
Revisiting Privacy-aware Blockchain Public Key
Infrastructure

Olamide Omolola and Paul Plessing

Institute of Applied Information Processing and Communication
olamide.omolola@iaik.tugraz.at, plessing@student.tugraz.at

Abstract. Privacy-aware Blockchain Public Key Infrastructure (PB-
PKI) is a recent proposal by Louise Axon (2017) to create a privacy-
preserving Public Key Infrastructure on the Blockchain. However, PB-
PKI suffers from operational problems. We found that the most impor-
tant change, i.e., the key update process proposed in PB-PKI for privacy
is broken. Other issues include authenticating a user during key update
and ensuring proper key revocation.
In this paper, we provide solutions to the problems of PB-PKI. We sug-
gest generating fresh keys during key update. Furthermore, we use ring
signatures for authenticating the user requesting key updates and use
Asynchronous accumulators to handle the deletion of revoked keys. We
show that the approach is feasible and implement a proof of concept.

Keywords: Blockchain · Public Key Infrastructure · privacy · RSA.

1 Introduction

Nowadays, Public Key Infrastructure (PKI) plays a major role in ensuring secure
communication. PKI works on the principle that a trusted third-party organi-
zation called Certificate Authority (CA) can sign certificates and vouch for the
authenticity of the link between the public key and the subject name contained
within the certificate. The trusted third-party verifies a client’s identity and
confirms the client’s identity before signing. This third-party signs a certificate
with its private key1. The certificate of the trusted third-party is assumed to
be widely known, and another entity can verify the signed client certificate by
verifying the signature of the trusted third-party organization affixed to it.

However, PKI is a centralized infrastructure and attacks like those carried out
on Comodo2 or DigiNotar3 compromises the CAs, and that can compromise the
integrity of the certificates issued thereby compromising the whole infrastructure.

Phil Zimmerman proposed the Web of Trust (WoT) in 1992 [15] as a de-
centralized alternative to PKIs. The initial processes leading to trust in WoT is

1 The public key is included in the certificate
2 https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html(last accessed

on 20/03/2019)
3 https://security.googleblog.com/2011/08/update-on-attempted-man-in-

middle.html(last accessed on 20/03/2019)

2 F. Author et al.

different from that in PKI. For example, if Alice knows the public key of Bob
and trusts him, and Bob knows the public key of Claire, then Alice can ask Bob
for Claire’s key and trust that it is indeed Claire’s key. Alice and Bob exchange
their keys initially in person. This exchange event is called a Key Signing Party,
where people exchange their keys with each other in person. However, this per-
sonal exchange poses two problems. The first problem is an efficiency problem
as only a few keys can be exchanged initially in a particular time frame. The
second problem is a trust chain problem as it is possible that Alice is unable to
find a trust chain that connects with Claire, thereby giving rise to isolated trust
communities.

Researchers are continually trying to improve the two mechanisms above in
different ways. Blockchain has recently come to the center stage of the research
community [10], and many researchers have proposed using the Blockchain to
solve some of the PKI and WoT problems. One of such proposals is the Privacy-
aware Blockchain-based PKI (PB-PKI) [1]. PB-PKI4 aims to use the Blockchain
to solve the problems of WoT and also ensure privacy.

However, some of the goals were not achieved, and we discovered some prob-
lems with the key update process and the key revocation in the proposal.

Our contributions in this paper include the following:

1. We show that the key update process in PB-PKI [1] does not
ensure privacy.

2. We propose the use of ring signatures to solve the problem of
authenticating registered members of the blockchain during key
update to ensure that only registered members can perform key
updates.

3. We propose a revocation mechanism that involves key deletion
from the blockchain for PB-PKI.

4. We implement a PoC and show that it is feasible in practice.

The rest of the paper is structured as follows: Section 2 gives a short overview
of previous research; Section 3 gives a short introduction into Asynchronous
accumulators and Ring Signatures; Section 4 describes the privacy notions in
PB-PKI; Section 5 describes PB-PKI; Section 6 discusses the problems of PB-
PKI and provides our solutions to them; we evaluate our ideas in Section 7;
Section 8 discusses the implications of our changes to PB-PKI and we conclude
in Section 9.

2 Related Work

Blockchain became popular in 2009 with the introduction of Bitcoin [10]. Blockchains
are decentralized and store transactions between parties. All the transactions are
publicly auditable by all participants, and once a transaction is recorded and
confirmed, it is practically immutable. These characteristics have led researchers

4 PB-PKI is actually an implementation of WoT on the Blockchain

Revisiting Privacy-aware Blockchain Public Key Infrastructure 3

to propose implementing PKIs and WoT on the Blockchain [4, 6–8, 13, 14]. One
example of such a proposal is Certcoin [4]. Certcoin is a blockchain variant built
upon Namecoin5 that also functions as a WoT.

The simplest version of Certcoin uses Namecoin as a bulletin board where
blockchain posts and blockchain traversals support its functionalities. Data struc-
tures such as Asynchronous Accumulators [11] and Kademlia Distributed Hash
Table (DHT) [9] were introduced in successive versions so that Certcoin is time-
and space-efficient. However, Certcoin was not built with privacy taken into
consideration.

Certcoin transactions store information about public key events. The public
key events are registration, update, revocation, and verification. Certcoin man-
dates every entity to register two key pairs. The entity uses the first key pair
called online key pair for communication and uses the second key pair called
offline key pair for security purposes such as key revocation6 and update. The
offline key pair is stored offline to protect it.

The authors of Certcoin provide an incomplete implementation of Certcoin
in the language Go. The implementation uses RSA keys and the Asynchronous
Accumulator for key verification. PB-PKI builds on the foundation of Certcoin.

3 Preliminaries

This section briefly describes the algorithms that are used in the rest of the
paper

3.1 Asynchronous Accumulator

Reyzin and Yakoubov proposed the Asynchronous accumulator(AA) [11]. AA
is the dynamic form of the accumulator called Merkle tree [5], and it provides
algorithms for adding or deleting elements from the original set. AA (see figure 1)
is a container of several Merkle roots, i.e., an array of Merkle roots. Every index
of the AA can contain only the root of one Merkle tree at a particular time.

AA preserves efficiency in an environment, where modifications of a Merkle
tree happen often due to frequent addition of leaves. Recalculating the whole
tree after a modification requires logn time, therefore, it is desirable to optimize
this process. AA works similar to a Merkle tree regarding verification.

1. Initially, the AA is empty
2. To add a message m1, m1 is hashed to H1 and put into the first slot of the

AA at index 0.
3. Suppose a second message m2 needs to be added. Since index 0 is occupied

by H1, H1 and H2
7 are concatenated and hashed to H12. The hash H12 is

put at index 1 of the AA. Simultaneously, H1 gets removed from index 0. To

5 Namecoin is a fork of Bitcoin
6 The offline key pair can revoke the online key by signing a revoke-event
7 H2 is the hash of message m2

4 F. Author et al.

Fig. 1. Illustration of an Asynchronous Accumulator with its empty (”-”) and filled
(”H****”) Merkle roots and their corresponding Merkle trees.

Revisiting Privacy-aware Blockchain Public Key Infrastructure 5

verify that message m1 is part of the AA, the prover has to remember m1

and H2. With this knowledge, he can reconstruct the Merkle root at index 1.
4. When a third message m3 arrives, it is hashed to H3 and placed at index 0

since index 0 is empty.
5. The next message m4 is also hashed to H4. However, index 0 contains H3.

Therefore, H3 and H4 are concatenated and hashed into H34. H34 should
be placed at index 1, but it is occupied by H12. Thus, H12 and H34 are
concatenated and hashed into H1234. H1234 is then placed at index 2. To
verify the existence of message m1, only message m1, H2 and H34 need to
be remembered. Simultaneously, H3 and H12 are removed from index 0 and
index 1.

The worst case scenario for an addition to AA is logn operations (concatenat-
ing and hashing), with n leaves of the biggest tree. In the best case, the addition
can be done after one hash if index 0 is free. The trade-off of faster additions is
that more space is needed for storing an AA compared to one Merkle root. The
storage requirement of AA for n leaves is logn.

3.2 Ring Signatures

Ring signatures allow a user to sign a message and specify a set of possible
signers without revealing which member actually signed the message [12]. The
user can choose any set of possible signers that includes himself and sign by
using his secret key and the other’s public keys without getting their approval
or assistance. A ring signature does not need any set-up, and the ring signature
scheme is defined by two procedures:

1. Sign(m,P1, . . . ,Pr,Ss) which produces a ring signature σ for the message m,
given the public keys P1,P2, . . . ,Pr of the r ring members, together with the
secret key Ss of the s-th member (who is the actual signer).

2. Verify(m, σ) which accepts a message m and a signature σ (the signature
includes the public keys of all the possible signers), and outputs either true
or false

4 Privacy Concerns

Users sometimes assume that public blockchains are anonymous. This assump-
tion is true to the extent that personal information is not connected to the
accounts of the blockchain user. An account is the hash of the public key of a
user’s key pair on the blockchain. Two possibilities for tracking users exist. For
example, it is possible to find out the IP-address of a blockchain address by ob-
serving the blockchain network. A user can prevent this possibility by masking
his IP-address using anonymizing technologies like Tor. The second violation of
privacy happens by design because the public can audit Blockchains. Therefore,
the public knows what data is in a blockchain address’ wallet, the meta informa-
tion of the data such as its origin and more. A naive solution would be to use a

6 F. Author et al.

new public key for each transaction. However, this has no real privacy gain since
the mapping between the public key and the account is available for the public.

In terms of blockchain based PKIs, this violation of privacy would translate
to linking any public key and its transactions even when the public key has been
updated. At the moment a public key is used in any service, an adversary could
track its activities across services. PB-PKI provides unlinkability between an
updated public key and its identity without compromising the ability to verify
that a specific public key is authorized to take an action.

5 PB-PKI

In this section, we give a short introduction into the original PB-PKI [1].
PB-PKI modifies part of Certcoin to achieve privacy. Registering, revoking

and verifying a key in PB-PKI is the same as that of Certcoin. An entity registers
its identity by posting its public key on the blockchain. The main difference
between Certcoin and PB-PKI is the key update process. The unique key update
procedure in PB-PKI aims to provide untrackability and provide a way to disclose
the link between an identity and its key by the entity at a later point. This user-
controlled disclosure enables the entity to prove that a message is signed with
its unlinkable key which is connected to the certified key. PB-PKI hides the link
between an identity represented by its current public key and its previous actions
as well as keys, while still retaining the authenticity of the key.

Since the PB-PKI Key update process is the main improvement over Cert-
coin, we will focus on it in the rest of this paper. The PB-PKI Key update
process (RSA keys) involves two steps:

1. Generate a new offline key pair, pkfn and skfn (offline public key at time n
and offline secret key at time n), where:

2. Compute the new online key pair pknn and sknn (online public key at time
n, and online secret key at time n) in the following manner:
With this formula, the new keys are a valid RSA key pair, where:

pknn · sknn = 1 (mod Nn)

The two steps form a chain of keys as shown in figure 2 after every update.
When a user wishes to disclose the public keys, the user has to publish all offline
public keys. With that knowledge, anyone can recompute the chain of public
keys and verify that a specific key leads back to a particular identity.

Regarding the key update transaction, it must be guaranteed that this new
unlinkable public key is from a registered member. Louise Axon [1] proposed
that the identity that wants to update must provide a signature signed with the
current key. However, this would mean a public linkage of all keys. Therefore,
the author proposed that the link is disguised by encrypting the signature with
the public keys of a randomly chosen subset of the network members. These
network members are then included in the verification process because they can
decrypt the signature and verify that it is indeed from a key that was already

Revisiting Privacy-aware Blockchain Public Key Infrastructure 7

pkn1Posted online:

Online keys: (pkn1, skn1)

skf1Stored offline:

Offline keys: (pkf1, skf1)

f1

pkn2

(pkn2, skn2)

skf2

(pkf2, skf2)

f2

pkn3

(pkn3, skn3)

skf3

(pkf3, skf3)

Fig. 2. Key update procedure to facilitate user-controlled disclosure.

on the network. This of course still enables the verifiers to track that two keys
belong to the same person. However, since the subset is chosen randomly for
every key update, a verifier can only track the identity link between two keys.

Furthermore, the changed usage of the offline key pair means that it cannot
be used the same way as in Certcoin. In Certcoin, the offline key provided a way
to revoke compromised keys. In case of online key theft, a user can still prevent
the malicious usage of the stolen online key by revoking it with the offline key.
However, the user stores the offline keys securely after its generation in PB-PKI
and only publishes them to disclose its identity. To obtain the same revocation
abilities as Certcoin, PB-PKI introduces the so-called Master Key. The Master
key functions the same way as offline keys in Certcoin, i.e., it can revoke a current
compromised online key.

6 Enhancements to PB-PKI

This section describes the problems encountered in the implementation of PB-
PKI and the solutions to these problems8. Some of the problems required a total
change of procedure while the others needed some modifications to the existing
procedures. The issues and their solutions are given below:

6.1 Creation of new Keys

In PB-PKI [1] new keys are generated with the novel update procedure described
in section 5. This update procedure should ensure unlinkable keys while allowing
user-controlled disclosure at the same time. However, this novel procedure has
a side effect - it uses the same modulus for every updated key pair. An attack
where encrypted messages can be decrypted when two public keys have the same
modulus was documented by Dan Boneh [2]. We present equations below that
involves two different public keys e1, e2, and two cipher texts of the same message
encrypted by the two public keys A,B. The equations show that the message can

8 We refer to our improved version of PB-PKI as Enhanced PB-PKI.

8 F. Author et al.

Table 1. Comparison of PB-PKI with NOOB-PKI regarding key operations.

PB-PKI Enhanced PB-PKI

Setup Phase User U generates an online,
offline and master RSA key pair.9

Setup Phase User U generates an online and
offline RSA key pair.

Key Registration: U posts a registration
transaction with

– his identity
– a timestamp
– the public part of the generated online key
– a signature of the generated online public

key
– a signature of the master key

It has to be verified that the identity and the
online key have not been registered previously
and that the signature of the online key is valid.

Key Registration: U posts a registration
transaction with

– his identity
– a timestamp
– the public part of the generated online key

(registration key)
– a signature of the online public key
– the witness of the online public key
– the public part of the generated offline key
– a signature of the offline public key

It has to be verified that the identity and the
public online key have not been registered
previously. The signatures of the online and
offline keys and the witness are also validated.

Key Update: User U generates a new offline
RSA key pair with public part pkf and private
part skf. To generate the new online key with
public part pkn and private part skn, U
calculates:

pknn = pknn−1 · skfn(ModNn)

sknn = sknn−1 ÷ skfn(ModNn)

U then posts an update transaction with

– a timestamp
– the public part of the newly calculated

online key
– a signature of the online public key
– a signature of the previous online public

key to ensure that U is already part of the
network. This signature is encrypted with
the public keys of a subset of network
members. The subset is chosen randomly at
each update and has to verify the signature
of U’s previous online key.

U secret shares the new offline public key
between a majority of the network members.
It has to be verified that the online public key
has not been registered previously, that the first
signature is valid, and that the second signature
is valid and done with a currently valid public
key on the network.

Key Update: User U generates a new online
and offline RSA key pair and posts an update
transaction with:

– a timestamp
– the public part of the new online key
– a signature of the new online public key
– the witness of the new online public key
– the public part of the new offline key
– a signature of the new offline public key
– a ring signature by use of a randomly

selected subset of registration keys and U’s
registration key

– all registration keys used for the ring
signature

The network members verify that the online
public key has not been registered previously,
the signatures of the online and offline keys are
valid, and the witness is valid. Additionally, the
network verifies that the ring signature is valid
and that all used registration keys exist.

Key Revocation: User U posts a revocation
transaction with

– a timestamp
– the public part of the to be revoked public

key
– a signature of the public key

Key revocation can be executed either by the
key holder.

Key Revocation: User U posts a revocation
transaction with

– a timestamp
– the public part of the to be revoked key
– a signature of the public key
– the witness of the public key
– the new ancestors of the revoked public key

The network members verify that the revoked
key is indeed part of the network and that the
signature, the witness, the ancestors are valid.
The ancestors of a given message are all its
parent nodes in a Merkle tree. The revoked key
is replaced with ”⊥” in the Merkle tree, and the
ancestors of ”⊥” have to be posted so that other
users can update their witnesses accordingly.

Revisiting Privacy-aware Blockchain Public Key Infrastructure 9

be decrypted even without the private keys.
Given:

A = Me1 (mod n)

B = Me2 (mod n)

If mathsfgcd(e1, e2) = 1 ,there exists some x, y such that xe1 + ye2 = 1
Therefore:

Ax · By = Me1x ·Me2y

= Mxe1 ·Mye2

= Mxe1+ye2

= M1

= M

Furthermore, an adversary can scan the blockchain for public keys with equal
modulus, and be sure that these keys belong to the same user. Instead of user-
controlled disclosure, the novel update process actually ensures linkability by
design.

Solution As the proposed update procedure could not disguise links between
keys, we sought another mechanism. We found that the key update mechanism
in PB-PKI is not critical to ensuring privacy. The mechanism helps in disclosure
since a user can provide the link between his keys to a verifier. However, there
are other ways that one can use to prove the ownership of a key without linking
one’s keys. One such method is by signing the public key.

We propose generating a new random key pair at each update event. A user
can still disclose that a specific key belongs to him. He does it by providing a
signature with the key to be disclosed and his registration key. Thus, a verifier
can be sure of the ownership of the disclosed key.

6.2 Key Deletion

In previous papers about Certcoin [4] and PB-PKI [1], fast key verification is
achieved with the Merkle root of a Merkle tree containing all valid public keys.
Specifically, many Merkle roots are involved because Certcoin and PB-PKI use
the AA as explained in Subsection 3.1. To quickly verify whether a key is valid,
a verifier takes the key as well as its witness and computes its Merkle root. Then
the verifier takes the Merkle roots of the latest block and checks whether one of
them match the computed one. This process is quick because it needs at most
logn operations (for n number of keys in the Merkle tree) to calculate the Merkle
root. In addition, it is space efficient, because the verifier only needs to store the
latest blockheader plus the public key and the witness10.

10 Witnesses are the missing hashes needed by a verifier to construct a Merkle root

10 F. Author et al.

Adding keys is very efficient as well because of the Asynchronous Accumu-
lator. The maximum of operations needed per addition of a key is logn (for n
number of all keys in the Merkle tree). Consequently, the Merkle tree does not
need to be fully recalculated but it is merged with other trees of the same size,
i.e., concatenating the roots and hashing them.

This works very well when one adds keys only. However, the event of a key
deletion in case of key revocation was not discussed intensively by the authors of
Certcoin and PB-PKI. Even though in both papers it is mentioned that deletion
is possible, only Certcoin gives a short explanation of how deletions can be
implemented using a Merkle tree. To make the term clear: deleting a key from a
Merkle tree means to modify an entry of a Merkle tree. The entry to be deleted
gets replaced with an entry that indicates that the former public key is deleted.

Solution In the Enhanced version of PB-PKI, we use the sign ”⊥” for deleted
entries. With such a modification, we have to recalculate logn parents of the
Merkle tree. Therefore, while adding keys takes at worst case logn operations,
deletion of keys always takes logn operations.

Furthermore, the time required for key holders to update their witness needs
to be considered as well. Every witness in this Merkle tree has to be updated. The
number of operations for witness update is in the worst case in direct correlation
to the number of operations needed to update the AA. In the best case, a key
holder only has to do one operation to bring his witness up to date. Therefore
for both addition and deletion, a key holder needs to do at most logn operations.

6.3 Space Efficiency

The second issue regarding entry deletion from Merkle trees is space efficiency. If
there are additions to the AA only, the only information that is needed to update
any witness are the resulting Merkle roots after every addition. However, in the
case of deletion, one needs to know the former witness of the deleted element
in order to update the other witnesses of a Merkle tree. This means that the
witness of every revoked and deleted key has to be stored and published. The
result of this is more storage is used.

Solution The AA changes with every transaction, but only the final accumu-
lator after all transactions in a block are taken into account gets shown. This
means that for key additions it is mandatory to publish the witness of each
added key as well. The result is the publication of every change of the AA.

As a result of the changes made in the preceding paragraphs, a prover with
an old witness has to go back to the last block where his public key plus witness
was valid. Then he traverses all transactions of all blocks leading to the most
current block, and he adjusts his witness according to the occurred key events.
Finally, he has a witness that provides proof when using the latest accumulator.

Revisiting Privacy-aware Blockchain Public Key Infrastructure 11

6.4 User Authentication

The third challenge was the authentication of a pending key update. At key
update, it should be ensured that the user requesting the key update already
owns a key on the network while securing his identity. In the proposed PB-PKI
this is done through a signature of the current key. However, this would enable
a linking of the keys. Therefore, the signature is encrypted. It is encrypted with
a subset of total public keys available on the network. These members then have
to decrypt the signature and verify that it is indeed done with a registered key.

This practice sounds nice in theory but is hard to implement. The first set of
challenges arise: how can the subset of network members announce their verifi-
cation of the signature? Post it on the blockchain? How can one trust that they
are telling the truth? Moreover, how can one guarantee that they actually verify
the signature and have not been offline for two years?

This set of questions remains unanswered but even if there were answers
to them, another question arises: How to find out a subset of current public
keys? This would either require global storage of n public keys (for n network
members), like the AA, but instead of a few Merkle roots we needed to record all
valid keys, millions of it in every block. This would be fast but space intensive
(totally unusable). Alternatively, we traverse the blockchain looking for valid
keys, which would be space friendly but time intensive. Additionally, we cannot
find out which public keys that were posted onto the blockchain are still valid
and which are not, because no keys are linked to each other.

Solution We decided to find another way of solving the authentication prob-
lem. We chose to use ring signatures. Ring signatures are explained in Subsec-
tion 3.2. In the Enhanced PB-PKI, a ring signature is crafted and posted in the
update transaction. The public keys are randomly selected out of the public keys
published at registration event. The user’s public key that was created during
registration is added to the set of keys. With these selected keys, he performs
the ring signature and puts it onto the transaction. That way, anyone can verify
that this transaction must be from one of the already registered holders of the
used public keys. However, nobody knows who it was from this group of keys.
Moreover, by carefully selecting different large sets at each update, an attacker
cannot tell which key belongs to which identity. We used a ring size of 6 pos-
sible signers for the proof of concept because having a higher ring size is space
inefficient.

7 Evaluation

For the proof of concept, we used an Asus Laptop with 4GB RAM and an Intel
Core processor i5 of the 5th generation. The installed operating system was
Ubuntu 16.04. The PoC was written in the programming language Go, and the
database we used to store the blocks was LevelDB.

With this setup, we measured how long it takes to execute the different
operations:

12 F. Author et al.

– Register a Key: ∼80 milliseconds
– Update a Key: ∼120 milliseconds
– Revoke a Key: ∼10 milliseconds
– Verify a Key: ∼15 microseconds
– Update a Witness: ∼90 milliseconds

Verifying a key is the most critical activity because users often have to verify
whether a key is valid. In Enhanced PB-PKI, verifying a key is the fastest op-
eration, because it only involves hashing and concatenation without any write
operation. The bottleneck of posting transactions is the need to mine new blocks
and verify them. Setting the mining time or process is beyond the scope of this
paper. The Enhanced PB-PKI is a full blockchain and it was deployed locally
on the laptop for the experiments.

8 Discussion

In this section, we consider the possible cases of key compromise and the options
that the Enhanced PB-PKI provides to the victim. Key compromise happens
when an adversary gets access to or steals the private part of the online or the
offline key. Getting access to a key means an adversary knows a key while the
victim still has access to the key too. Stealing a key means an adversary takes
the key away from the victim so that the adversary knows the key while the
victim does not.

8.1 Security Model

We consider a model where PB-PKI is accessible to the public. In this model,
we assume that an adversary has access to the blockchain. The adversary is also
part of every operation involving registration, key update and key revocation
and able to tamper with any of these operations.

The security goals of the system are as follows:

1. The adversary cannot link a key to the owner.
2. Only the owner of a public online key can prove the ownership.

Depending on which private keys were stolen or accessed, we consider six
different cases:

1. Online secret key accessed only: The adversary can take part in the
network by using the accessed online key. The victim can revoke his online
key and update it. The update creates a new online key he can safely use
again.

2. Online and offline secret keys accessed: The adversary can take part in
the network by using the accessed online key. The adversary can also perform
key update, but this is not useful because when the user revokes the online
key and performs key update, then the adversary can no longer impersonate
the victim. After key update, the adversary does not have any knowledge of
either the new online or offline key.

Revisiting Privacy-aware Blockchain Public Key Infrastructure 13

3. Online secret key stolen only: The adversary can take part in the network
by using the stolen online key. To recover from this case, it requires that the
victim stored the previous online key. With this previous online key and the
current offline key, he can recalculate the stolen online key. Then he revokes
and updates the stolen key.

4. Online and offline secret keys stolen: The adversary can take part in
the network by using the stolen online key. In this case, the victim can do
nothing against the adversary. However, the victim can update the previous
online key, and stay part of the network. The possibilities for the adversary
are limited to the use of the stolen online key only. To mitigate this scenario,
the introduction of an expiration date of public keys would limit the key
abuse of the adversary to a certain time frame.

As long as keys are not stolen and key compromise is detected early, an
adversary can be kept under control. To avoid key theft, keys should always be
copied to a safe location.

9 Conclusion

In this paper, we have shown that the initial proposal of PB-PKI is fraught
with challenges. Some of the problems include authentication during key update,
how revoked keys can be deleted successfully and the key update mechanism
is not as secure as earlier expected. Enhanced PB-PKI simplifies the update
process by requiring the user to generate fresh keys without using the key updates
mechanism by Louise Axon et al. [1]. The new key update mechanism removed
the privacy problem that was introduced by PB-PKI . The Enhanced PB-PKI
solved the problem of user authentication by introducing ring signatures to PB-
PKI. We also adapt the use of AA in order to aid key deletion and ensure that
storage space is maximized after deletion of a revoked key. The Certcoin usage of
offline keys for key revocation was retained instead of using it for key updates as
in the initial PB-PKI construction. We developed the proof of concept using the
Go programming language and show that the solutions we proposed are feasible.

In the future, we plan to implement optimizations to the ring signature
scheme. New ring signature schemes such as forward-secure linkable ring sig-
natures [3] will also be investigated as this supports forward security and the
blockchain user can prove ownership of a ring signature using this scheme.

Acknowledgment

We acknowledge David Derler, Sebastian Ramacher, Peter Lipp and Clemens
Brunner for fruitful discussions during the period of this work. We acknowl-
edge Sebastian Ramacher, Peter Lipp and Clemens Brunner for their thorough
reviews.

This research is part of the LIGHTest project funded by the European Unions
Horizon 2020 research and innovation programme under G.A. No 700321.

14 F. Author et al.

References

1. L. Axon and M. Goldsmith, “Pb-pki: A privacy-aware blockchain-based pki,” in
Proceedings of the 14th International Joint Conference on e-Business and Telecom-
munications - Volume 6: SECRYPT, (ICETE 2017), INSTICC. SciTePress, 2017,
pp. 311–318.

2. D. Boneh, “Twenty years of attacks on the rsa cryptosystem,” 1998.

3. X. Boyen and T. Haines, “Forward-secure linkable ring signatures from
bilinear maps,” Cryptography, vol. 2, no. 4, p. 35, 2018. [Online]. Available:
https://doi.org/10.3390/cryptography2040035

4. S. Y. Conner Fromknecht, Dragos Velicanu, “Certcoin: A namecoin based decen-
tralized authentication system,” 2014.

5. D. Derler, C. Hanser, and D. Slamanig, “Revisiting cryptographic accumulators,
additional properties and relations to other primitives,” in Topics in Cryptology
- CT-RSA 2015, The Cryptographer’s Track at the RSA Conference 2015, San
Francisco, CA, USA, April 20-24, 2015. Proceedings, 2015, pp. 127–144. [Online].
Available: https://doi.org/10.1007/978-3-319-16715-2 7

6. J. A. Garay, A. Kiayias, N. Leonardos, and G. Panagiotakos, “Bootstrapping
the blockchain, with applications to consensus and fast PKI setup,” in
Public-Key Cryptography - PKC 2018 - 21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil,
March 25-29, 2018, Proceedings, Part II, 2018, pp. 465–495. [Online]. Available:
https://doi.org/10.1007/978-3-319-76581-5 16

7. E. Karaarslan and E. Adiguzel, “Blockchain based DNS and PKI solutions,” IEEE
Communications Standards Magazine, vol. 2, no. 3, pp. 52–57, 2018. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/MCOMSTD.2018.1800023

8. S. Matsumoto and R. M. Reischuk, “IKP: turning a PKI around with
blockchains,” IACR Cryptology ePrint Archive, vol. 2016, p. 1018, 2016. [Online].
Available: http://eprint.iacr.org/2016/1018

9. P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information system
based on the xor metric,” in Revised Papers from the First International Workshop
on Peer-to-Peer Systems, ser. IPTPS ’01. London, UK, UK: Springer-Verlag, 2002,
pp. 53–65. [Online]. Available: http://dl.acm.org/citation.cfm?id=646334.687801

10. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.

11. L. Reyzin and S. Yakoubov, “Efficient asynchronous accumulators for distributed
pki,” IACR Cryptology ePrint Archive, vol. 2015, p. 718, 2015.

12. R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in Advances
in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory
and Application of Cryptology and Information Security, Gold Coast, Australia,
December 9-13, 2001, Proceedings, 2001, pp. 552–565. [Online]. Available:
https://doi.org/10.1007/3-540-45682-1 32

13. A. Singla and E. Bertino, “Blockchain-based PKI solutions for iot,” in 4th IEEE
International Conference on Collaboration and Internet Computing, CIC 2018,
Philadelphia, PA, USA, October 18-20, 2018, 2018, pp. 9–15. [Online]. Available:
https://doi.org/10.1109/CIC.2018.00-45

14. A. Yakubov, W. M. Shbair, A. Wallbom, D. Sanda, and R. State, “A blockchain-
based PKI management framework,” in 2018 IEEE/IFIP Network Operations and
Management Symposium, NOMS 2018, Taipei, Taiwan, April 23-27, 2018, 2018,
pp. 1–6. [Online]. Available: https://doi.org/10.1109/NOMS.2018.8406325

Revisiting Privacy-aware Blockchain Public Key Infrastructure 15

15. P. Zimmermann. (1994) Pgp user’s guide, volume i: Essential topics. [Online].
Available: https://web.pa.msu.edu/reference/pgpdoc1.html

