
Tighter proofs of CCA security in the quantum
random oracle model

Nina Bindel1, Mike Hamburg2, Kathrin Hövelmanns3, Andreas Hülsing4, and
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Abstract. We revisit the construction of IND-CCA secure key encapsu-
lation mechanisms (KEM) from public-key encryption schemes (PKE).
We give new, tighter security reductions for several constructions. Our
main result is an improved reduction for the security of the U 6⊥-transform
of Hofheinz, Hövelmanns, and Kiltz (TCC’17) which turns OW-CPA
secure deterministic PKEs into IND-CCA secure KEMs. This result
is enabled by a new one-way to hiding (O2H) lemma which gives a
tighter bound than previous O2H lemmas in certain settings and might
be of independent interest. We extend this result also to the case of
PKEs with non-zero decryption failure probability and non-deterministic
PKEs. However, we assume that the derandomized PKE is injective with
overwhelming probability.
In addition, we analyze the impact of different variations of the U 6⊥-
transform discussed in the literature on the security of the final scheme.
We consider the difference between explicit (U⊥) and implicit (U 6⊥) re-
jection, proving that security of the former implies security of the latter.
We show that the opposite direction holds if the scheme with explicit re-
jection also uses key confirmation. Finally, we prove that (at least from
a theoretic point of view) security is independent of whether the ses-
sion keys are derived from message and ciphertext (U 6⊥) or just from the
message (U 6⊥m).

1 Introduction

If a general-purpose quantum computer can be built, it will break most widely-
deployed public-key cryptography. The cryptographic community is busily de-
signing new cryptographic systems to prepare for this risk. These systems typ-
ically consist of an algebraic structure with cryptographic hardness properties,
plus a symmetric cryptography layer which transforms the algebraic structure
into a higher level primitive like a public-key encryption (PKE) scheme, a key
encapsulation mechanism (KEM), or a signature scheme. The algebraic struc-
tures underlying these so-called “post-quantum” systems have new properties,
and the quantum threat model requires changes in the way security is analyzed.



Therefore the transformations turning the algebraic structures into cryptosys-
tems have to be freshly examined.

In this work we focus on the construction of secure KEMs. In this setting the
algebraic structures usually provide a PKE from which a KEM is derived via a
generic transform. A new property of the algebraic structures used in many post-
quantum PKEs and KEMs gives them malleable ciphertexts, so they are at risk
from chosen-ciphertext attacks (CCA) [HNP+03]. The standard defenses against
CCA are variants of the Fujisaki-Okamoto (FO) transform [FO99]. Known secu-
rity proofs for the FO transform use the random oracle model (ROM) [BR93].
This is for two reasons. First, the FO transform has a circular structure–it
chooses coins for encryption according to the message being encrypted. This
leads to obstacles which we do not know how to overcome when proving security
in the standard model. In the ROM, we circumvent this by re-programming. Sec-
ond, in the ROM a reduction learns all the adversary’s queries to the random
oracle. This allows us to formalize the intuition that an adversary must have
known a challenge plaintext to extract said plaintext.

Since we are concerned with security against quantum attackers, we need to
extend these proofs to the quantum-accessible random oracle model (QROM)
[BDF+11]. This comes with two challenges for our setting. On the one hand, in
the QROM the adversary can query all inputs in superposition. Hence, it is no
longer trivial to break the circular dependency by re-programming, which results
in security bounds that do not tightly match known attacks. On the other hand,
a reduction cannot learn the adversarial queries by simple observation anymore.
The reason is that observation of a quantum state requires a measurement which
disturbs the state. Hence, more advanced techniques are required.

1.1 Our Contribution

QROM analysis of KEMs has advanced rapidly over the past several years.
The initial solutions were loose by a factor of up to q6 [TU16,HHK17], where
q is the number of times the adversary queries the random oracle. This has
improved to q2 [SXY18,JZC+18] and finally to q [HKSU18,JZM19a,JZM19c].
Some works provide tight proofs under stronger assumptions [SXY18,XY19].
Our work provides a proof of IND-CCA security for KEMs constructed from
deterministic PKEs (Theorem 2), which is tight except for a quadratic secu-
rity loss which might be impossible to avoid [JZM19b]. For KEMs constructed
from randomized PKEs our bound is still loose by a factor of up to q (Theo-
rem 1). In this particular case, our bound does not essentially differ from the
bound already given in [HKSU18]. In [HKSU18], the proof given is called ”semi-
modular”: it is first shown that derandomization and puncturing achieve the
stronger notion that [SXY18] requires to achieve tight security, and the tight
proof of [SXY18] is then applied to the derandomized and punctured scheme.
The strategy of [HKSU18] was deliberately chosen to deal with correctness er-
rors: The tight proof of [SXY18] could not trivially be generalized for non-perfect
schemes in a way such that the result still would have been meaningful for most
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lattice-based encryption schemes. Our work deals with correctness errors in a
modular way by introducing an additional intermediate notion (called FFC).

At the heart of our bound is a new one-way to hiding (O2H) lemma which
gives a tighter bound than previous O2H lemmas (Lemma 5). This comes at
the cost of limited applicability. O2H lemmas allow to bound the difference in
the success probability of an adversary when replacing its oracle function by a
similar function. Previous lemmas lost a factor of roughly the number of the
adversary’s queries to this oracle or its square-root. Our lemma does not incur
any such loss. On the downside, our lemma only applies if the reduction has
access to both oracle functions and if the functions only differ in one position.
See Table 1 for a comparison.

Some post-quantum schemes feature an inherent probability of decryption
failure, say δ > 0 . Such failures can be used in attacks, but they also complicate
security proofs. As a result, previous bounds typically contain a term q

√
δ which

is not known to be tight. However, most of the obstacles that arise in our CCA
security proof can be avoided by assuming that encryption with a particular
public key is injective (after derandomization). This is generally the case, even
for imperfectly-correct systems; see Appendix D for a rough analysis of LWE
schemes. In that case, the adversary’s advantage is limited to the probability that
it actually finds and submits a valid message that fails to decrypt. This means
that our bounds apply to deterministic but failure-prone systems like certain
earlier BIKE [ABB+19] variants6, but our result is limited by the assumption of
injectivity.

Until today several variants of the FO-transform were proposed. We consider
the four basic transforms U⊥, U⊥m, U

6⊥, U 6⊥m [HHK17] and, in addition, we study
U⊥m in the presence of key confirmation. The two most notable differences re-
side in the use of implicit rejection (U 6⊥, U 6⊥m) versus explicit rejection (U⊥, U⊥m),
and whether the derivation of the session key should depend on the ciphertext
(U⊥m, U

6⊥
m) or not (U⊥, U 6⊥). Another important decision is the use of key con-

firmation which we also partially analyze. We come to the following results.
Security with implicit rejection implies security with explicit rejection (Theo-
rem 3). The opposite holds if the scheme with explicit rejection also employs key
confirmation (Theorem 4). Moreover, security is independent of the decision if
the session key derivation depends on the ciphertext (Theorem 5).

Notation. We will use the following notation throughout the paper.

– For two sets X,Y , we write Y X to denote the set of functions from X to Y .

– Let H : X → Y be a (classical or quantum-accessible) random oracle. Then
we denote the programming of H at x ∈ X to some y ∈ Y as H[x→ y].

– Let A be an algorithm. If A has access to a classical (resp., quantum-
accessible) oracle H, we write AH and call A an oracle (resp., quantum
oracle) algorithm.

6 After this paper was submitted, the BIKE team has changed their encryption
schemes to be randomized
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2 One-way to Hiding

ROM reductions typically simulate the random oracle in order to learn the adver-
sary’s queries. In the classical ROM, the adversary cannot learn any information
about H(x) without the simulator learning both x and H(x). In the QROM
things are not so simple, because measuring or otherwise recording the queries
might collapse the adversary’s quantum state and change its behavior. However,
under certain conditions the simulator can learn the queries using “One-way to
Hiding” (O2H) techniques going back to [Unr15]. We will use the O2H techniques
from [AHU19], and introduce a novel variant that allows for tighter results.

Consider two quantum-accessible oracles G,H : X → Y . The oracles do not
need to be random. Suppose that G and H differ only on some small set S ⊂ X,
meaning that ∀x /∈ S,G(x) = H(x). Let A be an oracle algorithm that takes
an input z and makes at most q queries to G or H. Possibly A makes them in
parallel. Therefore, suppose that the query depth, i.e., the maximum number of
sequential invocations of the oracle [AHU19], is at most d ≤ q. If AG(z) behaves
differently from AH(z), then the O2H techniques give a way for the simulator
to find some x ∈ S with probability dependent on d and q.

We will use the following three O2H lemmas.

– Lemma 1 (original O2H) is the most general: the simulator needs to provide
only G or H but it has the least probability of success.

– Lemma 3 (semiclassical O2H) has a greater probability of success, but re-
quires more from the simulator: for each query x, the simulator must be able
to recognize whether x ∈ S, and if not it must return G(x) = H(x).

– Lemma 5 (our new “double-sided” O2H) gives the best probability of success,
but it requires the simulator to evaluate both G and H in superposition. It
also can only extract x ∈ S if S has a single element. If S has many elements,
but the simulator knows a function f such that {f(x) : x ∈ S} has a single
element, then it can instead extract that element f(x).

We summarize the three variants of O2H as shown in Table 1. In all cases,
there are two oracles H and G that differ in some set S, and the simulator
outputs x ∈ S with some probability ε. The lemma then shows an upper bound
on the difference between AH and AG as a function of ε.

Variant Lemma Ref Oracles differ Sim. must know Bound

Original Lem. 1 [AHU19] Arbitrary H or G 2d
√
ε

Semi-classical Lem. 3 [AHU19] Arbitrary S and (H\S or G\S) 2
√
dε

Double-sided Lem. 5 this work One place H and G 2
√
ε

Table 1. Comparison of O2H variants

Arbitrary joint distribution. The O2H lemmas allow (G,H, S, z) to be random
with arbitrary joint distribution. This is stronger than (G,H, S, z) being arbi-
trary fixed objects, because the probabilities in the lemma include the choice of
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(G,H, S, z) in addition to A’s coins and measurements. Also, the lemmas are
still true if the adversary consults other oracles which are also drawn from a
joint distribution with (G,H, S, z).

2.1 Original O2H

We begin with the original O2H which first appeared in [Unr15]. We use the
phrasing from [AHU19] as it is more general and more consistent with our other
lemmata.

Lemma 1 (One-way to hiding; [AHU19] Theorem 3). Let G,H : X → Y
be random functions, let z be a random value, and let S ⊂ X be a random set such
that ∀x /∈ S,G(x) = H(x). (G,H, S, z) may have arbitrary joint distribution.
Furthermore, let AH be a quantum oracle algorithm which queries H with depth
at most d. Let Ev be an arbitrary classical event. Define an oracle algorithm
BH(z) as follows: Pick i

$← {1, . . . , d}. Run AH(z) until just before its ith round
of queries to H. Measure all query input registers in the computational basis,
and output the set T of measurement outcomes. Let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)],

Pguess := Pr[S ∩ T 6= ∅ : T ← BH(z)].

Then

|Pleft − Pright| ≤ 2d
√
Pguess and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2d
√
Pguess.

The same result holds with BG(z) instead of BH(z) in the definition of Pguess.

From this lemma we conclude the following result for pseudo-random functions
(PRFs, see Definition 10). It intuitively states that a random oracle makes a
good PRF, even if the distinguisher is given full access to the random oracle in
addition to the PRF oracle.

Corollary 1 (PRF based on random oracle). Let H : (K × X) → Y be
a quantum-accessible random oracle. This function may be used as a quantum-
accessible PRF Fk(x) := H(k, x) with a key k

$← K. Suppose a PRF-adversary
A makes q queries to H at depth d, and any number of queries to Fk at any
depth. Then

AdvPRF
Fk

(A) ≤ 2
√
dq/|K|.

Proof. The adversary’s goal is to distinguish (Fk, H) from (F,H), where F is
an unrelated uniformly random function. This is the same as distinguishing
(F,H[(k, x)→ F (x)]) from (F,H), and the set of differences between these two
H-oracles is S := {k}×X. By Lemma 1, the distinguishing advantage is at most
2d
√
Pguess, where Pguess = Pr[∃(k′, x) ∈ Q : k′ = k], for a random round Q of

parallel queries made by AF,H .
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Since AF,H has no information about k, and in expectation Q contains q/d
parallel queries, we have Pguess ≤ q/(d · |K|), so

AdvPRF
Fk

(A) ≤ 2d
√
q/(d · |K|) = 2

√
dq/|K|

as claimed. ut

Note that Corollary 1 is the same as [SXY18] Lemma 2.2 and [XY19] Lemma 4,
except that it takes query depth into account.

2.2 Semi-classical O2H

We now move on to semi-classical O2H. Here B is defined in terms of punctured
oracles [AHU19], which measure whether the input is in a set S as defined next.

Definition 1 (Punctured oracle). Let H : X → Y be any function, and
S ⊂ X be a set. The oracle H\S (“H punctured by S”) takes as input a value
x. It first computes whether x ∈ S into an auxilliary qubit p, and measures p.
Then it runs H(x) and returns the result. Let Find be the event that any of the
measurements of p returns 1.

The event is called Find because if the simulator chooses to, it can immedi-
ately terminate the simulation and measure the value x ∈ S which caused the
event. The oracle is called “punctured” because if Find does not occur, H\S
returns a result independent of H’s outputs on S, as shown by the following
lemma.

Lemma 2 (Puncturing is effective; [AHU19] Lemma 1). Let G,H : X →
Y be random functions, let z be a random value, and let S ⊂ X be a random
set such that ∀x /∈ S,G(x) = H(x). (G,H, S, z) may have arbitrary joint distri-
bution. Let AH be a quantum oracle algorithm. Let Ev be an arbitrary classical
event. Then

Pr[Ev ∧ ¬Find : AH\S(z)] = Pr[Ev ∧ ¬Find : AG\S(z)].

Also, puncturing only disturbs the adversary’s state when it is likely to Find.

Lemma 3 (Semi-classical O2H; [AHU19] Theorem 1). Let G,H : X → Y
be random functions, let z be a random value, and let S ⊂ X be a random set such
that ∀x /∈ S,G(x) = H(x). (G,H, S, z) may have arbitrary joint distribution.

Let AH be a quantum oracle algorithm which queries H with depth at most
d. Let Ev be an arbitrary classical event and let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)],

Pfind := Pr[Find : AG\S(z)]
Lem. 2

= Pr[Find : AH\S(z)].

Then

|Pleft − Pright| ≤ 2
√
dPfind and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2
√
dPfind.
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The theorem also holds with bound
√

(d+ 1)Pfind for the following alternative
definitions of Pright:

Pright := Pr[Ev : AH\S(z)]

Pright := Pr[Ev ∧ ¬Find : AH\S(z)]
Lem. 2

= Pr[Ev ∧ ¬Find : AG\S(z)]

Pright := Pr[Ev ∨ Find : AH\S(z)]
Lem. 2

= Pr[Ev ∨ Find : AG\S(z)]

We might expect that if the adversary has no information about S, then Pfind

would be at most q|S|/|X|. But this is not quite true: the disturbance caused by
puncturing gives the adversary information about S. This increases A’s chances,
but only by a factor of 4, as explained next.

Lemma 4 (Search in semi-classical oracle; [AHU19] Theorem 2). Let
H : X → Y be a random function, let z be a random value, and let S ⊂ X
be a random set. (H,S, z) may have arbitrary joint distribution. Let AH be a
quantum oracle algorithm which queries H at most q times with depth at most
d.

Let BH(z) and Pguess be defined as in Lemma 1. Then

Pr[Find : AH\S(z)] ≤ 4dPguess.

In particular, if for each x ∈ X, Pr[x ∈ S] ≤ ε (conditioned on z, on other
oracles A has access to, and on other outputs of H) then

Pr[Find : AH\S(z)] ≤ 4qε.

2.3 Double-sided O2H

We augment these lemmas with a new O2H lemma which achieves a tighter
bound focusing on a special case. This focus comes at the price of limited appli-
cability. Our lemma applies when the simulator can simulate both G and H. It
also requires that S is a single element; alternatively if some function f is known
such that f(S) is a single element, it can extract f(S).

Lemma 5 (Double-sided O2H). Let G,H : X → Y be random functions, let
z be a random value, and let S ⊂ X be a random set such that ∀x /∈ S,G(x) =
H(x). (G,H, S, z) may have arbitrary joint distribution. Let AH be a quantum
oracle algorithm. Let f : X →W ⊆ {0, 1}n be any function, and let f(S) denote
the image of S under f . Let Ev be an arbitrary classical event.

We will define another quantum oracle algorithm BG,H(z). This B runs in
about the same amount of time as A, but when A queries H, B queries both G
and H, and also runs f twice. Let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)], Pextract := Pr[BG,H(z) ∈ f(S)].
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IND-CPA
rPKE

OW-CPA
dPKE

Thm. 1

T
OW-CPA

FFC
dPKE

IND-CCA
KEM

Thm. 2

U 6⊥

δ-correct
rPKE

FFC
dPKE

Lem. 6

T

IND-CCA
KEM U⊥

IND-CCA
KEM U 6⊥

IND-CCA
KEM U⊥m

IND-CCA
KEM U 6⊥m

IND-CCA
KEM U⊥m+keyconf

Thm. 5

Thm. 5

Thm. 3
Thm. 4

Fig. 1. Relations of our security notions using transforms T and U 6⊥ (above) and
relations between the security of different types of U -constructions (below). The solid
lines show implications which are tight with respect to powers of q and/or d, and the
dashed line shows a non-tight implication. The hooked arrows indicate theorems with
ε-injectivity constraints.

If f(S) = {w∗} is a single element, then B will only return ⊥ or w∗, and
furthermore

|Pleft − Pright| ≤ 2
√
Pextract and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2
√
Pextract.

Proof. See Appendix B.

Note that if S = {x∗} is already a single element, then we may take f as the
identity. In this case B will return either ⊥ or x∗.

3 KEM and PKE Security Proofs

We are now ready to get to the core of our work. All the relevant security notions
are given in Appendix A. The implications are summarized in Figure 1.

3.1 Derandomization: IND-CPA P
QROM⇒ OW-CPA T (P, G)

The T transform [HHK17] converts a rPKE P = (Keygen,Encr,Decr) to a dPKE
T (P, G) = (Keygen,Encr1,Decr) by using a hash function G :M→R, modeled
as random oracle, to choose encryption coins, where

Encr1(pk,m) := Encr(pk,m; G(m)).

The following theorem shows that if a PKE P is IND-CPA secure7, then T(P, G)
is one-way secure in the quantum-accessible random oracle model.

7 The theorem actually only requires a weaker notion, IND-KPA-security, in which the
challenge messages are chosen at random instead of adversarially.
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Theorem 1. Let P be an rPKE with messages in M and random coins in R.
Let G : M→ R be a quantum-accessible random oracle. Let A be an OW-CPA
adversary against P′ := T (P, G). Suppose that A queries G at most q times with
depth at most d.

Then we can construct an IND-CPA adversary B against P, running in about
the same time and resources as A, such that

AdvOW-CPA
P′ (A) ≤ (d+ 2) ·

(
AdvIND-CPA

P (B) +
8(q + 1)

|M|

)
.

Proof. See Appendix C.

Second preimages. In the traditional definition of one-way functions, the adver-
sary wins by finding any m′ where Encr(pk,m′) = c∗, whereas in our definition
(cf. Definition 7) of OW-CPA the adversary must find m∗ itself. This only mat-
ters if there is a second preimage, and thus a decryption failure. If P is δ-correct
and ε-injective, it is easily shown that a definition allowing second preimages
adds at most min(δ, ε) to the adversary’s OW-CPA-advantage.

Hashing the public key. Many KEMs use a variant of T which sets the coins to
G(pk,m). This is a countermeasure against multi-key attacks. In this paper we
only model single-key security, so we omit pk from the hashes for brevity. The
same also applies to the other transforms later in this paper, such as U 6⊥.

3.2 Deterministic P: OW-CPA P
QROM⇒ IND-CCA U 6⊥(P, F,H)

Our OW-CPA to IND-CCA conversion is in the style of [JZM19d]. However, that
bound is based on the failure probability δ of a randomized encryption algorithm,
whereas ours is based on the difficulty of finding a failure without access to the
private key. This means our theorem applies to deterministic but imperfectly-
correct algorithms, such as one of the three BIKE variants, BIKE-2 [ABB+19].
So instead we use injectivity and a game where the adversary tries to find ci-
phertexts which are valid but do not decrypt correctly.

Definition 2 (Valid ciphertext). Let P = (Keygen,Encr, Decr) be a dPKE.
Call a ciphertext c “valid” for a public key pk of P if there exists m such that
c = Encr(pk,m).

We introduce a new failure-finding experiment8, to capture the probability
that the adversary can find valid ciphertexts that cause a decryption failure.

Definition 3 (Finding Failing Ciphertext). The find-failing-ciphertexts ex-
periment (FFC) is shown in Figure 2. The FFC-advantage of an adversary A is
defined by

AdvFFC
P (A) := Pr[ExptFFCP (A)→ 1].
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ExptFFCP (A):

1 H
$← H

2 (pk, sk)← Keygen()
3 L← AH(pk)
4 return [∃m ∈M, c ∈ L : Encr(pk,m) = c ∧ Decr(sk, c) 6= m]

Fig. 2. FFC experiment on a dPKE P. The instantiation of H generalizes to any number
of random oracles, including zero.

The U 6⊥ transform [HHK17] converts a dPKE P = (KeygenP,Encr,Decr)
into a KEM K = (Keygen,Encaps,Decaps) using a PRF F : KF × C → K and a
hash function H :M×C → K, modeled as a random oracle. The PRF is used
for implicit rejection, returning F(prfk, c) in case of an invalid ciphertext using a
secret prfk. The U 6⊥ transform is defined in Figure 3. We also describe variants
U 6⊥m, U

⊥, U⊥m of this transform from [HHK17], which make the following changes:

– On Encaps line 3 resp. Decaps line 7, the transformations U 6⊥m and U⊥m com-
pute H(m) resp. H(m′) instead of H(m, c) resp. H(m′, c).

– On Decaps lines 4 and 6, the transformations U⊥ and U⊥m return ⊥ instead
of F(prfk, c). These variants also don’t need prfk as part of the private key.

The transforms U⊥ and U⊥m are said to use explicit rejection because they return
an explicit failure symbol ⊥. U 6⊥ and U 6⊥m are said to use implicit rejection.

Keygen():

1 (pk, skP)← KeygenP()

2 prfk
$← KF

3 sk← (skP, prfk)
4 return (pk, sk)

Encaps(pk):

1 m
$←M

2 c← Encr(pk,m)
3 K ← H(m, c)
4 return (K, c)

Decaps(sk, c):

1 parse sk = (skP,prfk)
2 m′ ← Decr(skP, c)
3 if m′ = ⊥:
4 return F(prfk, c)
5 else if Encr(pk,m′) 6= c:
6 return F(prfk, c)
7 else: return H(m′, c)

Fig. 3. Transform U 6⊥(P,F) := (Keygen,Encaps,Decaps).

The next theorem states that breaking the IND-CCA security of U 6⊥(P,F, H)
requires either breaking the OW-CPA security of P, causing a decapsulation
failure, or breaking the PRF used for implicit rejection. In particular, we need
P to be an ε-injective dPKE as in Definition 6.

8 It is a stretch to even call this an “experiment”, because it may not be possible to
efficiently determine whether the adversary succeeded. In future work we hope to
force the adversary to find failing message, but this version is simpler to integrate
into our proof.
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Theorem 2. Let H :M×C → K be a quantum-accessible random oracle and F :
KF×C → K be a PRF. Let P be an ε-injective dPKE which is independent of H.
Let A be an IND-CCA adversary against the KEM U 6⊥(P,F), and suppose that A
makes at most qdec decryption queries. Then we can construct three adversaries
running in about the same time and resources as A:

– an OW-CPA-adversary B1 against P
– a FFC-adversary B2 against P, returning a list of at most qdec ciphertexts
– a PRF-adversary B3 against F

such that

AdvIND-CCA
U 6⊥(P) (A) ≤ 2

√
AdvOW-CPA

P (B1) + AdvFFC
P (B2) + 2 ·AdvPRF

F (B3) + ε.

In the common case that F(prfk, c) is implemented as H(prfk, c) it holds that if
A makes q queries at depth d, then

AdvPRF
F (B3)

cor. 1
≤ 2

√
dq/|M |.

Proof. Our proof is by a series of games. In some later games, we will define an
outcome “draw” which is distinct from a win or loss. A draw counts as halfway
between a win and a loss, as described by the adversary’s score wi:

wi := Pr[A wins: Game i] +
1

2
Pr[Draw: Game i]

=
1

2
(1 + Pr[A wins: Game i]− Pr[A loses: Game i])

Game 0 (IND-CCA). This is the original IND-CCA game against the KEM
U 6⊥(P,F, H), cf. Definition 12.

Game 1 (PRF is random). Game 1 is the same as Game 0, except the

simulator replaces F(prfk, ·) with a random function R
$← KC .

We construct a PRF-adversary B3 (cf. Definition 10) which replaces its calls to
F(prfk, ·) by calls to its oracle, runs A, and outputs 1 if A wins and 0 oth-
erwise. Now, by construction Pr

k
$←K

[
BF(k,·) = 1

]
= Pr[A wins: Game 0] and

Pr
R

$←KC

[
AR(·) = 1

]
= Pr[A wins: Game 1]. Hence,

|w1 − w0| = AdvPRF
F (A).

Game 2 (Draw on fail or non-injective pk). Let Fail be the event that
one or more of A’s decapsulation queries D(c) fails to decrypt, meaning that
c = Encr(pk,m) for some m, but Decr(sk, c) 6= m. Let NonInj be the event that
Encr(pk, ·) is not injective, and let Draw := Fail∨NonInj. In Game 2 and onward,
if Draw occurs then the game continues, but at the end it is a draw instead of
the adversary winning or losing.
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Let di := Pr[Draw : Game i]. Then |w2 − w1| ≤ 1
2d2. It is important to note

that the event Draw is a well-defined classical event and does not depend on H,
even though the simulator might not be able to determine efficiently whether it
occurred.

Game 3 (Reprogram H(m, c) to R(c)). Game 3 is the same as Game 2, but
the simulator reprograms H(m, c) where c = Encr(pk,m) to return R(c).

This produces the same win and draw probabilities as Game 2 as explained next.
For each m, the value H(m,Encr(pk,m)) is changed to a uniformly, indepen-
dently random value, except when the game is already a draw:

– It is uniformly random because R is uniformly random.
– It is independent of H(m′, c) for m′ 6= m because Encr(pk, ·) is injective or

else the game is a draw.
– H calls R(c) only for valid ciphertexts c = Encr(pk,m′). On the other hand,

the decapsulation oracle only calls R(c′) for rejected ciphertexts c′, i.e. ones
where c′ 6= Encr(pk,Decr(sk, c′)). If a valid ciphertext has been rejected and
passed to R in this way, then Draw has occurred and the return value of R
does not affect wi or di.

Therefore w3 = w2 and d3 = d2.

Game 4 (Decapsulation oracle returns R(c)). Game 4 is the same as
Game 3, but the simulated decapsulation oracle simply returns R(c) for all ci-
phertexts other than the challenge (for which it still returns ⊥).

In fact, the decapsulation oracle was already doing this in Game 3: The original
decapsulation returns either H(m, c) with c = Encr(pk,m) or F(prfk, c), but
both of those have been reprogrammed to return R(c). Therefore w4 = w3 and
d4 = d3. As of this game, the simulator does not use the private key anymore.

Bound draw. We now want to upper bound the draw probability. Let B2 be
the algorithm which, given a public key pk, simulates Game 4 for A and outputs
a list L of all of A’s decapsulation queries. Then B2 is a FFC-adversary against P
which runs in about the same time as A and succeeds whenever a draw occured
during the game. Consequently,

d2 = d3 = d4 ≤ AdvFFC
P (B2) + ε.

Game 5 (Change shared secret). In Game 5, the shared secret is changed to
a uniformly random value r. If b = 1, then for all m such that Encr(pk,m) = c∗,
the oracle H(m) is reprogrammed to return r. If b = 0, then H is not repro-
grammed.

If Encr(pk, ·) is injective, then this is the same distribution as Game 4, and
otherwise the game is a draw. Therefore w5 = w4.

It remains to bound A’s advantage in Game 5. The simulation still runs in
about the same time as A. Suppose at first that Encr(pk, ·) is injective, so that
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the oracle H is reprogrammed only at m∗. Then the b = 0 and b = 1 cases are
now distinguished by a single return value from the H oracle. Hence, we can
consider two oracles H and H ′ := H[m∗ → r] as required by Lemma 5. Then
Lemma 5, states that there is an algorithm B1, running in about the same time
as A, such that for all H:

|Pr[Win : b = 0]− Pr[Lose : b = 1]| =
∣∣∣∣ Pr[A → 0 ∧ ¬Draw : b = 0]
−Pr[A → 0 ∧ ¬Draw : b = 1]

∣∣∣∣
=

∣∣∣∣ Pr[AH → 0 ∧ ¬Draw]

−Pr[AH′ → 0 ∧ ¬Draw]

∣∣∣∣
≤ 2
√

Pr[B1(pk, c)→ m∗].

The same inequality holds if Encr(pk, ·) is not injective, for then the game is
always a draw and the left-hand side is zero. (The algorithm B1 still runs with
the same efficiency in that case; it just might not return m∗.) The inequality
also holds in expectation over H by Jensen’s inequality:

E
[
2
√

Pr[B1(pk, c)→ m∗] : H
$← K(M×C)

]
≤ 2

√
E
[
Pr[B1(pk, c)→ m∗] : H

$← K(M×C)
]

= 2

√
AdvOW-CPA

P (B1)

so that

|Pr[Win : b = 0]− Pr[Lose : b = 1]| ≤ 2

√
AdvOW-CPA

P (B1).

Likewise, for the same adversary B1,

|Pr[Win : b = 1]− Pr[Lose : b = 0]| ≤ 2

√
AdvOW-CPA

P (B1).

Since b is either 0 or 1 each with probability 1
2 , we have by the triangle inequality:

|Pr[Win]− Pr[Lose]| ≤ 2

√
AdvOW-CPA

P (B1)

so that
∣∣w5 − 1

2

∣∣ ≤√AdvOW-CPA
P (B1).

Summing up the differences in the previous games, we have∣∣∣∣w0 −
1

2

∣∣∣∣ ≤√AdvOW-CPA
P (B1) +

1

2
AdvFFC

P (B2) +
ε

2
+ AdvPRF

F (B3)

and finally

AdvIND-CCA
U 6⊥(P) (A) ≤ 2

√
AdvOW-CPA

P (B1) + 2 ·AdvPRF
F (B3) + AdvFFC

P (B2) + ε.

This completes the proof of Theorem 2. ut
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Tightness. This bound is essentially tight, since breaking the one-wayness of P
and finding decryption failures are both known to result in attacks. Breaking the
PRF harms security if and only if implicit rejection is more secure than explicit
rejection. For a correct P the bound boils down to the first two terms of the
sum. The square-root loss arises from OW being a weaker security notion than
IND [MW18], i.e., harder to break, and recent results [JZM19b] suggest that the
square-root loss might be unavoidable in the quantum setting.

3.3 Decryption failures

When the dPKE is constructed by derandomizing an rPKE, we can also bound
the FFC advantage.

Lemma 6. Let P = (Keygen,Encr,Decr) be a δ-correct rPKE with messages
in M and randomness in R. Let G : M → R be a random oracle, so that
T (P, G) := (Keygen,Encr1,Decr) is a derandomized version of P. Suppose that
T (P, G) is ε-injective. Let A be a FFC adversary against T (P, G) which makes
at most q queries at depth d to G and returns a list of at most qdec ciphertexts.
Then

AdvFFC
T (P,G)(A) ≤ ((4d+ 1)δ +

√
3ε) · (q + qdec) + ε.

Proof. See Appendix E.

Note that if ε is negligible, and if the adversary can recognize which ciphertexts
will fail, then this is a Grover bound.

4 Explicit rejection and key confirmation

We now turn to systems with explicit rejection or key confirmation. The next the-
orem shows that the transform U⊥ (with explicit rejection) never yields KEMs
that are more secure than KEMs constructed via U 6⊥ (with implicit rejection).

Theorem 3 (Explicit → implicit). Let P be a dPKE. Let A be an IND-CCA
adversary against U 6⊥(P,F, H). Then there is an IND-CCA adversary B against
U⊥(P, H), running in about the same time and resources as B, such that

AdvIND-CCA
U 6⊥(P,F,H)(A) = AdvIND-CCA

U⊥(P,H)(B).

Proof. The only difference between U⊥(P, H) and U 6⊥(P,F, H) is that where
the former would reject a ciphertext c by returning ⊥, the latter instead returns
F(prfk, c). So the adversary B can simply choose a random PRF key prfk, run A,
and output A’s result. B forwards all of A’s queries to its oracles and returns the
responses with the only difference that in case the decapsulation oracle returns
⊥, B returns F(prfk, c). The algorithm B perfectly simulates the IND-CCA game
for U 6⊥(P,F, H) and hence A succeeds with the same success probability as in
the original game. ut
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On the other hand, explicit rejection is secure if key confirmation is used. Key
confirmation refers to adding a hash of the message to the cipher text. Let
τ be the number of bits desired for the key-confirmation tag. For a PKE P =
(Keygen,Encr,Decr) define the transform C(P, Ht, τ) := (Keygen,Encr1,Decr1)
using a random oracle Ht :M→ {0, 1}τ as in Figure 4.

Encr1(pk,m):

1 c← Encr(pk,m)
2 t← Ht(m)
3 return (c, t)

Decr1(sk, (c, t)):

1 m′ ← Decr(skP, c)
2 if Ht(m

′) 6= t:
3 return ⊥
4 return m′

Fig. 4. Transform C(P, Ht, τ) := (Keygen,Encr1,Decr1).

Theorem 4 (Implicit → explicit with key confirmation). Let P be an
ε-injective dPKE. Consider the KEM K1 := U⊥m(C(P, Ht, τ), Hs) obtained from
P applying the C-transform with random oracle Ht : M → {0, 1}τ and the
U⊥m-transform with independent random oracle Hs : M → {0, 1}ς . Let K2 :=
U 6⊥m(P,F, H) be the KEM obtained from P applying the U 6⊥m-transform with ran-
dom oracle H :M→ {0, 1}ς+τ .

If A is an IND-CCA-adversary against K1 which makes qdec decapsulation
queries, then it is also an IND-CCA-adversary against K2 and there is a PRF-
adversary B against F which uses about the same time and resources as A, such
that:

AdvIND-CCA
K1

(A) ≤ 2 ·AdvIND-CCA
K2

(A) +
qdec

2τ−1
+ 2 ·AdvPRF

F (B) + 2ε.

Proof. Deferred to Appendix F.

Finally, we can show that hashing m is equivalent to hashing (m, c) in the next
theorem.

Theorem 5 (Um ↔ U). Let P be a dPKE. Let K1 = U⊥(P, H1) and K2 =
U⊥m(P, H2). Then K1 is IND-CCA secure if and only if K2 is IND-CCA secure. In
other words, if there is an adversary A against one, then there is an adversary B
against the other, running in about the same time and with the same advantage.

The same is true for U 6⊥ and U 6⊥m.

Proof. This is a simple indifferentiability argument. In both the encapsulation
and decapsulation functions, the IND-CCA experiment against K1 only calls
H1(m, c) when c = Encr(pk,m). So to simulate the K1-experiment playing in
an IND-CCA experiment against K2 (with oracle H2 : M → K), sample fresh

random oracle H
$← K(M,C) and set

H1(m, c) :=

{
H2(m), if c = Encr(pk,m),
H(m, c), otherwise.
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This exactly simulates the IND-CCA experiment against K1. In the other di-
rection, to simulate the IND-CCA experiment against K2 it suffices to redirect
H2(m) to H1(m,Encr(pk,m)).

The same technique works for U 6⊥ and U 6⊥m. It also works for security no-
tions other than IND-CCA, such as OW-CCA, OW-qPVCA, etc. (see for example
[JZC+18]). ut
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A Security Notions and Definitions

In this section we recall the definition of KEMs and PKEs. Additionally, we
recall the respective security notions that are needed in this paper.

Classical random oracle OH(x):

1. qH ← qH + 1
2. return H(x)

Quantum random oracle OH(
∑

x,t,z ψx,t,z |x, t, z〉):

1. qH ← qH + 1
2. return

∑
x,t,z ψx,t,z |x, t⊕H(x), z〉

Fig. 5. Definition of the classical and quantum random oracle

Definition 4 (Public-Key Encryption Schemes). A randomized public-key
encryption scheme (rPKE) is defined over a finite message spaceM, a ciphertext
space C, a secret key space SK and a public key space PK. It consists of a triple
of algorithms P = (Keygen,Encr, Decr) defined as follows.

– Keygen() → (pk, sk) is a randomized algorithm that returns a secret key
sk ∈ SK and a public key pk ∈ PK.
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– Encr(pk,m)→ c is a randomized algorithm that takes as input a public key
pk and a message m ∈M, and outputs a ciphertext c ∈ C.

– Decr(sk, c) → {m′,⊥} is a deterministic algorithm that takes as input a
secret key sk ∈ SK and a ciphertext c ∈ C and returns either a message
m′ ∈M or a failure symbol ⊥ /∈M.

A deterministic public-key encryption scheme (dPKE) is defined the same way,
except that Encr is a deterministic algorithm.

Definition 5 (Correctness and failure probability of PKEs). A PKE
P = (Keygen,Encr,Decr) is δ-correct if

E

[
max
m∈M

Pr[Decr(sk,Encr(pk,m)) 6= m]] : (pk, sk)← Keygen()

]
≤ δ.

We call δ the decryption failure probability of P. We say P is correct if δ = 0.

Note that this definition works for a deterministic or randomized PKE, but for
a deterministic PKE the term maxm∈M Pr[Decr(sk,Encr(pk,m)) is either 0 or
1 for each keypair.

Definition 6 (Injectivity of PKEs). A dPKE P = (Keygen,Encr,Decr) is
ε-injective if

Pr
[
Encr(pk,m) is not injective : (pk, sk)← Keygen(), H

$← H
]
≤ ε.

We say P is injective if ε = 0. We say that an rPKE is injective if for all public
keys pk, all m 6= m′ and all coins r, r′, we have Encr(pk,m, r) 6= Encr(pk,m′, r′).

Definition 7 (OW-CPA Advantage). Let P = (Keygen,Encr,Decr) be a dPKE
or rPKE. The one-way under chosen-plaintext attacks (OW-CPA) experiment is
shown in Figure 6. The OW-CPA-advantage of an adversary A is defined as

AdvOW-CPA
P (A) := Pr[ExptOW-CPA

P (A)→ 1].

Note that some papers, e.g., [JZM19c], define OW-CPA-advantage this way, and
some, e.g., [HHK17], instead use the looser condition that Encr(pk,m′) = c∗,
particularly if Encr is deterministic. We use the definition in Figure 6 because
it is more convenient for our proofs of Theorems 1 and 2.

Definition 8 (IND-CPA Advantage). Let P = (Keygen,Encr, Decr) be an
rPKE. The indistinguishability under chosen-plaintext attacks (IND-CPA) ex-
periment is shown in Figure 6. The IND-CPA-advantage of an adversary A =
(A1,A2) is defined as

AdvIND-CPA
P (A) := 2

∣∣∣∣Pr[ExptIND-CPA
P (A)→ 1]− 1

2

∣∣∣∣.
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Note that IND-CPA is unachievable for dPKEs, because A can just test which
message encrypts to c∗.

A weakening of IND-CPA is IND-KPA where the challenge messages are chosen
by the experiment.

Definition 9 (IND-KPA Advantage). Let P = (Keygen,Encr, Decr) be an
rPKE. The indistinguishability under known-plaintext attack (IND-KPA) experi-
ment is shown in Figure 6. The IND-KPA-advantage of an adversary A is defined
as

AdvIND-KPA
P (A) := 2

∣∣∣∣Pr[ExptIND-KPA
P (A)→ 1]− 1

2

∣∣∣∣.
Clearly IND-CPA ⇒ IND-KPA as any IND-KPA adversary can be used to break
IND-CPA using it as A2 and simulating A1 by just sampling random messages.

ExptOW-CPA
P (A):

1 H
$← H

2 (pk, sk)← Keygen()

3 m∗
$←M

4 c∗ ← Encr(pk,m∗)
5 m′ ← AH(pk, c∗)
6 return [m∗ = m′]

ExptIND-CPA
P (A):

1 H
$← H

2 (pk, sk)← Keygen()
3 (st,m0,m1)← AH

1 (pk)

4 b
$← {0, 1}

5 c∗ ← Encr(pk,m∗b)
6 b′ ← AH

2 (pk,m0,m1, c
∗, st)

7 return [b = b′]
ExptIND-KPA

P (A):

1 H
$← H

2 (pk, sk)← Keygen()
3 m0,m1 ←M
4 b

$← {0, 1}
5 c∗ ← Encr(pk,m∗b)
6 b′ ← AH(pk,m0,m1, c

∗)
7 return [b = b′]

Fig. 6. OW-CPA, IND-CPA, and IND-KPA of a PKE P. The instantiation of H gener-
alizes to any number of random oracles, including zero.

Definition 10 (PRF Advantage). Let F : KF × X → Y be a pseudorandom
function (PRF). We define the PRF-advantage of an adversary A as

AdvPRF
F (A) =

∣∣∣∣∣ Pr
k

$←K

[
AF(k,·) = 1

]
− Pr
R

$←Y X

[
AR(·) = 1

]∣∣∣∣∣ .
Definition 11 (Key Encapsulation Mechanism). A KEM K defined over
the message space M, the public key space PK, the secret key space SK, and
the key space K, is a triple of algorithms K = (Keygen,Encaps, Decaps) defined
as follows.
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– Keygen() → (pk, sk) is a randomized algorithm that returns a public key
pk ∈ PK and a secret key sk ∈ SK.

– Encaps(pk) → (c, κ) is a randomized algorithm that takes as input a public
key pk and outputs a ciphertext c as well as a key κ ∈ K.

– Decaps(sk, c) → κ or ⊥ is a deterministic algorithm that takes as input a
secret key sk ∈ SK and a ciphertext c and returns a key κ ∈ K or a failure
symbol ⊥ /∈ K.

As before, we use H to denote the space of functions from which the random
hash function is randomly sampled if a proof for K is being given in the ROM.

Definition 12 (IND-CCA Advantage). Let K be a KEM. The security experi-
ment ExptIND-CCA

K (A) is defined in Figure 7 for an adversary A against K, given
access to a (quantum-accessible) random oracle H and a classical decapsulation
oracle D.

We define the advantage of a classical (resp., quantum) adversary A against
a KEM K in the classical (resp., quantum-accessible) random oracle model as

AdvIND-CCA
K (A) =

∣∣∣∣Pr
[
ExptIND-CCA

K (A) = 1
]
− 1

2

∣∣∣∣ .

ExptIND-CCA
K (A):

1 H
$← H

2 (pk, sk)← Keygen()
3 (c∗, k∗0)← Encaps(pk)

4 k∗1
$← K

5 b
$← {0, 1}

6 b′ ← AH,D(pk, c∗, k∗b )
7 return [b = b′]

Classical decapsulation oracle D(c):

1 if c = c∗: return ⊥
2 return Decaps(sk, c)

Fig. 7. IND-CCA security experiment in the (Q)ROM against an adversary A

B Proof of Lemma 5

Lemma 5 (Double-sided O2H). Let G,H : X → Y be random functions, let
z be a random value, and let S ⊂ X be a random set such that ∀x /∈ S,G(x) =
H(x). (G,H, S, z) may have arbitrary joint distribution. Let AH be a quantum
oracle algorithm. Let f : X →W ⊆ {0, 1}n be any function, and let f(S) denote
the image of S under f . Let Ev be an arbitrary classical event.

We will define another quantum oracle algorithm BG,H(z). This B runs in
about the same amount of time as A, but when A queries H, B queries both G
and H, and also runs f twice. Let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)], Pextract := Pr[BG,H(z) ∈ f(S)].
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If f(S) = {w∗} is a single element, then B will only return ⊥ or w∗, and
furthermore

|Pleft − Pright| ≤ 2
√
Pextract and

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤ 2
√
Pextract.

Proof. The outline of our proof is to use the compressed oracle framework from
[Zha19] to instantiate a new random oracle B : W → {0, 1}. On query x, the
simulator returns H(x) if B(f(x)) = 0, or G(x) if B(f(x)) = 1. The only value
of B(z) that affects the result is b := B(w∗), so at the end of the computation
the compressed oracle table for B must be either the empty table or {w∗ → b}.
Our proof quantizes and simplifies this outline.

To begin, suppose that G and H are fixed and A is unitary. Consider an
algorithm BH,G0 which runs AH and AG in superposition, with an additional
bit b signifying which oracle is being used. Then if AG behaves differently from
AH , the state of A will become entangled with b. We will use |b〉 = |+〉 :=
(|0〉 + |1〉)/

√
2 to signify that A is using H, and |b〉 = |-〉 := (|0〉 − |1〉)/

√
2 to

signify that A is using G. That is:

BH,G0 :=
AH ⊗ |+〉+AG ⊗ |-〉√

2
.

This B0 can be implemented as A with only the oracle queries changed. To do
this, let b start in the state (|+〉+ |-〉)/

√
2 = |0〉. When A queries the oracle, B0

implements the following map on |x, y, b〉:

U(|x, y, +〉) := |x, y ⊕H(x), +〉 ,
U(|x, y, -〉) := |x, y ⊕G(x), -〉 .

This is the same as a conditional evaluation map which queries H if b = 0 and
G if b = 1, with a Hadamard transform before and after.

Let ψH resp. ψG be the final states of AH resp. AG. The final state of BH,G0

is
ψH ⊗ |+〉+ ψG ⊗ |-〉√

2
=

1

2
·
(

(|ψH〉+ |ψG〉)⊗ |0〉
+(|ψH〉 − |ψG〉)⊗ |1〉

)
.

Suppose we measure b in the computational basis. This commutes with the
final measurement of A’s state. Then, we will measure 1 with probability ε :=
‖|ψH〉 − |ψG〉‖2/4, and hence,

‖|ψH〉 − |ψG〉‖ = 2
√
ε.

This 2
√
ε is the claimed probability bound, but we still need a way to extract w∗.

The full algorithm BH,G is the same as B0, but with a different final measurement
and another auxiliary register w ∈ {0, 1}n (i.e. a register that can represent
elements of w). The w register is initialized to 0.

We will ensure that except during queries, (b, w) will always be in the state
(0, 0) or (1, w∗). More formally, let Tw operate on the b and w registers by
Tw(|b, w〉) := |b, w ⊕ (b · w∗)〉. Therefore Tw swaps (1, 0) with (1, w∗). We will
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ensure that if at some step in the computation the state of BH,G0 is ψ, then
during the same step the state of BH,G is Tw(ψ ⊗ |0〉).

Since BH,G0 replaces the oracle queries with U , BH,G should replace them
with Uw := Tw ◦ U ◦ T †w. (This gives the desired result because Tw commutes
with all the steps of A except for the oracle queries.) To do this, let

Tf (|x, y, b, w〉) := |x, y, b, w ⊕ (b · f(x))〉 .

Then BH,G replaces A’s oracle queries with

Uf := Tf ◦ U ◦ T †f .

In fact, Uf = Uw. On the subspace where x ∈ S, we have f(x) = w∗ by as-
sumption. Therefore Tf = Tw and Uf = Uw. On the orthogonal subspace where
x /∈ S, we have G(x) = H(x), so the operation U does not depend on b or w.
Therefore on that subspace, U commutes with Tf and Tw, so that Uf = U = Uw.
In sum, Uf = Uw is an efficient implementation of the oracle by BH,G.

When A completes, BH,G measures (b, w) in the computational basis. With
probability ε it measures (1, w∗), in which case it outputs w∗. Otherwise it
measures (0, 0), in which case it outputs ⊥.

The event Ev is classical and well-defined. Therefore whether it occurred is a
binary measurement on the final state of A as a density operator. By [AHU19]
Lemmas 3 and 4,

∣∣Pr[Ev : AH ]− Pr[Ev : AG]
∣∣ ≤ ‖|ψ0〉 − |ψ1〉‖ ≤ 2

√
Pr[BH,G → w∗]

and likewise∣∣∣∣√Pr[Ev : AH ]−
√

Pr[Ev : AG]

∣∣∣∣ ≤ ‖|ψ0〉 − |ψ1〉‖ ≤ 2
√

Pr[BH,G → w∗].

This completes the proof for unitary adversaries A with a fixed H and G.

For non-unitary adversaries and for random distributions of H,G, we instead
end in a mixture of states Ψ0 resp. Ψ1, for which Euclidean distance is not ap-
propriate but the Bures distance [NC00] is. By monotonicity and joint concavity
of fidelity (exactly as in [AHU19] Lemma 6 and 9), the same bound holds for
the Bures distance:∣∣Pr[Ev : AH ]− Pr[Ev : AG]

∣∣ ≤ B(Ψ0, Ψ1) ≤ 2
√

Pr[BH,G → w∗]

and likewise∣∣∣∣√Pr[Ev : AH ]−
√

Pr[Ev : AG]

∣∣∣∣ ≤ B(Ψ0, Ψ1) ≤ 2
√

Pr[BH,G → w∗].

This completes the proof in the general case. ut
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C Proof of Theorem 1

Theorem 1. Let P be an rPKE with messages in M and random coins in R.
Let G : M→ R be a quantum-accessible random oracle. Let A be an OW-CPA
adversary against P′ := T (P, G). Suppose that A queries G at most q times with
depth at most d.

Then we can construct an IND-CPA adversary B against P, running in about
the same time and resources as A, such that

AdvOW-CPA
P′ (A) ≤ (d+ 2) ·

(
AdvIND-CPA

P (B) +
8(q + 1)

|M|

)
.

Proof. Let A1 be the same as A, except that at the end after choosing an output
m, it computes and discards G(m). Therefore it makes at most q + 1 queries at
depth at most d + 1. This is a formality so that returning the correct m will
count as a Find (cf. Definition 1]) later in the proof. Clearly the two algorithms
A and A1 have the same OW-CPA-advantage against P′.

We actually show a slightly stronger result, constructing an IND-KPA adver-
sary B. The IND-KPA adversary B (cf. Definition 9) is given the tuple

(pk,m0,m1, c) where c = Encr(pk,mb; r).

It wants to determine whether b = 0 or b = 1. The algorithm B creates a fresh
random oracle G and runs

AG\{m0,m1}
1 (pk, c).

Suppose Find occurs, i.e., a query x ∈ {m0,m1} was asked by A to its oracle
G. Then B measures whether the query x was m0 or m1, and returns the corre-
sponding b. If Find does not occur, or if Find occurs but both m0 and m1 were
queried, then B guesses b at random.

Let G′ be the oracle such that G′(mb) = r gives the encryption coins used to
encrypt mb, but G′(m) = G(m) for all other messages m. G′ is unknown to B,
but we can still analyze A’s behavior when run with G′ instead of G.

By construction, AG
′\{m0,m1}

1 cannot return mb without causing Find. Hence,√
AdvOW-CPA

P′ (A) =
√

Pr[AG′ → mb]

=

∣∣∣∣√Pr
[
AG′

1 → mb

]∣∣∣∣−√Pr
[
AG

′\{m0,m1}
1 → mb ∧ ¬Find

]
︸ ︷︷ ︸

= 0

Lem. 3
≤

√
(d+ 2) · Pr

[
Find : AG

′\{m0,m1}
1

]
.

Squaring both sides,

AdvOW-CPA
P′ (A) ≤ (d+ 2) · Pr

[
Find : AG

′\{m0,m1}
1

]
Lem. 2

= (d+ 2) · Pr
[
Find : AG\{m0,m1}

1

]
= (d+ 2) · Pr [Find : B].
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Now decompose Find as Findb ∨ Find¬b, where the former event means that Find
occurs and mb is measured, and latter means that Find occurs and m¬b is mea-
sured. They can both occur if A makes multiple queries simultaneously, but
AdvIND-KPA

P (B) = |Pr[Findb]− Pr[Find¬b]| regardless.

Moreover, since B measuresm whenever Find occurs, we can viewG\{m0,m1}
as G′′\{m¬b} := (G\{mb})\{m¬b}. Since A has no information about m¬b ex-
cept from puncturing, it holds for any m that

Pr
[
m ∈ {m¬b} : AG

′′
]

= 1/|M| =: ε.

By (the second statement in) Lemma 4, we have

Pr[Find¬b : B] ≤ 4(q + 1)ε =
4(q + 1)

|M|
.

Hence,

AdvIND-KPA
P′ (B) = |Pr [Findb : B]− Pr [Find¬b:B]|

≥ Pr [Find : B]− 2 Pr [Find¬b : B]

≥ Pr [Find : B]− 8(q + 1)/|M|.

Taking into account that AdvIND-KPA
P (B) ≤ AdvIND-CPA

P (B) and combining these
results gives

AdvOW-CPA
P′ (A) ≤ (d+ 2) ·

(
AdvIND-CPA

P (B) +
8(q + 1)

|M|

)
as claimed. ut

IND vs. OW. Our B is a distinguishing adversary, not a one-way adversary. The
reason is that A can check whether a given m is the challenge message, but
if P is semantically secure then B cannot check this. Instead B would have to
pick a random query to measure, which still works using Lemma 1, but with an
additional factor of q tightness loss. That is, the one-way problem is potentially
harder for a randomized encryption scheme than for a deterministic one. The
authors discussed using a new “one-way with confirmation oracle” security game
to more tightly capture the OW vs. IND tradeoff, but decided that it is simpler
to just reduce to IND-CPA.

We also note that ordinarily distinguishing adversaries are much harder to
amplify than one-way adversaries, but B is constructed to either output with
relative certainty if Find, or to fail and guess at random. This means that its
advantage will still be high in the Micciancio-Walter notion of cryptographic
advantage [MW18]. It is likely that the 8(q + 1)/|M| could be reduced to a
4(q + 1)/|M| without this requirement.
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D Why encryption is usually injective for LWE

Here we outline why we expect EncrG(pk, ·) to be an injective function for the
overwhelming majority of public keys pk in a derandomized PKE based on Learn-
ing with Errors (LWE). Consider a typical LWE PKE, where the public key has
the form (A,S = sA + e) where s and e are small of dimension n, and cipher-
texts have the form (As′ + e′, dXs′ + e′ + encode(m)c). Encryption will fail to
be injective for some G if there are (s′0, e

′
0) = G(m0) and (s′1, e

′
1) = G(m1) such

that

As′0+e′0 = As′1+e′1 and dXs′0 + e′0 + encode(m0)c = dXs′1 + e′1 + encode(m1)c .

For correctness, the rounded component is always larger than the message space,
and is generally larger than |M |2. The unrounded component has size at least
qn which is larger still. The function (s′0, e

′
0) → As′0 + e′0 is almost a universal

hash unless s′0 has large nullity, which is highly unlikely for any secure PKE.

So the probability of collision with fewer than |M |2 message pairs is not much
bigger than q−n, which is negligible.

E Proof of Lemma 6

To prove Lemma 6, we first show a result about Bernoulli variables.

Lemma 7. Let {ei : 1 ≤ i ≤ n} be a collection of n independent Bernoulli
variables. Let δ := max Pr[ei], and for each integer j let pj := Pr [

∑n
i=1 ei = j].

Then p1 ≤
√

3p0p2 + δ2 ≤
√

3p2 + δ.

Proof. Let εi := Pr[ei = 1], and without loss of generality let

δ = ε1 ≥ ε2 ≥ . . . ≥ εn

be given in descending order. Then

p0 =

n∏
i=1

(1− εi), p1 = p0 ·

(
n∑
i=1

εi
1− εi

)
, p2 = p0 ·

∑
i>j

εiεj
(1− εi)(1− εj)


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so that

p2
1 − 3p0p2 = p2

0 ·

 n∑
i,j=1

εiεj
(1− εi)(1− εj)

− 3
∑
i>j

εiεj
(1− εi)(1− εj)


= p2

0 ·

 n∑
i=1

ε2i
(1− εi)2

−
∑
i>j

εiεj
(1− εi)(1− εj)


≥ p2

0 ·

 n∑
i=1

ε2i
(1− εi)2

−
∑
i=j+1

εiεj
(1− εi)(1− εj)


≥ p2

0 ·

(
n∑
i=1

ε2i
(1− εi)2

−
n∑
i=2

ε2i
(1− εi)2

)

= p2
0 ·

ε21
(1− ε1)2

≤ δ2.

Hence, p2
1 − 3p0p2 ≤ δ2 and p1 ≤

√
3p0p2 + δ2 as claimed. ut

We are now ready to prove Lemma 6.

Lemma 6. Let P = (Keygen,Encr,Decr) be a δ-correct rPKE with messages
in M and randomness in R. Let G : M → R be a random oracle, so that
T (P, G) := (Keygen,Encr1,Decr) is a derandomized version of P. Suppose that
T (P, G) is ε-injective. Let A be a FFC adversary against T (P, G) which makes
at most q queries at depth d to G and returns a list of at most qdec ciphertexts.
Then

AdvFFC
T (P,G)(A) ≤ ((4d+ 1)δ +

√
3ε) · (q + qdec) + ε.

Proof. Essentially, the idea is at follows: the adversary gets an advantage of
about 4dqδ from querying G in search of failing ciphertexts, and at most qdec(δ+
3
√
ε) from guessing blindly. The latter term comes from considering ways that

some blind guess could be a failing ciphertext: if it is the encryption of one
message, then δ is large, and if it is possibly the encryption of more than one
message (e.g., as a general “encryption failed” output), then ε is large. We will
formalize this in what follows.

Generate a keypair (pk, sk)← Keygen() and oracle G
$← RM. Let

Ym := {r : Decr(sk,Encr(pk,m, r)) = m}

be the set of coins such that decryption of m will succeed. Let G′(m) := G(m)

if G(m) ∈ Ym, G′(m)
$← R if Ym = ∅, and G′(m)

$← Ym otherwise. Thus G′ is
uniformly random in the space G of oracles where decryption succeeds if possible.
Moreover, G′ is independent of the behavior of messages and ciphertexts for
T (P, G) which do not decrypt correctly.

Now, fix (sk,pk) and G′ and let

δ′ := max
m∈M

Pr[Decr(sk,Encr(pk,m)) 6= m]
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be the failure probability for this keypair. Let DblFail be the event that some
ciphertext c is the encryption of two messages m1 and m2 such that Decr(sk, c) /∈
{m1,m2}. We define ε′ := Pr[DblFail]. Both δ′ and ε′ are independent of G′. In
addition, let Fail be the event that A wins the FFC game (see Definition 3), and
Ev := Fail ∧ ¬DblFail. By Lemma 1, it holds that∣∣∣∣√Pr[Ev : AG(pk)]−

√
Pr[Ev : AG′(pk)]

∣∣∣∣ ≤ 2d
√
Pguess.

Since, conditioned on G′, G(m) 6= G′(m) at each m with probability at most δ′

and there are q/d guesses (in expectation), it holds furthermore that

2d
√
Pguess ≤

√
4d2Pguess ≤

√
4dqδ′.

Next we define for a ciphertext c,

p1(c) := Pr[∃ unique m ∈M : c = Encr(pk,m, G(m)) ∧Decr(sk, c) 6= m].

(It is important to note that if m exists but is not unique, then DblFail occurs.)
Furthermore, let p1 := maxc(p1(c)). Since p1(c) and p1 are independent of G′,
we have

Pr[Ev : AG
′
(pk)] ≤ qdec · p1.

By Lemma 7, p1 ≤ δ′+
√

3ε′. Plugging this in and applying the Cauchy-Schwarz
corollary

√
ab+

√
cd ≤

√
(a+ c)(b+ d) gives√

Pr[Ev : AG(pk)] ≤
√

4dqδ′ +

√
qdec · (δ′ +

√
3ε′)

≤
√

((4d+ 1)δ′ +
√

3ε′) · (q + qdec).

Finally, by definition of correctness and injectivity (see Definitions 5 and 6,
respectively), it holds that δ = E [δ′ : pk, G] and ε ≤ E [ε′ : pk, G]. By Jensen’s

inequality, it holds furthermore that
√
ε ≤ E

[√
ε′ : pk, G

]
. Hence,

AdvFFC
T (P,G)(A) ≤ E

[
Pr[Ev : AG(pk)] : (pk, sk)← Keygen();G′

$← G
]

+ ε

≤ ((4d+ 1)δ +
√

3ε) · (q + qdec) + ε

as claimed. ut

F Proof of Theorem 4

Theorem 4 (Implicit → explicit with key confirmation). Let P be an ε-
injective dPKE. Consider the KEM K1 := U⊥m(C(P, Ht, τ), Hs) obtained from
P applying the C-transform with random oracle Ht : M → {0, 1}τ and the
U⊥m-transform with independent random oracle Hs : M → {0, 1}ς . Let K2 :=
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U 6⊥m(P,F, H) be the KEM obtained from P applying the U 6⊥m-transform with ran-
dom oracle H :M→ {0, 1}ς+τ .

If A is an IND-CCA-adversary against K1 which makes qdec decapsulation
queries, then it is also an IND-CCA-adversary against K2 and there is a PRF-
adversary B against F which uses about the same time and resources as A, such
that:

AdvIND-CCA
K1

(A) ≤ 2 ·AdvIND-CCA
K2

(A) +
qdec

2τ−1
+ 2 ·AdvPRF

F (B) + 2ε.

Proof. The proof is by a series of games. Let wi be the probability that A wins
Game i. At some point we will have two IND-CCA games running against K1

and K2 with different values of the challenge bit b. Call these values b1 and b2,
respectively.

Game 0 (IND-CCA). This is the IND-CCA game against K1, which is the KEM
with explicit rejection and key confirmation.

Game 1 (Modify decapsulation with random function). In Game 1, the
simulator instantiates a fresh random function R, and modifies the decapsulation
oracle D to the oracle D′ shown in Figure 8.

D((c, t)):

1 if (c, t) = (c∗, t∗): return ⊥
2 m′ ← Decr(sk, c)
3 if m′ = ⊥:
4 return ⊥
5 else if (Encr(pk,m′), Ht(m

′)) 6= (c, t):
6 return ⊥
7 else: return Hs(m′)

D′((c, t)):

1 if c = c∗: return ⊥
2 m′ ← Decr(sk, c)
3 if m′ = ⊥: (k, t′)← R(c)
4 else if Encr(pk,m′) 6= c: (k, t′)← R(c)
5 else: (k, t′)← (Hs(m′), Ht(m

′))
6 if t′ 6= t: return ⊥
7 else: return k

Fig. 8. Decapsulation oracles for Game 0 and Game 1.

We analyze the difference between D and D′ as follows.

– If c = c∗, then D′ returns ⊥. If Encr(pk, ·) is injective, then so does D.
– Otherwise, if Encr(pk,m′) = c, then both D and D′ return Hs(m

′) if
Ht(m

′) = t, and ⊥ otherwise.
– Otherwise, D returns ⊥, and so does D′ unless t matches t′. Since R is

random and is only used for this purpose, this happens with probability at
most qdec/2

τ .

The difference in A’s view is bound by the probability that D′ acts different
than D. So overall |w1 − w0| ≤ qdec/2

τ + ε.

Game 2 (Use PRF instead of R). In Game 2, the simulator replaces R(c)
by F(prfk, ·) with a random prf key prfk.
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The difference in probability of any adversary A between winning Game 1 and
Game 2 is exactly the PRF-advantage of an adversary B that works exactly as
in the anlaysis of Game 1 in the proof of Theorem 2. Hence it holds that

|w2 − w1| = AdvPRF
F (B)

Game 3 (Redirect to U 6⊥m(P,F, H)). Game 3 is refactored so that it simulates
the IND-CCA experiment for K2 = U 6⊥m(P,F, H) (which uses implicit rejection and
no key confirmation) for the case b2 = 0 (correct key), as follows:

– Hash redirection. The oracles Hs resp. Ht used for C resp. U⊥ are redirected
to the first ς resp. last τ bits of the hash function H of U 6⊥m(P,F, H).

– The simulator creates a challenge ciphertext c with shared secret k of length
ς + τ . It parses this as (ks, kt), and gives A a challenge ciphertext (c, kt).
The challenge shared secret is ks if b1 = 0, or random if b1 = 1.

– The decapsulation oracle D′ from Game 2 is changed to use the U 6⊥m decap-
sulation oracle internally, as shown in Figure 9. It is called D′′.

D′′((c, t)):

1 r ← DecapsK2
(c)

2 if r = ⊥: return ⊥
3 parse r as (k, t′)
4 if t′ 6= t: return ⊥
5 else: return k

Fig. 9. Decapsulation oracle for Game 3.

Note that b2 is fixed, but the adversary is still trying to determine the bit b1 of
the IND-CCA game against K1.

All the above steps do not change A’s view compared to Game 2, so w3 = w2.

Game 4 (Redirect to U 6⊥m(P,F, H) with random keys). Game 4 is the
same as Game 3 except that it now simulates the b2 = 1 (random key) case of

the IND-CCA experiment against K2, i.e., it always sets k
$← {0, 1}ς . This means

that for the challenge ciphertext, both ks and kt will be uniformly random.

Distinguishing Game 3 from Game 4 is exactly the IND-CCA experiment for K2.
Hence,

|w4 − w3| = AdvIND-CCA
K2

(A).

In this game the shared secret k is always random, and thereby independent of
b1. Hence, the adversary has no information about b1 and so w4 = 1

2 .
Summing up the differences in winning probability from all the games we get∣∣∣∣w0 −

1

2

∣∣∣∣ ≤ AdvIND-CCA
K2

(A) +
qdec

2τ
+ AdvPRF

F (B)

and AdvIND-CCA
K1

(A) is at most twice this value. This completes the proof. ut
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