
On Misuse of Nonce-Misuse Resistance
Adapting Differential Fault Attacks on (few) CAESAR Winners

Mustafa Khairallah
SPMS, Nanyang Technological University

Singapore
mustafam001@e.ntu.edu.sg

Shivam Bhasin
Temasek Labs @ NTU

Singapore
sbhasin@ntu.edu.sg

Anupam Chattopadhyay
SCSE, Nanyang Technological University

Singapore
anupam@ntu.edu.sg

Abstract—New cryptographic schemes are often built upon old
and proven primitives which withstood long public scrutiny. The
recently concluded CAESAR competition saw several authenti-
cated ciphers which were directly built upon proven primitives
like AES. However, any attacks associated with these underlying
primitives become a vulnerability to the whole scheme. AES,
which is considered theoretically secure, has a very low fault
resistance against differential fault attacks (DFA) requiring only
1-2 faults. In this paper, we study DFA attacks on some of the
CAESAR competition winners with AES block cipher as the
underlying primitive. We study the challenges imposed by the
design of these modes, such as masking of the cipher-text. We
also show that a very small number of nonce repetition and faults
is required to extend the original attack on AES, which makes
it very practical. We show that OCB and COLM need 1 nonce
repetition and 3 faults only to uniquely identify the Key.

I. INTRODUCTION

Authenticated Encryption with Associated Data (AEAD) has
become one of the most important primitives in Symmetric
Key Cryptography, a status that is highlighted by the recently
concluded CAESAR competition [1] and the new NIST
Lightweight Cryptography competition [2]. In February 2019,
the final portfolio of the CAESAR competition winners was
announced, consisting of 6 algorithms divided into three use-
cases:

1) Lightweight Applications: Ascon [7] and ACORN [12].
2) High Speed Applications: OCB [11] and AEGIS [13].
3) Defense-in-Depth Applications: Deoxys [9] and

COLM [3].
While these operation modes use underlying primitives that

are known to be insecure against physical attacks, such as
Differential Fault Attacks (DFA [6]), it is not always clear
how these attacks can be extended to the modes using such
primitives. For example, OCB, COLM and Deoxys all use
the AES SPN as an underlying primitive1. However, due to
the mode design, the attacker may not have the same level of
access to the primitive as in the case of the stand-alone AES
cipher.

In this paper we investigate the challenges that the mode
imposes on the attacker and how the attacker can bypass them
in order to apply the DFA attack on the underlying primitive

1Deoxys uses Deoxys-BC, which uses the AES SPN with different key
schedule and more rounds. the DFA on AES and Deoxys-BC will be almost
exactly the same.

and recover the key, which we consider to be the main goal
of DFA. These challenges can be due to how the primitive
is used inside the mode or due to the security model of the
nonce usage. The latter case is less relevant to the practical
setting of the DFA. In fact it is considered near-impossible to
prevent nonce misuse in the presence of physical attacks [5],
which lead to the emergence of the misuse-resilience [4], [5],
as opposed to misuse-resistance, to capture attackers that can
force the device to reuse the nonces even for a temporary
period of time. In this model the attacker is allowed to reuse
the nonce during the attack phase. However, he cannot reuse
the nonce, afterwards. In our analysis, we use this definition
(Section II) to attack modes in the first two use-cases. The two
winners in the Defense-in-Depth use-case are secure against
nonce-misuse, so such distinction is not required. However,
since our DFA analysis targets the recovery of the master
key, the two definitions are equivalent, as the once the key is
recovered the attacker can generate cipher-texts using fresh
nonces.

The rest of the paper is organised as follows. Section II
recalls background concepts on nonce isuse resistance/resilience
and DFA on SPN. Section V proposes the adaption of DFA on
AES to AES-OCB/COLM-128, two of the CAESAR winners.
Finally conclusions are drawn in Section VI.

II. BACKGROUND

A. Misuse-resistance vs. Misuse Resilience

Most nonce-based AEAD modes are secure only in the nonce-
respecting model, i.e. the attackers advantage is negligible only
if the nonce is never repeated. However, it is not always clear
what is the effect of repeating the nonce for the same message
as opposed to repeating the nonce for different messages. For
example, while a nonce-respecting mode can be broken if
the attacker can generate EKpN,M1q and EKpN,M2q, where
M1 ‰ M2, usually the case when M1 “ M2 only leaks the
fact that M1 “M2, leading to a trivial distinguishing attack,
which does not necessarily affect the security beyond this
specific attack. To avoid such trivial attacks in security analyses,
adversaries are assumed to never ask for the encryption of
exactly the same query more than once.

However, the impact of nonce misuse on the security is not
the same for all nonce-respecting modes. For example, if an
attacker can repeat the nonce a few times while executing OCB,



he can completely break the security of the system. However, in
modes like GCM, even if the attacker can repeat the nonce, he
can only infer information on messages encrypted with exactly
the same nonce, with very little impact on messages encrypted
with other nonces. Hence, the definition of misuse-resilient
modes emerged.

Definition 1: A nonce-based AEAD mode of operation is
misuse resilient if the information obtained by reusing a certain
nonce Na during the challenge queries does not give him an
advantage with regards to distinguishing messages encrypted
under a fresh nonce Nf [4].

Since most nonce-based AEAD schemes assume the nonce-
respecting model, these modes are insecure even against misuse
resilience, with few exceptions as mentioned earlier. However,
while the nonce-respecting model is sound in the black-box
security model, it is not practical in the presence of a malicious
physical adversary who can induce faults in to the circuit,
software. On the other hand, if we assume the adversary can
fully control the nonce, breaking such modes can become
trivial. Hence, for the sake of DFA analysis, we propose a
weakened adversary. Some fault attacks, such as Statistical
Fault Attacks (SFA) and Statistical Ineffective Fault Attacks
(SIFA) assume that the adversary has no control over the nonce
at all. Yet, such attacks can still be used to break the system
using a large number of faults (ą 100 faults). We view such
approach as too conservative towards the other end of the
spectrum, as if the attacker has the capabilities to inject faults
into the cipher, he can also inject faults into the nonce circuitry,
forcing repetitions. In order to reach a more moderate view,
we assume the attacker can cause the nonce to repeat only
once.

B. DFA on SPNs

In [10], Khairallah et al. studied the general structure of DFA
attacks on SPNs and provided an efficient method to analyze a
wide range of SPNs with low computational complexity. The
analysis used a new tool called Joint Difference Distribution
Table (JDDT), which is characteristic for the cipher and can be
computed once, independent of the key. For example, the space
of a 32-bit word of the last round key of AES can be reduced
from 232 to „ 28 keys with a single byte-random fault, with
computational complexity of 28 32-bit XORs, as opposed to
232 partial decryption using previous analyses methods. In this
paper, while analyzing AES based modes, we use the analysis
and algorithm from [10] as a black box.

C. The Joint Difference Distribution Table (JDDT)

An SPN can be defined as a group of non-linear functions
Spxq, where Spxq consists of a linear part (diffusion layer) and
a non-linear part (Sbox). The JDDT utilises the observation
that when a single word difference ∆ is injected into the
input of the diffusion layer in round j, the inputs to n
corresponding Sboxes in round j ` 1 are not independent, but
are tl1p∆q, l2p∆q, ...lnp∆qu, where lipxq is a linear function
from 1 word to 1 word, which corresponds to the difference
propagation through the diffusion layer. Hence, instead of

analyzing each of the Sboxes in round j ` 1 independently,
we can analyze them using their joint differential properties,
expressed by the JDDT, which is actually a portion of the
DDT of the function rA1, A2, ...Ans Ð Spta1, a2, ...anuq. The
JDDT of n Sboxes consists of exactly 2´pn´1qb rows of the
overall DDT of Spxq. The purpose of the JDDT is to provide
candidates for the output value of Spxq, given ∆ and the output
difference.

We compute the JDDT as follows: we consider all the
24b possible output differences and divide them into four b-
bit differences. We use each of these values to access the
corresponding DDT and find all the possible input differences
corresponding to this value. Typically, for good Sboxes, these
would be four lists of around 2b´1 values each, which means
24pb´1q possible values for the difference at the output of
the diffusion layer. However, only a subset of these values
satisfies the relation tl1p∆q, l2p∆q, l3p∆q, l4p∆qu. Hence, they
are tested and only the solutions corresponding to valid
differences are stored into the JDDT.

D. Single Fault Attack on SPNs

In [10], the authors generalized an attack against a wide
class of SPNs that minimizes the number of faults required.
The attack consists of two phases. In the offline phase, the
JDDT of the cipher is calculated and the optimal fault locations
are identified. In the online phase, the fault is injected in the
identified location and propagates as shown in Figure 1. Once
the output difference of a group is observed, the JDDT is
accessed, and based on the assumptions on the input difference
values (fault model, Sbox/Mixing differential properties, etc),
a set of potential output values is required. These values are
XORed with the ciphertext to get a set of key-words candidates
of this group.

In [10], the authors provided the expected complexity and
number of faults for attacking several SPN-based ciphers,
including AES. It was shown that AES using a single fault,
the key space can be reduced to 28 keys using random-byte
faults and less than two keys using a known-byte fault.

III. APPLYING DFA ON Deoxys

Deoxys-II [9] is a nonce-misuse resistant AEAD mode. It
was selected as the first choice for high security applications
in the CAESAR competition. It uses the Deoxys-BC as an
underlying tweakable block cipher (TBC), and it has two
variants; the first one with 128-bit key and the second one
with 256-bit key, both of them use 120-bit nonce and 128-bit
tag. The attack we describe here targets only the first variant.
However, it can easily be extended to the other variant by
attacking more rounds.

The encryption part of Deoxys-II is shown in Figure 2
from [9]. The tag variable depends on both the message and
the associated data. However, it is a public parameter as it is
released by the encryption algorithm. The attacker can choose
a 2-block message and ask for its encryption with a given
nonce. Since the attacker knows the message, as this is a
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Fig. 1: 3 Round DFA on SPNs [10]

Fig. 2: The encryption part of Deoxys-II for a two-block
message

chosen plaintext attack, he can access the output of Deoxys-
BC, applying the DFA against AES on both blocks, recovering
232 candidates for the last round key for each encryption call.
However, unlike AES, the round keys in Deoxys-BC are a
function of both the master key and the tweak input, 1|tag
and 1|tag ‘ 1 in this case. In order to recover the master
key, we need to remove the impact of the tweak input from
the last round key. In order to do so, we use the fact that
Deoxys-BC uses the Tweakey framework [8], where the key
schedule operates on each part of the tweakey independently.
Hence, the attacker can regenerate all the contributions of the
tweak input to the round keys, converting the last round key
candidates to master key candidates. Finally, the attacker can
find the intersection between the two sets of key candidates,
identifying the master key.

IV. APPLYING DFA ON OCB

OCB is one of the winners of the CAESAR competition for
High Performance Applications. The designers propose several
variants using different AES variants and key sizes. The attack

Fig. 3: The Encryption part of the OCB AEAD mode [11]

inthis section targets the variants based on AES-128. The attack
can be extended to other variants using different variants of
DFA on AES. Figure 3 from [11] shows the encryption part
of the OCB mode. It can be seen that most encryptions are
hard to attack using DFA due to the masking of the input and
output with the variable ∆. However, we notice that we can
overcome this challenge by carefully choosing the plaintext
used for the attack. If |M | “ 120 and |AD| “ 0, then the
encryption algorithm will access the block cipher only twice:

1) C “M‘truncate120(ENCKp∆qq.
2) T “ENCpM |107 ‘∆q.
The second encryption can be targeted with standard DFA

against AES. This leads to 232 key candidates with complexity
28 or 28 key candidates with complexity 230. The first
encryption can also be attacked. However, the attacker needs
to guess 8 bits of the ciphertext output difference, since the
ciphertext will be truncated to only 120 bits. This increases the
number of key candidates resulting for this part of the attack
to 240 instead of 232. The probability of intersection between
the two sets of key candidates is either 272{2128 “ 2´56 or
248{2128 “ 2´80. Consequently, 2 faults are enough to uniquely



Fig. 4: COLM Encryption mode [3]

identify the key with very high probability.

V. ADAPTING DFA ON COLM

COLM is the second choice of the CAESAR competition
for high security applications. It is based on AES-128 as
an underlying block cipher. It has two variants COLM0 and
COLM127. Both of them use 64-bit nonce and 128-bit key. They
differ in the masking function and the tag size, as COLM127

generates several intermediate tags. Our attack targets COLM0.
However, since both vairants share the same structure, the
attack should be easily adaptable to both variants. The goal
of this section is develop a DFA analysis against COLM, that
requires only two encryption calls, and as few fault injections
in the faulty encryption call as possible. Moreover, only a
single-byte fault is permitted per call. While the DFA against
AES is a well studied topic, adapting these attacks to COLM
is not straightforward, for two reasons, which can viewed in
Figure 4 from [3]:

1) The final output of the AES is XORed with 2i ¨L, where
i is the a block counter, and L is a randomized 128-bit
parameter derived from the master key K using a secure
key Derivation Function (KDF). Hence, the DFA attacks
on the last round of AES-128 will return candidates for
K10 ‘ 2iL, as opposed to K10.

2) Since we can’t directly get candidates for the last round
key, we cannot use the information from deeper round to
further filter out some of the key candidates.

Hence, we need to adapt the AES analysis from [10] to
the current scenario. If we look at the results of applying a
single-byte random fault at the input of Mix-Column in round
8, we get on average « 232 candidates for K10‘ 2iL, divided
as 4 groups of 4 bytes each, each group has « 28 candidates.
It was shown in [10] that the complexity of this step is « 28

single round decryption, or 210 32-bit XORs, if the JDDT of
AES is precomputed. If we repeat this for two consecutive
blocks, we get 232 equations of the form

K10 ‘ 2i ¨ L “ A (1)

and another set of 232 equations of the form

K10 ‘ 2i`1 ¨ L “ B (2)

If we try to find every possible candidate for K10, we
have to consider « 264 linear systems, and we end up with
264 candidates, which is not practical. Hence, we use the
fact that the candidates from each block are divided into 4
independent sets and employ a divide and conquer approach
to statistically identify the key. For example, we show below
the fault propagation in the third the columns in round 9, and
how it affects the last round key.

»

—

—

–

´ ´ δ ´

´ ´ ´ ´

´ ´ ´ ´

´ ´ ´ ´

fi

ffi

ffi

fl

MC`ARK
ÝÝÝÝÝÝÝÑ

»

—

—

–

´ ´ δ1 ´

´ ´ δ2 ´

´ ´ δ3 ´

´ ´ δ4 ´

fi

ffi

ffi

fl

SB
ÝÝÑ

»

—

—

–

´ ´ ∆1 ´

´ ´ ∆2 ´

´ ´ ∆3 ´

´ ´ ∆4 ´

fi

ffi

ffi

fl

SR
ÝÝÑ

»

—

—

–

´ ´ ∆1 ´

´ ∆2 ´ ´

∆3 ´ ´ ´

´ ´ ´ ∆4

fi

ffi

ffi

fl

We can see that the four bytes in this group are XORed
with bytes 15, 2, 5 and 8 of the last round key. Hence, the
first block give equations of the form:

K10r127 : 120s||K10r23 : 16s||K10r47 : 40s||K10r71 : 64s‘

Xr127 : 120s||Xr23 : 16s||Xr47 : 40s||Xr71 : 64s “ Ar31 : 0s
(3)

where X “ 2i ¨ L, while the next block gives an equation of
the form

K10r127 : 120s||K10r23 : 16s||K10r47 : 40s||K10r71 : 64s‘

Xr126 : 119s||Xr22 : 15s||Xr46 : 39s||Xr70 : 63s “ Br31 : 0s
(4)

Unlike the original overall system, each potential system of
equations considered by Equations 3 and 4 represents an under-
defined system of equations with 32 equations and 36 variables.
Moreover, the number of potential systems is p28q2 “ 216. In
conclusion, we can solve every possible system, generating
16 candidates for K10 per system and 220 candidates in total.
These candidates follow the following form:

K10r127s “ Ar31s ‘ x

K10r23s “ Ar23s ‘ y

K10r47s “ Ar15s ‘ z

K10r71s “ Ar7s ‘ l

@126 ě i ě 120,K10ris “ K10ri` 1s ‘Bri´ 95s ‘Ari´ 96s

@22 ě i ě 20,K10ris “ K10ri` 1s ‘Bri` 1s ‘Aris

@46 ě i ě 40,K10ris “ K10ri` 1s ‘Bri´ 31s ‘Ari´ 32s

@70 ě i ě 64,K10ris “ K10ri` 1s ‘Bri´ 63s ‘Ari´ 64s
(5)

Where x, y, z, l are 4 free variables. Since, this leads to
280 candidates for the full key, it is not enough to make
identifying the key practical, so we consider three faults instead
of two, injecting a similar fault in the third consecutive block.
We notice that the relation between the candidates from the



TABLE I

Target No. of Faults Key Complexity
AES-128 1/2 28-232{20

AES-OCB-128 1/2 28-232{20

Deoxys 1/2 28-232{20

AES-COLM-128 1/2/3 2128{280{20

second and third blocks (Equation 6, is similar to the relation
between candidates from the first and second blocks. Under
the assumption that there is only one correct solution and the
all the wrong solutions are uniformally distributed, we expect
the intersection between the solutions of Equations 3 and 4
and the solutions of Equations 4 and 6 to be 240{232 “ 28,
leading to 232 key candidates in total.

K10r127 : 120s||K10r23 : 16s||K10r47 : 40s||K10r71 : 64s‘

Xr125 : 118s||Xr21 : 14s||Xr45 : 38s||Xr69 : 62s “ Cr31 : 0s
(6)

Moreover, we can further filter out the key candidates by
considering the set of solutions of Equations 3 and 6. We note
that in this case, we have 40 variables and 32 equations. Hence,
we get 256 solutions per system and 224 solutions in total. The
intersection between this set of solutions and the previous two
sets is expected to be p28 ˚ 224q{232 “ 1, which means that
each group will have either 1 candidate (the correct one) or 2
candidates (one correct candidate and one wrong candidate)
on average. Hence, the number of master key candidates is
expected to be between 1 and 16, which is small enough. We
can the brute force over all the final candidates without fault
injection (in case more than one candidate is left).

We have verified our analysis by simulating the attack on
COLM in software, finding candidates for A, B and C using
the JDDT of AES and solving the resulting equations. Our
results show that the average number of solutions at every step
follows our estimations. Moreover, we were able to identify the
master key uniquely using only 3 faults. A notable observation
is that, although the size of final intersection set generated by
our software was greater than 1, some times all the entries
in this set were the same (some of the wrong solutions were

equal to the correct solution, due to the selection of the free
variables). The overall complexity of the analysis is dominated
by the step of finding the intersection between the sets of
solutions, which is Opnlog nq, with n « 220, thanks to the
speed-up of the AES analysis using the JDDT.

VI. CONCLUSIONS

In this paper, we study DFA attacks on some of the CAESAR
competition winners. We study the challenges imposed by the
design of these modes, such as masking of the ciphertext. We
also show that a very small number of nonce repetition and
faults is required, which makes it very practical. The extended
attack is summarised in the Table I.
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