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ABSTRACT
In this paper, we introduce Polygraph, the first accountable

Byzantine consensus algorithm. If among 𝑛 users 𝑡 < 𝑛/3 are
malicious then it ensures consensus; otherwise (if 𝑡 ≥ 𝑛/3),
it eventually detects malicious users that cause disagree-

ment. Polygraph is appealing for blockchain applications as

it allows them to totally order blocks in a chain whenever

possible, hence avoiding forks and double spending and, oth-

erwise, to punish (e.g., via slashing) at least 𝑛/3 malicious

users when a fork occurs. This problem is more difficult

than perhaps it first appears. One could try identifying ma-

licious senders by extending classic Byzantine consensus

algorithms to piggyback signed messages. We show how-

ever that to achieve accountability the resulting algorithms

would then need to exchange Ω(𝜅 · 𝑛2
) more bits, where 𝜅

is the security parameter of the signature scheme. By con-

trast, Polygraph has communication complexity 𝑂(𝜅 · 𝑛4
).

Finally, we implement Polygraph in a blockchain committing

more than 10,000 TPS when deployed on 80 geodistributed

machines.

1 INTRODUCTION
Over the last several years we have seen a boom in the de-

velopment of new Byzantine agreement protocols, in large

part driven by the excitement over blockchains and cryp-

tocurrencies. Unfortunately, Byzantine agreement protocols

have some inherent limitations: it is impossible to ensure

correct operation when more than 1/3 of the processing

power in the system is controlled by a single malicious party,

unless the network can guarantee perfect synchrony in com-

munication. At first, one might hope to relax the liveness

guarantees, while always ensuring safety. Alas, in a partially

synchronous network, this type of guarantee is impossible.

If the adversary controls more than 1/3 of the computing

power, it can always force disagreement.

Acountability.What if, instead of preventing bad behavior

by a party that controls too much power, we guarantee ac-

countability, i.e., we can provide irrefutable evidence of the

bad behavior and the identifier of the perpetrator of those

illegal actions? Much in the way we prevent crime in the

real world, we can prevent bad blockchain behavior: if the

attacker has strictly less than 1/3 of the network under their

control then consensus is reached, otherwise we record suf-

ficient information to catch the third of the network that is

criminal and take remedial actions. Accountability has been

increasingly discussed as a desirable property in blockchains

to slash stake of cheating peers [9, 30]. The problem is to

avoid suspecting correct peers while provably identifying

cheating ones.

Why is it a hard problem? As far as we know, there is

no generic way of getting definitive evidence of the guilt

of processes (or nodes) for all systems. Previous work intro-

duced a method to transform any distributed system into

one that is accountable but it only guarantees that faulty

processes will be suspected forever if the network is par-

tially synchronous [18]. We thus narrow down the problem

to accountable Byzantine agreement, specifically reaching

agreement when there are fewer than 𝑛/3 Byzantine partici-

pants or detecting at least 𝑛/3 Byzantine participants in case

of a disagreement. Most partially synchronous Byzantine

consensus protocols, like PBFT [11], Tendermint [8] or Hot-

Stuff [33], already collect forms of cryptographic evidence

like signatures or certificates to guarantee agreement upon

a decision. So one might think of simply recording the quo-

rum certificates containing honest processes signatures that

attest the decision to detect 𝑛/3 Byzantine processes in case

of disagreement. In fact, we show that justifications should

contain at least Ω(𝜅 · 𝑛2
) bits (where 𝜅 is the security pa-

rameter of the signature scheme) for a simple piggybacking

extension to make any of these algorithms accountable (see

Theorem 4.3).

Results. In this paper, we propose Polygraph, the first ac-

countable Byzantine agreement solution. The idea is to offer

accountability guarantees to the participants of the service.

Intuitively, one cannot hold 𝑛 servers accountable to sep-

arate clients (distinct from the servers) that interact with

the blockchain when more than 𝑡 ≥ 2𝑛/3 of the servers

are Byzantine. The reason is that the coalition is sufficiently

large to rewrite the blockchain and prevent a client from dis-

tinguishing the response of honest servers from the response

of malicious servers [13]. This was confirmed by concurrent
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Algorithm Message Communication

PBFT [11] 𝑂(𝑛3
) 𝑂(𝜅 · 𝑛4

)

Tendermint [7] 𝑂(𝑛3
) 𝑂(𝜅 · 𝑛3

)

HotStuff [33] 𝑂(𝑛2
) 𝑂(𝜅 · 𝑛2

)

HotStuff w/o thres. sig. [33] 𝑂(𝑛2
) 𝑂(𝜅 · 𝑛3

)

DBFT binary consensus [14] 𝑂(𝑛3
) 𝑂(𝑛3

)

DBFT multivalue consensus [14] 𝑂(𝑛4
) 𝑂(𝑛4

)

Polygraph (Sect. 5) 𝑂(𝑛3
) 𝑂(𝜅 · 𝑛4

)

Naive Multiv. Polygraph (App. C) 𝑂(𝑛4
) 𝑂(𝜅 · 𝑛5

)

Multivalue Polygraph (App. D) 𝑂(𝑛4
) 𝑂(𝜅 · 𝑛4

)

Table 1: Differences in message and communication
complexities (after GST) between Polygraph and non-
accountable Byzantine consensus algorithms, where 𝑛
is the number of consensus participants and 𝜅 is the
security parameter of the corresponding encryption
scheme.

research to ours that showed it is impossible to hold servers

accountable to separate clients for any number of Byzantine

participants [31].

Our solution, called Polygraph, ensures that in a symmet-

ric system where all 𝑛 participants are peers that take part as

clients and servers in the accountable Byzantine consensus,

then accountability is ensured for any number 𝑡 ≤ 𝑛 of
Byzantine participants. Note that the problem is trivial

when 𝑡 > 𝑛 − 2 as no disagreement is possible, but other-

wise Polygraph guarantees all honest participants undeni-

ably detect at least 𝑛/3 Byzantine participants responsible

of disagreement. Because it is resilient to any number of

failures, Polygraph is particularly interesting for peer-to-

peer blockchain networks. In particular, it allows to hold

all peers accountable to other peers, which is appealing for

consortium blockchains and shard chains [17].

We also show that Polygraph is optimal in that stronger

forms of accountability are impossible. For example, we can-

not guarantee agreement when 𝑡 > 𝑛/3, even if we are

willing to tolerate a failure of liveness (Theorem 4.1); and

processes cannot detect even one guilty participant within a

fixed time limit (e.g., prior to decision), since (intuitively) that

would enable processes to determine guilt before deciding in

a way that leads to disagreement. Nor can we guarantee de-

tection of more than 𝑛/3 malicious users, since it takes only

𝑛/3 malicious users to cause disagreement and additional

malicious users could simply stay mute to not be detected.

Finally, we show that Polygraph is efficient. First, its com-

munication complexity is𝑂(𝜅 ·𝑛4
) bits, where𝑛 is the number

of participants and𝜅 is the security parameter of its signature

scheme. This complexity is comparable to the communica-

tion complexity of state-of-the-art consensus algorithms as

depicted in Table 1 because Polygraph simply needs to ex-

change signed messages received within at most the two

latest previous asynchronous rounds. In particular, both the

binary and the multivalue versions of Polygraph share the

same asymptotic complexity as PBFT, which does not of-

fer accountability. Second, we evaluate the performance of

Polygraph in a blockchain application that thus becomes

accountable. We deploy this blockchain application on 80

machines across continents and compare its performance

to the Red Belly Blockchain. Even though it presents some

overheads compared to this non-accountable baseline, our

accountable blockchain still exceeds 10,000 TPS at 80 nodes.

This high performance can be attributed to the reasonable

complexity of the multivalue variant of Polygraph depicted

in Table 1.

Roadmap. The background is given in Section 2. The model

and the accountable Byzantine consensus problem are pre-

sented in Section 3, and impossibility results are given in

Section 4. Section 5 describes the Polygraph protocol, which

solves the accountable binary Byzantine consensus prob-

lem. Section 6 analyses empirically the Polygraph protocol

in a geodistributed blockchain. blockchain and Section 7

concludes.

An Appendix is left to the discretion of the reader. Appen-

dix A presents the proof of the impossibility result, Appen-

dix B presents the proof of correctness of the Polygraph pro-

tocol, Appendix C presents the multivalue Polygraph proto-

col that supports arbitrary values. Appendix D presents some

optimizations to reduce the complexity of the multivalue

Polygraph protocol. Appendix E discusses the applications

of the Polygraph protocol to blockchain. Finally, Appendix F

shows that a naive extension of classic blockchain consensus

protocols, including PBFT, HotStuff and Tendermint, cannot

make them accountable.

2 BACKGROUND AND RELATEDWORK
In this section, we review existing work on accountability in

distributed systems.

2.1 PeerReview
Haeberlen, Kuznetsov, and Druschel [18] pioneered the idea

of accountability in distributed systems. They developed a

system called PeerReview that implemented accountability

as an add-on feature for any distributed system. Each pro-

cess in the system records messages in tamper-evident logs;

an authenticator can challenge a process, retrieve its logs,

and simulate the original protocol to ensure that the process

behaved correctly. They show that in doing so, you can al-

ways identify at least one malicious process (if some process

acts in a detectably malicious way). Their technique is quite
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powerful, given its general applicability which can be used

in any (deterministic) distributed system!

The issue has to do with (partial) synchrony. The Peer-

Review approach is challenge-based: to prove misbehavior,

an auditor must receive a response from the malicious pro-

cess. If no response is received, the auditor cannot determine

whether the process is malicious, or whether the network

has not yet stabilized. It follows that the malicious coalition

will only be suspected forever but not proved guilty. There is

no fixed point at which the auditor can be completely certain

that the sender is malicious; the auditor may never have de-

finitive proof that the process is malicious; it always might

just be poor network performance. The Polygraph Protocol,

by contrast, produces a concrete proof of malicious behavior

that is completely under the control of the honest processes.

2.2 Accountable blockchains
Recently, accountability has been an important goal in “proof-

of-stake” blockchains, where users that violate the protocol

can be punished by confiscating their deposited stake.

Buterin and Griffith [9] have proposed a blockchain pro-

tocol, Casper, that provides this type of accountability guar-

antee. Validators try to agree on (or “finalize”) a branch of

𝑘 hundreds of consecutive blocks, by gathering signatures

for this branch or “link” from validators jointly owning at

least 2𝑛/3 of the deposited stake. If a validator signs multi-

ple links at the same height, Casper uses its signatures as

proofs to slash its deposited stake. This is very similar in in-

tent to Polygraph’s notion of identifying 𝑛/3 malicious users

when there is disagreement. Like most blockchain proto-

cols, however, Casper implicitly assumes some synchronous

underlying (overlay) network and allows the blockchain to

fork into a tree until some branch is finalized. To guarantee

“plausible liveness” or that Casper does not block when not

enough signatures are collected to finalize a link, validators

are always allowed to sign links that overlap but extend links

they already signed. However, this does not guarantee that

consensus terminates.

The longlasting blockchain [30] builds upon our compan-

ion technical report [13] to recover from forks by exclud-

ing guilty participants and compensating transient losses

with the deposit of guilty participants. It recovers from 𝑓 =

⌈2𝑛/3⌉ − 1 failures as long as there are less than min(𝑛/3, 𝑛−
𝑓 ) processes experiencing benign (e.g., crash) failures. Ac-

countability in the context of blockchain fairness was raised

by Herlihy and Moir in a keynote address [20], and the

idea of “accountable Byzantine fault tolerance” has been

discussed [7]. The goal in the latter case is to suggest a

broadcast after the consensus in order to detect a fault by

matching pre-vote and pre-commit messages of the same

validator in Tendermint, but the algorithm is not detailed.

Holding 𝑛 servers accountable to separate clients in the Ten-

dermint consensus algorithm [4, 8] as well as HotStuff [33]

was shown possible when 𝑡 < 2𝑛/3 in recent research [31]

but could not be achieved when 𝑡 ≥ 2𝑛/3, which confirms

our observations (Appendix E).

2.3 Earlier work on accountability
Even before PeerReview, others had suggested the idea of ac-

countability in distributed systems as an alternate approach

to security (see, e.g., [24, 34, 35]). Yumerefendi and Chase [35]

developed an accountable system for network storage, and

Repeat and Compare [28] developed an accountable peer-to-

peer content distribution network. The idea of accountability

appeared less explicit in many earlier systems. For example,

Aiyer et al. [3] proposed the BAR model for distributed sys-

tems, which relied on incentives to ensure good behavior;

one key idea was in detecting and punishing bad behav-

iors. Finally, Intrusion Detection Systems (e.g., [16, 21, 26]

provided heuristics and techniques for detecting malicious

behaviors in a variety of different systems.

2.4 Failure detectors
There is a connection between accountability and failure de-

tectors. A failure detector is designed to provide each process

in the system with some advice, typically a list of processes

that are faulty in some manner. However, failure detectors

tend to have a different set of goals. They are used during an

execution to help make progress, while accountability is usu-

ally about what can be determined post hoc after a problem

occurs. They provide advice to a process, rather than proofs

of culpability that can be shared. Most of the work in this

area has focused on detecting crash failures (see, e.g., [12]).

There has been some interesting work extending this idea

to detecting Byzantine failures [18, 19, 22, 26]. Malkhi and

Reiter [26] introduced the concept of an unreliable Byzan-

tine failure detector that could detect quiet processes, i.e.,

those that did not send a message when they were supposed

to. They showed that this was sufficient to solve Byzantine

Agreement.

Kihlstrom, Moser, and Melliar-Smith [22] continue this

direction, considering failures of both omission and commis-

sion. Of note, they define the idea of a mutant message, i.e., a

message that was received by multiple processes and claimed

to be identical (e.g., had the same header), but in fact was not.

The Polygraph Protocol is designed so that only malicious

users sending a mutant message can cause disagreement. In

fact, the main task of accountability in this paper is iden-

tifying processes that were supposed to broadcast a single

message to everyone and instead sent different messages to

different processes.
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Maziéres and Shasha propose SUNDR [27] that detects

Byzantine behaviors in a network file system if all clients

are honest and can communicate directly. Polygraph clients

request multiple signatures from servers so that they do not

need to be honest. Li and Maziéres [25] improves on SUNDR

with BFT2F, a weakly consistent protocol when the number

of failures is 𝑛/3 ≤ 𝑡 < 2𝑛/3 and its BFTx variant that copes

with more than 2𝑛/3 failures but does not guarantee liveness
even with less than 𝑡 failures.

3 MODEL AND PROBLEM
We first define the problem in the context of a traditional

distributed computing setting. (We later discuss applications

to blockchains.)

System.We consider𝑛 processes. A subset𝐶 of the processes

are honest, i.e., always follow the protocol; the remaining

𝑡 < 𝑛 are Byzantine, i.e., maymaliciously violate the protocol,

under the control of a dynamic adversary that fixes the set

of Byzantine processes for the duration of each round. We

define 𝑡0 = max(𝑡 ∈ N0 : 𝑡 < 𝑛/3), i.e., 𝑡0 = ⌈𝑛
3
⌉ − 1, a useful

threshold on the number of Byzantine behaviors.

Processes execute one step at a time and are asynchro-

nous, proceeding at their own arbitrary, unknown speed. We

assume local computation time is zero, as it is negligible with

respect to message delays.

We assume that there is an idealized PKI (public-key in-

frastructure) so that each process has a public/private key

pair that it can use to sign messages and to verify signatures.

Partial synchrony. We consider a partially synchronous

network. During some intervals of time, messages are deliv-

ered in a reliable and timely fashion, while in other intervals

of time messages may be arbitrarily delayed. More specifi-

cally, we assume that there is some time 𝜏GST known as the

global stabilization time, unknown to the processes, such

that any message sent after time 𝜏GST will be delivered with

latency at most 𝑑 . We say that an event occurs eventually

if there exists an unknown but finite time when the event

occurs. (Note that we tolerate that messages be dropped be-

fore 𝜏GST as long as messages are sent infinitely often.) For

the sake of simplicity in the presentation, we write “receive

𝑘 messages” to explain “receive messages from 𝑘 distinct

processes”.

Verification algorithm. A verification algorithm 𝑉 takes

as input the state of a process and returns a set 𝐺 of undeni-

able guilty processes, that is, every process-id of 𝐺 is tagged

with an unforgeable proof of culpability. (More formally, this

means that for every computationally bounded adversary,

for every execution in which a process 𝑝 𝑗 is honest, for every

state 𝑠 generated during the execution or constructed by

Byzantine users, the probability that the verification algo-

rithm returns a set containing 𝑝 𝑗 is negligible. In practice,

this will reduce to the non-forgeability of signatures.)

Accountable Byzantine agreement.The problem of Byzan-

tine Agreement, first introduced by Pease, Shostak, and Lam-

port [23], assumes that each process begins with a binary

input, i.e., either a 0 or a 1, outputs a decision, and requires

three properties: agreement, validity, and termination.

We define the Accountable Byzantine Agreement problem

in a similar way, with the additional requirement that there

exists a verification algorithm that can identify at least 𝑡0 + 1

Byzantine users whenever there is disagreement. (Recall that

𝑡0 = ⌈𝑛
3
⌉ − 1.) More precisely:

Definition 3.1 (Accountable Byzantine Agreement). We say

that an algorithm solves Accountable Byzantine Agreement

if each process takes an input value, possibly produces a

decision, and satisfies the following properties:

• Agreement: If 𝑡 ≤ 𝑡0, then every honest process that

decides outputs the same decision value.

• Validity: If all processes are honest and begin with the

same value, then that is the only decision value.

• Termination: If 𝑡 ≤ 𝑡0, every honest process eventually

outputs a decision value.

• Accountability: There exists a verification algorithm

𝑉 such that: if two honest processes output disagree-

ing decision values, then eventually for every honest

process 𝑝 𝑗 , for every state 𝑠 𝑗 reached by 𝑝 𝑗 from that

point onwards, the verification 𝑉 (𝑠 𝑗 ) outputs a guilty

set of size at least 𝑡0 + 1.

Our validity definition is sometimes called weak valid-

ity [29], but Lemma B.8 shows that our accountable binary

Byzantine consensus protocol ensures even a stronger valid-

ity property.

4 IMPOSSIBILITY RESULTS
It may seem that accountability can be obtained by always

guaranteeing agreement but failing to terminate as soon

as 𝑡 ≥ 𝑛/3, by checking evidence before deciding, or by

piggybacking a subquadratic number of bits as justifications

in classic consensus algorithms. In this section, we show that

none of these ideas lead to accountability.

4.1 Avoiding disagreement when 𝑡 ≥ 𝑛/3 is
impossible

A couple of natural questions arise regarding accountable

algorithms: Can we design an algorithm that always guaran-

tees agreement, and simply fails to terminate if there are too

many Byzantine users? If so, we would trivially get account-

ability! Can we design an algorithm that provides earlier

evidence of Byzantine behavior, even before the decision is
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possible? If so, we could provide stronger guarantees than

are provided in this paper. Alas, neither is possible. The de-

tails of the following theorems are deferred to Appendix A

(and follow from standard partitioning arguments).

Theorem 4.1. In a partially synchronous system, no al-

gorithm solves both the Byzantine consensus problem when

𝑡 < 𝑛/3 and the agreement and validity of the Byzantine

consensus problem when 𝑡 > 𝑡0.

We say that a verification algorithm𝑉 is swift if it guaran-

tees: assume 𝑝𝑖 has already decided some value 𝑣 , and that

𝑝 𝑗 is in a state 𝑠 wherein it will decide𝑤 ≠ 𝑣 in its next step;

then𝑉 (𝑠) ≠ ∅. Notice that a swift verification algorithm may

only detect one Byzantine process (i.e., it is not sufficient

evidence for 𝑝 𝑗 to decide never to decide).

Theorem 4.2. Consider an algorithm that solves consensus

when 𝑡 < 𝑛/3. There is no swift verification algorithm when

𝑡 > 𝑡0.

4.2 Classic PBFT-like algorithms
It is interesting to see that most partially synchronous con-

sensus algorithms already collect forms of cryptographic ev-

idence like signatures or certificates to guarantee agreement

upon decision.While this is a characteristic of PBFT [11], this

is the case of modern algorithms that build upon it including

Tendermint [8] and HotStuff [33]. One could naturally be

tempted to reuse these signatures and certificates to piggy-

back practical justifications in the existing messages of the

original consensus algorithms to turn them into account-

able consensus algorithms. Although threshold signatures

do not convey enough information to identify which process

is guilty, signatures are generally sufficient. We show below

that, unfortunately, this transformation cannot work.

The intuition of the proof is split in the four following steps

while the full proof is deferred to our technical report. First,

we define the class of ‘classic’ or PBFT-like consensus algo-

rithms and denote it L. Second, we show that HotStuff [33],

PBFT [11] and Tendermint [4] belong to this class L. Third,
we define a practical extension of PBFT-like consensus al-

gorithms that piggybacks messages. By ‘practical’ we mean

that piggybacked messages have a bounded staleness to pre-

vent the justification communication to be superlinear (e.g.,

quadratic) in 𝑛. Finally, we prove that there exist executions

leading to disagreement with different sets of Byzantine pro-

cesses that correct processes cannot distinguish.

(1) Class L of PBFT-like algorithms. L contains algo-

rithms that all rely on a leader that rotates in a round-robin

fashion across views and proposes a suggestion in its view.

Two local variables per process, preparation and decision,

have values that relate with each other such that for a pro-

cess 𝑗 to have a decision, 𝑛 − 𝑡0 processes, including 𝑗 itself,

must have had the same value as a preparation. During view

changes, if 𝑡 < 𝑡0, then a preparation implies a propagation

of a value to the leader within messages announcing the new

view.

(2) HotStuff, PBFT and Tendermint belong to L. By ex-

amination of the code of HotStuff, PBFT and Tendermint, we

can see that they all belong to L. HotStuff’s leader, PBFT’s
primary and Tendermint proposer of an epoch all aim at

proposing a suggestion within the view they coordinate. A

decision value always requires the same preparation value

from 𝑛 − 𝑡0 distinct processes. These two values correspond

to HotStuff’s commitQC and prepareQC, to Tendermint’s

decision and validValue, and to PBFT’s commit and prepare.
In all these three consensus algorithms, a suggestion value in

view 𝑣 + 1 must be proposed by its leader and correspond to

a preparation motivated by 𝑛 − 𝑡0 messages sent in view 𝑣 .

(3) Extensions of a PBFT-like algorithm. The 𝑡0-bounded
extension of a PBFT-like consensus algorithm 𝐴 is an algo-

rithm𝐴 like𝐴 except that it piggybacks a justification within

all its new-view and suggestionmessages at each view 𝑣𝑘 = 𝑘 .

This justification consists of a chain of the past alternating

sets Sugg
𝑥
of suggestion messages sent by the leader ℓ𝑣𝑥 of

view 𝑣𝑥 = 𝑥 and sets NV
𝑥
of new-view messages sent by

processes 𝜙𝑥 for view 𝑣𝑥 . Each piggybacked chain sent in

view 𝑣𝑘 has a bounded depth of 𝑡0 = Ω(𝑛), which means that

it contains a (possibly empty) suffix of this sequence of sets:

NV
𝑘−(𝑡0−1), Sugg𝑘−(𝑡0−2),NV𝑘−(𝑡0−2), · · · , Sugg𝑘−1

, NV
𝑘−1

.

Theorem 4.3. HotStuff, PBFT and Tendermint as well as

all their 𝑡0-bounded extensions are not accountable.

(4) Intuition of the proof. For the proof we consider two
executions 𝑒1

and 𝑒2
, in which process 𝑖 decides 𝑠𝑖 at view

𝑣𝑖 while process 𝑗 decides 𝑠 𝑗 ≠ 𝑠𝑖 at view 𝑣 𝑗 >> 𝑣𝑖 . Process

𝑖’s decision implies preparation of 𝑠𝑖 by a quorum 𝑄𝑖 at

view 𝑣𝑖 . In a later view numbered 𝑣𝑧 , a set 𝜙 of processes

send a set 𝑁𝑉 𝑣𝑧−1
of new-view messages to the leader

ℓ𝑣𝑧 of this view. A set 𝐵 = 𝜙 ∩ 𝑄𝑖 of at least 𝑡0 + 1 guilty

processes did not propagate their preparation of 𝑠𝑖 and

provoked the disagreement. The view 𝑣𝑧 is the first link of

a chain of successive views 𝜒 = [𝑣𝑧, 𝑣𝑧 + 1, . . . , 𝑣𝑧 + 𝑘 − 1]
where the leaders of views 𝜒 are in 𝑃 , |𝑃 | ≤ 𝑡0 − 1. At view

𝑣𝑧 + 𝑘 , process 𝑗 prepares 𝑠 𝑗 and eventually decides 𝑠 𝑗 at

view 𝑣 𝑗 ≥ 𝑣𝑧 + 𝑘 . When 𝑖 and 𝑗 detect the disagreement,

they can neither distinguish 𝑒1
from 𝑒2

nor identify the

senders 𝜙 of 𝑁𝑉 𝑣𝑧−1
. Process 𝑗 cannot wait without deciding

because we can construct an execution 𝑒0
indistinguishable

by 𝑗 from 𝑒1
with less than 𝑡0 Byzantine processes, where

the leaders 𝑃 (and 𝑖) of the chain 𝜒 appear mute to 𝑗 and
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where 𝑗 must decide. Leaders of 𝑃 prepare 𝑠 𝑗 as 𝑗 ignores

the decision 𝑠𝑖 . After the disagreement, 𝑃 does not reveal

𝑁𝑉 𝑣𝑧−1
that is necessary to detect the guilty processes. This

argument holds as long as 𝑘 < 𝑡0. The full proof is deferred

to Appendix F.

This result (Theorem 4.3) simply shows that piggybacking

𝑡0-bounded justifications is insufficient to make PBFT-like

algorithms accountable, however, it does not mean that they

cannot be transformed into an accountable algorithm. First,

one could probably make PBFT-like algorithms accountable

with a longer justification, exchanging Ω(𝜅 · 𝑛2
) more bits,

where 𝜅 is the security parameter of the signature scheme.

Second, transforming any of these algorithms into Polyp-

graph (Section 5) is a way of obtaining accountability with a

lower complexity than the previous extension. Such a trans-

formation would however be non-trivial because Polygraph

relies on DBFT that differs from PBFT-like algorithms in var-

ious ways: every process participating in DBFT can propose

a value, DBFT is signature-free and there is no view change

in DBFT as there is no need to recover from a failed leader.

5 POLYGRAPH, AN ACCOUNTABLE
BYZANTINE CONSENSUS ALGORITHM

In this section, we introduce Polygraph, a Byzantine agree-

ment protocol that is accountable. We begin by giving the

basic outline of the protocol for ensuring agreement when

𝑡 < 𝑛/3. The protocol is derived from the DBFT consensus al-

gorithm [14] that was proved correct using the ByMC model

checker [32] and that does not use the leader-based pattern

mentioned in the proof of Theorem 4.3. Then, we focus on

the key aspects that lead to accountability, specifically, the

“ledgers” and “certificates.” For the sake of simplicity, this

section tackles the binary agreement, however, Appendix C

generalizes this result to arbitrary values. In Appendix B, we

prove that the algorithm is correct.

As a notational issue, we indicate that a process 𝑝𝑖 sends

a message to every other process by: broadcast(TAG,𝑚)→
messages, where TAG is the type of the message, 𝑚 is the

message content, and messages is the location to store any

messages received.

Throughout we assume that every message is signed by

the sender so the receiver can authenticate who sent it. (Any

improperly signed message is discarded.) Thus we can iden-

tify messages sent by distinct processes. Similarly, the proto-

col will at times include cryptographically signed “ledgers”

in messages; again, any message that is missing a required

ledger or has an improperly formed ledger is discarded. (See

the discussion below regarding ledgers.)

5.1 Protocol overview
The basic protocol operates in two phases, after which a pos-

sible decision is taken. Each process maintains an estimate.

In the first phase, each process broadcasts its estimate using

a reliable broadcast service, bv-broadcast (discussed below),

as introduced previously [1]. The protocol uses a rotating

coordinator; whoever is the assigned coordinator for a round

broadcasts its estimate with a special designation.

All processes then wait until they receive at least one

message, and until a timer expires. (The timeout is increased

with each iteration, so that eventually once the network

stabilizes it is long enough.) If a process receives a message

from the coordinator, then it chooses the coordinator’s value

to “echo”, i.e., to rebroadcast to everyone in the second phase.

Otherwise, it simply echoes all the messages received in the

first phase.

At this point, each process 𝑝𝑖 waits until it receives enough

compatible ECHO messages. Specifically, it waits to receive

at least (𝑛 − 𝑡0) messages sent by distinct processes where

every value in those messages was also received by 𝑝𝑖 in

the first phase. In this case, it adopts the collection of values

in those (𝑛 − 𝑡0) messages as its candidate set. In fact, if a

process 𝑝𝑖 receives a set of (𝑛 − 𝑡0) messages that all contain

exactly the coordinator’s value, then it chooses only that

value as the candidate value.

Finally, the processes try to come to a decision. If process

𝑝𝑖 has only one candidate value 𝑣 , then 𝑝𝑖 adopts that value

𝑣 as its estimate. In that case, it can decide 𝑣 if it matches the

parity of the round, i.e., if 𝑣 = 𝑟𝑖 mod 2. Otherwise, if 𝑝𝑖 has

more than one candidate value, then it adopts as its estimate

𝑟𝑖 mod 2, the parity of the round.

To see that this ensures agreement (when 𝑡 < 𝑛/3), con-
sider a round in which some process 𝑝𝑖 decides value 𝑣 = 𝑟𝑖
mod 2. Since 𝑝𝑖 receives (𝑛 − 𝑡0) echo messages containing

only the value 𝑣 , we know that every honest process must

have value 𝑣 in every possible set of (𝑛 − 𝑡0) echo messages,

and hence every honest process included 𝑣 in its candidate

set. Every honest process that only had 𝑣 as a candidate

also decided 𝑣 . The remaining honest processes must have

adopted 𝑣 = 𝑟𝑖 mod 2 as their estimate when they adopted

the parity bit of the round. And if all the honest processes

begin a round 𝑟 with estimate 𝑣 , then that is the only possible

decision due to the reliable broadcast bv-broadcast in Phase

1 (see below) and all honest processes decide at round 𝑟 + 2

or earlier (regardless of whether 𝜏𝐺𝑆𝑇 is reached).

Processes always continue to make progress, if 𝑡 < 𝑛/3.
Termination is a consequence of the coordinator: eventually,

after GSTwhen the network stabilizes, there is a roundwhere

the coordinator is honest and the timeout is larger than the

message delay. At this point, every honest process receives
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Algorithm 1 The Polygraph Protocol

1: bin-propose(𝑣𝑖 ):
2: est𝑖 = 𝑣𝑖

3: r𝑖 = 0

4: timeout𝑖 = 0

5: ledgeri [0] = ∅
6: repeat:
7: 𝑟𝑖 ← 𝑟𝑖 + 1; � increment the round number and the timeout

8: timeout𝑖 ← timeout𝑖 + 1

9: coord𝑖 ← ((𝑟𝑖 − 1) mod 𝑛) + 1 � rotate the coordinator

⊲ Phase 1:

10: bv-broadcast(EST[𝑟𝑖 ], est𝑖 , ledger𝑖 [𝑟𝑖 − 1], 𝑖, bin_values𝑖 ) � binary value broadcast the current estimate

11: if 𝑖 = coord𝑖 then � coordinator rebroadcasts first value received

12: wait until (bin_valuesi [ri ] = {𝑤 }) � bin_values stores messages received by binary value broadcast

13: broadcast(COORD[𝑟𝑖 ], 𝑤)→ messages𝑖

14: StartTimer(timeout𝑖 ) � reset the timer

15: wait until (bin_valuesi [ri ] ≠ ∅ ∧ timer𝑖 expired)

⊲ Phase 2:

16: if (COORD[𝑟𝑖 ], 𝑤) ∈ messages𝑖 from 𝑝
coord𝑖

∧ 𝑤 ∈ bin_values𝑖 [𝑟𝑖 ]) then � favor the coordinator

17: aux𝑖 ← {𝑤 }
18: else aux𝑖 ← bin_values𝑖 [𝑟𝑖 ] � otherwise, use any value received

19: signature𝑖 = sign(aux𝑖 , 𝑟𝑖 , 𝑖) � sign the messages

20: broadcast(ECHO[𝑟𝑖 ], aux𝑖 [𝑟𝑖 ], signature𝑖 )→ messages𝑖 � broadcast second phase message

21: wait until valuesi = ComputeValues(messages𝑖 , bin_values𝑖 , aux𝑖 ) ≠ ∅
⊲ Decision phase:

22: if values𝑖 = {𝑣 } then � if there is only one value, then adopt it

23: est𝑖 ← 𝑣

24: if 𝑣 = (𝑟𝑖 mod 2) then � decide if value matches parity

25: if no previous decision by 𝑝𝑖 then decide(𝑣)

26: else
27: 𝑒𝑠𝑡𝑖 ← (𝑟𝑖 mod 2) � otherwise, adopt the current parity bit

28: ledger𝑖 [𝑟𝑖 ] = ComputeJustification(valuesi, esti, ri, bin_valuesi,messagesi) � broadcast certificate

Rules:
(1) Every message that is not properly signed by the sender is discarded.

(2) Every message that is sent by bv-broadcast without a valid ledger after Round 1, except for messages containing value 1 in Round 2, are discarded.

(3) On first discovering a ledger ℓ that conflicts with a certificate, send ledger ℓ to all processes.

the coordinator’s Phase 1 message and echoes the coordi-

nator’s value. In that round, every honest process adopts

the coordinator’s estimate, and the decision follows either

in that round or the next one (if 𝑡 < 𝑛/3).

5.2 Binary value broadcast
The protocol relies in Phase 1 on a reliable broadcast routine

bv-broadcast proposed before [1], which is used to ensure

validity, i.e., any estimate adopted (and later decided) must

have been proposed by some honest process. Moreover, it

guarantees that if every honest process begins a round with

the same value, then that is the only possible estimate for

the remainder of the execution (if 𝑡 < 𝑛/3). Specifically,
bv-broadcast guarantees the following critical properties

while 𝑡 < 𝑛/3: (i) every message broadcast by 𝑡0 + 1 honest

processes is eventually delivered to every honest process (see

Lemma B.2); (ii) everymessage delivered to an honest process

was broadcast by at least 𝑡 + 1 processes (see Lemma B.1).

These properties are ensured by a simple echo procedure.

When a process first tries to bv-broadcast amessage, it broad-

casts it to everyone. When a process receives 𝑡0 + 1 copies of

a message, then it echoes it. When a process receives 𝑛 − 𝑡0
copies of a message, then it delivers it. Notice that if a mes-

sage is not bv-broadcast by at least 𝑡0 + 1 processes, then it is

never echoed and hence never delivered. And if a message is

bv-broadcast by 𝑡0 + 1 (honest) processes is echoed by every

honest process and hence delivered to every honest process.

This reliable broadcast routine ensures validity, since

a Phase 1 message that is echoed in Phase 2 must have

been delivered by bv-broadcast, and hence must have been

bv-broadcast by at least one honest process.

5.3 Ledgers and certificates
In order to ensure accountability, we need to record enough

information during the execution to justify any decision that
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Algorithm 2 Helper Components

1: bv-broadcast(MSG, 𝑣𝑎𝑙, 𝑙𝑒𝑑𝑔𝑒𝑟, 𝑖, bin_values):
2: broadcast(BVAL, ⟨𝑣𝑎𝑙, 𝑙𝑒𝑑𝑔𝑒𝑟, 𝑖 ⟩)→𝑚𝑠𝑔𝑠 � broadcast message

3: After round 2, and in round 1 if 𝑣𝑎𝑙 = 0, discard all messages received without a proper ledger.

4: upon receipt of (BVAL, ⟨𝑣, ·, 𝑗 ⟩)
5: if (BVAL, ⟨𝑣, ·, ·⟩) received from (𝑡0 + 1) distinct processes and (BVAL, ⟨𝑣, ·, ·⟩) not yet broadcast then
6: Let ℓ be any non-empty ledger received in these messages. � one of the received ledgers is enough

7: broadcast(BVAL, ⟨𝑣, ℓ, 𝑗 ⟩) � Echo after receiving (𝑡0 + 1) copies.

8: if (BVAL, ⟨𝑣, ·, ·⟩) received from (2𝑡0 + 1) distinct processes then
9: Let ℓ be any non-empty ledger received in these messages. � one of the received ledgers is enough

10: bin_values← bin_values ∪ {⟨𝑣, ℓ, 𝑗 ⟩ } � deliver after receiving (2𝑡0 + 1) copies

11: ComputeValues(messages, b_set, aux_set): � check if there are 𝑛 − 𝑡0 compatible messages

12: if ∃𝑆 ⊆ messages where the following conditions hold:

13: (i) |𝑆 | contains (𝑛 − 𝑡0) distinct ECHO[𝑟𝑖 ] messages

14: (ii) aux_set is equal to the set of values in 𝑆 .

15: then return(aux_set)
16: if ∃𝑆 ⊆ messages where the following conditions hold:

17: (i) |𝑆 | contains (𝑛 − 𝑡0) distinct ECHO[𝑟𝑖 ] messages

18: (ii) Every value in 𝑆 is in b_set.

19: then return(𝑉 = the set of values in 𝑆)

20: else return(∅)

21: ComputeJustification(valuesi, esti, ri, bin_valuesi,messagesi): � compute ledger and broadcast certificate

22: if 𝑒𝑠𝑡𝑖 = (𝑟𝑖 mod 2) then
23: if 𝑟𝑖 > 1 then
24: return ledger [𝑟𝑖 ]𝑖 = ledger ℓ where (EST[𝑟𝑖 ], ⟨𝑣, ℓ, ·⟩) ∈ bin_values𝑖
25: else return ledger [𝑟𝑖 ]𝑖 = ∅
26: else return ledger [𝑟𝑖 ]𝑖 = (𝑛 − 𝑡0) signed messages from messages𝑖 containing only value est𝑖

27: if values𝑖 = {(𝑟𝑖 mod 2)}∧ no previous decision by 𝑝𝑖 in previous round then
28: certificate𝑖 = (𝑛 − 𝑡0) signed messages from messages𝑖 containing only value est𝑖

29: broadcast(est𝑖 , 𝑟𝑖 , 𝑖, certificate𝑖 ) � transmit certificate to everyone

is made, and hence to allow processes to determine account-

ability. For this purpose, we define two types of justifications:

ledgers and certificates. A ledger is designed to justify adopt-

ing a specific value. A certificate justifies a decision. We will

attach ledgers to certain messages; any message containing

an invalid or malformed ledger is discarded.

We define a ledger for round 𝑟 and value 𝑣 as follows. If

𝑣 ≠ 𝑟 mod 2, then the ledger consists of the (𝑛−𝑡0) ECHOmes-

sages, each properly signed, received in Phase 2 of round 𝑟

that contain only value 𝑣 (and no other value). If 𝑣 = 𝑟 mod 2,

then the ledger is simply a copy of any other ledger from

the previous round 𝑟 − 1 justifying value 𝑣 . (The asymmetry

may seem strange, but is useful in finding the guilty parties!)

We define a certificate for a decision of value 𝑣 in round

𝑟 to consist of (𝑛 − 𝑡0) echo messages, each properly signed,

received in Phase 2 of round 𝑟 that contain only value 𝑣 (and

no other value).

5.4 Accountability
We now explain how the ledgers and certificates are used.

In every round, when a process uses bv-broadcast to send a

message containing a value, it attaches a ledger from the pre-

vious round justifying why that value was adopted. (There

is one exception: in Round 1, no ledger will be available to

justify value 1, so no ledger is generated in that case.)

The bv-broadcast ignores the ledger for the purpose of

deciding when to echo a message. When it echoes a message

𝑚, it chooses any arbitrary non-empty ledger that was at-

tached to a message containing𝑚 (if any such ledgers are

available). However, every message that does not contain a

valid ledger justifying its value is discarded, with the follow-

ing exception: in Round 2, messages containing the value 1

can be delivered without a ledger (since no justification is

available for adopting the value 1 in Round 1).

Whenever there is only one candidate value received in

Phase 2, a process adopts that value and either: (i) decides and

constructs a certificate, or (ii) does not decide and constructs

a ledger. In both cases, this construction simply relies on

the signed messages received in Phase 2 of that round (and

hence is always feasible).

If a process decides a value 𝑣 in round 𝑟 > 1, or adopts

𝑣 because it is the parity bit for round 𝑟 > 1, then it also

constructs a ledger justifying why it adopted that value 𝑣 .

It accomplishes this by examining all the bv-broadcast mes-

sages received for value 𝑣 and copying a round 𝑟 − 1 ledger.

Again, this is always possible since any message that is not

accompanied by a valid ledger is ignored. (The only possible

problem occurs in Round 2 where messages for value 1 are

not accompanied by a ledger; however ledgers for value 1 in

round 2 do not require copying old ledgers.)

5.5 Proving culpability
How do disagreeing processes decide which processes were

malicious? When a process decides in round 𝑟 , it sends its
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certificate to all the other processes. Any process that decides

a different value in a round > 𝑟 can prove the culpability of at

least ⌈𝑛/3⌉ Byzantine processes by comparing this certificate

to its logged ledgers. (It can then broadcast the proper logged

ledgers to ensure that everyone can identify the malicious

processes.)

We will say that a certificate (e.g., from 𝑝1) and a ledger

(e.g., from 𝑝2) conflict if they are constructed in the same

round 𝑟 , but for different values 𝑣 and 𝑤 . That is, both the

certificate and the ledger attest to (𝑛 − 𝑡0) ECHO messages

from round 𝑟 sent to 𝑝1 and 𝑝2 (respectively) that contain

only value 𝑣 and only value𝑤 , respectively. Since every two

sets of size (𝑛 − 𝑡0) intersect in at least (𝑡0 + 1) locations,

this conflict identifies (𝑛 − 𝑡0) processes that sent different

Phase 2 messages in round 𝑟 to 𝑝1 and 𝑝2 and hence they are

malicious.

We now discuss how to find conflicting certificates and

ledgers. Assume that process 𝑝𝑖 decides value 𝑣 in round 𝑟 ,

and that process 𝑝 𝑗 decides a different value𝑤 in a round > 𝑟 .

(Recall that 𝑣 is the only possible value that can be decided

in round 𝑟 .) There are two cases to consider, depending on

whether 𝑝 𝑗 decides in round 𝑟 + 1 or later.

• Round 𝑟+1: If 𝑝 𝑗 decides in round 𝑟+1, then value𝑤 was

the only candidate value after Phase 2. This implies

that 𝑤 was received by some bv-broadcast message.

Since 𝑟 > 1, we know that the message must have

contained a valid ledger ℓ from round 𝑟 for value𝑤 ≠ 𝑣 .

This ledger ℓ conflicts with the decision certificate of

𝑝𝑖 .

• Round ≥ 𝑟 + 2: Since 𝑝 𝑗 decides 𝑤 ≠ 𝑣 , it does not

decide 𝑣 in round 𝑟 + 2. This means that 𝑝 𝑗 has𝑤 as a

candidate value, which implies that 𝑝 𝑗 received𝑤 in a

bv-broadcast. Since 𝑟 > 1, we know that the message

must have contained a valid ledger ℓ from round 𝑟 + 1

for value 𝑤 ≠ 𝑣 . This ledger ℓ consists of a copy of a

ledger from round 𝑟 for value𝑤 which conflicts with

the decision certificate of 𝑝𝑖 .

In either case, if 𝑝 𝑗 does not decide 𝑣 , then, by looking at the

messages received in round 𝑟 + 1 and 𝑟 + 2, it can identify a

ledger that conflicts with the decision certificate of 𝑝𝑖 and

hence can prove the culpability of at least 𝑡0 + 1 malicious

processes.

5.6 Analysis of the Polygraph Protocol
In Appendix B.1, we show that the the BV-broadcast rou-

tine provides the requisite properties. This then allows us to

prove the main correctness theorem, which follows imme-

diately from Lemma B.7, Corollary B.9, and Lemma B.10 in

Appendix B.2:

Theorem 5.1. The Polygraph Protocol is a correct Byzan-

tine consensus protocol guaranteeing agreement, validity, and

termination.

Accountability follows from Lemma B.11, which shows

that disagreement leads every honest process to eventually

receive a certificate and a ledger that conflict:

Theorem 5.2. The Polygraph Protocol is accountable.

If all the processes are honest, or if the Byzantine cor-

ruptions are oblivious to the processor identities, then the

protocol terminates in 𝑂(1) rounds after GST. Otherwise, it

may take 𝑡 + 1 rounds after GST to terminate. Lastly, we

bound the message and communication complexity of the

protocol. The number of rounds depends on when the net-

work stabilizes (i.e., we cannot guarantee a decision for any

consensus protocol prior to GST). We bound, however, the

communication complexity of each round:

Lemma 5.3 (Polygraph Complexity). After 𝜏𝐺𝑆𝑇 , the Poly-

graph protocol has message complexity𝑂(𝑛3
) and communica-

tion complexity𝑂(𝜅 ·𝑛4
), where 𝑛 is the number of participants

and 𝜅 is the security parameter.

Proof. The Polygraph protocol terminates in𝑂(𝑡 ) rounds

after 𝜏𝐺𝑆𝑇 both to reach consensus or detect processes respon-

sible of disagreement. As each round executes a bv-broadcast

of𝑂(𝑛2
) messages and as 𝑡 = 𝑂(𝑛) we obtain𝑂(𝑛3

) messages.

The communication complexity is 𝑂(𝜅 · 𝑛4
) since each mes-

sage may contain a ledger of 𝑂(𝑛) signatures or 𝑂(𝜅 · 𝑛) bits.

The remainder of the protocol involves only 𝑂(𝑛2
) messages

and only 𝑂(𝑛3
) communication complexity (e.g., for the co-

ordinator to broadcast its message, and for processes to send

their ECHO messages). □

Note that in the good case (after 𝜏𝐺𝑆𝑇 and when 𝑡 < 𝑡0)

Polygraph reaches consensus in three message delays. In

Appendix C, we show that the multivalue generalization of

the Polygraph protocol is also correct and accountable.

6 EXPERIMENTS: POLYGRAPHWITH A
BLOCKCHAIN APPLICATION

To understand the overhead of Polygraph over a non-

accountable consensus, we compare the throughput of the

original Red Belly Blockchain [15] based on DBFT [14] and

the “Accountable Red Belly Blockchain” based on Polygraph.

The reason is that DBFT and Polygraph are both one-shot

consensus protocols while a blockchain application allows

for a more realistic comparison of the performance. To this

end, we implemented the naive multivalue generalization

of Polygraph as described in Appendices C and E. We then

turn the Multivalue Polygraph Protocol into a state machine

replication with the classic technique [2, Fig.4] by tagging

messages with their consensus instance. Finally, we build
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Figure 1: The overhead of accountability in the Red Belly
Blockchain with 400 byte transactions cryptographically verified
with ECDSA signatures and parameters secp256k1 when deployed
on 80 replicas geo-distributed in Frankfurt, Ireland, London, N. Cal-
ifornia and N. Virginia.

a blockchain layer using the Red Belly Blockchain UTXO

model with signed Bitcoin-style transaction requests. We

implemented Polygraph using the RSA 2048 bits signature

scheme to authenticate messages.

We deployed both blockchains on up to 𝑛 = 80 c4.xlarge

AWS virtual machines located in 5 availability zones on

two continents: Frankfurt, Ireland, London, North California

and North Virginia. All machines issue transactions, insert

transactions in their memory pool, propose blocks of 10,000

transactions, verify transaction signatures (and account in-

tegrity, and run their respective consensus algorithm with

𝑡 = 𝑡0 = ⌈𝑛
3
⌉−1, before storing decided blocks to non-volatile

storage. Red Belly Blockchain commits tens of thousands of

Bitcoin TPS on hundreds of geo-distributed processes [15].

Figure 1 represents the throughput while increasing the

number of consensus participants from 20 (4 machines per

zone) to 80 (16 machines per zone). We observe that the cost

of accountability varies from 10% at 20 processes to 40% at

80 processes. The reason is twofold: (i) the accountability

presents an overhead due to the signing and verification

of messages authenticated using RSA 2048 bits in addition

to the verifications of built-in Red Belly Blockchain UTXO

transaction signatures. (ii) the c4.xlarge instances are low-

end instances with an Intel Xeon E5-2666 v3 processor of

4 vCPUs, 7.5 GiB memory, and “moderate” network perfor-

mance. On the one hand, as previously observed [15], even

in this low-end situation, the Red Belly Blockchain scales in

that its performance does not drop. On the other hand, we

can see the Accountable Red Belly Blockchain still offers a

throughput of more than 10,000 transactions per second at 80

geo-distributed processes, which remains superior to most

non-accountable blockchains. Finally, the Accountable Red

Belly Blockchain commits several thousands of transactions

per second on 80 geodistributed machines, which indicates

that the cost of accountability remains practical.

7 CONCLUSION
We introduced Polygraph, the first accountable Byzantine

consensus algorithm. If 𝑡 < 𝑛/3, it ensures consensus, oth-
erwise it eventually detects users that cause disagreement.

Thanks to its bounded justification size, Polygraph can be

used to commit tens of thousands of blockchain transactions.
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A PROOFS OF THE IMPOSSIBILITY
RESULT

Process. More formally, a process 𝑝𝑖 , 𝑖 ∈ [1, 𝑛] is seen as a

Mealy machine (𝑆, 𝑆0, Σ,Λ, 𝛿, 𝜔) where 𝑆 is a set of states, 𝑆0 a

set of initial states, Σ an input alphabet of receivable message,

Λ an output alphabet of messages to send, 𝛿 : Σ𝑛 × 𝑆 → 𝑆 a

transition function and 𝜔 : Σ𝑛 × 𝑆 → Λ𝑛 an output function.

The absence of message is denoted by {𝜖}, {𝜖} ∈ Σ and

{𝜖} ∈ Λ . The process is fitted with a clock which allows it to

take a transition after a certain timeout with {𝜖} as argument

for 𝛿 .

The agreement according to a local view. A process exe-

cuting an agreement protocol follows an ordered succession

of states 𝑝(𝑠𝑘 ) = 𝑠0, ..., 𝑠𝑘 called a path. On the path, the

process has received messages which constitutes an history

ℎ(𝑝(𝑠𝑘 )). The set 𝑆 is a partition of the set of states before de-

cision 𝑆𝑏𝑑 and the set of states after decision 𝑆𝑎𝑑 . The image

of the restriction of 𝛿 on 𝑆𝑎𝑑 is 𝑆𝑎𝑑 , which means a decision

is irrevocable. Among the attribute of 𝑠 ∈ 𝑆 , we note 𝑠 .𝑟 the
associated round number and 𝑠 .𝑑𝑒𝑐 the decided value.

To show that it is impossible to devise a swift Accountabil-

ity algorithm, we show that no consensus algorithm can be

safe when 𝑡 ≥ 𝑛/3 and that it is impossible given a consensus

algorithm to design a swift verification algorithm for it when

𝑡0 < 𝑡 . Let 𝑛 ∈ {3𝑡0 + 1, 3𝑡0 + 2, 3𝑡0 + 3}. Let 𝑃 , 𝑄 and 𝑅 be

three sets of 𝑛 processes such that |𝑃 | ≤ 𝑡0, |𝑅 | ≤ 𝑡0 and

|𝑄 | = 𝑛 − |𝑃 | − |𝑅 |. The proofs rely on the indistinguishabil-

ity between pairs of distinct scenarios A, B and C such that

processes in 𝑃 cannot distinguish 𝐴 from 𝐶 and 𝑅 cannot

distinguish 𝐵 from 𝐶 .

• Scenario A: All initial values are 0 and the processes in

𝑅 are inactive. Themessages sent from 𝑃∪𝑄 to 𝑃∪𝑄 are

delivered in time 1. By 𝑡-resiliency, processes in 𝑃 reach

a decision (0 by validity) within a certain time, noted

𝑇𝐴. To take this decision, every process 𝑖 of 𝑃 followed

a path 𝑠𝑖
0
, ..., 𝑠𝑖

𝑏𝑑
, 𝑠𝑖
𝑎𝑑

where 𝑠𝑖
𝑏𝑑
∈ 𝑆𝑏𝑑 and 𝑠𝑖

𝑎𝑑
.𝑑𝑒𝑐 = 0.

• Scenario B: All initial values are 1 and the processes in

𝑃 are inactive. Themessages sent from𝑅∪𝑄 to𝑅∪𝑄 are

delivered in time 1. By 𝑡-resiliency, processes in𝑅 reach

a decision (1 by validity) within a certain time, noted

𝑇𝐵 . To take this decision, every process 𝑗 of 𝑅 followed

a path 𝑠
𝑗

0
, ..., 𝑠

𝑗

𝑏𝑑
, 𝑠
𝑗

𝑎𝑑
where 𝑠

𝑗

𝑏𝑑
∈ 𝑆𝑏𝑑 and 𝑠

𝑗

𝑎𝑑
.𝑑𝑒𝑐 = 1

• Scenario C: All initial values in 𝑃 are 0, all initial values

in 𝑅 are 1 and processes of 𝑄 are Byzantine. These

Byzantine processes behave with respect to those in 𝑃

exactly as they do in Scenario A and with respect to

those in 𝑅 exactly as they do in Scenario B. Messages

sent from 𝑃 ∪ 𝑄 to 𝑃 ∪ 𝑄 are delivered in time 1, as

well as the ones from 𝑅 ∪𝑄 to 𝑅 ∪𝑄 , while the ones
from 𝑃 ∪𝑅 to 𝑃 ∪𝑅 are delivered in a time greater than

max(𝑇𝐴,𝑇𝐵).

Theorem A.1 (Theorem 4.1). In a partially synchronous

system, no algorithm solves both the Byzantine consensus prob-

lem when 𝑡 < 𝑛/3 and the agreement and validity of the

Byzantine consensus problem when 𝑡0 < 𝑡 .

Proof. Assume for the sake of contradiction that it exists

an algorithm preserving the agreement for 𝑡0 < 𝑡 . Because

scenarios A and B are indistinguishable from 𝑃 ’s standpoint

while scenarios B and C are indistinguishable for 𝑅’s stand-

point, 𝑃 must decide 0 while 𝑅 must decide 1 in scenario C.

This yields a contradiction. □

Theorem A.2 (Theorem 4.2). For an algorithm that solves

consensus when 𝑡 < 𝑛/3, there is no swift verification algorithm
when 𝑡 > 𝑡0.

Proof. Assume for the sake of contradiction that such a

swift verification algorithm exists. The paths followed by the

honest processes are the same in the scenario C, than in the
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scenarios A and B. Because no comission message has been

sent in A and B, ∀𝑖 ∈ 𝑃,𝑉 (𝑠𝑖
𝑏𝑑

) = ∅ and ∀𝑗 ∈ 𝑅,𝑉 (𝑠
𝑗

𝑏𝑑
) = ∅.

But in scenario C, we should have ∃𝑖 ∈ 𝑃𝑉 (𝑠𝑖
𝑏𝑑

) ≠ ∅ or
∃ 𝑗 ∈ 𝑅,𝑉 (𝑠

𝑗

𝑏𝑑
) ≠ ∅ which yields a contradiction. □

B PROOF OF CORRECTNESS OF
POLYGRAPH

In this section, we provide the complete proofs that the

binary consensus protocol presented in Section 5 is a cor-

rect, accountable Byzantine agreement protocol. First, in

Section B.1, we focus on the properties satisfied by the ac-

countable BV-Broadcast algorithm. Then we return to show

the correctness of the consensus algorithm, as well as prove

that it ensures accountability.

B.1 Acccountable BV-Broadcast
The BV-broadcast algorithm is presented in lines 1–9 of Al-

gorithm 2. The protocol and proof presented here are quite

similar to that in [14], with small changes to accomodate

ledgers.

First, we prove that it satisfies certain useful properties

when 𝑡 ≤ 𝑡0. (These properties will not necessarily hold

when there are more than 𝑡0 Byzantine processes.) We begin

with a simple structural property (that is later useful for

ensuring validity of consensus): a value is only delivered if

at least one honest process sends it.

Lemma B.1 (BV-Justification). If 𝑡 ≤ 𝑡0 and if 𝑝𝑖 is honest
and 𝑣 ∈ bin_values, then 𝑣 has been BV-broadcast by some

honest process.

Proof. By contraposition, assume 𝑣 has been BV-

broadcast only by faulty processes, i.e., by at most 𝑡0 pro-

cesses. Then no process ever receives 𝑡0 + 1 distinct BVAL
messages for 𝑣 , and hence the conditions on lines 4 and 7 are

never met. Thus, no process ever adds 𝑣 to bin_values. □

We next show that BV-broadcast satisfies some typical

properties of reliable broadcast, i.e., if at least 𝑡0 + 1 process

BV-broadcast the same value, then every honest process

delivers it; and if 𝑝𝑖 is honest and delivers a value, then every

honest process also delivers it.

Lemma B.2 (BV-Obligation). If 𝑡 ≤ 𝑡0 and at least (𝑡0 +
1) honest processes BV-Broadcast the same value 𝑣 , then 𝑣

is eventually added to the set 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 of each non-faulty

process 𝑝𝑖 .

Proof. Let 𝑣 be a value such that (𝑡0 + 1) honest processes

invoke BV-broadcast(MSG, 𝑣, ·, ·, ·). Each of these processes

then sends a BVAL message with value 𝑣 and a valid ledger,

and consequently each honest process receives at least 𝑡0 + 1

BVAL messages for value 𝑣 along with valid ledgers for 𝑣 .

Therefore each honest process (i.e., at least 2𝑡0 + 1 ≤ 𝑛 − 𝑡0)

broadcasts a BVAL message for 𝑣 with a valid ledger, and

consequently eventually every honest process receives re-

ceives at least 2𝑡0+1 BVALmessages for 𝑣 . Thus every honest

process adds value 𝑣 to bin_values. □

Lemma B.3 (BV-Uniformity). If 𝑡 ≤ 𝑡0 and a value 𝑣 is

added to the set 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 of an honest process 𝑝𝑖 , eventually

𝑣 ∈ 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 at every honest process 𝑝 𝑗 .

Proof. If a value 𝑣 is added to the set 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 of an

honest process 𝑝𝑖 , then this process has received at least

(2𝑡0 + 1) distinct BVALmessages for 𝑣 with valid ledgers (line

7). This implies that at least (𝑡0+1) different honest processes

sent BVAL messages with valid ledgers. So every non-faulty

process receives at least (𝑡0+1)BVALmessages with the value

𝑣 . Therefore every honest process eventually broadcasts a

BVAL message for 𝑣 , and so eventually every honest process

receives receives at least 2𝑡0 + 1 ≤ 𝑛 − 𝑡0 BVAL messages for

𝑣 with valid ledgers. Thus every honest process adds value 𝑣

to bin_values. □

Finally, we show termination:

Lemma B.4 (BV-Termination). If 𝑡 ≤ 𝑡0 and if every hon-

est process BV-broadcasts some value, then eventually, every

honest process has at least one value in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 .

Proof. As there are at least (𝑛−𝑡0) honest processes, each

of them BV-broadcasts some value, and ‘0’ and ‘1’ are the

only possible values, it follows that there is a value 𝑣 ∈ {0, 1}
that is BV-broadcast by at least (𝑛 − 𝑡0)/2 ≥ 𝑡0 + 1 processes

(since one of the two values must be BV-broadcast by at

least half the honest processes). The claim then follows by

Lemma B.2. □

Finally, we observe the straightforward fact that messages

are only delivered with valid ledgers (with the exception of

messages in Round 1, and message containing value 1 in

Round 2):

Lemma B.5 (BV-Accountability). If a value 𝑣 is added to

the set bin_values of a non-faulty process 𝑝𝑖 in round 𝑟 (with

the exception of messages in Round 1, and message containing

value 1 in Round 2), then associated with the value 𝑣 is a valid

ledger from round 𝑟 − 1.

Proof. Since every BVAL message without a valid ledger

is discarded (aside from above mentioned exceptions), it

follows immediately that when the conditions on lines 4 and

7 are met, then the process has access to a valid ledger, which

is then included when the value is added to bin_values. □

B.2 Accountable Byzantine Agreement
Here, we prove that the Polygraph protocol is a correct ac-

countable Byzantine agreement protocol. We begin with the

standard properties of consensus, which hold when 𝑡 ≤ 𝑡0,
12
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and then continue to discuss accountability. First, we ob-

serve that if every honest process begins a round 𝑟 with the

same estimate, then that value is decided either in round 𝑟

or round 𝑟 + 1. This follows immediately from the fact that

if every honest process BV-broadcasts the same value, then

that is the only value delivered, and so it is the only value

that remains in the system.

Lemma B.6. Assume that each honest process begins round 𝑟

with the estimate 𝑣 . Then every honest process decides 𝑣 either

at the end of round 𝑟 or round 𝑟 + 1.

Proof. Since every honest process BV-broadcasts the

value 𝑣 , we know from Lemma B.2 that 𝑣 is eventually de-

livered to every honest process, and from Lemma B.1 that 𝑣

is the only value delivered to each honest process. Since 𝑣

is the only value in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 for each honest 𝑝𝑖 , it is also

the only value echoed via 𝑎𝑢𝑥𝑖 messages, and eventually it

is the only value in 𝑣𝑎𝑙𝑢𝑒𝑠𝑖 .

There are now two cases. If 𝑣 = 𝑟 mod 2, every honest

process decides 𝑣 . Otherwise, every honest process continues

to the next round with its estimate equal to 𝑣 . In the next

round, 𝑣 = (𝑟 + 1) mod 2, and by the same argument, every

process will then decide 𝑣 in round 𝑟 + 1. □

We can now observe that if 𝑡 ≤ 𝑡0, we get agreement,

because after the first round in which some process decides

𝑣 , then every process adopts value 𝑣 as its estimate.

Lemma B.7 (Agreement). If 𝑡 ≤ 𝑡0 and some honest pro-

cesses 𝑝𝑖 and 𝑝 𝑗 decide 𝑣 and𝑤 , respectively, then 𝑣 = 𝑤 .

Proof. Without loss of generality, assume that 𝑝𝑖 decides

no later than 𝑝 𝑗 . Assume for the sake of contradiction that

𝑣 ≠ 𝑤 . Assume that 𝑝𝑖 decides 𝑣 in round 𝑟 . If process 𝑝 𝑗
also decides in round 𝑟 , then 𝑣 = 𝑤 = 𝑟 mod 2. Thus, we

conclude that 𝑝 𝑗 decides in some round > 𝑟 .

In round 𝑟 , we know that 𝑣𝑎𝑙𝑢𝑒𝑠𝑖 = {𝑣}. This implies that

𝑖 received at least 𝑛 − 𝑡0 distinct ECHO messages containing

only value 𝑣 . Consider now the ECHO messages received by

some other honest process 𝑝𝑘 . If 𝑣𝑎𝑙𝑢𝑒𝑠𝑘 = {𝑣} or 𝑣𝑎𝑙𝑢𝑒𝑠𝑘 =

{𝑣,𝑤}, then process 𝑝𝑘 adopts estimate 𝑣 . Otherwise, process

𝑝𝑘 has 𝑣𝑎𝑙𝑢𝑒𝑠𝑘 = {𝑤}, which implies that it received at least

𝑛 − 𝑡0 distinct ECHO messages containing only value𝑤 .

Thus there are at least 𝑡0 + 1 processes that sent an ECHO
message to 𝑝𝑖 containing only 𝑣 and an ECHO message to

𝑝𝑘 containing only𝑤 . That, however, is illegal (see line 21),

as a process must send the same ECHOmessage to all. Since

only 𝑡 ≤ 𝑡0 processes are Byzantine, this is impossible, so we

conclude that every honest process adopts estimate 𝑣 by the

end of round 𝑟 .

We then conclude, by Lemma B.6, that every honest pro-

cess decides value 𝑣 in either round 𝑟 + 1 or round 𝑟 + 2. (In

this case, of course, it will be round 𝑟 + 2.) □

It is immediate from BV-broadcast that Polygraph guar-

antees a stronger form of validity (Lemma B.8) than the one

required by blockchains (Corollary B.9). (The general Poly-

graph protocol stated in Appendix C that applies to arbitrary

values only ensures the required validity.)

Lemma B.8 (Strong validity). If 𝑡 ≤ 𝑡0 and an honest

process decides 𝑣 , then some honest process proposed 𝑣 .

Proof. Let round 𝑟 be the first round where a process

𝑝𝑖 adopts a value 𝑣 that was not initially proposed by an

honest process at the beginning of round 1. There are two

possibilities depending on whether 𝑝𝑖 adopts 𝑣 in line 24 or

line 28.

Assume that honest process 𝑝𝑖 in round 𝑟 adopts value 𝑣

in line 24. Then 𝑣𝑎𝑙𝑢𝑒𝑠𝑖 = {𝑣} in round 𝑟 . This can only hap-

pen if 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 = {𝑣}, since ComputeValues only returns

values that are in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 or 𝑎𝑢𝑥𝑖 , and 𝑎𝑢𝑥𝑖 only includes

values in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 . However, 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 only includes

values delivered by BV-broadcast, and Lemma B.1 implies

that every value delivered value was BV-broadcast by an

honest process. So value 𝑣 was the estimate of an honest pro-

cess 𝑝 𝑗 at the beginning of round 𝑟 . If 𝑟 = 1 then we are done.

If 𝑟 > 1, then we conclude that 𝑣 was adopted as an estimate

in round 𝑟 − 1 by process 𝑝 𝑗 , and hence by induction, we

conclude that 𝑣 was initially proposed by an honest process

at the beginning of round 1.

Assume that honest process 𝑝𝑖 executes line 28, adopting

the parity of the round number as its estimate. This implies

that 𝑣𝑎𝑙𝑢𝑒𝑠𝑖 = {0, 1} in round 𝑟 . This can only happen if

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 = {0, 1} also, since ComputeValues only returns
values that are in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 or 𝑎𝑢𝑥𝑖 , and 𝑎𝑢𝑥𝑖 only includes

values in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 . However, 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 only includes

values delivered by BV-broadcast, and Lemma B.1 implies

that every value delivered value was BV-broadcast by an

honest process. So at least one honest process 𝑝 𝑗 began round

𝑟 with value ‘0’ and at least one honest process 𝑝𝑘 began

round 𝑟 with ‘1’. If 𝑟 = 1, then we are done. Otherwise, we

conclude that 𝑝 𝑗 adopted ‘0’ in round 𝑟 − 1 and 𝑝𝑘 adopted

‘1’ in round 𝑟 − 1, and hence by induction we conclude that

both ‘0’ and ‘1’ were initially proposed by honest processes

at the beginning of round 0. □

Corollary B.9 (Validity). If all processes are honest and

begin with the same value, then that is the only decision value.

Finally, we argue that the protocol terminates:

Lemma B.10 (Termination). If 𝑡 ≤ 𝑡0, every honest process
decides.

Proof. First, we observe that processes continue execut-

ing increasing rounds (i.e., no process gets stuck in some

round). Assume, for the sake of contradiction, that 𝑟 is the

13
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first round where some process gets stuck forever, and 𝑝𝑖 is

the process that gets stuck.

A process cannot get stuck in line 12 or line 15 waiting

for a BV-broadcast, since every honest process performs a

BV-broadcast and so by Lemma B.4, every honest process

eventually delivers a value. (And a process cannot get stuck

waiting on a timer, since the timer will always eventually

expire.)

A process also cannot get stuck waiting on line 22: Even-

tually process 𝑝𝑖 will receive ECHO messages from each of

the 𝑛 − 𝑡0 honest processes. And by Lemma B.3, every value

that is delivered by BV-broadcast to an honest process will

eventually be delivered to 𝑝𝑖 . Specifically, every value that

is included in an ECHO message from an honest process is

eventually delivered to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑖 . Thus, eventually a set

of 𝑛 − 𝑡0 messages is identified, and the waiting condition on

line 22 is satisfied.

The last issue that might prevent progress is if process 𝑝𝑖 ,

or some other process, cannot transmit a proper message due

to missing ledgers. This can only be a problemwith messages

being BV-broadcast. If a process completed round 𝑟−1 and its

estimate was ≠ 𝑟 − 1 mod 2, then it could always construct

a proper ledger in round 𝑟 − 1 from the estimates received. If

a process completed round 𝑟 − 1 and its estimate was = 𝑟 − 1

mod 2, then it must have received a valid ledger for the value

in round 𝑟 −1 as part of the BV-broadcast; otherwise, it could

not have completed round 𝑟 − 1.

Thus we conclude that every process executes an infinite

number of rounds. The remaining question is whether pro-

cesses ever decide. Consider the first round 𝑟 after GSTwhere

the timer is sufficiently large that (i) every BV-broadcast

message is delivered, and (ii) the coordinators message is

delivered before the timer expires. In this case, every honest

process will prioritize the coordinator’s value, adopting it

as their 𝑎𝑢𝑥 message in line 18, echoing it in line 21, and

adding only that value to 𝑣𝑎𝑙𝑢𝑒𝑠 in line 22. Thus at the end

of round 𝑟 , every process adopts the same value, and hence

decides either in round 𝑟 or round 𝑟 + 1 by Lemma B.6. □

Thus we conclude (see Theorem 5.1) that when 𝑡 ≤ 𝑡0, the
binary agreement protocol is correct. We now consider the

case where 𝑡 > 𝑡0 and show that it still provides accountabil-

ity.

Lemma B.11 (Accountability). If 𝑡 > 𝑡0 and two hon-

est processes 𝑝𝑖 and 𝑝 𝑗 decide different values 𝑣 and 𝑤 , then

eventually every honest process receives a ledger and a certifi-

cate that conflict (providing irrefutable proof that a specific

collection of 𝑡0 + 1 processes are Byzantine).

Proof. Assume that 𝑝𝑖 decided 𝑣 in round 𝑟 and 𝑝 𝑗 decided

𝑤 in the round 𝑟 ′ where𝑤 = 𝑛𝑜𝑡 (𝑣) = 1 − 𝑣 and 𝑟 ≤ 𝑟 ′. It is

undeniable (by construction, line 25–26) that 𝑣 = 𝑟 𝑚𝑜𝑑 2.

There are only four possible cases to consider:

(1) Case 1: 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 ≠ {0, 1}
(2) Case 2: 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {0, 1} and 𝑣𝑎𝑙𝑢𝑒𝑠𝑟+1𝑗 ≠ {𝑣}
(3) Case 3: 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {0, 1} and 𝑣𝑎𝑙𝑢𝑒𝑠𝑟+1𝑗 = {𝑣} and

𝑣𝑎𝑙𝑢𝑒𝑠𝑟+2𝑗 ≠ {𝑣}
(4) Case 4: 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {0, 1} and 𝑣𝑎𝑙𝑢𝑒𝑠𝑟+1𝑗 = {𝑣} and

𝑣𝑎𝑙𝑢𝑒𝑠𝑟+2𝑗 = {𝑣}
We now consider each of the cases in turn.

Case 1. If 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {𝑣}, then process 𝑝 𝑗 would have de-

cided 𝑣 ≠ 𝑤 in round 𝑟 . So we conclude that 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {𝑤}.
In that case, 𝑙𝑒𝑑𝑔𝑒𝑟 [𝑟 ] 𝑗 and 𝑐𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒 [𝑟 ]𝑖 conflict.

Case 2. Assume 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {0, 1} and 𝑤 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠𝑟+1𝑗 . This

implies that 𝑤 ∈ 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 𝑗 in round 𝑟 + 1. Notice that

round 𝑟 + 1 cannot be round 1, and if it is round 2, then

the value 𝑣 = 1 and so 𝑤 ≠ 1. Thus, BV-Accountability

(Lemma B.5 indicates that 𝑝 𝑗 receives a valid ledger for 𝑤

from round 𝑟 . That ledger conflicts with the certificate for

𝑣 from 𝑟 (and consists of 𝑛 − 𝑡0 distinct ECHO messages

containing only value𝑤 in round 𝑟 ).

Case 3. Assume 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {0, 1}, 𝑣𝑎𝑙𝑢𝑒𝑠𝑟+1𝑗 = {𝑣}, and
𝑤 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠𝑟+2𝑗 . This implies that 𝑤 ∈ 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 𝑗 in round

𝑟 + 2. Since round 𝑟 + 2 > 2, BV-Accountability (Lemma B.5

indicates that 𝑝 𝑗 receives a valid ledger for𝑤 from round 𝑟 +1.

Since𝑤 = 𝑟 +1 mod 2, the ledger for𝑤 from round 𝑟 +1 is a

copy of a ledger for𝑤 from round 𝑟 , which therefore conflicts

with the certificate for 𝑣 for round 𝑟 (and consists of 𝑛 − 𝑡0
distinct ECHOmessages containing only value𝑤 in round 𝑟 ).

Case 4. Assume 𝑣𝑎𝑙𝑢𝑒𝑠𝑟𝑗 = {0, 1}, 𝑣𝑎𝑙𝑢𝑒𝑠𝑟+1𝑗 = {𝑣}, and
𝑣𝑎𝑙𝑢𝑒𝑠𝑟+2𝑗 = {𝑣}. Then process 𝑝 𝑗 decides 𝑣 in round 𝑟 + 2

and there is agreement.

All the cases have been examined, and in each case, process

𝑝 𝑗 has a ledger constructed in round 𝑟 conflictingwith the cer-

tificate delivered from process 𝑝𝑖 . The conflicting ledger/cer-

tificate each contain 𝑛 − 𝑡0 signed, distinct ECHO messages

containing only value 𝑣 and only value𝑤 respectively. Since

any two sets of size 𝑛 − 𝑡0 have an intersection of size 𝑡0 + 1,

the signatures in the conflicting ledgers prove the existence

of a set 𝐺 of 𝑡0 + 1 Byzantine processes. □

C MULTIVALUE CONSENSUS
In this section, we discuss how to generalize the binary con-

sensus to ensure accountable Byzantine agreement for arbi-

trary values. We follow the approach from [14]: First, all 𝑛

processes use a reliable broadcast service to send their pro-

posed value to all the other 𝑛 processes. Then, all the process
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participate in parallel in𝑛 binary agreement instances, where

each instance is associated with one of the processes. Lastly,

if 𝑗 is the smallest binary consensus instance to decide 1,

then all the processes decide the value received from process

𝑝 𝑗 .

The key to making this work is that we need the reliable

broadcast service to be accountable, that is, if it violates

the reliable delivery guarantees, then each honest process

has irrefutable proof of the culpability of 𝑡 + 1 processes.

Specifically, we want a single-use reliable broadcast service

that allows each process to send one message, delivers at

most one message from each process, and guarantees the

following properties:

• RB-Validity: If an honest process RB-delivers a message

𝑚 from an honest process 𝑝 𝑗 , then 𝑝 𝑗 RB-broadcasts
𝑚.

• RB-Send: If 𝑡 ≤ 𝑡0 and 𝑝 𝑗 is honest and RB-broadcasts
a message 𝑚, then all honest processes eventually

RB-deliver𝑚 from 𝑝 𝑗 .

• RB-Receive: If 𝑡 ≤ 𝑡0 and an honest process RB-delivers
a message𝑚 from 𝑝 𝑗 (possibly faulty) then all honest

processes eventually RB-deliver the same message𝑚

from 𝑝 𝑗 .

• RB-Accountability: If an honest process 𝑝𝑖 RB-delivers
a message𝑚 from 𝑝 𝑗 and some other honest process 𝑝 𝑗
RB-delivers𝑚′ from 𝑝 𝑗 , and if𝑚 ≠𝑚′, then eventually
every process has irrefutable proof of the culpability

of 𝑡0 + 1 processes.

The resulting algorithm provides a weaker notion of va-

lidity: if all processes are honest, then the decision value is

one of the values proposed. (A stronger version of validity

could be achieved with a little more care, but is not needed

for blockchain applications, which depend on an external

validity condition.)

We first, in Section C.1, present the general multivalue

algorithm, and prove that it is correct—assuming the existing

of a reliable broadcast service satisfying the above proper-

ties. Then, in Section C.2, we describe the reliable broadcast

service and prove that it is correct.

C.1 Accountable Byzantine Agreement
We now present the algorithm in more detail. The general

algorithm has three phases.

• First, in lines 1–8, each process uses reliable broadcast

to transmit its value to all the others. Then, whenever

a process receives a reliable broadcast message from

a process 𝑝𝑘 , it proposes ‘1’ in binary consensus in-

stance 𝑘 . The first phase ends when there is at least

one decision of ‘1’.

• Second, in lines 10–12, each process proposes ‘0’ in

every remaining binary consensus instance for which

it has not yet proposed a value. The second phase ends

when every consensus instance decides.

• Third, in lines 14–16, each process identifies the small-

est consensus instance 𝑗 that has decided ‘1’. (If there

is no such consensus instance, then it does not decide

at all.) It then waits until it has received the reliable

broadcast message from 𝑝 𝑗 and outputs that value.

First, we argue that it solves the consensus problem as

long as 𝑡 ≤ 𝑡0:

Lemma C.1 (Agreement). If 𝑡 ≤ 𝑡0, then every honest

process eventually decides the same value. If all processes are

honest and propose the same value, that is the only possible

decision.

Proof. First we focus on termination. Since 𝑡 ≤ 𝑡0, by

the RB-Send property, we know that every honest process

eventually delivers every value that was proposed by an

honest process. Assume for the sake of contradiction that no

binary consensus instance every decides ‘1’. Then eventually,

every honest process proposes ‘1’ for every binary consensus

instance associated with an honest process. By the validity

and termination properties of binary consensus (and since

𝑡 ≤ 𝑡0), we conclude that these instances all decide ‘1’, which
is a contradiction. Thus eventually every honest process

executes line 10.

Since every honest process eventually proposes a value to

every binary consensus instance, we conclude (since 𝑡 ≤ 𝑡0)
that eventually every binary consensus instance decides and

every honest process reaches line 15. Let 𝑗 be the minimum

binary consensus instance that decides ‘0’. Assume (for the

sake of contradiction) that no honest process received the

value from 𝑝 𝑗 . Then every honest process proposed ‘0’ to the

binary consensus instance for 𝑗 , and hence by the validity

property, the decision would have been ‘0’, i.e., a contradic-

tion. Thus we know that at least one honest process received

the value that was reliably broadcast by 𝑝 𝑗 .

Finally, by the RB-Receive property, we know that every

honest process must eventually deliver the value that was

reliably broadcast by 𝑝 𝑗 , and hence every process eventually

returns a value, i.e., we satisfy the termination property.

Next, we argue agreement. Since 𝑡 ≤ 𝑡0, by the guaran-

tees of the binary consensus instances, every honest process

decides the same thing for each of the instances. Therefore,

all honest processes will choose the same 𝑗 that is the mini-

mum binary consensus instance that decides 1. As we have

already argued, every honest process must eventually deliver

the value reliably broadcast by 𝑝 𝑗 , and that must be the same

value. This guarantees agreement.

Finally, we argue validity: if all the processes are honest,

then every value received by reliable broadcast is from an

honest value, and hence validity is immediate. □
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Algorithm 3 The Multivalue Polygraph Protocol

1: gen-propose(𝑣𝑖 ):
2: RB-broadcast(EST, ⟨𝑣𝑖 , 𝑖 ⟩)→ messages𝑖 � reliable broadcast value to all

3:

4: repeat: � when you recieve a value from 𝑝𝑘 , begin consensus instance 𝑘 with a proposal of 1

5: if ∃ 𝑣, 𝑘 : (EST, ⟨𝑣, 𝑘 ⟩) ∈ messages𝑖 then
6: if BIN-CONSENSUS[𝑘 ] not yet invoked then
7: BIN-CONSENSUS[𝑘 ] .bin-propose(1)→ bin-decisions [𝑘 ]𝑖
8: until ∃𝑘 : bin-decisions [𝑘 ] = 1 � wait until the first decision

9:

10: for all 𝑘 such that BIN-CONSENSUS[𝑘 ] not yet invoked do � begin consensus on the remaining instances

11: BIN-CONSENSUS[𝑘 ] .bin-propose(0)→ bin-decisions [𝑘 ]𝑖 � for these, propose 0

12: wait until for all 𝑘 , bin-decisions [𝑘 ] ≠ ⊥ � wait until all the instances decide

13:

14: 𝑗 = min{𝑘 : bin-decisions [𝑘 ] = 1} � choose the smallest instance that decides 1

15: wait until ∃ 𝑣 : (EST, ⟨𝑣, 𝑗 ⟩) ∈ messages𝑖 � wait until you receive that value

16: decide 𝑣 � return that value

Next, we prove that if there is any disagreement, then the

algorithm guarantees accountability:

Lemma C.2 (Accountability). If two honest process 𝑝𝑖
and 𝑝 𝑗 decide different values, then honest processes eventually

receive irrefutable proof of at least 𝑡0 + 1 Byzantine processes.

Proof. First, assume that 𝑝𝑖 and 𝑝 𝑗 decide different values

for some binary consensus instance. Then, by the account-

ability of binary consensus, we know that every process

eventually receives the desired irrefutable proof. Alterna-

tively, if 𝑝𝑖 and 𝑝 𝑗 agree for every instance of binary consen-

sus, then they choose the same value 𝑘 that is the minimum

binary consensus instance to decide ‘1’, and they output the

value delivered by the reliable broadcast service from 𝑝𝑘 .

(Recall that the reliable broadcast service delivers only one

value from each process, and 𝑝𝑖 and 𝑝 𝑗 do not decide until

they receive that value.) However, by the RB-accountability

property, we conclude that eventually every process receives

irrefutable proof of at least 𝑡0 + 1 Byzantine processes. □

C.2 Reliable Broadcast
We now describe the reliable broadcast service, which is a

straightforward extension of the broadcast protocol proposed

by Bracha [6]. A process begins by broadcasting its message

to everyone. Every process that receives the message directly,

echoes it, along with a signature. Every process that receives

𝑛−𝑡0 distinct ECHOmessages, sends a READYmessage. And

if a process receives 𝑡0 + 1 distinct READY messages, it also

sends a READY message. Finally, if a process receives 𝑛 − 𝑡0
distinct READY messages, then it delivers it.

The key difference from [6] is that, as in the binary value

consensus protocol, we construct ledgers to justify the mes-

sages we send. Specifically, when a process sends a READY
message, if it has received 𝑛 − 𝑡0 distinct ECHO messages,

each of which is signed, it packages them into a ledger, and

forwards that with its READY message. Alternatively, if a

process sends a READY message because it received 𝑡0 + 1

distinct READY messages, then it simply copies an existing

(valid) ledger. Either way, if a process 𝑝𝑖 sends a READYmes-

sage for value 𝑣 which was sent by process 𝑝 𝑗 , then it has

stored a ledger containing 𝑛 − 𝑡0 signed ECHO messages for

𝑣 , and it has sent that ledger to everyone.

As before, two ledgers conflict if they justify two different

values 𝑣 and 𝑣 ′, both supposedly sent by the same process 𝑝 𝑗 .

In that case, one ledger contains 𝑛−𝑡0 signed ECHOmessage

for 𝑣 and the other contains 𝑛 − 𝑡0 signed ECHOmessage for

𝑣 ′. Since any two sets of size 𝑛 − 𝑡0 have an intersection of

size 𝑡0 + 1, this immediately identifies at least 𝑡0 + 1 processes

that illegally sent ECHO messages for both 𝑣 and 𝑣 ′. These
process can by irrefutably proved to be Byzantine.

We now prove that the reliable broadcast protocol satisfies

the desired properties. First, we show that it delivers only

one value from each process, and that if 𝑡 ≤ 𝑡0, then it only

delivers a value if it was previously RB-broadcast by that

process:

Lemma C.3 (RB-Unicity ). At most one value (𝑣, 𝑗 ) is deliv-

ered from process 𝑝 𝑗 .

Proof. Follows immediately by inspection: only one mes-

sage from 𝑝 𝑗 is every delivered to each process.. □

Lemma C.4. (RB-Validity) If 𝑡 ≤ 𝑡0, and if an honest pro-

cess RB-delivers a value 𝑣 from an honest process 𝑝 𝑗 , then 𝑝 𝑗
RB-broadcasts𝑚.

Proof. A process only delivers a value 𝑣 for 𝑝 𝑗 if it re-

ceived (READY, 𝑣, ·, 𝑗 ) messages from 𝑛 − 𝑡0 processes, imply-

ing that at least one honest process sent aREADYmessage for

𝑣 . Let 𝑝𝑖 be the first honest process to send a (READY, 𝑣, ·, 𝑗 ).
In that case, we know that 𝑝𝑖 must have received 𝑛 − 𝑡0
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Algorithm 4 Reliable Broadcast

1: RB-broadcast(𝑣𝑖 ): � only executed by the source

2: broadcast(INITIAL, 𝑣𝑖 ) � broadcast value 𝑣𝑖 to all

3: upon receiving a message (INITIAL, 𝑣) from 𝑝 𝑗 :
4: broadcast(ECHO, 𝑣, 𝑗 ) � echo value 𝑣 to all

5: upon receiving 𝑛 − 𝑡0 distinct messages (ECHO, 𝑣, 𝑗 ) and not having sent a READY message:
6: Construct a ledger ℓ𝑖 containing the 𝑛 − 𝑡0 signed messages (ECHO, 𝑣, 𝑗 ).
7: broadcast(READY, 𝑣, ℓ𝑖 , 𝑗 ) � send READY message and ledger for 𝑣 to all.

8: upon receiving 𝑡0 + 1 distinct messages (READY, 𝑣, ·, 𝑗 ) and not having sent a READY message:
9: Set ℓ𝑖 to be one of the (valid) ledgers received (READY, 𝑣ℓ, 𝑗 ).
10: broadcast(READY, 𝑣, ℓ, 𝑗 ) � send READY message for 𝑣 to all.

11: upon receiving 𝑛 − 𝑡0 distinct messages (READY, 𝑣, ·, 𝑗 ) and not having delivered a message from 𝑗 :
12: Let ℓ be one of the (valid) ledgers received (READY, 𝑣, ℓ, 𝑗 ).
13: deliver(𝑣, 𝑗 ) � send READY message for 𝑣 to all

distinct (ECHO, 𝑣, 𝑗 ), implying that at least one honest pro-

cess sent an ECHO message for 𝑣 . An honest process only

sends an (ECHO, 𝑣, 𝑗 ) message if it received 𝑣 directly from

𝑝 𝑗 . And if 𝑝 𝑗 is honest, it onlys sends 𝑣 if the value was

RB-broadcast. □

Next, we prove a key lemma, showing that either all hon-

est process send READY messages only for one value, or

two conflicting ledgers are eventually received by all honest

processes.

Lemma C.5. Assume that 𝑝𝑖 is an honest process that sends

a READY message for value 𝑣 and that 𝑝 𝑗 is an honest process

that sends a READY message for value 𝑣 ′. Then either 𝑣 = 𝑣 ′

or the ledgers ℓ𝑖 and ℓ𝑗 constructed by 𝑝𝑖 and 𝑝 𝑗 , respectively,

conflict.

Proof. Process 𝑝𝑖 sends the READY message for 𝑣 either

because (i) it has received𝑛−𝑡0 distinct messages (ECHO, 𝑣, ·)
and has constructed a ledger ℓ𝑖 containing those signed mes-

sages, or (ii) it has received 𝑡0 + 1 distinct READY messages

(ECHO, 𝑣, ·, 𝑗 ), each containing a valid ledger for 𝑣 , one of

which it copies as ℓ𝑖 . Either way, process 𝑝𝑖 has a valid ledger

ℓ𝑖 containing 𝑛 − 𝑡0 signed echo messages for 𝑣 . Similarly, by

the same logic, process 𝑝 𝑗 has a valid ledger ℓ𝑗 containing

𝑛 − 𝑡0 signed echo message for 𝑣 ′.
Since any two sets of size 𝑛 − 𝑡0 must have an intersection

of size at least 𝑡0 + 1, we conclude that if 𝑣 ≠ 𝑣 ′, then the

ledgers ℓ𝑖 and ℓ𝑗 conflict, i.e., prove that at least 𝑡0+1 processes

illegally sent ECHO messages for both 𝑣 and 𝑣 ′. □

We can now show that if an honest process performs a

RB-broadcast, then as long as 𝑡 ≤ 𝑡0, every honest process

delivers its message:

Lemma C.6. (RB-Send) If 𝑡 ≤ 𝑡0, and if 𝑝 𝑗 is honest and

RB-broadcasts a value 𝑣 , then all honest processes eventually

RB-deliver 𝑣 from 𝑝 𝑗 .

Proof. If 𝑝 𝑗 is honest, then it broadcasts its value 𝑣 , prop-

erly signed, to all processes. All honest processes receive it

directly from 𝑝 𝑗 and immediately broadcast an ECHO mes-

sage. (Moreover, there is no other message they could echo,

because there is no other message they could have received

directly from 𝑝 𝑗 .)

Since 𝑡 ≤ 𝑡0, we know that there are at least 𝑛 − 𝑡0 honest
processes that perform the ECHO, and hence every honest

process receives at least 𝑛−𝑡0 ECHOmessages, and hence ev-

ery honest process broadcasts a READY message. (Of course

there is no other message that an honest process could send

a READY message for, since the first honest process to send

a READY message for some other value must have received

at least 𝑛− 𝑡0 distinct ECHOmessages for that value; at least

one of those ECHOmessages must have been sent by an hon-

est process which received it directly from 𝑝 𝑗 , which—being

honest—only sent value 𝑣 .)

Since 𝑡 ≤ 𝑡0, there are at least 𝑛 − 𝑡0 honest processes that
send READYmessages, and so every honest process receives

𝑛 − 𝑡0 READY messages and delivers the value 𝑣 from 𝑝 𝑗 . (Of

course 𝑝 𝑗 cannot have delivered any other values 𝑣 ′ from 𝑝 𝑗
earlier, since 𝑝 𝑗 is honest there is no other value 𝑣 ′ that it
RB-broadcast.) □

Next, we can show that if any honest process delivers a

value 𝑣 , then every honest process also delivers value 𝑣—as

long as 𝑡 ≤ 𝑡0.

Lemma C.7. (RB-Receive) If 𝑡 ≤ 𝑡0 and an honest process

𝑝𝑘 RB-delivers a value 𝑣 from 𝑝 𝑗 (possibly faulty), then all

honest processes eventually RB-deliver the same message 𝑣

from 𝑝 𝑗 .

Proof. Assume 𝑝𝑘 delivers 𝑣 from 𝑝 𝑗 . In this case, 𝑝𝑘 must

have received at least 𝑛 − 𝑡0 valid READY messages for (𝑣, 𝑗 ).

Therefore, there must have been at least 𝑡0 + 1 honest pro-

cesses that broadcast valid READY messages. This implies

that every honest process receives at least 𝑡0+1 valid READY
messages for (𝑣, 𝑗 ), and hence also sends a READY message

for (𝑣, 𝑗 ). (Since 𝑡 ≤ 𝑡0, we know that an honest process

cannot send a READY message for any other value 𝑣 ′ ≠ 𝑣
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for process 𝑗 , by Lemma C.5.) Therefore everyone honest

process receives at least 2𝑡0 + 1 valid READY message for

value 𝑣 for process 𝑗 , and hence delivers value 𝑣 from 𝑝 𝑗 . □

Finally, we show the accountability property: either all

honest processes deliver the same value, or two conflicting

ledgers are received by every honest process:

Lemma C.8. RB-Accountability: If an honest process 𝑝𝑖
RB-delivers value 𝑣 from 𝑝 𝑗 and some other honest process

𝑝 𝑗 RB-delivers 𝑣 ′ from 𝑝 𝑗 , and if 𝑣 ≠ 𝑣
′
, then eventually every

honest process receives two ledgers ℓ and ℓ ′ that conflict.

Proof. If process 𝑝𝑖 delivers 𝑣 from 𝑝 𝑗 , then it received

at least 𝑛 − 𝑡0 READY messages for value 𝑣 , which implies

that at least one honest process 𝑝𝑢 sent a READY message

for 𝑣 . Similarly, since 𝑝 𝑗 delivers 𝑣
′
from 𝑝 𝑗 , we know that at

least one honest process 𝑝𝑤 sent a READYmessage for 𝑣 ′. By
Lemma C.5, we know that if 𝑣 ≠ 𝑣 ′, then the ledgers ℓ𝑢 and ℓ𝑤
conflict. Moreover, since both 𝑝𝑢 and 𝑝𝑤 are honest, they sent

their respective READYmessages to all processes, and hence

every honest process receives the conflicting ledgers. □

D OPTIMIZING THE MULTIVALUE
POLYGRAPH

In this section, we present some optimizations (Algorithms 5,

6 and 7) to the Multivalue Polygraph Protocol to improve the

bit-complexity by a linear multiplicative factor, from𝑂(𝜅 ·𝑛5
)

to 𝑂(𝜅 · 𝑛4
). To this end, we use two techniques:

First, we wait for the termination of certain “quick” in-

stances that complete in 1 round.When these quick instances

are decided, a correct process knows what it will propose

for all the 𝑛 different instances. This allows to couple the 𝑛

instances, where each correct process sends a vector message

that contains𝑛message contents for the𝑛 different instances.

(see algorithm A vector of 𝑛 aux messages is called an hyper-

aux message.

Second, we remark that (1) the Cachin-Tessaro optimiza-

tion [10] reduces the bit complexity of the reliable broadcast

for value with great length ℓ (𝑂(𝑛ℓ + 𝜅 ′𝑛2
) instead of 𝑂(𝑛2ℓ))

and (2) if the aux messages were reliable broadcast, it would

be not necessary to broadcast the heavy ledger in the Phase

1. Indeed, if a correct is able to compute a ledger attached to

a value 𝑣 from some RB-delivered aux-messages, it will be

eventually the case for any other correct process.

With these two observations, we can improve the bit-

complexity of the algorithm, avoiding the costly broadcast of

ledgers and replacing this cost by a cheaper one, i.e., the reli-

able broadcast of hyper-aux messages with the optimization

of [10].

Quick and slow instances.We add to the Multivalue Poly-

graph protocol a variable wait, initially wait = 1. As long as

wait = 1, we have: (a) any proposal for bit 0 is stored but not

taken into account, (b) any proposal for round ≥ 2 is stored

but not take into account.

We replace line 8 of algorithm 3 by line 10 at up-

dated algorithm 5 with the following predicate, called

the (𝑛-𝑡0)-predicate: “until ∃𝐾𝑖 , |𝐾𝑖 | ≥ 𝑛 − 𝑡0,∀𝑘 ∈
𝐾𝑖 , 𝑏𝑖𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛[𝑘] = 1”. After line 10, the variable wait is

updated to 0, that is the (a) proposals with bit 0 and (b) pro-

posals for round 𝑟 > 1 can be taken into account for the

instances in [1, 𝑛] \ 𝐾𝑖 .

Lemma D.1 (Liveness). This transformation preserve Live-

ness.

Proof. Eventually, it exists a set 𝐾𝑐 , |𝐾𝑐 | ≥ 𝑛 − 𝑡0
such that for every instance 𝑘 ∈ 𝐾𝑐 , the proposal is RB-

delivered by every correct process, which then invokes 𝐵𝐼𝑁 -

𝐶𝑂𝑁𝑆𝐸𝑁𝑆𝑈𝑆 [𝑘] .𝑏𝑖𝑛_𝑝𝑟𝑜𝑝𝑜𝑠𝑒(1). Thus, eventually, the set

𝐾𝑐 receives 𝑛 − 𝑡0 proposals for the binary value 1 such that

every process can decide binary value 1 at round 1. □

Lemma D.2 (Local 1 round shot). For every process 𝑖 , it

exists a set 𝐾𝑖 , |𝐾𝑖 | ≥ 𝑛 − 𝑡0 such that process 𝑖 decides the

binary value 1 within 1 round at each instance 𝑘 ∈ 𝐾𝑖 .

Proof. As liveness is preserved, the (𝑛-𝑡0)-predicate is

satisfied. □

Combining the instances. Each process 𝑖 knows (1) it will

eventually reach a state 𝜎𝑖 where 𝐾𝑖 is decided in one round

and (2) this is the case for any other correct process 𝑗 .

Thus after reaching such a state, it becomes possible to

start all the instances I = {𝑖1, ..., 𝑖𝑛} and combine the pro-
posals of all the instances. To do so, the processes send vector

that include all these instances, namely, the ones where pro-

cesses already proposed at round 1. Thus at hyper-round 1

(which is this new round 1 within which all instances are

treated altogether), a correct process is “repeating itself”,

which is not a problem. If a vector of hyper-round 1 does not

correspond to the binary values that have been sent in the

first phase (without vector), the vector is ignored. When a

process 𝑗 decides at instance 𝑘 at round 𝑟𝑘𝑗 , it continues to

“help” until round 𝑟 ∗𝑗 + 2, where 𝑟 ∗𝑗 is the highest round of

decision of 𝑗 among all the instances.

At each round 𝑟 ∈ N, , for every process 𝑝 , we note

𝐴𝑈𝑋
𝑝
[𝑟 ] = ⟨𝑎𝑢𝑥𝑖1𝑝 [𝑟 ], ..., 𝑎𝑢𝑥𝑖𝑛𝑝 [𝑟 ]⟩𝜎𝑝 and call this message

an hyper-aux message.

In the optimized version, the hyper-aux message is RB-

bcast with the optimization of Cachin and Tessaro [10]) (see

line 22 in algoritm 6).

Avoiding the bv-bcast of ledgers. Now, an hyper-

estimation is justified by an hyper-aux message that has
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Algorithm 5 The Optimized Multivalue Polygraph Protocol

1: gen-propose(𝑣𝑖 ):
2: 𝑤𝑎𝑖𝑡𝑖 = 1

3: hyper-proposal ∈ {0, 1}𝑛 , initially ∀𝑘 ∈ [1, 𝑛], hyper-proposal [𝑘 ] = 0

4: RB-broadcast(EST, ⟨𝑣𝑖 , 𝑖 ⟩)→ messages𝑖 � reliable broadcast value to all

5:

6: repeat: � when you recieve a value from 𝑝𝑘 , begin consensus instance 𝑘 with a proposal of 1

7: if ∃ 𝑣, 𝑘 : (EST, ⟨𝑣, 𝑘 ⟩) ∈ messages𝑖 then
8: if BIN-CONSENSUS[𝑘 ] not yet invoked then
9: BIN-CONSENSUS[𝑘 ] .bin-propose(1)→ bin-decisions [𝑘 ]𝑖
10: until ∃𝐾𝑖 , |𝐾𝑖 | ≥ 𝑛 − 𝑡0, ∀𝑘 ∈ 𝐾𝑖 , 𝑏𝑖𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 [𝑘 ] = 1 � wait until the 𝑛 − 𝑡0 first decisions

11:

12: 𝑤𝑎𝑖𝑡𝑖 = 0

13: ∀𝑘 ∈ 𝐾𝑖 , hyper-proposal [𝑘 ] = 1 � re-propose 1 for all the decided instances in 𝐾𝑖 and propose 0 for the other instances

14: BIN-CONSENSUS.combine-propose(hyper-proposal)→ bin-decisions𝑖 � One message for all the instances

15: wait until for all 𝑘 , bin-decisions [𝑘 ] ≠ ⊥ � wait until all the instances decide

16:

17: 𝑗 = min{𝑘 : bin-decisions [𝑘 ] = 1} � choose the smallest instance that decides 1

18: wait until ∃ 𝑣 : (EST, ⟨𝑣, 𝑗 ⟩) ∈ messages𝑖 � wait until you receive that value

19: decide 𝑣 � return that value

been RB-delivered. Thus, this justification will be eventually

RB-delivered by all the correct processes, avoiding the costly

broadcast of ledgers.

A disagreement implies a binary disagreement at a partic-

ular instance 𝑘 . Two correct processes 𝑖 and 𝑗 that disagree at

instance 𝑘 at rounds 𝑟𝑖 and 𝑟 𝑗 with 𝑟 𝑗 > 𝑟𝑖 , can compare the

hyper-aux messages that have been RB-delivered at round

𝑟𝑖 .

At the end, after GST, the optimized multivalue proto-

col has a message complexity of 𝑂(𝑛) processes times 𝑂(𝑡0)

rounds times 𝑂(𝑛2
) (RB-bcast), which is 𝑂(𝑛4

) messages.

The optimized multivalue protocol has a bit-complexity of

𝑂(𝜅 ·𝑛4
), since the bit complexity of𝑅𝐵−𝑏𝑐𝑎𝑠𝑡 is only𝑂(𝜅 ·𝑛2

)

[10].

A brief explanation of the optimized Reliable-
broadcast [10]. The algorithm of Cachin and Tessaro

works as follows: At each round 𝑟 , each process is supposed

to reliably broadcast its hyper-aux 𝐴𝑈𝑋
𝑗
[𝑟 ] to every

other process. To do so it can use a Solomon code to build

˜𝐴𝑈𝑋
𝑗
[𝑟 ] where | ˜𝐴𝑈𝑋

𝑗
[𝑟 ] | = 𝑂(1)|𝐴𝑈𝑋

𝑗
[𝑟 ] |. Then it can

split
˜𝐴𝑈𝑋
𝑗
[𝑟 ] into 𝑛 chunks

˜
𝐴𝑈𝑋

𝑝

𝑗
[𝑟 ]

𝑝∈[1,𝑛] and send to

each process the chunk and an additional constant-size

piece of information used for verification. When a process 𝑝

receives its chunk, it can verify it and then echo it. When

a process 𝑞 receives 𝑛 − 𝑡0 chunks (
˜

𝐴𝑈𝑋
𝑝

𝑗
[𝑟 ])𝑝∈𝜙, |𝜙 |=𝑛−𝑡0 , it

can build 𝐴𝑈𝑋
𝑗
[𝑟 ] and verify it.

E APPLICATION TO BLOCKCHAIN
In this section we explain how the general Polygraph pro-

tocol can held blockchain service providers accountable to

blockchain client processes that do not run the consensus as

long as 𝑡 < 2𝑛/3. Note that a blockchain service can be im-

plemented with a replicated state machine to which separate

clients send requests. A predetermined set of 𝑛 processes,

called a consortium, can propose and decide valid blocks that

they append to their local view of the blockchain through the

General Polygraph Protocol that accepts arbitrary values. A

client can send a get requests to the members of the consor-

tium and if it receives the same view of the blockchain from

a certain number𝑚 of members (𝑚 = (𝑛 − 𝑡0) by default), it

considers the transactions of this common view as valid. In

case of disagreement (𝑡 > 𝑡0), the blockchain forks in that

multiple blocks get appended to the same index of the chain,

which could lead to double spending if the resulting branches

have conflicting transactions.

Preliminaries. We now restate the existing blockchain for-

malism by Anceaume et al. [5]. A blockchain is a chain of

blocks whose score() function takes as input a blockchain

and returns its score 𝑠 as a natural number, which can be its

height, its weight, etc. A blocktree is aMealy’smachinewhose

states are countable, with an input alphabet comprising op-

eration append(block) to append a block to the blocktree

and operation read() that returns a blockchain, and an ora-

cle Θ distributing permission tokens to processes for them

to include a new block. The blocktree strong (resp. eventual)

consistency is the conjunction of the following properties:

• block validity: each block in a blockchain returned by

a read() operation is valid and has been inserted in the

blocktree with the append() operation.

• local monotonic read: given a sequence of read() oper-

ations at the same process, the score of the returned

blockchains never decreases.
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Algorithm 6 Coupled Polygraph Protocols

1: combined-propose(hyper-proposal):
2: hyper-est𝑖 = hyper-proposal

3: r𝑖 = 0

4: timeout𝑖 = 0

5: hyper-aux-msgs𝑖 [−1] = hyper-aux-msgs𝑖 [0] = ∅
6: repeat:
7: r𝑖 ← r𝑖 + 1;

8: timeout𝑖 ← timeout𝑖 + 1

9: coord𝑖 ← ((𝑟𝑖 − 1) mod 𝑛) + 1

⊲ Phase 1:

10: for 𝑘 ∈ [1 : 𝑛] do
11: light-bv-bcast(LEST[𝑟𝑖 ] [𝑘 ], hyper-est [k]𝑖 , 𝑖, hyper-bin_values𝑖 [𝑘 ], hyper-aux-msgs𝑖 [𝑟 − 1], hyper-aux-msgs𝑖 [𝑟 − 2]) � binary value broadcast the

current estimate of all the instances, without broadcast any ledger. The bit-complexity is𝑂(𝑛) per instance, per node, per round that is𝑂(𝑛4
) in total after GST

12: wait until ∀𝑘 ∈ [1, 𝑛], (hyper-bin_values𝑖 [𝑟𝑖 ] [𝑘 ] ≠ ∅ and
13: note {𝑤𝑖 = ({𝑤1 }, ..., {𝑤𝑛 })}) where ∀𝑘 ∈ [1, 𝑛], 𝑤𝑘

is the first value bv-delivered at instance 𝑘 by coord𝑖 . � hyper-bin_values stores binary

messages received by binary value broadcast for all the instances

14: if 𝑖 = coord𝑖 then � coordinator rebroadcasts the first value received at each instance

15: broadcast(HCOORD[𝑟𝑖 ], 𝑤𝑖 )→ hyper-messages𝑖

16: StartTimer(timeout𝑖 )

17: wait until timer𝑖 expired

⊲ Phase 2:

18: if (HCOORD[𝑟𝑖 ], 𝑤𝑐 ) ∈ hyper-messages𝑖 from 𝑝
coord𝑖

∧ ∀𝑘 ∈ [1, 𝑛], 𝑤𝑐 [𝑘 ] ∈ hyper-bin_values𝑖 [𝑟𝑖 ] [𝑘 ]) then
19: hyper-aux𝑖 ← 𝑤𝑐

20: else hyper-aux𝑖 ← 𝑤𝑖 � otherwise, use any value received

21: signature𝑖 = sign(hyper-aux𝑖 , 𝑟𝑖 , 𝑖) � sign the hyper-aux messages. Each signed hyper-aux message has a size of𝑂(𝑛 + 𝜅) (strictly lower than𝑂(𝑛 · 𝜅))

22: RB-broadcast(HECHO[𝑟𝑖 ], hyper-aux𝑖 [𝑟𝑖 ], signature𝑖 )→ hyper-aux-msgs𝑖 [𝑟 ] � Reliable broadcast the second phase messages of all the instances in a unique

hyper-aux message with Cachin-Tessaro optimization. The bit-complexity per sender, per round is𝑂(𝑛2 · 𝜅), that is𝑂(𝑛4 · 𝜅) in total after GST

23: wait until ∀𝑘 ∈ [1, 𝑛], hyper-valuesi [𝑘 ] = ComputeValues(hyper-aux-msgs𝑖 [𝑟 ] [𝑘 ], hyper-bin_values𝑖 [𝑘 ], hyper-aux𝑖 [𝑘 ]) ≠ ∅
24: where hyper-aux-msgs𝑖 [𝑟 ] [𝑘 ] = {ℎ𝑎𝑢𝑥 [𝑘 ] |ℎ𝑎𝑢𝑥 ∈ hyper-aux-msgs𝑖 [𝑟 ] }

⊲ Decision phase:

25: for 𝑘 ∈ [1, 𝑛] do � for each instance

26: if hyper-values𝑖 [𝑘 ] = {𝑣 } then � if there is only one value at instance 𝑘 , then adopt it

27: hyper-est𝑖 [𝑘 ] ← 𝑣

28: if 𝑣 = (𝑟𝑖 mod 2) then � decide at instance 𝑘 if value matches parity

29: if no previous decision by 𝑝𝑖 then decide(𝑘, 𝑣)

30: else
31: hyper-est𝑖 [𝑘 ] ← (𝑟𝑖 mod 2) � otherwise, adopt the current parity bit

32: nothing to do � No ledger to broadcast anymore because of the RB-bcast of Phase 2

Rules:
(1) Every message that is not properly signed by the sender is discarded.

(2) Every message that is sent by bv-broadcastwithout a valid hyper-ledger after Round 1, except for messages containing value 1 in Round 2, are discarded.

(3) On first discovering an hyper-ledger ℓ that conflicts with an hyper-certificate at an instance 𝑘 , send ledger ℓ to all processes.

• ever growing tree: given an infinite sequence of

append() and read() operations, the score of the re-

turned blockchains eventually grows.

• strong (resp. eventual) prefix property: for each

blockchain returned by a read() operation with score

𝑠 , then (resp. eventually) all the read() operations re-

turn blockchains sharing the same maximum common

prefix of at least 𝑠 blocks.

Now we consider three cases depending on the number of

Byzantine processes, namely the nominal case, the degraded

case and the zombie case when respectively 𝑡 ≤ 𝑡0, 𝑡0 < 𝑡 <

(𝑛 − 𝑡0) and (𝑛 − 𝑡0) ≤ 𝑡 ≤ 𝑛.

Nominal case (𝑡 ≤ 𝑡0). In this case the strong consistency is

preserved. To read the state of a blockchain, a client asks the

𝑛 members of the consortium (read() invocation) and waits

for 𝑚 = 𝑛 − 𝑡0 identical answers (read() response events).

Indeed, if the assumption 𝑡 ≤ 𝑡0 holds, the consensus will
finish (the ever growing tree property is ensured) and the

client will eventually receive at least 𝑛 − 𝑡0 identical answers.
But nothing prevents the Byzantine processes to stay mute

forever or give false answers, that is why a client does not

expect (a priori) more than 𝑛 − 𝑡0 answers. While 𝑡 ≤ 𝑡0, the
frugal Θ𝐹,𝑘=1 oracle manages tokens in a controlled way to

guarantee that no more than 𝑘 = 1 forks can occur on a given
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Algorithm 7 Coupled Helper Components

1: light-bv-broadcast(LBVAL[𝑘 ] [𝑟 ], 𝑣𝑎𝑙, 𝑖, bin_values, , hyper-aux-msgs−1
, hyper-aux-msgs−2

):
2: broadcast(LBVAL[𝑘 ] [𝑟 ], 𝑣𝑎𝑙 )→𝑚𝑠𝑔𝑠 � broadcast message

3: upon receipt of (LBVAL[𝑘 ] [𝑟 ], 𝑣)

4: if (LBVAL[𝑘 ], 𝑣) received from (𝑡0 + 1) distinct processes and (LBVAL[𝑘 ] [𝑟 ], 𝑣) not yet broadcast then
5: broadcast(𝐿𝐵𝑉𝐴𝐿 [𝑘 ] [𝑟 ], 𝑣) � Echo after receiving (𝑡0 + 1) copies.

6: if (BVAL[𝑘 ], 𝑣) received from (2𝑡0 + 1) distinct processes and

7: IsJustified(v, hyper-aux-msgs−1
, hyper-aux-msgs−2

, r, k) � Need to build a correctly signed ledger to bv-deliver a value. then
8: bin_values← bin_values ∪ {𝑣 } � deliver after receiving (2𝑡0 + 1) copies only

9: ComputeValues(messages, b_set, aux_set): � No modification

10: if ∃𝑆 ⊆ messages where the following conditions hold:

11: (i) |𝑆 | contains (𝑛 − 𝑡0) distinct ECHO[𝑟𝑖 ] messages

12: (ii) aux_set is equal to the set of values in 𝑆 .

13: then return(aux_set)
14: if ∃𝑆 ⊆ messages where the following conditions hold:

15: (i) |𝑆 | contains (𝑛 − 𝑡0) distinct ECHO[𝑟𝑖 ] messages

16: (ii) Every value in 𝑆 is in b_set.

17: then return(𝑉 = the set of values in 𝑆)

18: else return(∅)

19: IsJustified(v, hyper-aux-msgs−1
, hyper-aux-msgs−2

, r, k): � check if a bv-broadcasted value is justified by RB-delivered enough hyper-aux messages

20: if 𝑟 > 1 then
21: if 𝑣 == (𝑟 mod 2) then
22: if | {h-aux ∈ hyper-aux-msgs−1

|h-aux [𝑘 ] == 𝑣 } | ≥ 𝑛 − 𝑡0 then
23: return true

24: else return false

25: else
26: if | {h-aux ∈ hyper-aux-msgs−2

|h-aux [𝑘 ] == 𝑣 } | ≥ 𝑛 − 𝑡0 or 𝑟 == 2 then
27: return true

28: else return false

29: else
30: return true

block (𝑘-fork coherence), thus the consortium blockchain

implements the blocktree strong consistency.

Degraded case (𝑡0 < 𝑡 < (𝑛 − 𝑡0)). In this case the ever-

growing tree is violated but not the eventual prefix prop-

erty. Moreover, if the threat of punishment (allowed by the

accountability) disincentivizes a malicious coalition from

attacking, then the strong prefix property is ensured. Let

𝑡0 < 𝑡 < 𝑛 − 𝑡0. A malicious coalition can do either one of

these actions:

• Follow the protocol.

• Stay mute to violate the liveness property of the con-

sensus and so the ever growing tree property of the

blockchain (and so the (even eventual) consistency of

the blockchain).

• Attempt an attack to create a disagreement among the

consortium. Whatever the result of the bid, a proof

of guilt will eventually be spread among all the hon-

est processes (consortium members and clients). Then,

regardless the sentence applied to the malicious pro-

cesses, a special fork can be created to drop the ille-

gitimate forks (labelled in consequence) due to the

attack. The selection function returns then the unique

blockchain which does not pass by a fork labelled ille-

gitimate. The eventual prefix property is then satisfied.

Moreover, if the potential punishment discourages any

attempt of disagreement-attack (for example with a

negative utility function in game theory approach),

then the strong prefix property is ensured.

So, as long 𝑡 < (𝑛−𝑡0), the eventual prefix property is ensured,

but the ever-growing tree property is violated if 𝑡 > 𝑡0.

Zombie case ((𝑛−𝑡0) ≤ 𝑡 ≤ 𝑛). In this case a super coalition

of 𝑡 > 2𝑛/3 Byzantine processes can override the General

Polygraph Protocol by proposing directly two conflicting

views to two different clients to then perform a double-

spending attack. The coalition does not participate to the

consensus in order to violate the liveness property. It follows

that the ever growing tree property is violated. Note that

safety is also violated: When a client invokes the read() prim-

itive, the coalition can answer arbitrary values, despite the

non-termination of the legitimate consensus. The client is

supposed to trust the coalition, like all the other clients who

can forever receive a different output for the read() primitive.

Hence, for 𝑡 ≥ 𝑛− 𝑡0, the eventual prefix property is violated.
This makes the blockchain vulnerable to a double-spending

attack.

F PBFT, TENDERMINT AND HOTSTUFF
DO NOT SOLVE THE ACCOUNTABLE
BYZANTINE AGREEMENT

We now propose an extension that applies to a class of clas-

sic Byzantine fault tolerant consensus, that, despite being
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intuitive, cannot make these algorithms accountable. This

algorithms corresponds to variants of PBFT [11] in that they

inherits the leader, the views as well as preparation and

decision values exchanged across view changes. In partic-

ular, we show that the result applies at least to PBFT [11],

Tendermint [4] and HotStuff [33].

Algorithms. Each process 𝑖 is assigned an algorithm A𝑖 =
(𝑀𝑖 ,𝑇 𝐼𝑖 ,𝑇𝑂𝑖 , 𝑋𝑖 , Σ𝑖 , 𝜎

0

𝑖 , 𝛼𝑖 ), where 𝑀𝑖 is the set of messages

𝑖 can send or receive, 𝑇 𝐼𝑖 is a set of terminal inputs 𝑖 can

receive, 𝑇𝑂𝑖 is a set of terminal outputs 𝑖 can produce, 𝑋𝑖 is

a set of variables, Σ𝑖 is a set of states, based on an evaluation

of the variables, 𝜎0

𝑖 ∈ Σ𝑖 is the initial state, and 𝛼𝑖 : Σ𝑖 ×
P(𝑀𝑖 ∪𝑇 𝐼𝑖 ) → Σ𝑖 × P(𝑀𝑖 ∪𝑇𝑂𝑖 ) maps a set of inputs and

the current state to a set of outputs and the new state. Here,

P(𝑋 ) denotes the power set of𝑋 . For convenience, we define

𝛼(𝜎, ∅) := (𝜎, ∅) for all 𝜎 ∈ Σ𝑖 .

Distributed algorithms. A distributed algorithm is a tuple

(𝐴1, ..., 𝐴𝑛), one algorithm per process, such that 𝑀𝑖 = 𝑀 𝑗

for all 𝑖, 𝑗 . (The message does not need to contain the sender

or the receiver identifier.) When we say that an execution

𝑒 is an execution of a distributed algorithm 𝐴, this implies

that each process 𝑖 is considered correct or faulty in 𝑒 with

respect to the algorithm 𝐴𝑖 it has been assigned. We write

𝑐𝑜𝑟𝑟 (𝐴, 𝑒) to denote the set of processes that are correct in 𝑒

with respect to 𝐴. We note 𝑙𝑜𝑔𝑖 the variable representing the

set of messages received by 𝑖 .

Execution.We define an event as a tuple (𝑝, 𝐼,𝑂), where 𝑝

is a process on which the event occurs, 𝐼 represents a set of

received messages and observed internal events by 𝑝 and

𝑂 represents a set of sent messages and internal events 𝑝

produces.

A behavior fragment 𝛽𝑝 is a sequence of

events (𝑝, 𝐼1,𝑂1), (𝑝, 𝐼2,𝑂2), .... We say that 𝛽𝑝 =

(𝑝, 𝐼1,𝑂1), (𝑝, 𝐼2,𝑂2), ... is valid if and only if it conforms to a

protocol Π𝑝 , i.e., there exists a sequence of states 𝑠0, 𝑠1, ... in

Σ𝑝 such that for all 𝑖 ≥ 1, 𝛼𝑝 (𝑠𝑖−1, 𝐼𝑖 ) = (𝑠𝑖 ,𝑂𝑖 ).

A behavior 𝛽𝑝 is a behavior fragment so that 𝑠0 = 𝜎
0

𝑝 .

An execution fragment 𝑒 is a sequence of events. For every

process 𝑝 , we note 𝛽𝑝 = 𝑒 |𝑝 the behavior fragment obtained

after projection on the process 𝑝 . We say that an execution

𝑒 is valid if and only if for every process 𝑝 , the behavior

fragment 𝛽𝑝 = 𝑒 |𝑝 is valid.
An execution is an execution fragment so that for every

process 𝑝 , the behavior fragment 𝛽𝑝 = 𝑒 |𝑝 is a behavior.

Class of PBFT-like algorithms. We define a class L0 of

algorithms that correspond to the leader-based consensus

algorithms derived from PBFT, including Tendermint and

HotStuff. They proceed in views, that can be triggered after

a timeout, and whose leader, chosen in a round-robin fash-

ion, sends a proposal (that we call here a suggestion). Two

variables, preparation and decisions are key to the protocols

and dictate what value can be proposed by the leader in a

new view. Only when messages from sufficiently many dis-

tinct processes are collected, can the preparation be changed.

This class L0 allows us to generalize the same result to other

algorithms by simply showing that the algorithms belong to

L0.

Definition F.1 (class L0). A 𝑡0-resilient asynchronous

Byzantine consensus algorithm is in class L0 if it verifies the

following properties:

(1) There is a round-robin rotation of leader that can pro-

pose a suggestion at each view: ∀𝑣 ∈ N, ℓ𝑣 = 𝑝𝑥 ∈ Ψ
with 𝑥 = 𝑣 𝑚𝑜𝑑 𝑛.

(2) Each process stores two variables preparation and

decision. These variables comprise a value 𝑠 (sug-

gested by the leader of the last update), an inte-

ger representing the view number of the last update

and a set of messages justifying the update. ∀𝑖 ∈
Ψ preparation𝑖 , decision𝑖 ∈ 𝑋𝑖 , type(preparationi) =

type(decisioni) = Val ∪ {⊥} × N × P(𝑀). Initially,

𝜎0

𝑖 .preparationi .val = 𝜎0

𝑖 .decisioni .val = ⊥. The deci-

sion variable can be updated only once: a decision is

irrevocable.

(3) Variables preparation and decision can be assigned

in a view 𝑣 (variable decision is assigned only once)

if enough messages are collected from 𝑛 − 𝑡0 distinct
processes in this same view 𝑣 . ∃𝐽 ∈ P(𝑀) where ∀𝑚 ∈
𝐽 ,𝑚.𝑣𝑖𝑒𝑤 = 𝑣 , 𝜎𝑖 ∈ Σ𝑖 where 𝜎𝑖 .preparationi .view =

𝑣 ′, 𝜎 ′𝑖 ∈ Σ𝑖 where 𝜎𝑖 .preparationi .view = 𝑣 such that

𝛼𝑖 (𝜎𝑖 , 𝐽 ) = (𝜎 ′𝑖 , .).
(4) The variable decision in a view 𝑣 implies preparation in

the same view 𝑣 . If it exists 𝑣 ∈ N, 𝑠 ∈ 𝑉𝑎𝑙, 𝐽 ∈ P(𝑀)∩
𝑙𝑜𝑔𝑖 s. t. decisioni = (𝑠, 𝑣, 𝐽 ) then ∃𝐽 ′ ∈ P(𝑀) ∩ 𝑙𝑜𝑔𝑖
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = (𝑠, 𝑣, 𝐽 ′).

(5) In a fully correct execution, a decision implies the

preparation of the same value by 𝑛−𝑡0 other processes
and the reception of as many messages that claim this

fact. If it exists 𝑣 ∈ N, 𝑠 ∈ Val, 𝐽𝑑 ∈ P(𝑀) ∩ 𝑙𝑜𝑔𝑖 s. t.
decisioni = (𝑠, 𝑣, 𝐽𝑑 ), then 𝐽𝑑 stores a set 𝑚 of set of

messages (𝑚
𝑘
)𝑘∈Φ (Φ ⊂ Ψ, 𝑝𝑘 ∈ Ψ, |Φ| ≥ 𝑛 − 𝑡0), s. t.

(𝑚
𝑘
sent in an execution 𝑒 by 𝑝𝑘 and 𝑝𝑘 correct) implies

(it exists 𝐽
𝑝

𝑘
∈ P(𝑀) and a state 𝑥𝑘 of the process 𝑘 in

the execution 𝑒 , s. t. 𝑥𝑘 .preparation𝑠𝑘 = (𝑠, 𝑣, 𝐽
𝑝

𝑘
)).

(6) After a timer expires for view 𝑣 , a process sends a new-

view message to the leader ℓ𝑣+1 of the next view 𝑣 + 1,

containing its preparation and potential additional col-

lected messages to justify its preparation. ∀𝑣 ∈ N, 𝜏𝑣𝑖 =

timer of view 𝑣 expired ∈ 𝑇 𝐼𝑖 , 𝛼(𝜎𝑖 , 𝜏
𝑣
𝑖 ) = (𝜎 ′𝑖 , {𝑛𝑣𝑣𝑖 })
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where 𝑛𝑣𝑣𝑖 = (𝑁𝑉, 𝑖, 𝑣, (𝑠
𝑝

𝑖
, 𝑣
𝑝

𝑖
, 𝐽
𝑝

𝑖
)) with 𝑑𝑒𝑠𝑡 (𝑛𝑣𝑣𝑖 ) = ℓ𝑣+1

and 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑠
𝑝

𝑖
, 𝑣
𝑝

𝑖
, 𝐽
′𝑝
𝑖

).

(7) A suggestion 𝑠𝑣 for a view 𝑣 can only be proposed by

the leader (7.1).

Additionnaly (the case of HotStuff and PBFT) this sug-

gestion can be motivated by 𝑛− 𝑡0 new-view messages

sent in the previous view 𝑣 − 1 (7.2), the suggestion

will be the value of the propagated preparation pre-

pared at the highest view number (7.3). The collected

new-view messages will allow to build a justification

for the computed suggestion (7.4). 𝛼𝑖 (𝜎𝑖 , 𝐼 ) = (𝜎 ′𝑖 ,𝑂)

with𝑂 containing a suggestion 𝑠𝑢𝑔𝑔(𝑠𝑣, 𝑣, 𝐽 𝑠,𝑣) implies

(a) 𝑖 is leader of view 𝑣 and (b) 𝜎𝑖 .𝑙𝑜𝑔𝑖 ∪ 𝐼 contains a
set of at least 𝑛 − 𝑡0 new-view messages (𝑛𝑣𝑣−1

𝑘
)𝑘∈Φ

(Φ ⊂ Ψ, 𝑝𝑘 ∈ Ψ, |Φ| ≥ 𝑛 − 𝑡0) s. t. ∀𝑘 ∈ Φ
(𝑛𝑣𝑣−1

𝑘
).𝑣𝑖𝑒𝑤 = 𝑣 − 1 (3) 𝑛𝑣𝑣−1

ℎ
𝑎𝑟𝑔𝑚𝑎𝑥{𝑛𝑣𝑣−1

𝑘
.𝑣
𝑝

𝑘
} and

𝑠 = 𝑛𝑣𝑣−1

ℎ
.𝑠𝑝 (4) 𝐽 𝑠,𝑣 ⊂ ⋃

𝑘∈Φ(𝑛𝑣𝑣−1

𝑘
.𝐽𝑝 ∪ 𝑛𝑣𝑣−1

𝑘
).

(8) A preparation of a value 𝑠 at view 𝑣 implies the

reception of a suggest message from the leader

ℓ𝑣 at this view 𝑣 containing the suggestion 𝑠 ,

potentially with additional received messages

to justify 𝑠 so that 𝑠 verifies a predicate Safe: If

it exists 𝑣 ∈ N, 𝑠 ∈ Val, 𝐽 ∈ P(𝑀) ∩ 𝑙𝑜𝑔𝑖 s. t.

preparation𝑖 = (𝑠, 𝑣, 𝐽 ) then ∃𝐽 𝑠,𝑣 ∈ P(𝑀) ∩ 𝑙𝑜𝑔𝑖 ,
Sugg = 𝑠𝑢𝑔𝑔(𝑠, 𝑣, 𝐽 𝑠,𝑣) ∈ 𝑙𝑜𝑔𝑖 s. t. a predicate Safe(Sugg)

indicates the validity of the Sugg messages in the

corresponding algorithm.

Next, we explain why HotStuff [33], PBFT [11] and Tender-

mint [4] are part of this class L0. For simplicity, we consider

the version of HotStuffwithout threshold signatures as evalu-

ated in [33]. Note that as we mentioned before in Section 4.2,

threshold signatures are insufficient for accountability and

thus cannot help make HotStuff, PBFT or Tendermint ac-

countable.

Lemma F.2. HotStuff, Tendermint and PBFT are in L0.

Proof. The proof consists of showing by examination of

the code of HotStuff, PBFT and Tendermint that they verifiy

the 8 properties of Def. F.1.

(1) There is a unique process per view, called here a leader,

that is picked in a round robin fashion across subse-

quent views. This unique process is called leader in

HotStuff, the proposer that changes at each “epoch” in

Tendermint and the primary in PBFT.

(2) There are two variables we refer to as preparation

and decision. These variables are called, respectively,

prepareQC and commitQC in HotStuff, validValue
and decision in Tendermint and prepare and commit
in PBFT.

(3) Let 𝐽𝑝,𝑣 and 𝐽𝑑,𝑣 be the justifications for preparation 𝑝

and view 𝑣 , and decision 𝑑 and view 𝑣 , respectively.

• HotStuff: 𝑚 : 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑀𝑠𝑔(𝑚, 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑣),

𝑚′ : 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑄𝐶(𝑚′. 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦, 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑣) and

𝑚′′ :𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑄𝐶(𝑚′′. 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦, 𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣)

• Tendermint:

– Preparation: Line 22: if ∃𝑣 ′ : 2𝑓 +
1⟨𝑃𝑅𝑂𝑃𝑂𝑆𝐸,ℎ, 𝑒𝑖 , 𝑣 ′⟩ ∧ 𝑣𝑎𝑙𝑖𝑑(𝑣 ′) ∧
𝑠𝑒𝑛𝑑𝐵𝑦𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑟 (ℎ, 𝑒𝑖 , 𝑣

′
) then Line 23:

𝑣𝑎𝑙𝑖𝑑𝑉𝑎𝑙𝑢𝑒𝑖 ← 𝑣 ′;
– Decision: Line 24: if ∃𝑣𝑑 , 𝑒𝑑 : 2𝑓 +

1⟨𝑉𝑂𝑇𝐸,ℎ, 𝑒𝑑 , 𝑣𝑑⟩∧𝑣𝑎𝑙𝑖𝑑(𝑣𝑑)∧decisioni = 𝑛𝑖𝑙 then
line 25: decisioni ← 𝑣𝑑 .

• PBFT: a new-view and a pre-prepare from the pri-

mary and 𝑛 − 𝑡0 prepare messages.

(4) Decision implies preparation. (FIFO is implicitly imple-

mented, s. t.𝑚′ is always sent after𝑚 means𝑚′ can
be delivered only if𝑚 has already been delivered).

• HotStuff: broadcast𝑀𝑠𝑔(𝑑𝑒𝑐𝑖𝑑𝑒,⊥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶)

comes after𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑀𝑠𝑔(pre-commit,⊥, 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶);

• Tendermint: At line 18,

broadcast ⟨𝑉𝑂𝑇𝐸,ℎ, 𝑒𝑖 , 𝑣𝑜𝑡𝑒𝑖⟩ comes after line

4: broadcast ⟨𝑃𝑅𝑂𝑃𝑂𝑆𝐸,ℎ, 𝑒𝑖 , proposali⟩;
• PBFT: a commit message is sent after a prepare mes-

sage.

(5) Decision implies preparation of (𝑛 − 𝑡0) others.

• HotStuff: To build a precommitQC, the leader

need a threshold signature built from 𝑛 −
𝑡0 𝑣𝑜𝑡𝑒𝑀𝑠𝑔(pre-commit,𝑚. 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦.𝑝𝑟𝑜𝑐𝑒𝑠𝑠,⊥) that

comes after 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶 ← 𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦. Then

𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑀𝑠𝑔(𝑑𝑒𝑐𝑖𝑑𝑒,⊥, 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶) comes after

𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑀𝑠𝑔(𝑐𝑜𝑚𝑚𝑖𝑡,⊥, 𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶)

• Tendermint: A vote message is triggered by the re-

ception of 𝑛 − 𝑡0 valid propose messages. At line

8: if ∃𝑣 : 2𝑓 + 1 ⟨𝑃𝑅𝑂𝑃𝑂𝑆𝐸,ℎ, 𝑒𝑖 , 𝑣⟩ ∧ 𝑣𝑎𝑙𝑖𝑑(𝑣) ∧
𝑠𝑒𝑛𝑑𝐵𝑦𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑟 (ℎ, 𝑒𝑖 , 𝑣) then at sline 11: 𝑣𝑜𝑡𝑒𝑖 ← 𝑣

and at line 17: if 𝑣𝑜𝑡𝑒𝑖 ≠ 𝑛𝑖𝑙 then at line 18: broadcast

⟨𝑉𝑂𝑇𝐸,ℎ, 𝑒𝑖 , 𝑣𝑜𝑡𝑒𝑖⟩.
• PBFT: A commit message is triggered by the recep-

tion of 𝑛−𝑡0 prepare-messages that lead to the prepa-

ration.

(6) Regarding the new-view message:

• HotStuff: 𝑠𝑒𝑛𝑑 𝑀𝑠𝑔(new-view,⊥, 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶) to

𝑙𝑒𝑎𝑑𝑒𝑟 (𝑣 + 1).

• Tendermint: at line 14, ∀𝑣, 𝑝 𝑗 : (⟨VOTE, ℎ, 𝑒𝑖 , 𝑣⟩, 𝑝 𝑗 ) ∈
messageSet𝑖 , broadcast⟨VOTE, ℎ, 𝑒𝑖 , 𝑣⟩
• PBFT: a view-change message containing a set 𝑃

that contains a set 𝑃𝑚 for each message𝑚 prepared,

where each 𝑃𝑚 contains 𝑛 − 𝑡0 prepare messages for

𝑚.

(7) Regarding the suggestion message, we describe the

point of view of the leader as follows:
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• In HotStuff, during the prepare phase, for a process

that acts as the leader we have: Property (7.2) holds

with the line: ‘wait for (𝑛 − 𝑓 ) new-view messages:

𝑀 ← {𝑚 | 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑀𝑠𝑔(𝑚,𝑛𝑒𝑤-𝑣𝑖𝑒𝑤, 𝑣−1)}’. Prop-
erties (7.3) and (7.4) hold with the line: ’ℎ𝑖𝑔ℎ𝑄𝐶 ←
(𝑚 ∈ 𝑀
𝑎𝑟𝑔𝑚𝑎𝑥

{𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦.𝑣𝑖𝑒𝑤𝑁𝑢𝑚𝑏𝑒𝑟 }). 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦’.
Property (7.1) holds with the lines : ‘𝑐𝑢𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ←
𝑐𝑟𝑒𝑎𝑡𝑒𝐿𝑒𝑎𝑓 (ℎ𝑖𝑔ℎ𝑄𝐶.𝑝𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑐𝑙𝑖𝑒𝑛𝑡 ′𝑠 𝑐𝑜𝑚𝑚𝑎𝑛𝑑)

𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑀𝑠𝑔(𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑐𝑢𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙, ℎ𝑖𝑔ℎ𝑄𝐶)’

• In Tendermint, Property (7.1) holds

with the lines 16 and 17: At line 16, if

𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟 (ℎ, 𝑒𝑖 ) = 𝑝𝑖 then, at line 17, 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

⟨𝑃𝑅𝐸-𝑃𝑅𝑂𝑃𝑂𝑆𝐸,ℎ, 𝑒𝑖 , 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑖 , 𝑣𝑎𝑙𝑖𝑑𝐸𝑝𝑜𝑐ℎ𝑖⟩𝑖 . The
variable 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑖 is updated either a) at line 28 of

PRE-PROPOSE round: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑖 ← 𝑣𝑖 or b) at line

41 of VOTE round : 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑖 ← 𝑣𝑎𝑙𝑖𝑑𝑉𝑎𝑙𝑢𝑒𝑖 . In

case a) 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑖 verifies conditions of line 27: 2𝑓 +1

⟨𝑃𝑅𝑂𝑃𝑂𝑆𝐸,ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑝𝑜𝑐ℎ 𝑗 , 𝑣𝑖⟩𝑖 ∧ 𝑣𝑎𝑙𝑖𝑑𝐸𝑝𝑜𝑐ℎ 𝑗 ≥
𝑙𝑜𝑐𝑘𝑒𝑑𝐸𝑝𝑜𝑐ℎ𝑖 ∧ 𝑣𝑎𝑙𝑖𝑑𝐸𝑝𝑜𝑐ℎ 𝑗 < 𝑒𝑖 ∧ 𝑣𝑎𝑙𝑖𝑑(𝑣𝑖 ). In case

b) the last update of 𝑣𝑎𝑙𝑖𝑑𝑉𝑎𝑙𝑢𝑒𝑖 corresponds to the

last preparation.

• In PBFT, a new-view messages containing 𝑉 con-

taining 𝑛 − 𝑡0 well-written view-change messages,

O containing the pre-prepare messages according

to 𝑉 .

(8) Regarding the acceptation of a suggestion, we describe

the point of view of a replica that accepts a suggestion

only if it satisfies some properties chosen to ensure

the suggestion is legitimate.

• In HotStuff, during the prepare phase,

a replica waits for message 𝑚 from

𝑙𝑒𝑎𝑑𝑒𝑟 (𝑣), 𝑚 : 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑀𝑠𝑔(𝑚, 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑣).

If 𝑚.𝑝𝑟𝑜𝑐𝑒𝑠𝑠 extends from 𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦.𝑝𝑟𝑜𝑐𝑒𝑠𝑠

and 𝑠𝑎𝑓 𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚.𝑝𝑟𝑜𝑐𝑒𝑠𝑠,𝑚. 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦) then

𝑠𝑒𝑛𝑑 𝑣𝑜𝑡𝑒𝑀𝑠𝑔(𝑝𝑟𝑒𝑝𝑎𝑟𝑒,𝑚.𝑝𝑟𝑜𝑐𝑒𝑠𝑠,⊥) to 𝑙𝑒𝑎𝑑𝑒𝑟 (𝑣).

• In Tendermint, the condition ∃𝑣 𝑗 , 𝑒 𝑗 :

𝑠𝑒𝑛𝑑𝐵𝑦𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑟 (ℎ, 𝑒𝑖 , 𝑣 𝑗 , 𝑒 𝑗 ) at line 21 and the condi-

tion 𝑣𝑎𝑙𝑖𝑑𝐸𝑝𝑜𝑐ℎ 𝑗 ≥ 𝑙𝑜𝑐𝑘𝑒𝑑𝐸𝑝𝑜𝑐ℎ𝑖 ∧ 𝑣𝑎𝑙𝑖𝑑𝐸𝑝𝑜𝑐ℎ 𝑗 <
𝑒𝑖 at line 27 have to be respected to take into account

the suggestion 𝑣 𝑗 .

• In PBFT, a replica check the well-formedness of a

new-view message.

□

The next definitions are crucial to determine whether an

algorithm is accountable. We first define “justification chain”

as an alternating sequence of sets of messages that transi-

tively justify a proposal sent by a leader, before defining

the “cautiousness” and the “recklessness” properties for al-

gorithm in L0.

Definition F.3 (Justification chain of any depth 𝑑). Let 𝐴 ∈
L0, 𝑘, 𝑑 ∈ N, 𝑘 > 𝑑 and 𝑆𝑢𝑔𝑔𝑘 a suggestion of view 𝑘 .

A justification chain for 𝑆𝑢𝑔𝑔𝑘 of

depth 𝑑 is an alternating sequence

(𝑁𝑉 𝑘−𝑑 , 𝑆𝑢𝑔𝑔𝑘−(𝑑−1), 𝑁𝑉 𝑘−(𝑑−1), 𝑆𝑢𝑔𝑔𝑘−(𝑑−2)
,...,𝑁𝑉 𝑘−1

)

of sets of messages 𝑁𝑉ℎ ∈ P(𝑀), ℎ ∈ [𝑘 − 𝑑, 𝑘 − 1] and
𝑆𝑢𝑔𝑔ℎ ∈ 𝑀,ℎ ∈ [𝑘 − (𝑑 − 1), 𝑘 − 1] where each 𝑁𝑉ℎ is

sent by a set of processes 𝜙ℎ where 𝜙ℎ = {𝑖ℎ,1, ..., 𝑖ℎ,𝑛−𝑡0 }
and each 𝑆𝑢𝑔𝑔ℎ is sent by ℓℎ so that all these mes-

sages can be explained by a fully-correct execution.

More formally, there exists a valid reachable execu-

tion fragment 𝑒 ∈ 𝐸, and 𝑒 ′ a sub-execution of 𝑒 ,

where 𝑒 ′ = (𝑖𝑘−𝑑,1, 𝐼𝑘−𝑑,1,𝑂𝑘−𝑑,1), (𝑖𝑘−𝑑,2, 𝐼𝑘−𝑑,2,𝑂𝑘−𝑑,2), ...

(𝑖𝑘−𝑑,𝑛−𝑡0 , 𝐼𝑘−𝑑,𝑛−𝑡0 ,𝑂𝑘−𝑑,𝑛−𝑡0 ) (ℓ𝑘−(𝑑−1), 𝐼𝑘−(𝑑−1),𝑂𝑘−(𝑑−1))

...(𝑖𝑘−1,1, 𝐼𝑘−1,1,𝑂𝑘−1,1), (𝑖𝑘−1,2, 𝐼𝑘−1,2,𝑂𝑘−1,2), ...

(𝑖𝑘−1,𝑛−𝑡0 , 𝐼𝑘−1,𝑛−𝑡0 ,𝑂𝑘−1,𝑛−𝑡0 ) (ℓ𝑘 , 𝐼𝑘 ,𝑂𝑘 ) where these three

properties are all satisfied:

(1) ∀ℎ ∈ [𝑘 − (𝑑 − 1), 𝑘], 𝑆𝑢𝑔𝑔ℎ ∈ 𝑂ℎ ,
(2) ∀ℎ ∈ [𝑘 − 𝑑, 𝑘 − 1], 𝑁𝑉ℎ ⊂ ⋃

𝑥 ∈[1,𝑛−𝑡0 ] 𝑂ℎ,𝑥 ,

(3) ∀ℎ ∈ [𝑘−𝑑, 𝑘−1], 𝑁𝑉ℎ ⊂ 𝐼ℎ+1 (the new-viewmessages

trigger the suggestion (that could be never delivered

by any process if the timer expires too soon) and

(4) ∀ℎ ∈ [𝑘−𝑑, 𝑘−1], if it exists 𝑖𝑥 ∈ 𝜙ℎ ,𝑛𝑣ℎ𝑥 ∈ 𝑁𝑉ℎ∩𝑂ℎ,𝑥
s. t. 𝑛𝑣ℎ𝑥 .𝑣

𝑝 = ℎ and 𝑛𝑣ℎ𝑥 .𝑠
𝑝 = 𝑠 , then 𝑆𝑢𝑔𝑔ℎ = 𝑠 . (A

preparation update is motivated by a new well-formed

suggestion)(Nothing prevents the leader from having

a very slow connection, s. t. 𝑛𝑣ℎ𝑥 is not motivated by

𝑆𝑢𝑔𝑔ℎ .)

We say that a justification chain for a suggestion 𝑆𝑢𝑔𝑔𝑘 of

view 𝑘 is complete if its depth is 𝑘 .

We say that a justification chain is extractable from a set

of messages 𝑙𝑜𝑔 ∈ P(𝑀) if it exists an algorithm that take

𝑙𝑜𝑔 as input and outputs such a justification chain with a

probability 1 (with a complexity polynomial with the security

number 𝜅).

A complete justification chain is a necessary piece of infor-

mation to collect before decision to ensure accountability. If

a "hole" appears in the chain, we call it a partial justification

chain and we will show that this is not enough to ensure

accountability.

Definition F.4 (Partial justification chain of any depth 𝑑).

Let 𝐴 ∈ L0, 𝑘, 𝑑, 𝑞 ∈ N𝑘 > 𝑑 > 𝑞 and 𝑆𝑢𝑔𝑔𝑘 a suggestion

of view 𝑘 . A partial justification chain for Sugg
𝑘
of depth 𝑑

is an alternating sequence of sets of messages that mimics

a justification chain, notwithstanding the fact that it exists

at least an integer ℎ′ < 𝑘 where the property (3) is not

respected, that is, we do not know the new-view messasges

that motivated Sugg
ℎ′+1

in the chain. Since a set of new-view

messages at view ℎ′ is missing, we say that such a partial

justification chain contains a “hole at view ℎ′”.
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If a partial justification chain 𝑝 𝑗𝑐 contains a hole at view

ℎ𝑓 and for every other contained hole at another view ℎ′, we
have ℎ𝑓 > ℎ′, we say that ℎ𝑓 is the view of the first hole of

𝑝 𝑗𝑐 .

A partial justification chain 𝑝 𝑗𝑐 of a set 𝐽 of different

partial justifications for the same value suggested at the

same view is maximal in 𝐽 , if ∀𝑝 𝑗𝑐 ′ ∈ 𝐽 , the view ℎ′ of the
first hole of 𝑝 𝑗𝑐 ′ verifies ℎ′ < ℎ where ℎ is the view of the

first hole of 𝑝 𝑗𝑐 .

We are ready to define two properties: recklessness

and cautiousness. These properties are about the pieces

of information that are collected before decision. For a

𝑡0-resilient asynchronous Byzantine consensus algorithm,

the required information before decision is big enough to

ensure safety and small enough to ensure liveness. We have

the same approach for accountability: we need enough

information to ensure accountability in case of disagreement

and not too much to continue to ensure liveness as long as

𝑡 < 𝑡0. For an algorithm 𝐴 in L0 the necessary or sufficient

pieces of information to collect before a decision at view 𝑣

to ensure accountability can be reduced into a sufficiently

deep justification chain.

If a complete jsutification chain is stored in the log of

each correct process before decision, then we say that 𝐴

ensures cautiousness and we will show (Theorem F.9) that it

is enough to ensure accountability.

Definition F.5 (Cautiousness). Let 𝐴 ∈ L0. The cautious-

ness property ensures that : ∀𝑒 ∈ 𝑒𝑥𝑒𝑐𝑠(𝐴) ∀𝑣 𝑗 ∈ N ∀𝜎 𝑗 ∈ Σ 𝑗
s.t. 𝜎 𝑗 .𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑗 = (𝑠 𝑗 , 𝑣 𝑗 , 𝐽

𝑑
𝑗 ) then ∀𝜎 ′𝑗 following 𝜎 𝑗 in 𝑒 ,

𝜎 ′𝑗 .𝑙𝑜𝑔 𝑗 contains a complete justification chain for 𝑠 𝑗 of

depth 𝑣 𝑗 − 1.

However, if 𝐴 allowed a correct process to decide at view

𝑣 without an extractable sufficiently deep justification chain

(but only a partial justification chain that contains a hole at

view ℎ′ ∈ [𝑣 − 𝑡0 + 1, 𝑣]), we say that 𝐴 verifies recklessness

and we will show (Theorem F.8) this is enough to build

executions where accountability is impossible.

Definition F.6 (Recklessness). Let 𝐴 ∈ L0. The recklessness

property ensures that it exists 𝑣 ′ ∈ N, ∀𝑣 𝑗 ∈ N, 𝑣 𝑗 > 𝑣 ′,
we can build an execution 𝑒 ∈ 𝑒𝑥𝑒𝑐𝑠(𝐴) where process 𝑗

reaches a state 𝜎 𝑗 and decides 𝑠 𝑗 ∈ 𝑉𝑎𝑙 at view 𝑣 𝑗 without a

sufficiently deep justification chain for 𝑠 𝑗 . More formally:

• ∃𝑠 𝑗 ∈ 𝑉𝑎𝑙, 𝜎 𝑗 .𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑗 ∈ {𝑠 𝑗 } × {𝑣 𝑗 } × P(M) and

• no justification chain with depth greater than 𝑡0 − 1

can be extracted from 𝜎 𝑗 .𝑙𝑜𝑔 𝑗 , that is the maximal

partial justification chain that can be extracted from

𝑙𝑜𝑔 𝑗 contains at least a hole in a view 𝑣 − 𝑡0 ≤ ℎ < 𝑣 .

Finally, we will show (Theorem F.11) that for every

algorithm 𝐴 ∈ L0 that verifies recklessness, an extension

𝐴 with bounded justification per message still verifies

recklessness and by implication is still not accountable .

Definition F.7 (Class L and L ′). We define L the class of

algorithm in L0 that verifies recklessness and L ′ the class
of algorithm in L0 that ensures cautiousness.

Theorem F.8. If an algorithm 𝐴 is in L, then it is not

accountable.

Intuition. We design three executions 𝑒0, 𝑒1, 𝑒2
so that

(1) 𝑒1
𝑖, 𝑗∼ 𝑒2

and (2) 𝑒0
𝑗∼ 𝑒1

𝑗∼ 𝑒2
. In execution 𝑒1

and 𝑒2
,

process 𝑖 decides 𝑠𝑖 at view 𝑣𝑖 while process 𝑗 decides 𝑠 𝑗 at

view 𝑣 𝑗 >> 𝑣𝑖 where 𝑠𝑖 and 𝑠 𝑗 are conflicting, which leads

to a disagreement. To allow the decision of 𝑖 , a quorum 𝑄𝑖
prepared 𝑠𝑖 at view 𝑣𝑖 . Later, a set 𝜙 of some processes send

a set 𝑁𝑉 𝑣𝑧−1
of new-view messages to the leader ℓ𝑣𝑧 of view

𝑣𝑧 to convince it to suggest 𝑠 𝑗 . The processes in 𝐵 = 𝜙 ∩𝑄𝑖
with |𝐵 | ≥ 𝑡0 + 1 are guilty since they did not propagate their

preparation of 𝑠𝑖 . These commission faults are sufficient to

reach disagreement. Later, when 𝑖 and 𝑗 detect the disagree-

ment, they are not able to identify the sender𝜙 of𝑁𝑉 𝑣𝑧−1
, s. t.

the executions 𝑒1
and 𝑒2

, with different Byzantine processes,

will be indistinguishable for 𝑖 and 𝑗 (1).

The question then becomes whether it is possible for pro-

cess 𝑗 to suspend its judgment, waiting for additional pieces

of information to collect before its decision to avoid such

a situation. The answer is in the negative. We prove it by

constructing an execution 𝑒0
where the number of Byzan-

tine processes is lower than 𝑡0 and process 𝑗 has to make

progress without being able to expect additional messages

since the algorithm has to ensure liveness when 𝑡 < 𝑡0 (2).

To do so, we construct a chain 𝜒 where each process 𝑝 that

is a leader of a view in 𝜒 (we say 𝑝 ∈ 𝑃 ) seems particularly

slow to process 𝑗 . Since 𝑃 could be Byzantine, process 𝑗 , has

to decide without expecting messages from 𝑃 . The set 𝑃 will

participate to the new preparation of 𝑠 𝑗 , which would be

impossible if 𝑗 knew that 𝑖 already decided 𝑠𝑖 before its own

decision. After disagreement, 𝑃 will stay mute and will not

reveal the crucial information 𝑁𝑉 𝑣𝑧−1
that would allow 𝑖 and

𝑗 to determine who are the Byzantine processes. □

Proof. Let assume 𝐴 ∈ L0 and verifies recklessness and

𝑣 𝑗 > 𝑡0.

We fix 𝑘 ∈ [1, 𝑡0]. The reader can fix 𝑘 = 1 for this proof,

but we will allow greater values of 𝑘 for Theorem F.11).
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We decompose Ψ in the partition

{{𝑖, 𝑗},𝑊1,𝑊2,𝑊3,𝑊4, {𝜔5}, 𝑃} where:
• |𝑊1 | = |𝑊2 | = 𝑡0 − (𝑘 + 1),

• |𝑊3 | = 𝑡0,
• |𝑊4 | = |𝑃 | = 𝑘 ,
• |{𝜔5}| = |{𝑖}| = |{ 𝑗}| = 1,

• 𝜔5 is clearly Byzantine,

• 𝑄𝑖 = Ψ \𝑊3, |𝑄𝑖 | = 𝑛 − 𝑡0,
• 𝐾 = Ψ \ (𝑊2 ∪ 𝑃 ∪ {𝑖}) = 𝐾𝑠𝑖 ∪ 𝐾𝑠 𝑗 , |𝐾 | = 𝑛 − 𝑡0 and
• 𝐾𝑠𝑖 = 𝑊1 ∪𝑊4 ∪ { 𝑗}, 𝐾𝑠 𝑗 = 𝑊3 ∪ {𝜔5}, |𝐾𝑠𝑖 | = 𝑡0,

|𝐾𝑠 𝑗 | = 𝑡0 + 1.

We build a first “partial” execution 𝑒 , as follows:

We fix 2 ≤ 𝑣𝑖 < 𝑣 𝑗 − 1, so that a process 𝑗 can decide 𝑠 𝑗 at

view 𝑣 𝑗 without requesting a partial justification for 𝑠 𝑗 with

depth (𝑣 𝑗 − 𝑣𝑖 ) (there is a hole at view 𝑣𝑖 ).

At view 𝑣𝑖 − 1, ℓ𝑣𝑖−1 legitimately suggests 𝑠 and every

process prepares 𝑠 without deciding it.

At view 𝑣𝑖 , ℓ𝑣𝑖 legitimately suggests 𝑠𝑖 (compatible with

𝑠) and every process in 𝐾𝑠𝑖 prepares 𝑠𝑖 without deciding it,

while the ones in 𝐾𝑠 𝑗 do not prepare 𝑠𝑖 .

At view 𝑣 𝑗 , every process in 𝐾 prepares 𝑠 𝑗 (compatible

with 𝑠 but not with 𝑠𝑖 ) and decides 𝑠 𝑗 .

We note 𝑣𝑦 the first view between 𝑣𝑖 and 𝑣 𝑗 where 𝐾
𝑠𝑖

prepares 𝑠 𝑗 .

We build a chain 𝜒 = [𝑣𝑧1
, ..., 𝑣𝑧𝑘 ] between 𝑣𝑖 and 𝑣𝑦 − 1

so that (1) ∀ℎ ∈ [1, 𝑘], ℓ𝑣𝑧ℎ suggests 𝑠 𝑗 as ℓ𝑣𝑦 (2) 𝑣𝑧𝑘 = 𝑣𝑦 − 1

and (3) ∀ℎ ∈ [1, 𝑘 − 1], 𝑣𝑧ℎ+1 = 𝑣𝑧ℎ + 1.

The set 𝑃 =
⋃

ℎ∈[1,𝑘 ]
ℓ𝑣𝑧ℎ

, while ℓ𝑣𝑖 , ℓ𝑣𝑦 ∈𝑊3.

At each view 𝑣𝑧ℎ ∈ 𝜒 ,𝑊2∪𝑃∪{𝜔5} updates its preparation
(∀𝑞 ∈𝑊2, 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑞 = (𝑠 𝑗 , 𝑣𝑧ℎ , 𝐽

𝑝,𝑣𝑧ℎ )), sends a new-view

message to ℓ𝑣ℎ+1 and also sends a new-view message to ℓ𝑣𝑦 .

Thus ∀𝑣 ∈ [𝑣𝑧1
, 𝑣𝑧𝑘 ] ℓ𝑣 received enough new-view mes-

sages from 𝐾𝑠 𝑗 ∪𝑊2 ∪𝑃 ∪ {𝜔5} to justify its suggestion of 𝑠 𝑗 ,

which finally justifies the update of preparation of 𝐾𝑠𝑖 into

𝑠 𝑗 at view 𝑣𝑦 .

Now, we describe three executions 𝑒0

𝜒 , 𝑒
1

𝜒 , 𝑒
2

𝜒 that share the

same common structure 𝑒 that we presented just before.

In 𝑒0

𝜒 , the messages from 𝑊2 ∪ 𝑃 to 𝐾 are slow. Since

|𝑊2 ∪ 𝑃 | ≤ 𝑡0, 𝑗 has to decide without expecting additional
messages, because 𝑗 cannot distingush 𝑒0

𝜒 with another exe-

cution where𝑊2∪𝑃 is Byzantine and refuse to communicate

with 𝐾 .

In 𝑒1

𝜒 , processes in 𝐵1 =𝑊1∪𝑃 ∪{𝜔5} are Byzantine. They
prepared 𝑠𝑖 from 𝑣𝑖 until 𝑣𝑧1

− 1. At 𝑣𝑖 , they convinced (with

𝑄𝑖 ) process 𝑖 to decide 𝑠𝑖 . At 𝑣𝑧1
−1, Byzantine processes in 𝐵1

pretended they did not prepare 𝑠𝑖 , but only 𝑠 𝑗 and convinced

(with 𝐾𝑠 𝑗 ) ℓ𝑣𝑧
1

to suggest 𝑠 𝑗 .

In 𝑒2

𝜒 , 𝐵2 =𝑊2 ∪𝑊4 ∪ {𝜔5} are Byzantine. They prepared

𝑠𝑖 from 𝑣𝑖 until 𝑣𝑧1
−1. At 𝑣𝑖 , they convinced (with𝑄𝑖 ) process

𝑖 to decide 𝑠𝑖 . At 𝑣𝑧1
− 1, Byzantine processes in 𝐵2 pretended

they did not prepare 𝑠𝑖 , but only 𝑠 𝑗 and convinced (with 𝐾𝑠 𝑗 )

ℓ𝑣𝑧
1

to suggest 𝑠 𝑗 .

(Let us note that we could also construct 𝑒3

𝜒 with 𝐵3 =

𝑊1 ∪𝑊4 ∪ {𝜔5} or 𝑒4

𝜒 with 𝐵4 =𝑊2 ∪ 𝑃 ∪ {𝜔5}.)
We have 𝑒0

𝜒

𝑗∼ 𝑒1

𝜒

𝑗∼ 𝑒2

𝜒 .

In each execution, because of recklessness, the correct

processes 𝑖 and 𝑗 never know the new-view messages sent

to ℓ𝑣𝑧
1

to justify the suggestion 𝑠 𝑗 at view 𝑣𝑧1
, s. t. 𝑒1

𝜒

𝑖,𝑗∼ 𝑒2

𝜒

(as long as the processes in Γ
𝑣𝑧

1

𝑞 = 𝐵𝑞 ∪𝑊3 ∪ 𝑃 (with |Γ𝑣𝑧1

𝑞 | >
𝑛 − 𝑡0), which helped to make prepare 𝑠 𝑗 at view 𝑣𝑧1

stays

mute, which is a key difference with [31] that assume 𝑡0 + 1

processes are correct and will reveal the key information to

determine the Byzantine processes that did not propagate

their preparation).

We note Attack(𝑣𝑖 , 𝑠𝑖 , 𝑣 𝑗 , 𝑠 𝑗 , 𝜒) the triplet (𝑒0

𝜒 , 𝑒
1

𝜒 , 𝑒
2

𝜒 ).

The construction stays possible as long as 𝑗 does not store

a complete justification chain before its decision. Indeed if

𝑁𝑉ℎ triggering 𝑆𝑢𝑔𝑔ℎ+1 at view ℎ is missing in 𝑙𝑜𝑔 𝑗 , then we

chan build Attack(𝑣𝑖 , 𝑠𝑖 , 𝑣 𝑗 , 𝑠 𝑗 , 𝜒) with 𝜒 that starts at 𝑣𝑧1
=

ℎ + 1.

To summarize, there exists:

𝑒0

𝜒 ∈ 𝑒𝑥𝑒𝑐𝑠(𝐴) s. t. |𝑐𝑜𝑟𝑟 (𝑒0

𝜒 , 𝐴)| = 𝑛 − 𝑡0 where 𝑗 decides 𝑠 𝑗 ;
𝑒1

𝜒 ∈ 𝑒𝑥𝑒𝑐𝑠(𝐴) s. t. |𝑐𝑜𝑟𝑟 (𝑒1

𝜒 , 𝐴)| < 𝑛− 𝑡0 where 𝑗 decides 𝑠 𝑗 ,
𝑖 decides 𝑠𝑖 conflicting wit 𝑠 𝑗 ,𝑊2 is correct and𝑊3 is correct

(but slow);

𝑒2

𝜒 ∈ 𝑒𝑥𝑒𝑐𝑠(𝐴) s. t. |𝑐𝑜𝑟𝑟 (𝑒2

𝜒 , 𝐴)| < 𝑛− 𝑡0 where 𝑗 decides 𝑠 𝑗 ,
𝑖 decides 𝑠𝑖 conflicting wit 𝑠 𝑗 ,𝑊1 is correct and𝑊3 is correct

(but slow);

so that 𝑒0

𝜒

𝑗∼ 𝑒1

𝜒

𝑗∼ 𝑒2

𝜒 with |𝑐𝑜𝑟𝑟 (𝑒0

𝜒 , 𝐴)| = 𝑛−𝑡0 and 𝑒1

𝜒

𝑖,𝑗∼ 𝑒2

𝜒

as long as processes in Γ
𝑣𝑧

1

𝑞 = 𝐵𝑞 ∪𝑊3 ∪ 𝑃 are mute.

Thus in both 𝑒1

𝜒 and 𝑒
2

𝜒 , there is a disagreement where we

cannot ensure detection of a process, excepting 𝜔5.

Finally, 𝐴 is not accountable. □

Theorem F.9. An algorithm in L ′ is accountable.

Proof. Before deciding 𝑠𝑖 at view 𝑣𝑖 process 𝑖 received

𝐽𝑑,𝑣𝑖 at view 𝑣𝑖 . Because of Property (5) of L0,𝑄𝑖 prepared 𝑠𝑖
at view 𝑣𝑖 . Let 𝑣𝑧 be the first view greater than 𝑣𝑖 where a pro-

cess 𝑞 prepared 𝑠𝑞 conflicting with 𝑠𝑖 . Because of Properties

(6), (7) and (8) of L0, 𝑠𝑞 is justified with 𝑁𝑉
𝑣𝑧−1

that contains

𝑛 − 𝑡0 new-view messages from 𝜙𝑣𝑧−1
, which propagated

𝑠𝑞 . All processes in 𝑄𝑖 ∩ 𝜙𝑣𝑧−1
are guilty since they did not

propagate a correct value. Finally this culpability is proved

thanks to the justification chain that allows to determine 𝑣𝑧
and 𝜙𝑣𝑧−1

. □

Extension. In this paragraph, we propose an “intuitive”

extension 𝐴 of 𝐴 ∈ L. We aim to show that it is not enough

to trivially add some justifications in a message to ensure
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accountability. Hower, this does not mean that no cheaper

transformation exists to ensure accountability.

Definition F.10 (𝑡0-bounded extension). Let 𝑑 ∈ [1, 𝑡0 − 1].
We define 𝜏𝑑 the function that maps each algorithm 𝐴 ∈ L0

into an algorithm 𝐴, s. t.

• each suggestion 𝑆𝑢𝑔𝑔𝑣 becomes ¯𝑆𝑢𝑔𝑔
𝑣
= (𝑆𝑢𝑔𝑔𝑣, 𝑗𝑐)

where 𝑗𝑐 is a justification chain for 𝑆𝑢𝑔𝑔𝑣 suggested at

view 𝑣 with depth𝑚𝑎𝑥 (𝑑, 𝑣).

• each new-view message 𝑛𝑣𝑣𝑖 = (𝑁𝑉, 𝑖, 𝑣, 𝑠
𝑝

𝑖
, 𝑣
𝑝

𝑖
, 𝐽
𝑝

𝑖
) be-

comes 𝑛𝑣𝑣𝑖 = (𝑛𝑣𝑣𝑖 , 𝑗𝑐) where 𝑗𝑐 is a justification chain

for 𝑠
𝑝

𝑖
suggested at view 𝑣

𝑝

𝑖
with depth𝑚𝑎𝑥 (𝑑, 𝑣

𝑝

𝑖
).

In the remainder, we simply refer to 𝑡0-bounded extension

as extension when it is clear from the context.

Theorem F.11 (Escape from L). Let 𝐴 ∈ L and

𝑑 ∈ [1, 𝑡0 − 1]. Let 𝐴 = 𝜏𝑑 (𝐴) be an extension of 𝐴 with depth

of justification 𝑑 bounded by 𝑡0 − 1. 𝐴 ∈ L, which means 𝐴 is

not accountable.

Proof. The proof is the same as the one for Theorem F.8

and we chose 𝑘 ≥ 𝑑 . We fix 𝑣𝑦 > 𝑡0, 𝑣 𝑗 > 𝑣𝑦, 𝑣𝑖 = 2, 𝑣𝑧1
=

𝑣𝑦 − 𝑘 . We fix 𝜒 = [𝑣𝑧1
, 𝑣𝑦 − 1]. We fix 𝑠, 𝑠𝑖 , 𝑠 𝑗 ∈ Val so that

𝑠𝑖 and 𝑠 𝑗 are not compatible while they are both compatible

with 𝑠 . We note (𝑒0

𝜒 , 𝑒
1

𝜒 , 𝑒
2

𝜒 ) = Attack(𝑣𝑖 , 𝑠𝑖 , 𝑣 𝑗 , 𝑠 𝑗 , 𝜒). We note

(𝑒0

𝜒 , 𝑒
1

𝜒 , 𝑒
2

𝜒 ) the corresponding extended executions of 𝐴. We

want to show that 1) 𝑒0

𝜒

𝑗∼ 𝑒1

𝜒

𝑗∼ 𝑒2

𝜒 to enforce the decision

and 2) 𝑒1

𝜒

𝑖,𝑗∼ 𝑒2

𝜒 to avoid accountability.

(1) With asynchrony, there is no way to distinguish 𝑒0

𝜒

where𝑊2 ∪ 𝑃 ∪ {𝑖} are very slow from another execution

where𝑊2 ∪ 𝑃{𝑖} are Byzantine and refuse to communicate.

Thus is possible that no process in 𝐾 receive any message

in views in 𝜒 before decision. This claims stays true for 𝑒0

𝜒 .

Thus 𝑗 has to decide after 𝑒0

𝜒 .

(2) The difference between 𝑒1

𝜒 and 𝑒
2

𝜒 is the set of processes

𝑊1 or𝑊2 that did not propagate correctly its preparation

to the leader ℓ𝑣𝑧
1

. Because the depth of the justification is

bounded, the suggestion ¯𝑆𝑢𝑔𝑔
𝑣𝑗 = (𝑆𝑢𝑔𝑔𝑣𝑗 , 𝑗𝑐) holds a justifi-

cation chain that can end at view 𝑣𝑧1
, but no more. Thus 𝐴

verifies recklessness too.

Theorem F.8 applies here: because 𝑖 and 𝑗 do not know

the new-view messages that motivated the suggestion 𝑠 𝑗
of leader ℓ𝑣𝑧

1

, 𝑖 and 𝑗 cannot distinguish 𝑒1

𝜒 and 𝑒2

𝜒 after

disagreement. Thus 𝐴 is not accountable.

Let’s note that after disagreement the set Γ of other pro-

cesses that could be able to distinguish 𝑒1

𝜒 and 𝑒
2

𝜒 crash. Then

process 𝑖 and 𝑗 cannot say if Γ is slow or crashed. □

Theorem F.12 (Theorem 4.3). HotStuff, PBFT and

Tendermint as well as all their 𝑡0-bounded extensions are not

accountable.

Proof. Let 𝐴 be an algorithm among HotStuff, PBFT and

Tendermint. At first, Lemma F.2 claims this algorithm is inL0.

Then recklessness is verified for all of these algorithms since

a justification for a preparation or suggestion never reaches

a depth of 𝑡0, so 𝐴 ∈ L. Let 𝐴 be an extension of 𝐴 with

justification depth bounded by 𝑡0. Because of Theorem F.11,

recklessness continues to be verified s. t. 𝐴 ∈ L.
Finally, because of Theorem F.8, 𝐴 is not accountable,

which finishes the proof. □

Remark 1. We stress that this theorem does not claim that

there is no cheap operation to transform an algorithm in L
(like HotStuff, PBFT or Tendermint) into one in L ′ where
accountability would be ensured. This theorem only shows

why a naive approach would fail. Also, if a little change

in these algorithms makes the previous attack not relevant

anymore, that does not mean there is not another attack that

could succeed.

Remark 2. This attack allows to understand why we have

chosen to extend a “leaderless” algorithm like 𝐷𝐵𝐹𝑇 . Unlike

a leader-based algorithm, such a kind of algorithm has the

property 𝑃 that if 𝑡 ≤ 𝑡0 and a correct process 𝑖 decides at round
𝑟𝑖 , then every other correct process 𝑗 eventually decides in a

round 𝑟 𝑗 ≤ 𝑟𝑖 + 2. The idea is that we need a justification depth

of only 2 to reveal why 𝑃 did not hold in case of disagreement.
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