(0)
j? )⊕A1 · RE(x

(1)
j? ). (35)
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Since j? is uncorrupted, xj? 6= x? with probability at least 1/2. Combining
equation (33) and equation (35), it follows that

A0 · (RE(x
(0)
j? )⊕ RE(x?(0)))⊕A1 · (RE(x

(1)
j? )⊕ RE(x?(1))) = 0,

which yields a valid 2-RNSDn,2n,c solution w = RE(xj?) ⊕ RE(x?). To argue
xj? 6= x? with probability at least 1/2, we observe that A may learn dj? =

A0 · RE(x
(0)
j? )⊕A1 · RE(x

(1)
j? ) by corrupting gsk[j? + 1] or gsk[j? − 1]. However,

there exists at least one another vector x? 6= xj? . What is more, the statistical
WI property implies that a negligible amount of information regarding which
witness among x? and xj? is leaked when replying the signing queries (j?, ·).

Therefore, with probability at least 1/2 · (ε− 3−κ) · (1− (7/9)κ) · 1/2, which
is non-negligible, B solves an instance of the 2-RNSDn,2n,c problem. ut

Theorem 11. Assume that the DMcE(ne, ke, te) and the DLPN(ke, ne,B(ne, te))
problems are hard and the argument system is simulation-sound, then the group
signature scheme is fully anonymous.

Proof. We prove the theorem using a sequence of indistinguishable games. The
first game is experiment Expanon-0

GS,A (λ,N) whereas the last game is experiment

Expanon-1
GS,A (λ,N). It then follows that our group signature scheme is fully anony-

mous. For each i, denote by Wi the event that the adversary outputs 1 in Game i.

Game 0: In this game, the challenger B runs experiment Expanon-0
GS,A (λ,N), in

which the adversary A receives signature Σ? ← GSign(gpk, gsk[j0],M?) in
the challenge phase. Let Σ? = (Π?

group, c
?
1, c

?
2). Then we have Pr[W0] =

Pr[Expanon-0
GS,A (λ,N) = 1].

Game 1: This game is the same as Game 0 except that B keeps both decryp-
tion keys of McEliece encryption scheme instead of wiping out the second

one sk
(2)
ME. We can see that this change does not affect A’s view. Therefore

Pr[W1] = Pr[W0].

Game 2: This game modifies Game 1 as follows: The opening oracle employs the

second McEliece decryption key sk
(2)
ME instead of the first one sk

(1)
ME. The view

of A is the same as in Game 1 until the event F1, that A queries the opening
oracle a signature Σ = (Πgroup, c1, c2) with c1 and c2 encrypting distinct `-
bit strings, happens. Since event F1 breaks the soundness of the underlying
argument system, we have |Pr[W2] − Pr[W1]| ≤ Pr[F1] ≤ Advsound

B (λ) ∈
negl(λ).

Game 3: This game changes Game 2 by generating simulated proof instead of
real proof in the challenged phase. In other words, Πgroup? is now a simulated
proof while c?1 and c?2 encrypt the same `-bit string. Due to the statistical
zero-knowledge property of the underlying argument system, the view of the
adversary in Game 2 and Game 3 are statistically indistinguishable, implying
that |Pr[W3]− Pr[W2]| ∈ negl(λ).
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Game 4: This game modifies game 3 by changing the distribution of the chal-
lenged signature Σ?. Here, we compute c?1 by encrypting the `-bit binary
representation of j1 instead of j0 and keep c?2 unchanged. By the semantic
security of McEliece’s encryption scheme for the public key G1, we have
|Pr[W4] − Pr[W4]| ∈ negl(λ). We remark that the semantic security can be

relied on since we only utilize sk
(2)
ME in the opening oracle queries.

Game 5: This game is identical to Game 4 except that we switch back to the

key sk
(1)
ME in the opening oracle queries. Note that A’s view remains un-

changed unless the event F2, that A queries the opening oracle a signature
Σ = (Πgroup, c1, c2) with c1 and c2 encrypting different `-bit strings, occurs.
However, event F2 would violate the simulation-soundness of the underlying
argument system, we thus have |Pr[W5]−Pr[W4]| ≤ Pr[F2] ≤ Advss-sound

B (λ).

Game 6: In this game, we modify again the distribution of the challenged sig-
nature Σ?. It changes c?2 to be encryption of the binary representation of j1
instead of j0. By the semantic security of McEliece’s encryption scheme with
respect to G2, we have |Pr[W6]−Pr[W5]| ∈ negl(λ). Note that now both c?1
and c?2 encrypt the same message, therefore Π?

group is a simulated proof for
a true statement.

Game 7: This game modifies Game 6 in one aspect: it generates a real proof
Π?

group in the challenged phase. Since the underlying argument system is
statistically zero-knowledge, we have |Pr[W7]−Pr[W6]| ∈ negl(λ). This is in
fact experiment Expanon-1

GS,A (λ,N), hence Pr[W7] = Pr[Expanon-1
GS,A (λ,N) = 1].

As a result, we find that

|Pr[Expanon-1
GS,A (n,N) = 1]− Pr[Expanon-0

GS,A (n,N) = 1]| ∈ negl(n),

this concludes the proof. ut
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