
Stopping time signatures for some algorithms in
cryptography

Percy Deift?1, Stephen D. Miller??2, and Thomas Trogdon? ? ?3

1 Courant Institute of Mathematical Sciences, New York University
deift@cims.nyu.edu

2 Department of Mathematics, Rutgers University
miller@math.rutgers.edu

3 Department of Mathematics, University of California, Irvine
ttrogdon@uci.edu

Abstract. We consider the normalized distribution of the overall run-
ning times of some cryptographic algorithms, and what information they
reveal about the algorithms. Recent work of Deift, Menon, Olver, Pfrang,
and Trogdon has shown that certain numerical algorithms applied to
large random matrices exhibit a characteristic distribution of running
times, which depends only on the algorithm but are independent of
the choice of probability distributions for the matrices. Different algo-
rithms often exhibit different running time distributions, and so the his-
tograms for these running time distributions provide a time-signature
for the algorithms, making it possible, in many cases, to distinguish one
algorithm from another. In this paper we extend this analysis to crypto-
graphic algorithms, and present examples of such algorithms with time-
signatures that are indistinguishable, and others with time-signatures
that are clearly distinct.

1 The phenomenon of running time “signatures” in
cryptography

This paper concerns the following issue:

What information about an algorithm is revealed just by its distribution
of (canonically normalized) running times?

In other words, do the running times assign a “time-signature” to the algorithm
which distinguishes it from other algorithms?4 Such time-signatures have been
identified for a variety of algorithms in numerical analysis. In this paper we
show that time-signatures also exist for certain algorithms commonly used in
cryptography (such as ones based on finding prime numbers, elliptic curves, or
collisions in random walks).

? Supported in part by NSF grant DMS-1300965.
?? Supported in part by NSF grants CNS-1526333 and CNS-1815562.

? ? ? Supported in part by NSF grant DMS-1753185.
4 Of course, running time can be highly dependent on specific implementations of a

given algorithm. We use the term algorithm to refer a specific implementation.



The notion of “time-signature”

We begin with some background on time-signatures from numerical analysis.
Starting in 2009, Deift, Menon, and Pfrang [15] considered the running time
for the computation of the eigenvalues of random matrices using different al-
gorithms. In particular, the authors considered real symmetric n × n matrices
M chosen from a probability distribution E . They recorded the time T (M) =
Tε,n,A,E(M) to compute the eigenvalues of a matrix M chosen from the distribu-
tion E to an accuracy ε, using a given algorithm A. Repeating the computation
for a large number of matrices M chosen from E , they plotted the histogram for
the normalized times

τ(M) = τε,n,A,E(M) :=
T (M)− 〈T 〉

σ
, (1.1)

where 〈T 〉 is the sample average for the times and σ is the sample standard
deviation. What they found was that for ε sufficiently small and n sufficiently
large, the histogram of τ depended only on the algorithm A, independent of
the choice of ε, n, and E . Thus the histogram for τ provided a time-signature
for the algorithm. We stress that it is not the actual running times which pro-
vide the algorithm with a time-signature: rather, it is the fluctuations of the
running times of the algorithm in response to random data that provide the
time-signature.

In later work with Olver and Trogdon [2,3,4] time-signatures were found for a
wide variety of numerical algorithms. Moreover, the time-signature was different
for different algorithms, making it possible, in particular, to distinguish three
specific algorithms (the Jacobi, QR, and Toda eigenvalue algorithms) from each
other. Said differently, the information carried by the running times alone is suf-
ficient to distinguish the three eigenvalue algorithms. As an example, in Figure 1
we demonstrate that three different algorithms to compute the eigenvalues of a
symmetric matrix exhibit three different distributions of runtimes.

In view of the above discussion, two issues are central:

Problem 1 (Existence): Suppose an algorithm A, which depends on several
(large) parameters, acts on random data. Does the running time of A (when
normalized to have fixed mean and standard deviation) tend to a limiting dis-
tribution as the parameter size tends to infinity in some regime? If so, does this
limit depend on the probability distribution of the data?

We refer to this limiting distribution, if it exists and if it is independent of the
probability distribution of the data, as the time-signature S(A) of A.

Problem 2 (Uniqueness): For a given task of interest, are there known algo-
rithms sharing the same time-signature?

Since the time-signature S(A) is normalized to have a fixed mean and stan-
dard deviation, it measures the overall shape of the distribution of running times,
but is insensitive to – as in the case of the eigenvalue algorithms above – the
actual running times and their dependence on the (large) parameters.

2



-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized Running Time Fluctuations

F
re
q
u
en
cy

Jacobi

-1 0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Normalized Running Time Fluctuations

F
re
q
u
en
cy

QR

-1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

Normalized Running Time Fluctuations

F
re
q
u
en
cy

Toda

Fig. 1. The normalized runtime histograms (normalized to mean zero and vari-
ance one) for three eigenvalue algorithms (the Jacobi, QR and Toda eigenvalue
algorithms) applied to 20× 20 symmetric Gaussian matrices (i.e., the Gaussian
Orthgonal Ensemble). Let Ak, k = 1, 2, . . . , be the iterates of an algorithm. We
halt the algorithms when tr((Ak − diagAk)2) < ε2. It is clear that the algo-
rithms give distinct histograms. See [2] for more detail on these algorithms and
computations.

Generating primes

To demonstrate, at a basic level, the existence of time-signatures in cryptography,
we begin with a discussion of the problem of random prime generation. Indeed,
this is a bedrock ingredient of many cryptosystems, such as RSA and Elliptic
Curve Cryptography which are studied in this paper. For L > 1, consider a
probability distribution µ on the integers [LN−1, LN ] ∩ N. The prime number
theorem tells us that the density of primes in this interval, roughly 1/(N logL), is
not so small as to make the following prescription inefficient. Suppose X1, X2, . . .
is a sequence of independent and identically distributed random variables with
distribution µ supported on [LN−1, LN ]∩N, and let M > 0 be an integer. Then
set j = 1 and do:

1. Sample Xj .
2. For ` = 1, 2, . . . ,M , do:

(a) run a Miller-Rabin5 test on Xj ;
(b) if Xj fails the Miller-Rabin test set j = j + 1 and return to 1.

5 This test first appeared in [17]. The Miller–Rabin test investigates whether a given
number Xj is a prime, but is only capable of rigorously proving that a number is
not prime. In particular, it never proves that a number is prime. If it cannot prove
a number is composite, it reports that this number is probably prime – and comes
with a probability estimate (taken over the random choices the algorithm makes
in its execution) that shows it is very unlikely such a probable prime is actually
composite.

In Step 2(a) above one runs Miller-Rabin on a fixed sample Xj repeatedly; if
it first fails at the `-th time, 1 ≤ ` ≤ M , one returns to Step 1 and chooses a
new sample Xj+1. Otherwise, if Xj passes the Miller-Rabin test all M times, the
algorithm deems Xj to be prime with high probability (see (1.2)).

3



3. Output Xj .

Thus this algorithm allows one to solve the following problem:

Problem 3 (Prime generation): Produce a random integer n ∈ [LN−1, LN ]∩
N such that

P(n is prime)
N→∞−→ 1.

Indeed, from [17]

P(n is composite and n passes M Miller–Rabin tests) ≤ 4−M , (1.2)

and it follows that as long as M grows, e.g., M ∼ N1/2, the problem is solved.
The runtime for the above prime generating algorithm can be modeled by

making some simplifying assumptions. First suppose that the Miller–Rabin test
is foolproof on composites, i.e., it immediately and accurately detects all com-
posite numbers6. Then let TMR(n;M) be the (random) number of seconds it
takes to apply M Miller–Rabin tests to an integer n. Additionally, suppose that
the sampling procedure takes a deterministic number of seconds, c. Define

τ = min{j : Xj is prime}.

Then the total time for this algorithm can be expressed as

T = cτ +

τ−1∑
j=1

TMR(Xj ; 1) + TMR(Xτ ;M). (1.3)

In the case L = 2, the number of primes in the interval [2N−1, 2N ] is given

asymptotically by 2N−1

N log 2 according to the prime number theorem. Therefore,

assuming µ is uniform on [2N−1, 2N ] ∩ Z, one has

E[τ ] = p

∞∑
k=1

k(1− p)k−1 =
1

p
, where p =

1

N log 2
(1 + o(1)),

and for t > 0

P(τ ≤ tN) = p

btNc∑
k=1

(1− p)k−1 = 1−
(

1− t(1 + o(1))

tN log 2

)btNc
,

which converges to 1 − e−t/log 2 as N → ∞. Note the scaling tN is a necessary
normalization to obtain a limit which is independent of N .

6 In practice this happens for random choices with overwhelming probability. For
example, if L = 2 and N = 30 the range [229, 230]∩N contains 26,207,278 primes. In
one experiment, only 361 of the 510,663,634 composite numbers in the range passed
at least one Miller–Rabin primality test, a proportion of merely 6.72415× 10−7.

4



Lastly, suppose for simplicity that TMR(Xj ; 1) is a deterministic constant.7

One then expects8 that the sum of the first two terms in (1.3) is O(N) and
converges in distribution to an exponential random variable after rescaling as
above. The last term in (1.3) is clearly O(M), and as long as M � N we can
use this analysis to conjecture a limiting distribution for T :

Conjecture 1 (Universality) Suppose N �M . Then for a wide class of dis-
tributions µ

P

(
T − E[T ]√

Var(T )
≤ t

)
= 1− e−t−1.

We demonstrate the conjecture with numerical examples in Figure 2.

Time-signatures for RSA and Elliptic Curve Cryptography

Running times have long played a role in an indirect form of cryptanalysis known
as “side-channel” attacks, where instead of directly tackling the underlying com-
putation one also leverages indirect information about the device performing it.
In so-called “white-box” cryptographic contexts, the inner workings of the algo-
rithm are kept secret and discovering the identity of the algorithm must itself
be part of the attack. Here “side-channel” information such as power consump-
tion and running time can be helpful. An example is the KeeLoq remote entry
system, which is used on many automobile key chain fobs to lock/unlock vehi-
cles: the attack in [6] shows how to easily clone fobs from power measurements,
with only partial access to algorithmic details. This also provides motivation to
study the mathematical basis of using running time to determine the identity
of an algorithm. Recall that we are not concerned about the absolute running
times, but instead the shape of their normalized distribution (e.g., which should
be independent of hardware changes).

As an example of time-signatures for cryptographic algorithms, consider the
dominant public-key cryptosystems in use today: RSA and Elliptic Curve Cryp-
tography (see Appendix A for details). Generating keys for each algorithm in-
volves random choices of integers of varying sizes, and the way in which these
random choices are made can vary. One then verifies numerically that as the key
size grows, Problem 1 has a positive answer for both algorithms. That is, each
algorithm has a time-signature, which is independent of the way the random
choices are made. Figure 3 shows a plot of the time-signatures for both algo-
rithms, which are visibly different. Thus we see that Problem 2, in the context
of distinguishing RSA key generation from elliptic curve key generation, has a
negative answer (as was the case for the eigenvalue algorithms mentioned above).

7 This assumption is an oversimplification in order to motivate the statement of Con-
jecture 1, which we believe holds without it.

8 Probably this is true in more generality as long as µ is not degenerate in some
fashion.

5



-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Normalized Running Time Fluctuations

F
re
q
u
en
cy

N = 128

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Normalized Running Time Fluctuations

F
re
q
u
en
cy

N = 256

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Normalized Running Time Fluctuations

F
re
q
u
en
cy

N = 512

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Normalized Running Time Fluctuations

F
re
q
u
en
cy

N = 1024

Fig. 2. A demonstration of Conjecture 1 with M = d
√

log 2Ne. Each panel
consists of two histograms, one corresponds to L = 2 and µ being the uniform
on [2N−1, 2N ] and the other corresponds the measure induced on [2N , 2N+1] by
adding two independent copies of random variables with distribution µ. As N
increases, the histograms approach the smooth curve, which is an exponential
density with mean zero and variance one.

6



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

Normalized running time

R
el
at
iv
e
F
re
qu
en
cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Normalized running time

C
um
ul
at
iv
e
re
la
tiv
e
fr
eq
ue
nc
y

Fig. 3. The distribution of time-signatures for RSA key generation (dashed
curve) vs. Elliptic Curve Cryptography key generation (solid curve). The plot on
the left shows histograms, i.e., probability distribution functions, while the plot
on the right shows their cumulative distribution functions. Each curve reflects
actual running times using the implementation described in Appendix A.3. In
contrast with examples later in this paper, these time-signatures can be easily
distinguished.

This shows that certain cryptographic algorithms have time-signatures and
that, at least in concept, time-signatures can distinguish two different key gener-
ation algorithms. Our next example studies two other cryptographic algorithms
(mainly used in attacking cryptosystems but sometimes used in building them
as well) that have a common time-signature.

Random walks and discrete logarithms

We next turn to the Discrete Logarithm Problem (see (A.1)) and shall see that
two algorithms to solve it, Algorithms A.2.1 and A.2.2 in Appendix A.2, have
identical time-signatures. These algorithms are based on finding repetitions in
sequences of numbers; these sequences are described in Processes 1 and 2 just be-
low, and their connection with discrete logarithms is described in Appendix A.2.
Processes 1 and 2 involve collision times of random walks on a set of N elements,
which is taken to be Z/NZ for concreteness. It turns out that both algorithms
share the same time-signature: the Rayleigh probability distribution on [0,∞),

pRay(x) = xe−x
2/2 ,

∫ x

0

pRay(t) dt = 1 − e−x
2/2 . (1.4)

For our purposes it is more natural to normalize the running times by

N (T ) :=

√
2− π

2

T − 〈T 〉
σ

+

√
π

2
(1.5)

instead of (1.1) in order to match the mean and standard deviation of (1.4).

7



Process 1: Uniform random walks and the “birthday problem”. This is
the simplest random walk on Z/NZ, in which each element of a sequence (xn)n≥1
is chosen uniformly and independently at random. The famous “birthday para-
dox” asserts that the first collision time BN of this random walk (the smallest
integer n such that xk = xn for some 1 ≤ k < n) is roughly N1/2 in size. More
precisely, N−1/2BN follows the Rayleigh distribution (1.4) for N large (see, for
example, [1]). In particular, BN has mean which grows as

√
π
2N for N large. A

histogram for BN , normalized as in (1.5), is given in Figure 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Scaled birthday collision time

R
el
at
iv
e
F
re
qu
en
cy

Fig. 4. A demonstration that the distribution N (BN ) from Process 1 converges
to the Rayleigh distribution (solid line). Here N = 40,009 (the first prime larger
than 40,000) and the histogram was generated from 100,000 samples. The same
plot with BN replaced by collision times for the Pollard ρ walk from Process 2,
with ensemble Eρ as in Section 2, looks identical.

If one changes the uniform distribution of each xn ∈ Z/NZ to a nonuniform
distribution on Z/NZ, the random walk is biased towards a smaller subset, which
reduces the expected value of BN . Nevertheless, the appearance of the Rayleigh
distribution persists: Camarri and Pitman [1] have given general conditions for
µN−1/2BN to tend to the Rayleigh distribution as N → ∞, with a constant µ
given by an explicit formula. In particular, the birthday problem indeed has an
associated time-signature, namely (1.4).

The next type of walk has correlations between the xn’s. The particular
example we now describe first appeared in the Pollard ρ Algorithm A.2.3 for
computing discrete logarithms on cyclic groups of order N , where it was origi-
nally devised as a pseudorandom walk [16] (see Section 2 and Appendix A for
more details). More generally it is representative of a class of random walks on
certain directed graphs that we shall also see share the same normalized collision

8



time histograms (see Section 3). In particular, algorithms halting upon collisions
of such random walks have a time-signature: moreover, they have the same time-
signature as for the birthday problem, viz., the Rayleigh distribution (1.4), even
though the (unnormalized) running times are noticeable distinct.

Process 2: Pollard ρ walk. In contrast to Process 1, the walk moves in at most
three possible directions at any stage. The Pollard ρ walk is determined by two
objects, an element h ∈ Z/NZ and a decomposition of Z/NZ into three disjoint
sets, S1,key, S2,key, and S3,key of roughly equal size. Starting from some point
x1 ∈ Z/NZ, we define a sequence (xn)n≥1 via the iteration xn+1 = fkey,h(xn),
where the iterating function fkey,h : Z/NZ→ Z/NZ is defined by

fkey,h(x) =

2x, x ∈ S1,key ;
x+ 1, x ∈ S2,key ;
x+ h, x ∈ S3,key .

(1.6)

Randomness can enter into the walk in three ways: 1) by choosing h uniformly
at random from Z/NZ; 2) by constructing the decomposition using a random
prescription depending on a “key” (see Section 2 for more details); and 3) by
choosing the initial point x1 ∈ Z/NZ randomly. Note that once the choices 1),
2), and 3) have been made, the sequence x1, x2, . . . is completely deterministic.
The walk is most interesting when N is prime, in which case it was proved
to have collisions in time O(N1/2) with high probability with respect to the
choice of randomness for the decomposition Z/NZ = S1,key tS2,key tS3,key (see
[8,9,12,13]).

We have performed several computations of the collision time distribution,
as follows: for several different choices of N � 1 and several different choices of
h, x1 ∈ Z/NZ, we record the collision time of the walk for various decompositions
Z/NZ = S1,keytS2,keytS3,key chosen at random (see Section 2). What emerges
from these computations is a histogram for the collision times, normalized as in
(1.5), which looks to be identical to the Rayleigh distribution shown in Figure 4.
In other words, the Pollard ρ walk indeed has an associated time-signature, and
the time-signature is the same as for the birthday problem.

The time-signature of the algorithm does not depend on the raw running
time, but rather reflects the response of the algorithm to randomness in a canon-
ical way. For example, the mean collision time for the Pollard ρ walk on Z/NZ
is expected to be ≈ 1.6N1/2 [19], which is significantly higher than the mean
collision time of

√
π
2N

1/2 ≈ 1.3N1/2 for the “birthday problem” random walk
considered above. It is perhaps surprising that the normalized histograms of
collision times are nevertheless insensitive to this fundamental distinction.

Our comparisons of RSA and elliptic curve key generation in Figure 3 in-
volved actual CPU running time, i.e., clock time. By contrast, our discussion of
collision times instead counted the number of iterative steps as a proxy for run-
ning time. This is done as a matter of mathematical convenience. For example,
in particular, the clock times and the running times for one of these algorithms,

9



viz., the Pollard ρ Algorithm A.2.3, are essentially indistinguishable, as can be
seen in Figure 5 (see also Appendix A.3 for further discussion).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Normalized running time

C
um
ul
at
iv
e
re
la
tiv
e
fr
eq
ue
nc
y

Fig. 5. A comparison of time-signatures of the same algorithm, the Pollard ρ Al-
gorithm A.2.3 for discrete logarithms on elliptic curves, with running time mea-
sured two different ways. The solid curve shows the time-signature as measured
by clock time, while the dashed curve shows the time-signature as measured
by the number of iterative steps. The closeness of these cumulative distribu-
tion functions of these time-signatures is apparent. See Appendix A.3 for more
details.

In Section 2 we go into more detail about the Pollard ρ algorithm, and
highlight an observation concerning the distribution of its running times. In
Section 3 we address more purely mathematical issues and consider random
walks on graphs, through which our observations about the Pollard ρ algorithm
can be seen as a special case of a more-general phenomenon. Concluding remarks
are made in Section 4. For the benefit of mathematicians, in Appendix A we
have included cryptographic background and details about the cryptographic
constructions just described, along with more details of our experiments.

2 Pollard ρ collision times

Recall that the Pollard ρ walk involves a random decomposition of Z/NZ as
S1,keytS2,keytS3,key. The iterating function (1.6) depends on the decomposition,
but in practice it is prohibitive to store the decompositions themselves. In order
to make the algorithm efficient, one instead chooses the decompositions based on
the value of some fixed, keyed hash function Hkey(x) (mod 3).9 Thus a random

9 The hash function is a function from Z/NZ→ Z with the important property that
it can be evaluated quickly. A keyed hash function is a collection of hash functions,

10



choice of key determines a random decomposition and (1.6) can be rewritten as

fkey,h(x) =

2x, Hkey(x) ≡ 0 (mod 3) ;
x+ 1, Hkey(x) ≡ 1 (mod 3) ;
x+ h, Hkey(x) ≡ 2 (mod 3) .

(2.1)

Observe that once h, the key, and the starting point x1 have been chosen, the
algorithm is deterministic. From the point of view of the experiments in this
paper, the underlying ensemble Eρ for the Pollard ρ walk consists of probability
distribution functions for the choices of x1, h, and the key. In our experiments,
we have demonstrated universality for the collision time sN with respect to var-
ious such ensembles. More precisely, our calculations demonstrate the following

Observation 1 (Pollard ρ walk universality): Let N be a prime, c > 0 a
fixed constant, and −→x a list of cN1/2+O(1) samples of sN . Then for a wide class
of ensembles Eρ, N (−→x ) converges to the Rayleigh distribution (1.4) as N →∞.

The list is taken to have size on the order of N1/2 which is large enough to
generate meaningful samples, but small enough to be practical for experiments.
This universality was tested extensively, in particular using Kolmogorov-Smirnov
statistics to test the rate of convergence to the Rayleigh distribution. In order to
generate a data set large enough to obtain valid statistical conclusions, but not
so large that the O(

√
N) running time becomes prohibitive, we took the value

of N in our experiments to be on the order of 105 (e.g., as in Figure 4). The
ensembles Eρ we studied were appropriately regular in their distributions of x1
and h, in order to avoid artificially small collision times. In particular, we do not
allow distributions which assign high probability to x1 = 0, for then x2 = 0 with
probability at least 1/3 and there is frequently a collision at the first possible
opportunity. Similar caveats apply also in the simpler situation of the birthday
problem.

Collision statistics for the Pollard ρ Algorithm A.2.3. We have just dis-
cussed the collision times of the Pollard ρ walk, which differs from the running
time of the actual Pollard ρ algorithm since the latter uses Floyd’s cycle de-
tection method described in Appendix A.2. The Pollard ρ algorithm does not
necessarily detect the first collision, but instead waits for the algorithm to enter
into a loop. In particular, the number of iterative steps taken to find a collision
in the Pollard ρ Algorithm A.2.3 is at least that of Algorithm A.2.2.

We performed a number of experiments with the Pollard ρ Algorithm A.2.3
itself, and found that the normalized histograms of their collision times also con-
verge to a limiting time-signature. Intriguingly, this time-signature is very close
to the Rayleigh distribution limit that appears in Observation 1, but distinct
from it: their cumulative distributions appear to be within 1% of each other.

one for each choice of “key” (which can be represented, for example, by an integer).
In this paper the keys are chosen randomly. Of course all analyses (including ours)
assume the hash function outputs are independent and equidistributed (mod 3).

11



This closeness is striking, and appears to reflect the robustness of the universal-
ity of the Rayleigh distribution (1.4).

3 Collision times of random walks on graphs

In this section we make some speculations about time-signatures of collision
times of random walks on graphs.

Recall the discussion of the Pollard ρ walk from (1.6). Once the decomposi-
tion Z/NZ = S1,key t S2,key t S3,key, the value of h, and the starting point x1
have been fixed, the walk is completely deterministic (cf. the comments just after
(2.1)). In particular, the value of each iterate xn+1 is completely determined by
xn according to the membership of xn in Si,key, i ∈ {1, 2, 3}. As noted before,
this is why the algorithm enters into a loop after the first collision. Part of the
randomness in the iteration arises from the a priori choice of the decomposition
Z/NZ = S1,key t S2,key t S3,key. The set of such decompositions is in bijective
correspondence with the set of all functions from Z/NZ to {1, 2, 3}, and has car-
dinality 3N . We let Edecomp denote the ensemble of all such decompositions, each
given equal weight 3−N . Note that this differs from the situation in Section 2,
where for practical reasons the choice of decomposition was delegated to the
choice of a key for the keyed Hash function Hkey. Since not all decompositions
necessarily arise from keys in this way, for the theoretical considerations of this
section we now consider Edecomp directly.

Recall that a directed graph is a set of vertices together with some edges
connecting specified pairs of vertices with a specified orientation. The Pollard ρ
iteration can be interpreted as a walk on a directed graph. The Pollard ρ graph
ΓN,h is defined as the directed graph on Z/NZ having directed edges from each
x ∈ Z/NZ to x + 1, x + h, and 2x ∈ Z/NZ. Note that these quantities are not
always distinct – the graph contains a small number of self-loops and multiple
edges. Once the decomposition Z/NZ = S1,key t S2,key t S3,key has been fixed,
the iterating function f steers the walk deterministically from each vertex to the
next according to (1.6).

It is mathematically natural to study uniform random walks on ΓN,h, h fixed,
meaning that at each stage one obtains the next iterate by choosing one of the
three directed edges with equal probability: thus the value of xn+1 can be either
xn + 1, xn + h, or 2xn ∈ Z/NZ – each with probability 1/3, independently of n
or the value of xn. Such a walk will not necessarily enter into a loop after the
first collision, because it will generally move out of the collision site differently
the second time around.

It was observed in [12] that the collision time statistics of the uniform random
walk on ΓN,h for fixed h, x1 ∈ Z/NZ, are identical to those of the Pollard
ρ walk with the same values of h and x1, when the decomposition Z/NZ =
S1,key t S2,key t S3,key for the Pollard ρ walk is sampled from Edecomp. This is
because until a collision occurs, it is irrelevant whether the next iterate was
chosen from a rule based on predetermined random choices, or if it was instead
chosen randomly at the time. Note that since h and x1 are not randomized at this

12



point, one cannot expect this common distribution to converge to the Rayleigh
distribution as N →∞, as in Observation 1.

Thus Observation 1 can be reformulated as saying that the collision time
of the random walk on the Pollard ρ graph, for random initial data h and x1,
has a time-signature. It is intriguing to consider whether or not there are time-
signatures for random walks on other types of graphs, and if so, whether they
also follow the Rayleigh distribution. Notice, for example, that one can view
the birthday problem Process 1 in the introduction as a random walk on the
complete directed graph on Z/NZ, and indeed its normalized collision times
follow the Rayleigh distribution. We performed extensive numerical experiments
with the graph10 ΓN , defined for primes N > 3 as the 2-valent directed graph
on Z/NZ with edges of the form

x→ 3(x± 1) ∈ Z/NZ

We found again that the normalized collision times follow the Rayleigh distri-
bution (even at the fine level of Kolmogorov-Smirnov statistics). More precisely,
our calculations demonstrate

Observation 2 (Universality of collision times on graph ΓN): Let SN
denote the collision time of the uniform random walk on ΓN , randomized over
uniformly-chosen choices of starting point. Let c > 0 be a fixed constant and −→x
a list of cN1/2 + O(1) samples of SN . Then N (−→x ) converges to the Rayleigh
distribution (1.4) as N →∞.

It is a great challenge to turn Observations 1 and 2 into theorems. We con-
jecture that universality phenomena similar to Observation 2 hold for a broad
class of random walks on graphs.

4 Conclusion

We have shown that the notion of time-signature, previously studied in the nu-
merical analysis literature, can be applied to certain cryptographic algorithms.
The shapes of their associated histograms can distinguish between different al-
gorithms, but not always: several families of random walk-based algorithms have
indistinguishable time-signatures. The connection described in Section 3 to the
collision times of random walks on graphs raises interesting mathematical ques-
tions in probability theory.

Future, more-detailed work may create a tool to detect the identity of a hid-
den algorithm based on features of its performance such as the distribution of

10 We chose to study the graph ΓN for two reasons: 1) its expansion and eigenvalue-
separation properties are similar to those of the Pollard ρ graph, and 2) its speed
of operation. The latter is due to the fact that the underlying computational steps
describing the edges of ΓN (adding and subtracting 1, and multiplying by 3) are
among the simplest and fastest arithmetic operations, and are hence desirable for
use in fast stream ciphers (e.g., mv3 [7]).

13



running times, which could potentially help expose the identity (or non-identity)
of a secret implementation of a cryptosystem, or information about secret infor-
mation in a known system. Time-signatures could also be generalized to other
side-channel information, such as power consumption.

Acknowledgements: It is a pleasure to thank Adi Akavia, Daniel J. Bern-
stein, Orr Dunkleman, Nicholas Genise, Nathan Keller, Neal Koblitz, Thomas
Kriecherbauer, Ilya Mironov, Adi Shamir, Ramarathnam Venkatesan, and Moti
Yung for their helpful comments and discussions.

A Cryptographic Background

In this appendix we provide some background for mathematicians who may not
be familiar with public key cryptography, along with more details on the plots
in Figures 3 and 5.

A.1 Three classic public key cryptosystems

The Diffie-Hellman Key Exchange. This was the first method for two par-
ties, Alice and Bob, to agree upon a common secret – even if they have never
previously communicated, and even if malicious actors eavesdrop on all their
communications. First Alice and Bob agree on a finite cyclic group G and a
generator g of G.11 Alice chooses a secret integer x, and sends gx ∈ G to Bob.
Meanwhile, Bob chooses a secret integer y and sends gy ∈ G to Alice. Each party
can then compute the shared secret gxy = (gx)y = (gy)x ∈ G. The secret would
be found immediately by an attacker who can solve the

Discrete Logarithm Problem (DLOG):

given h ∈ G, find some integer z such that gz = h , (A.1)

that is, who can invert the map a 7→ ga. Such an attacker who has access to
the public information gx (or gy) could then compute the secret integer x (or
y). In practice, the size of G is extremely large (e.g., order 2160), making naive
approaches (such as a brute-force search for x among all #G equivalent possi-
bilities) prohibitive. Algorithms A.2.1, A.2.2, and A.2.3, we shall see, are better.

Once two parties agree on a shared secret, they can encrypt messages via
more traditional methods (as a naive example, they can add this shared secret
to a numerical message, and then decrypt by subtracting).

11 In their original application [5], Diffie and Hellman chose G = (Z/pZ)∗ for some
large prime p.

14



The Rivest-Shamir-Adleman (RSA) cryptosystem. The RSA algorithm
is a method for one party, Charlie, to directly send an encrypted message to
another party, Debra – without needing to agree on a secret key, or even to
communicate at all beforehand. First Debra selects two large prime numbers,
p 6= q, and a pair of integers e and d satisfying ed ≡ 1 (mod φ(n)), where
n = pq and φ(n) = (p − 1)(q − 1) is the order of the multiplicative group
(Z/nZ)∗ := {a ∈ Z/nZ | gcd(a, n) = 1}. Debra publishes the pair (n, e), her RSA
key, but keeps p, q, and d secret. To send a message m, thought of as an element
of (Z/nZ)∗, Charlie exponentiates m to the power e (the encryption exponent)
modulo n, and then sends x ≡ me (mod n) to Debra, who can recover m as xd

(mod n) using the fact that xd ≡ med ≡ m (mod n) (since ed−1 is a multiple of
φ(n), the order of the group (Z/nZ)∗). The system would be immediately broken
if an attacker can factor n into p and q, in which case d could be computed as
the modular inverse of e modulo (p− 1)(q − 1).

Elliptic Curve Cryptography (ECC). This is the Diffie-Hellman key-exchange
applied to the group G of points of an elliptic curve E over a finite field F. Typi-
cally one considers elliptic curves of the form E : y2 = x3+ax+b with coefficients
a, b ∈ F. The solutions (x, y) ∈ F × F to E along with an additional “point at
infinity” form an abelian group under an addition law coming from the geom-
etry of the curve. To keep with the description of the Diffie-Hellman scheme
presented above, we shall write the group operation in multiplicative form; that
is, gx denotes adding the point g to itself x times.

A.2 Cryptographic algorithms based on the random walks in
Section 1

We will next explain how both Process 1 (the birthday problem random walk)
and Process 2 (the Pollard ρ walk) in the introduction can be applied to solve
the Discrete Logarithm Problem (DLOG) (A.1). Afterwards, we will describe
how these processes also appear in cryptosystems themselves (i.e., not just in
attacks on cryptosystems).

The algorithms described here are so-called “black box” attacks, meaning
that they are designed to work on any finite cycle group – in particular, they do
not leverage any features of the actual realization of the group G. Indeed, much
faster attacks are known for certain special realizations of groups. The attacks
below are essentially sharp in their running time (except where otherwise noted)
for general groups [8,13,18]. It is worth commenting that the Pollard ρ Algo-
rithm A.2.3 is one of the few examples of an algorithm whose running time is
rigorously understood; in general most analysis of running times is only heuris-
tic.12 With high probability the running time is bounded above and below by

12 As an extreme example, the presently most-powerful integer factorization algorithm
(the “Number Field Sieve”) is not even provably known to terminate. More gen-
erally, the halting problem (determining whether or not an arbitrary program will
terminate) is undecidable.

15



constant multiplies of
√

#G, which is a dramatic improvement over the O(#G)
running time for a brute-force search.

Algorithm A.2.1: DLOGs using the birthday problem random walk.
Given h ∈ G, we must find some integer x such that gx = h. Starting with

x1 = h, continue with the iteration xn+1 = x
r(xn)
n gs(xn), where r(xn) and s(xn)

are integers chosen uniformly at random from the interval [1,#G], and which
depend only on xn (but not the value of n itself). At each stage, xn has the form
hangbn = ganx+bn , where an and bn are known integers. Since the exponent
sn is chosen uniformly at random, xn+1 is uniformly distributed at random,
and hence one expects based on the birthday paradox a collision xm = xk for
some 1 < k < m = O(

√
#G). Comparing exponents results in the linear relation

amx+bm ≡ akx+bk (mod #G); this can be solved as long as am−ak is coprime
to #G, which happens with high probability.

Fig. 6. An illustration of the Pollard ρ iterative walk. Once the collision xm = xk
occurs, the walk enters into an infinite loop. The shape of this diagram is the
source of the moniker “ρ”.

16



Algorithm A.2.2: DLOGs via the Pollard ρ walk. Here the iteration xn+1

is equal to one of three possibilities: x2n, xng, or xnh, with each possibility de-
termined by the value of xn (but independently of n), and each occurring with
probability 1/3. This iteration is thus precisely (1.6) written in multiplicative
coordinates (and with the obvious adjustment to the meaning of h). Collisions
again occur in time O(

√
#G) [8] and are highly likely to be nondegenerate [13];

all other details are identical to those in Algorithm A.2.1.

Note there is a subtle but important difference between these two algo-
rithms: Algorithm A.2.2 is superior in that at each step one requires only ex-
ponentiations to small powers. It is thus significantly faster than Algorithm
A.2.1, which requires exponentiation to large powers and whose running time is
therefore greater, in fact by an additional multiplicative factor on the order of
log(#G).

Algorithm A.2.3 (The Pollard ρAlgorithm): Improvements using Floyd’s
cycle detection method. Algorithms A.2.1 and A.2.2 both require O(

√
N)

storage in order to detect the first collision. This is impractical for large values
of N of interest in many applications. The iterations in both algorithms enter
a loop once a collision occurs. Note the following. If xk = xn for some k ≤ n,
then xk+` = xn+` for any ` ≥ 0 because the iteration is time-independent. Thus
xm = xm′ if m ≥ k and m′ ≥ m is congruent to m (mod n − k). In particular,
there exist m ≥ k such that xm = x2m, for example whenever m is a multiple
of n − k. Thus Algorithm A.2.2 can be modified to use much less storage by
utilizing Floyd’s cycle detection method, which simply checks if xm = x2m. This
requires only bounded storage, since it suffices to run a duplicate copy of the
iteration at half-speed. The value of m will typically be greater than that of
the first collision time n. The actual Pollard ρ algorithm used in all practical
implementations indeed uses Floyd’s cycle detection algorithm – it thus differs
from Algorithm A.2.2 in that it may not detect the first collision.

We have thus just seen that both Process 1 and Process 2 from Section 1 nat-
urally appear in cryptographic attacks – in fact, attacks on the same problem,
viz., DLOG. The underlying walks also have appeared in cryptosystems them-
selves. The completely random “birthday paradox” walk is ubiquitous, since it
occurs any time elements are selected uniformly at random from a set. The ran-
dom walk in the Pollard ρ walk is used in the stream cipher mv3 [7], and is
closely modeled after the Pollard ρ walk (see also Observation 2 at the end of
Section 3). Stream ciphers are fast random number generators used in cryptog-
raphy for encrypting very large files, such as videos. Collision time distribution
enters fundamentally into an aspect of their design. A stream cipher outputs
part of its internal state, which is updated at each iteration. When collisions in
the internal state (or at least parts of it) occur after short intervals, an attacker
may be able to deduce secret information. On the other hand, unusually long
collision times betray a highly non-random structure that an attacker might also
be able to leverage. It is thus desirable from this point of view to have collision

17



times similar to those of the birthday problem collision times BN from the purely
random walk in Process 1. Thus verifying that normalized collision times match
the Rayleigh distribution is a sign of good randomness properties of the internal
workings of a stream cipher.

A.3 Details of Figures 3 and 5

Details of Figure 3. The bottleneck in RSA key generation is the search for
primes p and q in an interval [X,κX], where X � 1 and κ > 1. The primes
in our calculations were generated using the Pari/GP number theory package
[14] as follows: we first selected a uniformly random integer r ∈ [X,κX], and
found the first prime p > r using the nextprime command; the prime q was
generated in the same way. The encryption exponent e was chosen uniformly at
random among the integers which are coprime to φ(n) and lie in the interval
[1, φ(n)]. The decryption exponent d was then computed as the modular inverse
of e (mod φ(n)). Creating e and d is significantly faster than obtaining p and q.
The actual CPU timing to create the key was recorded by calling the gettime()
command both immediately before the key is generated and again immediately
after the key is generated.

Each value of X � 1 and κ > 1 gives rise to an ensemble EX,κ of random RSA
keys (n, e). With κ fixed, as X becomes large the histograms for the normalized
timings for RSA key generation converge. Moreover, one obtains the same his-
togram for different values of κ. In this way RSA key generation timings give
rise to a time-signature, displayed as the dotted curve in Figure 3.

Key generation for ECC was made in the following way, using a randomly
selected elliptic curve E : y2 = x3 +x+r over F = Fp, where p is a large random
prime chosen in [X,κX] as above and r is a random integer chosen uniformly
from 1 to p. Let G denote the group of points of E over Fp. Computations in
G were done using Pari/GP: the curves are first entered into Pari/GP using
the command E=ellinit([1,r],Mod(1,p)). Elliptic curves are more crypto-
graphically secure if #G is a prime not equal to p. We thus discarded curves
which had composite order. A generator g of G was obtained using the command
g=ellgenerators(E)[1]. Finally, the shared key gxy = (gx)y was created by
selecting random integers x and y chosen uniformly in the range [1,#G] (using
the commands x=random(ellcard(E)) and y=random(ellcard(E))), and then
using the command ellmul(E,ellmul(E,g,x),y) to add g to itself xy times.
The actual CPU time for key generation was again recorded using the gettime()
command.

As above, each value of X � 1 and κ > 1 gives rise an ensemble E ′X,κ of
random keys for ECC, i.e., for such X and κ we obtain a random elliptic curve
E, conditioned to have prime order, and then from E, a random key. Again, with
κ fixed and X large the histograms for the normalized key generation timings
converge to a limit, which is independent of κ. Thus ECC key generation timings
give rise to a time-signature, displayed as the solid curve in Figure 3.

The time-signature for RSA key generation was calculated by applying the
normalization (1.5) to 10,000 running times for generating keys with n of size

18



24000; the resulting histogram for keys with n of size 22000 was indistinguishable.
Likewise, the time-signatures for ECC key generation were found from 10,000
normalized running times to generate elliptic curves with p of size 270 (which is
indistinguishable from the corresponding histograms with p of size 250 or 260).

Details of Figure 5. Figure 5 compares actual CPU running times vs. the
number of iterative steps for the Pollard ρ Algorithm A.2.3 to solve elliptic curve
discrete logarithms. We created instances of the discrete logarithm problem using
Pari/GP as follows. Given an elliptic curve E with generator g entered using
the commands E= pellinit([1,r],Mod(1,p)) and g=ellgenerators(E)[1]

as above, and x an integer in the range [1,#G], the point h = gx was computed
using the command h = ellmul(E,g,x). In this way, we obtained a large data
set to which the Pollard ρ algorithm can be applied.

For any given h in our data set, the discrete logarithm of h with respect to
the generator g was then computed in Pari/GP using the Pollard ρ algorithm
via the command elllog(E,h,g). We used the gettime() command as above
to record the actual CPU time. A straightforward modification of the Pari/GP

source code also reports the step count. Working on the given elliptic curve E, we
recorded both the actual CPU timing and step count of the Pollard ρ algorithm
for all the h’s in our data set.

The plots in Figure 5 display these timings. They were first computed on a
data set of 100,000 values of h on a fixed elliptic curve E having p of size 240.
This gives rise to two normalized histograms, one for the actual CPU time (solid
curve) and one for the step count (dashed curve). We repeated this experiment
with a data set of 10,000 values of h on a different elliptic curve E′ having p of
size 245. This gave rise to two additional normalized histograms, which agreed
perfectly with their respective counterparts (i.e., solid-to-solid and dashed-to-
dashed) from E. From these computations we see in addition that the solid and
dashed curves are very close to each other; that is, there is little difference in
measuring the time-signature of the Pollard ρ algorithm by actual CPU running
times as opposed to step count.

References

1. Michael Camarri and Jim Pitman, Limit distributions and random trees derived
from the birthday problem with unequal probabilities, Electronic Journal of Proba-
bility 5, 1–18 (2000).
https://projecteuclid.org/download/pdf_1/euclid.ejp/1457376437

2. Percy A. Deift, Govind Menon, Sheehan Olver and Thomas Trogdon, Universality
in numerical computations with random data, Proc. Natl. Acad. Sci. U. S. A. 111,
14973–14978 (2014).

3. Percy Deift and Thomas Trogdon, Universality for eigenvalue algorithms on sample
covariance matrices, SIAM J. Num. Anal. 55, 2835–2862 (2017).

4. Percy Deift and Thomas Trogdon, Universality for the Toda Algorithm to Compute
the Largest Eigenvalue of a Random Matrix, Commun. Pure Appl. Math. 71, 505–
536 (2017).

19

https://projecteuclid.org/download/pdf_1/euclid.ejp/1457376437


5. Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory 22 (6), 644–654 (1976).

6. Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salma-
sizadeh, Mohammad T. Manzuri Shalmani, On the Power of Power Analysis in
the Real World: A Complete Break of the KeeLoq Code Hopping Scheme, in Ad-
vances in Cryptology – CRYPTO 2008, Springer Berlin Heidelberg, pp.203–220.
https://doi.org/10.1007/978-3-540-85174-5_12

7. Nathan Keller, Stephen D. Miller, Ilya Mironov, and Ramarathnam Venkatesan,
MV3: A new word based stream cipher using rapid mixing and revolving buffers,
in Topics in Cryptology – Procedings of CT-RSA 2007, Springer Verlag Lecture
Notes in Computer Science, 4377 (2007), 1–19.

8. Jeong-Han Kim, Ravi Montenegro, Yuval Peres, and Prasad Tetali, A Birthday
Paradox for Markov chains with an optimal bound for collision in the Pollard Rho
algorithm for discrete logarithm, Annals of Applied Probability, 20, No. 2, 495–521
(2010).

9. Jeong-Han Kim, Ravi Montenegro, and Prasad Tetali, Near Optimal Bounds for
Collision in Pollard Rho for Discrete Log, in Proceedings of the 48th Annual
IEEE Symposium on Foundations of Computer Science, 215-–223. Washington,
DC: IEEE, 2007.

10. A.N. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione.
Giornale dell’Istituto Italiano degli Attuari, Vol. 4 (1933), pp. 83–91.

11. H. Lilliefors, On the Kolmogorov–Smirnov test for normality with mean and vari-
ance unknown, Journal of the American Statistical Association, 62, pp. 399–402
(1967).

12. Stephen D. Miller and Ramarathnam Venkatesan, Spectral analysis of Pollard rho
collisions, Algorithmic number theory, 573–581, Lecture Notes in Comput. Sci.,
4076, Springer, Berlin, 2006.

13. Stephen D. Miller and Ramarathnam Venkatesan, Non-degeneracy of Pollard rho
collisions, Int. Math. Res. Not. IMRN 2009, no. 1, 1–10

14. Pari/GP computer algebra system, https://pari.math.u-bordeaux.fr/.
15. Christian W. Pfrang, Percy Deift and Govind Menon, How long does it take to

compute the eigenvalues of a random symmetric matrix?, in Random matrix theory,
Interact. Part. Syst. Integr. Syst., MSRI Publ. 65, 411–442 (2014).

16. John M. Pollard, Monte Carlo methods for index computation (mod p), Mathe-
matics of Computation 32 (1978), no. 143, 918–924.

17. Michael O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory
12, 128–138 (1980).

18. Victor Shoup, Lower bounds for discrete logarithms and related problems, Ad-
vances in Cryptology–EUROCRYPT ’97 (Konstanz), Lecture Notes in Com-
put. Sci., 1233, Springer, Berlin, 1997, pp. 256–266, Updated version at
http://www.shoup.net/papers/dlbounds1.pdf

19. Edlyn Teske, On random walks for Pollard’s rho method, Mathematics of Compu-
tation 70, Number 234, 809–825 (2000).

20

https://doi.org/10.1007/978-3-540-85174-5_12
https://pari.math.u-bordeaux.fr/

	-1in Stopping time signatures for some algorithms in cryptography
	Percy Deift, Stephen D. Miller, and Thomas Trogdon

