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Abstract. The contribution vector (convec) of a secret sharing scheme is the vector of
all share sizes divided by the secret size. A measure on the convec (e.g., its maximum
or average) is considered as a criterion of efficiency of secret sharing schemes, which is
referred to as the information ratio.
It is generally believed that there exists a family of access structures such that the in-
formation ratio of any secret sharing scheme realizing it is 2Ωpnq, where the parameter
n stands for the number of participants. The best known lower bound, due to Csirmaz
(1994), is Ωpn{ lognq. Closing this gap is a long-standing open problem in cryptology.
Using a technique called substitution, we recursively construct a family of access struc-
tures by starting from that of Csirmaz, which might be a candidate for super-polynomial
information ratio. We provide support for this possibility by showing that our family has
information ratio n

Ωp
log n

log log n
q, assuming the truth of a well-stated information-theoretic

conjecture, called the substitution conjecture. The substitution method is a technique for
composition of access structures, similar to the so called block composition of Boolean
functions, and the substitution conjecture is reminiscent of the Karchmer-Raz-Wigderson
conjecture on depth complexity of Boolean functions. It emerges after introducing the
notion of convec set for an access structure, a subset of n-dimensional real space, which
includes all achievable convecs. We prove some topological properties about convec sets
and raise several open problems.
Key words: secret sharing, general access structures, information ratio, communication
complexity

1 Introduction

In a secret sharing scheme [52,10,30], a secret is shared among some fixed set of participants
by giving each one a string, called the share of that participant. It is required that only certain
pre-specified subsets of participants, called qualified subsets, be able to recover the secret. The
collection of all qualified subsets is called an access structure, which is supposed to be monotone;
because, if a subset is qualified, so is any superset of it. The unqualified (forbidden) subsets, on
the other hand, must not gain any information on the secret.

The information ratio [14,11,44] of a participant in a secret sharing scheme is defined as the
ratio between the size of his share and the size of the secret. The maximum/average information
ratio of a secret sharing scheme is the maximum/average of all participants information ratios.
The maximum/average information ratio of an access structure is defined as the infimum of the
maximum/average information ratios of all secret sharing schemes that realize it.

Surprisingly, very basic questions about the information ratio of access structures have re-
mained open. For example, despite several important results (e.g., [13,51,54,45,46]), the class of
access structures with information ratio one, called ideal and known to contain the threshold



access structures, is far from being fully characterized yet. Also, determining the exact value
of information ratio of several simple access structures on a small number of participants (for
example, see [57,31] and [24,26] for their latest status) is still open while very few cases have
been resolved (see [21,20] for two notable examples).

One can construct a secret sharing scheme realizing any access structure on n participants
with information ratio 2n [30], which can further be improved to 2n´opnq [9]. This upper-bound
has been recently reduced in [41] to 2p1´ϵqn for some small constant ϵ ą 0. It is generally believed
that this upper bound is tight for most access structures. Particularly, it is conjectured (e.g.,
see [4]) that there exists a family of access structures with information ratio 2Ωpnq. Csirmaz has
explicitly constructed a family of access structures with maximum [19] (earlier presented in [17])
and average [18] information ratio Ωpn{ log nq and no better lower bound is known. In particular,
Csirmaz has also shown that his approach, a standard information-theoretic method [36,15]
based on Shannon type information inequalities, cannot be used to show a superlinear lower
bound. This negative result was further strengthened in [8,47] by showing that certain additional
non-Shannon type information inequalities [62] also fail to bypass the linear barrier.

Bridging the exponential gap between the two above-mentioned bounds is an important open
problems in cryptology. For the restricted class of multi-linear secret-sharing schemes (which we
simply refer to as linear in this paper), however, a supper-polynomial lower-bound nΩplognq is
known [5]. For a more restricted class of linear schemes in which the secret is allowed to contain
only one field element, an exponential lower-bound 2Ωpn1{14 lognq has been recently found [49],
closing the gap with former super-polynomial lower bounds [1,6].

1.1 Our main results and ideas

Beating Csirmaz celebrated lower bound has turned out to be a very difficult problem. We
recursively construct a family of access structures by building on Csirmaz access structure that
might have supper-linear (or even super-polynomial up to the limit nΩp

log n
log log n q) information

ratio. We provide some evidence, by introducing a conjecture, called the substitution conjecture.
Our conjecture emerges after introducing the notion of convec set and notions of composition
(substitution) for real vectors and access structures. Our conjecture can be compared with a well-
known conjecture by Karchmer-Raz-Wigderson [35] on depth complexity of Boolean functions.
A lifting theorem, useful for possibly boosting the information ratio of a carefully-chosen family
of access structures, lies at the heart of our construction.

The main ideas of the paper are discussed below.

1. Introducing the notion of convec set. We attribute a subset of Rn, the n-dimensional
real space, to an access structure on n participants, referred to as the convec set, where
convec is short for contribution vector [31]. The convec of a secret sharing scheme is defined
as the vector of all participants information ratios. We define the convec set of an access
structure as the set of all convecs of all secret sharing schemes realizing it. Our geometrical
treatment of access structures may seem reminiscent of Yeung’s [61] framework for studying
the so called entropy region. The notion of convec set provides an interesting ground for
studying the information ratio of access structures. In particular, viewing the problem of
finding extreme convecs of an access structure as a multi-objective optimization problem
brings new insight in the study of the information ratio of access structures. This line of
research has been explored in [2] which has lead to determining the linear convec set of all
well-known access structures on a small number of participants. In this paper, we follow
another line by introducing the notion of substitution factor for access structures based on
their convec sets.
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2. Using Martin’s notion of access structure substitution. Given minimal represen-
tations of two access structures (in the Sperner system), with disjoint participant sets of
size n and m, we substitute one for some participant of the other one. The resulting ac-
cess structure will have n ` m ´ 1 participants. For example, by substituting the access
structure Γ2 “ a1 ` b1c1 for participant b in the access structure Γ1 “ ab ` bcd, we get
Γ1♢bΓ2 “ apa1 ` b1c1q ` pa1 ` b1c1qcd “ aa1 ` ab1c1 ` a1cd ` b1c1cd. This concept has already
been introduced by Martin in [44] and some basic properties of the operation has also been
studied. More generally, for a subset I of participants of Γ1, we let Γ1♢IΓ2 denote the access
access derived by substituting every participants of Γ1 in the set I with a copy of Γ2. We
are interested in studying how the convec set of the resulting access structure is related to
those of the original ones.

3. Composition of vectors and sets. For real vectors x1 P Rn and x2 P Rm and a given
index i P rns, we define the composition x1♢ix2 P Rn`m´1 as the vector achieved by
substituting the i’th element of x1, say ai, with the vector aix2. Given two subsets X1 Ă Rn

and X2 Ă Rm and an index i P rns, the subset X1♢iX2 Ă Rn`m´1 is defined to contain all
vectors x1♢ix2 with x1 P X1 and x2 P X2. For a subset I Ă rns of indices, X1♢IX2 is defined
by recursively composing X2 at each index in I where the starting set is X1.

4. Substitution factor and substitution conjecture. Let Γ3 “ Γ1♢piΓ2 and denote the
closure of the convec set of Γj by Xj . We will prove that X1♢iX2 Ď X3 where i corresponds
to the index of participant pi; however, we need a mild conjecture, that we call the “Uniform
Share Distribution” (USD) conjecture1 in order for the proof to go through. The intuition
behind the proof is as follows. A simple scheme for Γ3 can be constructed by first sharing the
secret using a scheme for Γ1 and then sharing the share of pi in this scheme using a scheme
for Γ2. The substitution conjecture is that, basically, such schemes are “almost” the most
efficient schemes realizing Γ3 and “very small” saving in the share size is possible by other
methods. The situation can be compared with other complexity models such as the depth
complexity of Boolean circuits [35], however, we need a somewhat more involved statement
to formalize a reasonable conjecture. To this end we define the notion of substitution factor
for an access structure Γ1, with convec set X1, as the largest value of s that satisfies

X3 Ď s ¨ X1♢IX2 ,

over all access access structures Γ2 with convec set X2, where X3 is the convec set of
Γ3 “ Γ1♢IΓ2, and I is an arbitrary subset of participants of Γ1. We conjecture that the
substitution factor is not “large”; i.e., X3 « X1♢IX2. More precisely, we provide the follow-
ing conjecture.

Conjecture (Substitution conjecture) The substitution factor of every family of access
structures is

spnq “
plognqgpnq

n
, (1.1)

for some function 2 ă gpnq ď
logn

log log n where n stands for the number of participants.

Notice that the upper-bound gpnq ď
logn

log logn comes from the limit spnq ď 1 on the substitu-
tion factor. To justify the plausibility of the lower-bound 2 ă gpnq, we study the substitution

1 Informally, the USD conjecture states that in the optimal schemes, all share distributions (and also
the secret) are uniform. It remains open, if the USD holds true for total security or even the weaker
notion of statistical security. However, it can be shown to hold for another relaxation called quasi-
total security [33], due to a well-known result by Chan and Yeung [16] on the equality of the entropy
region and the cone of group-characterizable polymatroids.
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factor with respect to the polymatroidal set of an access structure (defined as the lower bound
obtained by considering all Shannon inequities) instead of the convec set measure. We will
show that the corresponding substitution factor is at most plognq2

n for Csirmaz family, which
we conjecture to be tight.

5. A lifting theorem. Raz and McKenzie [50] have shown how to “lift” lower bounds for query
complexity of Boolean functions to their communication complexity [50]. Similar techniques
have been applied in other complexity areas, e.g., see [53,39,28,29,38]. We present a lifting
theorem, useful for boosting the information ratio of a family of access structures. The idea
is to define a recursive procedure for constructing a family of access structures by starting
from a given one. Below, we present a simplified and informal statement of the theorem.

Theorem (Lifting theorem—informal and simplified) Let b, t, s : R` Ñ R` be three
functions and tΓkukPN be a family of access structures. Suppose that for every k, it holds that
Γk, with nk participants and substitution factor spnkq, has a subset of participants of size
bpnkq with minimum total share size tpnkq. Assuming that the function fpxq “

log pspxqtpxqq

log bpxq

satisfies some “mild” conditions, then there exists a family of access structures with average
(and consequently maximum) information ratio nfpnq´1.

Our family is constructed as follows. We start from the given family and “replace” the bpnq

specific parties with a copy of the original access structure and apply the procedure logn
log bpnq

times.
6. Our candidate family. Csirmaz [19] proves his Ωpn{ log nq lower bound on information

ratio, by constructing a family of access structures and exhibiting a subset of participants
of size bpnq “ Θplog nq with minimum total share size tpnq “ Ωpnq. By lifting theorem, the
information ratio of our constructed family is then ngpnq´1 (see (1.1)), where gpnq remains
unknown. By the substitution conjecture, the expected lower bound could range from super-
linear up to super-polynomial, depending on the assumption made on gpnq.

1.2 Related work

We would like to bring the following pieces of work to the reader’s attention for comparison and
completes.

Composition versus decomposition. The way that we use the substitution method provides
a simple means of composition of access structures which (might) lead to proving lower-bounds
on the information ratio of access structures. We are not aware of any similar method in the
secret sharing context. On the other hand, several decomposition methods have been introduced
for achieving upper-bounds on information ratio of secret sharing schemes. These techniques
have mainly been used to find upper-bounds on the information ratio of several concrete access
structures on a small number of participants [11,55,57,31,59,43,40,26,27]. These methods build
on Stinson’s λ-decomposition [55] method (see [58,56,26] for extensions) in which an access
structure is decomposed into several (usually simpler) sub-access structures.

Given a sub-scheme for each sub-access structure, the sub-schemes are then combined to
construct a scheme for the original access structure, providing an upper-bound on its informa-
tion ratio. Therefore, these methods essentially concern decomposition of access structures and
composition of secret sharing schemes while ours is a method of composition of access structures.

The Karchmer-Raz-Wigderson conjecture on depths of circuits. The substitution
method is similar to the so called block composition of Boolean functions. The composition of two

4



Boolean functions f : t0, 1un Ñ t0, 1u and g : t0, 1um Ñ t0, 1u is the function f♢g that takes as
inputs m strings x1, ¨ ¨ ¨ , xm P t0, 1un and computes pf♢gqpx1, . . . , xmq “ fpgpx1q, ¨ ¨ ¨ , gpxmqq.

The depth complexity of a Boolean function f , denoted by dpfq, is the depth of the shal-
lowest fan-in-2 circuit that computes it. Karchmer, Raz, and Wigderson [35] has conjectured
that dpf♢gq « dpfq ` dpgq. They then showed that the truth of their conjecture implies super-
logarithmic lower bounds on the depth complexity of an explicit function, resolving an outstand-
ing open problem of complexity theory. Their explicit function is constructed by a repeated
application of the composition operation.

Lifting theorems. Raz and McKenzie [50] have used the composition operation to lift lower
bounds from query complexity to communication complexity of Boolean functions. In particular,
they used their lifting theorem to prove that the monotone NC-hierarchy does not collapse.
Similar lifting theorems were later proved for deriving several important complexity separations.
We refer the reader to [53,39,28,29,38] for some examples.

1.3 Paper organization

In Section 2, we provide the required background and notations. The notion of convec set and
its topological properties, along with a list of open problems, are studied in Section 3. The
substitution method and our lifting theorem are presented in Sections 4 and 5. Our candidate
construction is presented in Section 6 and the limit of our method is discussed in Section 7.
Section 8 studies the behavior of the substitution factor with respect to the polymatroidal set.
The USD conjecture and its consequences are discussed in Section 9. Finally, we conclude the
paper in Section 11.

2 Preliminaries and notation

In this section, we provide the basic background along with some notations and conventions. The
information-theoretic and topological notions can be found in any standard textbook. We refer
the reader to [4,48] for surveys on secret sharing. Readers familiar with the subjects can safely
skip this section, but we encourage the reader to take a look at Remark 2.1 and Lemma 2.2.

2.1 Basic topology

Let a “ pa1, . . . , anq and b “ pb1, . . . , bnq be two vectors in Rn, the n-dimensional real space.
We write a ĺ b (resp. a ă b) if and only if ai ď bi (resp. ai ă bi) for every i P rns, where rns

stands for the set t1, . . . , nu. We use ra,8q to denote the set of all points b such that a ĺ b. For
a vector a “ pa1, . . . , anq, we let maxpaq “ maxta1, . . . , anu and }a} “

řn
i“1 |ai|. The all-one

vector is denoted by 1, whose dimension is understood from the context.
A subset of Rn is said to be convex if for every pair of points a, b in the set and for every

real λ P r0, 1s, the point λa` p1´λqb, called a convex combination of a and b, is also in the set.
In this paper, the intersection of finitely many half-spaces is called a convex polytope, or simply
a polytope. Let X be a convex subset of Rn. A point of X is said to be an extreme point if it
does not lie in any line segment with endpoints in X .

A point a P Rn is called a limit point for a set X Ď Rn if every open ball containing a
includes at least one point of X , different from a itself. A set is called closed if it contains all of
its limit-points and it is called open if its complement is closed. The closure of a set X Ď Rn,
denoted by X , is the union of X with all its limit points. When X is convex, we refer to X as a
set with a convex closure. A point a is called an interior point of X if there exists an open ball
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containing a which is completely contained in X . The set of all interior points of X is denoted
by intpX q. The boundary of a set X is defined as the set of all points in its closure which does
not belong to its interior, i.e., X zintpX q. In this paper, we define the frontier of X as the set
X zX .

Remark 2.1 (Frontier vs. boundary) In the literature the boundary is also referred to as
the frontier and some authors (for example [60]) even use the term frontier instead of boundary.
However, similar to [3], our definition of frontier is different from boundary.

2.2 Basic information theory

Let X and Y be discrete random variables. The support of X (i.e., the set of all values that
it accepts with positive probability) is denoted by supppXq. The Shannon entropy of X is
defined as HpXq “ ´

ř

xPsupppXq PrrX “ xs log2 PrrX “ xs. The entropy of X conditioned
on Y is defined as HpX|Y q “

ř

yPsupppY q PrrY “ ysHpX|Y “ yq, where HpX|Y “ yq “

´
ř

xPsupppXq:PrrX“x^Y “ysą0 PrrX “ x|Y “ ys log2 PrrX “ x|Y “ ys. Finally, the mutual
information of X and Y is defined as IpX,Y q “ HpXq ´ HpX|Y q.

2.3 Secret sharing schemes

Access structure. Let P “ tp1, . . . , pnu be a finite set of participants. A subset Γ Ď 2P is
called an access structure on P if it is monotone; that is, for every A P Γ and every set B, where
A Ď B Ď P , it holds that B P Γ . A subset A Ď P is called qualified if A P Γ ; otherwise, it is
called unqualified or forbidden. A qualified subset is called minimal if none of its proper subsets
is qualified. A forbidden subset is called maximal if none of its proper supersets is forbidden.
The set of all minimal qualified subsets and that of maximal forbidden sets are, respectively,
denoted by Γ´ and Γ`. A participant p P P is called important for Γ , if it appears in at least
one minimal qualified subset. A distinguished participant p0 R P is referred to as the dealer. In
the Sperner system, an access structure can be symbolically represented as Γ “

ř

APΓ´
ś

pPA p.
When the participant set of an access structure Γ is not given a priori, we use the notation
P pΓ q to denote its participant set.

Secret sharing scheme. A tuple Π “
`

Sp

˘

pPPYtp0u
of jointly distributed random variables,

with finite supports, is called a secret sharing scheme on participant set P when HpSp0q ą 0.
The random variable Sp0 is called the secret random variable and its support is called the secret
space. The random variable Sp, for any participant p P P , is called the share random variable
of the participant p and its support is called his share space.

A secret sharing scheme Π is said to be linear if there exists a finite field F such the sup-
port of every marginal random variable is an F-vector space of finite dimension with uniform
distribution.

When we say that a secret s P supppSp0q is shared using Π, we mean that a tuple
`

sp
˘

pPPYtp0u

is sampled according to the distribution Π conditioned on the event Sp0 “ s.

Realization. We say that Π is a secret sharing scheme for Γ , or Π realizes Γ , when: 1)
HpSp0 | SAq “ 0, for every qualified set A P Γ and 2) HpSp0 | SBq “ HpSp0q, for every
forbidden set B P Γ c, where SA “ pSpqpPA, for a subset A Ď P . These requirements are
referred to as the correctness and privacy conditions, respectively.
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Information ratio. The information ratio of participant p P P is defined as σp “ HpSpq{HpSp0q.
The convec of Π (where convec is abbreviation for contribution vector [31]) is defined and de-
noted by cvpΠq “ pσpqpPP . A secret sharing scheme Π is called ideal if cvpΠq “ 1.

The maximum (resp. average) information ratio of an access structure Γ is denoted by σpΓ q

(resp. σ̃pΓ q) and is defined as the infimum of max
`

cvpΠq
˘

(resp. 1
|P |

}cvpΠq}) over all secret
sharing schemes Π realizing Γ . Lower bounds on the maximum and average information ratio
of Γ , derived by taking into account the so-called Shannon inequalities, are denoted by κpΓ q

and κ̃pΓ q, respectively [42].

We close this section by introducing a lemma by Blundo et. al. [12].

Lemma 2.2 ([12]) Let Π “ pSpqpPPYtp0u be a secret sharing scheme for Γ . Let Π 1 “ pS1
pqpPPYtp0u

be a secret sharing scheme obtained from Π by changing the secret distribution to a (non-certain)
distribution S1

p0
over supppSp0

q (more precisely, to generate a sample according to Π 1, a secret
is sampled from S1

p0
and then shared using Π). Then, Π 1 also realizes Γ . Moreover, the random

variables SA and S1
A are identically distributed, for any unqualified subset A P Γ c.

3 Convec set

In this section, we introduce the notion of convec set for access structures and study its topolog-
ical properties. Two illustrative examples are provided and some open problems are suggested.

Definition 3.1 (Convec set) Let Γ be an access structure. The convec set of Γ , denoted by
ΣpΓ q and also called the Σ-set of Γ , is defined as the set of all convecs of all secret sharing
schemes that realize Γ .

Definition 3.2 (Polymatroidal set—informal) We introduce the K-set as a generalization
of the κ-parameter introduced in [42]. More precisely, the polymatroidal set of an access structure
Γ , denoted by KpΓ q, is defined as the polytope derived by taking into account all the Shannon
inequalities as well as the correctness and privacy conditions. A more formal definition is given
in Appendix A.

The relation between polymatroids and random variables was first realized by Fujishige
in [25]. The left inclusion in the following proposition is an extension of the inequality κpΓ q ď

σpΓ q [42]. The right one follows by a well-known result of [36,15], stating that each important
participant’s share size is not smaller than the secret itself.

Proposition 3.3 (Trivial inclusions) For any access structure Γ , it holds that:

ΣpΓ q Ď KpΓ q Ď r1,8q ,

where for the rightmost inclusion we need to additionally assume that all participants of Γ are
important.

3.1 Basic properties of convec sets

In this section we provide two lemmas about the properties of convec sets, which will be used
in this section. For our convenience, we provide the following definition.

Definition 3.4 (Shifted orthant inclusion property) We say that a set X Ď Rn has the
shifted orthant inclusion property if a P X implies ra,8q Ď X .
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The following lemmas shows that the convec set of access structures have the shifted orthant
inclusion property.

Lemma 3.5 (Shifted orthant inclusion property) The convec set of any access structure
has the shifted orthant inclusion property.

Proof. Let Γ be an access structure and a P ΣpΓ q. For any point a1 P ra,8q we show that a1 P

ΣpΓ q. The reason is that given a secret sharing scheme Π “ pSpqpPPYtp0u for Γ with cvpΠq “ a,
it is easy to construct a secret sharing scheme Π 1 for Γ with cvpΠ 1q “ a1; simply give dummy
shares to the participant to increase their share size. More precisely, let Π 1 “

`

Sp0 , pSp,S
1
pqpPP

˘

where pS1
pqpPP is independent form Π and it is chosen such that

`

HpS1
pq
˘

pPP
“ HpSp0qpa1 ´aq ľ

0. Clearly, Π 1 realizes Γ and cvpΠ 1q “ a1; hence, a1 P ΣpΓ q. [\

Lemma 3.6 (Uniform secret invariance property) Let Γ be an access structure. The con-
vec set of Γ is the set of all convecs of all secret sharing schemes having uniform secret distri-
bution and realizing Γ .

Proof. Let a P ΣpΓ q and suppose that Π “ pSpqpPPYtp0u is a secret sharing scheme for Γ with
convec a. We show that there exists a secret sharing scheme Π 1, with uniform secret distribution,
for Γ with the same convec.

We prove the claim under the assumption that Γ does not contain singleton sets; that is, no
participant is qualified on its own. It is easy to remove this assumption and we leave it to the
reader. By Lemma 2.2, there exists a secret sharing scheme Π2 “ pS2

pqpPPYtp0u for Γ such that
S2

p0
is uniform over supppSp0q, and S2

p is distributed identically as Sp for every p P P , since tpu

is unqualified.
Consequently, a2 “ cvpΠ2q “

HpSp0 q

HpS2
p0

q
a ĺ a; that is, a P ra2,8q. We can then construct

Π 1, realizing Γ with cvpΠ 1q “ a, from Π2 similar to the proof of the shifted orthant inclusion
property (Lemma 3.5), by increasing each participant’s share size, without changing the secret
distribution. [\

3.2 On closure convexity of convec sets

It is easy to show that the closure of a convec set is convex. Indeed, for an access structure Γ
on n participants, the closure convexity of its Σ-set is induced by convexity of the cone of the
entropy region on n ` 1 random variables. The convec set of Γ can be equivalently computed
by the following steps. The intersection of the entropy region on n ` 1 random variables and
the planes that describe the correctness and privacy conditions is computed. Each point of the
resulting area is then scaled by dividing all coordinates to the entry that corresponds to the
secret entropy. The convec set is essentially the projection on the n-entries that correspond to
the participants share entropies. The claim then follows since the properties are kept intact at
each step.

Proposition 3.7 (Closure convexity) The convec set of every access structure is a set with
convex closure.

The following proposition follows by the shifted orthant inclusion property (Lemma 3.5) of
convec sets.

Proposition 3.8 (Interior closure) The interior of the Σ-set of every access structure is
closed.
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3.3 On frontiers of convec sets

In this section, we prove that there is no access structure with an open convec set; that is, the
frontier of a convec set is a proper subset of its boundary. We conclude that the convec set of
an access structure is either closed or neither-open-nor-closed (NONC). Subsequently, we define
the notion of closed/NONC access structures. The frontier of a closed access structure is empty
whereas that of a NONC access structure is non-empty and a proper subset of its boundary.
First, we provide a lemma, then a proposition and finally the definition.

Lemma 3.9 (Participant-specific rate-one scheme) Let Γ be an access structure, m ě 2
be an integer and p P P pΓ q. Then, there exist a secret sharing scheme, with secret space size m,
realizing Γ , such that the information ratio of participant p is one.

Proof. In the Sperner system, let Γ´ “ Γ´
0 ` pΓ´

1 , where Γ0, Γ1 are access structures both
on the participant set P 1 “ P ztpu. More precisely, Γ0 “ tA Ď P 1 | A P Γ u and Γ1 “ tA Ď

P 1 | A R Γ,A Y tpu P Γ u. It is well-known that every access structure admits a secret sharing
scheme with secret space Zm [30]. Let Π0,Π1 be, respectively, such secret sharing schemes for
Γ0, Γ1. We construct a secret sharing scheme for Γ such that the secret is uniform over Zm and
the information ratio of participant p is one. To share a secret s P Zm, we choose a uniformly
random r P Zm and give the share r to p. Then, we share s ` r as a secret using the scheme
Π1 and share the secret s using the scheme Π0. Consequently, every participant in P 1 receives
a share from each of the schemes. But p receives a random element of Zm as his share. Clearly,
the resulting scheme realizes Γ and the information ratio of participant p is one. [\

Proposition 3.10 (Convec sets are not open) There does not exist an access structure with
an open convec set.

Proof. Let Γ be an access structure on n participants. By Proposition 3.3, we have ΣpΓ q Ď

r1,8q. Also, by Lemma 3.9, for every i P rns, there exists a convec pσ1, . . . , σnq P ΣpΓ q, such
that σi “ 1. Clearly, all these convecs lie on the boundary of ΣpΓ q. Therefore, ΣpΓ q is not
open. [\

Definition 3.11 (Closed and NONC access structures) An access structure is called closed
(resp. NONC) if its convec set is closed (resp. neither-open-nor-closed).

Corollary 3.12 (Frontiers of closed and NONC access structures) The frontier of the
convec set of a closed access structure is empty and that of a NONC access structure is a non-
empty proper subset of its boundary.

3.4 Pareto-optimality

In this section, we first define two notions of optimality for convecs and a notion of optimality
for secret sharing schemes. Then, we provide an equivalent definition of maximum and average
information ratio of an access structure, already given in Section 2.3.

First, we recall the definition of Pareto-optimality for a subset of multi-dimensional real
space, as a partially ordered set.

Pareto-optimal points. Let X Ď Rn. A point a P X is said to be Pareto-minimal for X if
for any vector b P X , which is comparable with a, it holds that a ĺ b. A point a P X is
said to be Pareto-infimal for X if it is Pareto-minimal for X . The set of all Pareto-infimal and
Pareto-minimal points of X are, respectively, denoted by infPpX q and minPpX q. Notice that
infPpX q “ minP

`

X
˘

.

9



Definition 3.13 (Pareto-minimal/infimal convecs) Let Γ be an access structure. Any vec-
tor in the set of Pareto-minimal points of ΣpΓ q, i.e., minP

`

ΣpΓ q
˘

, is called a Pareto-minimal
vector (convec). Any vector in the set of Pareto-infimal points of ΣpΓ q, i.e., infP

`

ΣpΓ q
˘

, is
called a Pareto-infimal vector.

According to the shifted orthant inclusion property (Lemma 3.5) of convec sets, the closure
of a convec set is uniquely determined by its Pareto-infimal convecs. More precisely, we have the
following corollary.

Corollary 3.14 We have ΣpΓ q “
Ť

xPinfP

`

ΣpΓ q

˘rx,8q, for every access structure Γ .

Note that for a given access structure, there does not necessarily exist a secret sharing scheme
for a given Pareto-infimal vector; see Example 3.18. However, by definition, a Pareto-minimal
vector corresponds to some secret sharing scheme realizing the access structure. Thus, we provide
the following notion of optimality for secret sharing schemes.

Definition 3.15 (Pareto-minimal secret sharing scheme) Let Π be a secret sharing scheme
realizing an access structure Γ . We call Π a Pareto-minimal scheme for Γ if its convec is Pareto-
minimal, i.e., cvpΠq P minP

`

ΣpΓ q
˘

.

Corollary 3.16 (Equivalent definition of information ratio) Let Γ be an access structure
on n participants. Then,

σpΓ q “ mintmaxpxq : x P infP
`

ΣpΓ q
˘

u ,

and
σ̃pΓ q “

1

n
mint}x} : x P infP

`

ΣpΓ q
˘

u .

3.5 Two examples

In this section, we introduce two examples that will be referred to in later sections. Two related
open problems are mentioned in Section 3.6.

Example 3.17 (P3 access structure) Consider the graph access structure P3 “ ab` bc` cd,
i.e., a path of length 3. It can be shown [15] that ΣpP3q has two extreme points, p1, 1, 2, 1q and
p1, 2, 1, 1q, which we call extreme convecs. Therefore, any Pareto-infimal convec x P infP

`

ΣpP3q
˘

is a convex combination of the two extreme convecs, that is, of the form x “ p1, 1`x, 2´x, 1q for
some real number x P r0, 1s. It can be shown (e.g., using Stinson’s λ-decomposition method [55])
that when x is rational, these convecs are Pareto-minimal as well. Thus, σ̃pP3q “ 5

4 , which is
achieved by any Pareto-infimal convec, and σpP3q “ 3

2 , which is achieved only by the Pareto-
minimal convec p1, 3

2 ,
3
2 , 1q. We do not know if this access structure is closed (see Question 3.24).

Example 3.18 (F ¨ N access structure) Beimel-Livne [7] and Matús [46] have independently
introduced an access structure on 12 participants, which we denote by F ¨ N (see also Exam-
ple 4.2 and Figure 1). In the Sperner system, the minimal representation of F ¨N is the product
of the Sperner representations of the following two ideal access structures

F “ p1p4 ` p2p5 ` p3p6 ` p1p2p6 ` p1p3p5 ` p2p3p4 ` p4p5p6

and
N “ q1q4 ` q2q5 ` q3q6 ` q1q2q6 ` q1q3q5 ` q2q3q4 ` q4q5q6 ` q3q4q5 ,
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derived form Fano and non-Fano matroids, respectively.
Matús [46] has proved that F (resp. N ) does not have an ideal scheme when the secret space

size is odd (resp. even). The access structure F ¨ N is called nearly ideal since while it is not
ideal [46], its information ratio is one [7]; that is, the all-one vector is Pareto-infimal but not
Pareto-minimal. Therefore, F ¨ N is a NONC access structure and ΣpF ¨ N q “ r1,8q. The
results of [7] can be used to show that ΣpF ¨ N q includes the points of the set tpx,yq | x,y P

R6, p1 ĺ x ^ 1 ă yq _ p1 ă x ^ 1 ĺ yqu. Lemma 3.9 can be used to show that ΣpF ¨ N q

includes additional points as well; for example, for any i P t1, . . . , 6u, some vector of the form
px1, . . . , x6,1q (resp. p1, y1, . . . , y6q), in R12, is in the set where xi “ 1 (resp. yi “ 1). The exact
form of ΣpF ¨N q is unknown to us, and in particular, we do not know if F ¨N has any Pareto-
minimal convec (see Question 3.25). In a follow-up work [32], we have almost determined the
convec set closure of F ¨ N , when restricted to the linear schemes, and have shown that it is
non-convex (the exact value of its linear information ratios has been determined, however).

3.6 Some open problems

Several problems regarding convec sets remain open, which may be interesting in an information-
theoretic point of view. The ideal access structures are closed since their convec set is r1,8q.
We are not aware of any other closed access structure.

Question 3.19 (Non-ideal closed access structure) Is there a non-ideal closed access struc-
ture?

More generally, characterizing access structures with respect to Definition 3.11 seems an
interesting question.

Question 3.20 (Characterizing closed access structures) Determine which access struc-
tures are closed and which ones are NONC (i.e., characterizing them in terms of emptiness of
the frontiers of their convec sets; see Corollary 3.12).

Also, note that the convec set of closed access structures are convex by themselves (i.e.,
without taking closure). We do not know if there exists any NONC access structures with a
convex convec set.

Question 3.21 (Characterizing NONC access structures w.r.t. convexity) Determine
which NONC access structures are convex and which ones are non-convex. In particular, is there
a NONC access structure whose convec set is convex (resp. non-convex)?

Trivially, every access structure has at least one Pareto-infimal convec. However, it is unclear
if this is also the case for some Pareto-minimal convec.

Question 3.22 (Existence of a Pareto-minimal scheme) Does every access structure ad-
mit at least one Pareto-minimal secret sharing scheme?

The (closure of) convec set of some access structures (e.g., Examples 3.17 and 3.18) can be
proved to be polytopes. It is intriguing to think that this is the case for every access structure.

Question 3.23 (Non-polytope convec sets) Is there an access structure such that its convec
set is not a polytope?

Finally, concerning Examples 3.17 and 3.18, we present two more specific questions in the
following.

11



Question 3.24 (Convec set of P3) Following Example 3.17, is the set ΣpP3q convex (equiv-
alently, is p1, 1 ` x, 2 ´ x, 1q a Pareto-minimal convec for P3 for every irrational x P p0, 1q)?

Question 3.25 (Convec set of F ¨ N ) Following Example 3.18, determine the set ΣpF ¨N q.
Is it a convex set? Does it have any Pareto-minimal convec?

Note that a positive answer to Question 3.24 leads to a positive answer to Question 3.19,
while a negative answer partially answers Question 3.21 (i.e., there exists non-convex NONC
access structures).

4 The substitution technique

In this section, we describe different notions of compositions for real vectors, subsets of the
real space and access structures. We then propose a conjecture, referred to as the substitution
conjecture, that approximates the convec set of composition of two access structures with the
composition of the original convec sets.

Our composition method resembles the “block” composition of Boolean functions and our
substitution conjecture is reminiscent of the Karchmer-Raz-Wigderson [35] conjecture on depth
complexity of Boolean functions.

4.1 Vector/Subset composition

Let x “ px1, . . . , xnq and y “ py1, . . . , ymq be two real vectors. The vector x, in which the p’th
element has been substituted with xpy, is denoted by x♢py; that is,

x♢py “ px1, . . . , xp´1, xpy1, . . . , xpym, xp`1, . . . , xnq .

More generally, let P,Q be two finite sets and x “ pxpqpPP P RP and y “ pyqqqPQ P RQ be
two vectors; i.e., their indices are indexed by P and Q respectively. Assume that P ˆ Q and P
are disjoint. The reason for this will be clear in the sequel. For an element p P P , the composition
x♢py “ pziqiPPp is a vector in RPp , where

Pp “
`

P ztpu
˘

Y
`

tpu ˆ Q
˘

and

zi “

"

xi if i P P ztpu

xpyq if i “ pp, qq P tpu ˆ Q
.

Let X Ď RP and Y Ď RQ be two arbitrary sets. For every p P P , we define the composition
X♢pY as follows:

X♢pY “ tx♢py | px,yq P X ˆ Yu .

For a subset I “ tp1, . . . , pbu Ď P , the composition operation X♢IY is recursively defined as
follows:

X♢IY “ p. . . ppX♢p1Yq♢p2Yq . . .q♢pb
Y . (4.1)

12



4.2 Access structure composition (substitution)

Let Γ1 and Γ2 be two access structures, respectively on (not necessarily disjoint) participant
sets P and Q, and let p P P . We refer to Γ3 “ Γ1♢pΓ2 as the access structure in which the
participant p has been substituted with Γ2, in the following sense. In the Sperner representation
of Γ1, we replace p with Γ2 and then expand and simplify the expression naturally. This concept
has already been introduced by Martin in [44] and some basic properties of the composed access
structure has been also studied. More precisely, the participant set of Γ3 is P pΓ3q “ P´p Y Q,
where P´p “ P ztpu, and for every A Ď P pΓ3q we have:

A P Γ3 ô pA X P P Γ1q _

´

`

pA X P q Y tpu P Γ1

˘

^
`

A X Q P Γ2

˘

¯

.

Our particular case of interest is when P and Q are disjoint. For subsets A,B, let AB and
Ap be respectively short notations for A Y B and A Y tpu. In this case, in order to characterize
the qualified sets and forbidden sets of Γ3 “ Γ1♢pΓ2, we define:

B “ tB | B Ď P´p ^ B P Γ1u ,
C “ tC | C Ď P´p ^ C P Γ c

1 ^ Cp P Γ1u ,
D “ tD | D Ď P´p ^ Dp P Γ c

1 u .
(4.2)

It is then easy to verify that:

Γ3 “ tBA | B P B ^ A Ď Qu Y tCK | C P C ^ K P Γ2u , (4.3)

and

Γ c
3 “ tCJ | C P C ^ J P Γ c

2 u Y tDA | D P D ^ A Ď Qu . (4.4)

Multi-substitution. We would like to define the composition Γ1♢IΓ2 for a set I “ tp1, . . . , pbu Ă

P of distinct parties. Informally, Γ1♢IΓ2 is an access structure obtained by substituting an in-
stance of Γ2 for every participant of I in Γ1, where the participant sets of all involved |I| ` 1
access structures are assumed to be disjoint. We will not bother to give a formal definition.

Fact 4.1 |P pΓ1♢IΓ2q| “ |P pΓ1q| ` |I|p|P pΓ2q| ´ 1q.

Example 4.2 (Access structure substitution) Let Γ1 “ ab`ac`bc and Γ2 “ a`cd`ce`f .
We then have Γ1♢cΓ2 “ ab`apa`cd`ce`fq`bpa`cd`ce`fq “ a`bcd`bce`bf . As another
example, let Γ “ ab and F ,N ,F ¨ N be as in Example 3.18. Then, pΓ♢aFq♢bN “ F ¨ N . See
Figure 1. Also see Example 5.2 for a multi-substitution example.

p1 p2 p3

p4 p5 p6

q1 q2 q3

q4 q5 q6

Fig. 1: The access structure F ¨ N “ pΓ♢aFq♢bN where Γ “ ab (see Example 4.2). Also, it can
be viewed as F ¨ N “ Γ♢p7

F where Γ “ F ¨ p7. See Example 3.18 for descriptions of F ,N and
F ¨ N .
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4.3 The substitution conjecture

Let Γ1 and Γ2 be two access structures with disjoint participants sets and p P P pΓ1q. It is an
interesting question to study how ΣpΓ1♢pΓ2q and ΣpΓ1q♢pΣpΓ2q are related. In Appendix 9,
we prove the inclusion ΣpΓ1q♢pΣpΓ2q Ď ΣpΓ1♢pΓ2q under a mild conjecture called the Uniform
Share Distribution conjecture.

The more interesting part is the reverse inclusion ΣpΓ1♢pΓ2q Ď ΣpΓ1q♢pΣpΓ2q, which one
may conjecture to hold true as well. Notice that this conjecture is equivalent to a multi-
substitution variant in which it is conjectured that ΣpΓ1♢IΓ2q Ď ΣpΓ1q♢IΣpΓ2q for every
I Ă P pΓ1q. We are not aware of any counterexample and, in fact, the current techniques are
not matured enough for proving or refuting the conjecture theoretically or experimentally (for
example the information ratios of several access structures on five participants [31,24] are still
unknown).

Remark 4.3 We remark that a variant of the above conjecture in which the closures are ignored
is not valid. Towards constructing a counterexample, let F ,N ,F ¨N be as in Example 3.18. Let
Γ1 “ F ¨ p7 and Γ2 “ N and hence Γ3 “ Γ1♢p7Γ2 “ F ¨ N . The access structures Γ1 and Γ2

are both ideal, respectively on 7 and 6 participants. Therefore, ΣpΓ1q♢p7ΣpΓ2q “ r1,8q, but
1 R ΣpΓ3q as we saw in Example 3.18.

The above conjecture on the equality of the two sets sounds too strong. In other complexity
models (such as the depth and query complexity of Boolean functions), some saving is possible
when composing functions. Therefore, similar to Karchmer-Raz-Wigderson conjecture on depth
complexity of Boolean functions [35], we conjecture that the two sets are “close” rather than
being identical. In order to formalize this conjecture, we first present a definition.

Definition 4.4 (Substitution factor) The substitution factor of an access structure Γ on
participants set P is defined as

spΓ q “ inf
I,Γ 1

␣

supts | ΣpΓ♢IΓ 1q Ď s ¨ ΣpΓ q♢IΣpΓ 1qu
(

,

where the infimum is taken over all subsets I Ă P and access structures Γ 1.

In the definition, sX “ tsx | x P X u for a set X Ă Rn and s P R. Notice that the closures
can be ignored in the definition since the interior of convec sets are closed by Proposition 3.8.
However, we keep them to be able to extend to the restricted convec sets which may not have
this property.

Remark 4.5 In definition of the substitution factor, we do not impose any constraint on the
number of participants of Γ 1. For achieving the main result of this paper, however, it is sufficient
to restrict to access structures with |P pΓ 1q| ď n1{ϵ for any 0 ă ϵ ă 1{2, where n “ |P pΓ q|. To
keep our notation and discussion simple, we ignore this restriction.

The substitution factor determines how well the substituted convec set fits the convec set
of the substituted access structure. Notice that SpΓ q ď 1. Determining the substitution factor
remains a challenging problem as discussed above. In the following, we make some conjectures
about the substitution factor of access structure, but first we need a definition.

Definition 4.6 (Substitution factor of a family of access structures) Let s : R Ñ R be
some function and F “ tΓkukPN be a family of access structures. We say that the substitution
factor of F is spnq, and write spFq “ spnq, if spΓkq “ spnkq, where nk “ |P pΓkq|.
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Similar to the Karchmer-Raz-Wigderson conjecture on depth complexity of Boolean func-
tions, one may conjecture that for every family F of access structures, there exists some 0 ă δ ď 1
such that spFq ě δ. This conjecture may still be “too strong”. For the purpose of this paper, the
following weaker variants are sufficient.

Conjecture 4.7 (Substitution conjectures) Let F be a family of access structures and de-
note its substitution factor by spnq “ spFq. Then:

(Strong) there exists some 0 ă δ ď 1 such that spnq “ Ω
`

nδ

n

˘

.

(Moderate) spnq “ Ω
`

plognqωp1q

n

˘

.
(Weak) there exists some 2 ă δ such that spnq “ Ω

`

plognqδ

n

˘

.

In Section 6, we construct a candidate family based on Csirmaz access structure which has
a conjectured super-polynomial lower bound on the information ratio nΩp

log n
log log n q (resp. nωp1q)

assuming the truth of the “strong” (resp. “moderate”) substitution conjecture. Additionally,
assuming the truth of the “weak” conjecture, the (super-linear) polynomial lower bound np1´ϵqδ´1

is expected for every 0 ă ϵ ă 1.
Our argument even holds under the looser assumption that the moderate/weak substitution

conjecture holds for the Csirmaz family rather than “any” family. Therefore, we also present the
following definition.

Definition 4.8 We say that the “strong”/“moderate”/“weak” substitution conjecture holds for a
family F of access structures if the corresponding condition in Conjecture 4.7 holds.

In Section 8, we study the substitution factor for the case where the Σ-set is replaced with
the K-set and argue that plognq2

n “might” indeed be a tight upper-bound on the corresponding
substitution factor for Csirmaz family.

5 A lifting theorem

In this section, we present a lifting theorem, useful for boosting the information ratio of a family
of access structures. The idea is to define a recursive procedure for constructing a family of
access structures by starting from a given family. We introduce some definitions and lemmas,
before getting to the main theorem.

Definition 5.1 (The family FΓ,I of access structures) Let Γ be an access structure and
I Ď P pΓ q. The family FΓ,I “ tΓmumPN of access structures is recursively defined as Γm “

Γ♢IΓm´1, where Γ1 “ Γ .

Example 5.2 Figure 2 depicts the first three members of the family FP3,I where P3 “ ab`bc`cd
and I “ tb, cu.

(a) Γ1 “ P3 (b) Γ2 “ P3♢IΓ1 (c) Γ3 “ P3♢IΓ2

Fig. 2: The first three members of the family FP3,I where P3 “ ab ` bc ` cd and I “ tb, cu
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Definition 5.3 (pb, t, sq-access structure) Let b P N, t P R` and Γ be an access structure
with substitution factor s. We call Γ a pb, t, sq-access structure if there exists a subset I Ď P pΓ q

of size |I| “ b with minimum total information ratio t. That is, for every pσpqpPP pΓ q P ΣpΓ q we
have

ř

pPI σp ě t. When there is no emphasize on the substitution factor, we simply call it a
pb, tq-access structure.

Lemma 5.4 (Key lemma) Let Γ be a pb, t, sq-access structure on participant set P and let
I Ď P be a subset of size b with minimum total information ratio t. Let FΓ,I “ tΓmumPN. Then,
for every m P N, we have

I. |P pΓmq| ď |P |bm,
II. }x} ě pstqm for every x P ΣpΓmq.

Proof. The equality |P pΓmq| “ p|P | ´ 1qp1 ` b ` . . . ` bm´1q ` 1 can be proved by an easy
induction on m and using Fact 4.1. This proves the first claim.

The second claim is also proved by induction on m. The base case, m “ 1, trivially holds
since s ď 1. Assuming that the claim holds for m P N, we show that it holds as well for m ` 1;
that is, }x1} ě pstqm`1 for every x1 P ΣpΓm`1q. By definition of the substitution factor, there
exists convecs x “ pσpqpPP P ΣpΓ q and xpi1

, . . . ,xpib
P ΣpΓmq such that

}x1} ě s
´

ÿ

pPP zI

σp `
ÿ

pPI

`

σp}xp}
˘

¯

.

By the induction hypothesis, we have }xp} ě pstqm, for every p P I. Also, by assumption,
ř

pPI σp ě t. Consequently,

}x1} ě s
´

0 `
ÿ

pPI

`

σppstqm
˘

¯

ě pstqm`1 .

[\

Definition 5.5 (Information ratio of a family of access structures) Let g : R Ñ R be
some function and F “ tΓkukPN be a family of access structures. We say that the average
information ratio of F is gpnq, and write σ̃pFq “ gpnq, if σ̃pΓkq “ gpnkq, where nk “ |P pΓkq|.
A similar definition is given for the maximum information ratio of the family F , denoted by
σpFq.

Proposition 5.6 (Simple lifting) If there exist a pb, t, sq-access structure with b ě 2, then
there exists a family of access structures with average (and consequently maximum) information
ratio Ωpnlogbpst{bq

˘

.

Proof. Let Γ be a pb, t, sq-access structure on participant set P and let I Ď P be a subset of size
b with minimum total information ratio t. Define FΓ,I “ tΓmumPN. The condition b ě 2 implies
t ě 2. Consequently, by Lemma 5.4, it follows that n “ |P pΓmq| ď |P |bm and }x} ě pstqm ě

pstqlogbpn{|P |q “ Ωpnlogb st
˘

. Hence, σ̃pΓmq “ Ωpnlogbpst{bq
˘

. [\

Definition 5.7 (
`

bpnq, tpnq, spnq
˘

-family of access structures) Let b, t, s : R` Ñ R` be
three functions. Let F “ tΓkukPN be a family of access structures and denote nk “ |P pΓkq|.
We call F a pbpnq, tpnq, spnqq-family if, for every k P N, Γk is a

`

bpnkq, tpnkq, spnkq
˘

-access
structure. That is, the substitution factor of the access structure Γk is spnkq and there exists a
subset Ik Ď P pΓkq of size |Ik| “ bpnkq with minimum total information ratio tpnkq. When there
is no emphasize on the substitution factor, we simply call it a pbpnq, tpnqq-family.
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Theorem 5.8 (Lifting theorem) Let b, t, s : R` Ñ R` be three functions such that bpxq ě 2

and fpxq “
log pspxqtpxqq

log bpxq
is increasing. If there exists a

`

bpnq, tpnq, spnq
˘

-family of access struc-
tures, then, for any 0 ă ϵ ă 1

2 , there exists a family of access structures with total information
ratio at least np1´2ϵqfpnϵq.

Additionally, if fpxq is eventually everywhere differentiable, f 1pxqx ln x
fpxq

“ Op1q, and fpxq “

ωp1q, then the average (and consequently maximum) information ratio of the family is nΩpfpnqq.

Proof. Let F “ tΓkukPN be the
`

bpnq, tpnq, spnq
˘

-family. For every k P N, denote nk “ |P pΓkq|

and let Ik Ď P pΓkq be a subset of size |Ik| “ bpnkq with minimum total information ratio tpnkq.
That is, for every pσpqpPP pΓkq P ΣpΓkq it holds that

ř

pPIk
σp ě tpnkq.

Consider the setting of Lemma 5.4 for the family FΓk,Ik “ tΓk,mumPN. We have |P pΓkq| “ nk,
b “ bpnkq, t “ tpnkq and s “ spnkq. Let d “ 1

ϵ ą 2 and denote

mk “ pd ´ 2q
log nk

log bpnkq
.

Consider the family F 1 “ tΓ 1
kukPN of access structures where Γ 1

k “ Γk,rmks. By Lemma 5.4
(Part I), our choice for mk and taking into account that 2 ď bpnkq ď nk, we have:

|P pΓ 1
kq| ď |P |brmks ď nkbpnkqmk`1 “ nkn

d´2
k bpnkq ď nd

k .

Also, by Part II of Lemma 5.4, for every x P ΣpΓ 1
kq, we have

}x} ě pstqrmks ě
`

spnkqtpnkq
˘mk

“ n
pd´2q

log pspnkqtpnkqq
log bpnkq

k “ n
pd´2qfpnkq

k .

By letting n “ |P pΓ 1
kq| and taking into account the increasing propery of fpxq “

log pspxqtpxqq

log bpxq
,

we then get:

}x} ě n
d´2
d fp d

?
nq “ np1´2ϵqfpnϵq ,

proving the first part of the claim.
Consequently, σ̃pF 1q ě np1´2ϵqfpnϵq´1 and the additional condition fpxq “ ωp1q implies that

σ̃pF 1q “ nΩ
`

p1´2ϵqfpnϵq

˘

. The remaining part of the claim is a corollary of Lemma 5.9 (Part I),
given below. [\

For proving the final claim of Theorem 5.8, we only relied on the Part I of Lemma 5.9.
Roughly speaking, Part II of the lemma shows that if, for some function fpxq, it is possible to
ignore ϵ and simplify the lower bound, then f is polylogarithmic (that is, fpxq “ Opplog xqkq for
some real number k ě 0). Part III of the lemma indicates that, not for every polylogarithmic
function, the simplification is allowed. In fact, due to Part I, f 1pxqx ln x

fpxq
is necessarily unbounded

for such functions.

Lemma 5.9 Let f : R` Ñ R` be some function.

I. If f is eventually everywhere differentiable and f 1pxqx lnx
fpxq

“ Op1q, then fpxϵq “ Ωpfpxqq for
every 0 ă ϵ ă 1.

II. If f is bounded on any bounded interval and fpxϵq “ Ωpfpxqq for some 0 ă ϵ ă 1, then f is
polylogarithmic.

III. There exist a continuous, differentiable and polylogarithmic f such that fpxϵq ‰ Ωpfpxqq for
every 0 ă ϵ ă 1.
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Proof. To prove I, assume that f 1pxqx ln x
fpxq

“ Op1q. We show that, for any 0 ă ϵ ă 1, fpxq

fpxϵq
“ Op1q;

this is equivalent to fpxϵq “ Ωpfpxqq.
Let hpxq “ ln fpee

x

q and hence fpxq “ ehpln ln xq. We have ln fpxq

fpxϵq
“ hpzq ´ hpz ´ ϵ1q where

ϵ1 “ ´ ln ϵ ą 0 and z “ ln lnx. Also, by the Mean Value Theorem, we have hpzq ´ hpz ´

ϵ1q “ h1pz0qϵ1 for some z0 P pz ´ ϵ1, zq. Since h1pzq “
f 1pxqx ln x

fpxq
“ Op1q, it then follows that

hpzq ´ hpz ´ ϵ1q “ Op1q for any ϵ1 ą 0, indicating that fpxq

fpxϵq
“ Op1q.

To prove II, let fpxϵq “ Ωpfpxqq for some 0 ă ϵ ă 1. That is, there exisit some M ą 1 and
α ą 1 such that fpxq ď αfpxϵq for all x ě M .

Let x ě M and choose an integer m such that

xϵm ă M ď xϵm´1

,

or equivalently, m “ r
log logM´log log x

log ϵ s ` 1.
It is easy to prove by induction that fpxq ď αmf

`

xϵm
˘

. Also, note that

αm´1 ď α
log log M´log log x

log ϵ “ α
log log M

log ϵ ˆ plog xq
´

log α
log ϵ .

Since 1 ď xϵm ă M and f is bounded on any bounded interval, it holds that f
`

xϵm
˘

ď T ,
for some T P R`. Consequently, we have

fpxq ď ααm´1T “ α
log log M

log ϵ `1
ˆ T ˆ plog xq

´
log α
log ϵ .

That is, fpxq “ Opplog xqkq for k “ ´
logα
log ϵ .

The function fpxq “ 22
rlog log log xs

is an example for Part III, but it is not continuous. It is
easy to construct continuous and differentiable approximations of this function, satisfying the
required conditions.

[\

6 Our candidate construction

In this section we study the different lower bounds that can be achieved by applying the lifting
theorem to Csirmaz [19] family assuming the truth of the strong/moderate/weak substitution
conjecture. The expected lower bound for our candidate may vary from super-linear to super-
polynomial, depending on the kind of conjecture that is made on the substitution factor of
Csirmaz family, which remains unknown.

For any integer k ě 2, Csirmaz [19] has constructed an access structure Γk with 2k ` k ´ 2
participants. Csirmaz has proved that the maximum information ratio of the family C “ tΓku

is Ωpn{ log nq. To show this, he has exhibited a subset I Ď P pΓkq of size k such that for every
pσpqpPP pΓkq P ΣpΓkq it holds that

ř

pPI σp ě 2k ´ 1. That is, C is a
`

Θplog nq,Ωpnq
˘

-family.

Our candidate family. For every 0 ă ϵ ă 1
2 , we construct the family Fϵ of secret sharing

schemes as in the proof of the lifting theorem by starting from that of Csirmaz and repeating
the substitution procedure p 1

ϵ ´ 2q
logn

log logn times.

The following corollary is a direct application of our lifting theorem.

Corollary 6.1 (Conjectured lower bound) For every 0 ă ϵ ă 1
2 , let Fϵ be our candidate

family. Then,

– If the “strong” substitution conjecture holds for the Csirmaz family, then σ̃pFϵq “ nΩp
log n

log log n q.

18



– If the “moderate” substitution conjecture holds for the Csirmaz family, then σ̃pFϵq “ nωp1q.
– If the “weak” substitution conjecture holds for the Csirmaz family with δ ą 2, then σ̃pFϵq “

Ωpnp1´2ϵqδ´1q.

We close this section by the following two problems.

Question 6.2 Determine the substitution factor of Csirmaz family.

Question 6.3 For every 0 ă ϵ ă 1
2 , determine κpFϵq.

Indeed, in Csirmaz paper it was left open if there exists a family of access structures whose
κ-parameter is ωpn{ log nq. We wonder if our family meets this bound.

7 Can we do better than nΩp
log n

log log n
q?

In this section, we explore the possibility of improving the nΩp
log n

log log n q lower bound by lifting
any access structures for which a lower bound has been achieved via Shanon inequalities. As
we will see the answer is negative even assuming the strongest assumption that ΣpΓ1♢pΓ2q “

ΣpΓ1q♢pΣpΓ2q for every pair of access structures Γ1, Γ2 and p P P pΓ1q.

Let first introduce some definitions.

Definition 7.1 (Regular family of access structures) Let b, t, f, g : R` Ñ R` be some
functions. We say that g is f -regular if g “ Opfq or g “ ωpfq. Let F be a

`

bpnq, ntpnq
˘

-family of
access structures. We call F an pfpnq, ngpnqq-regular family if b is f -regular and t is g-regular.

Definition 7.2 (Domain restriction) The restriction of a function f with domain D on do-
main A Ď D is denoted by f |A. Let f, g : R` Ñ R` be two functions and A Ď R`. We say that
f |Apxq “ Opgpxqq, if there exists positive numbers c, x0 such that for every x P A X rx0,8q it
holds that fpxq ď cgpxq.

Suppose that, assuming the truth of the very strong substitution, one wishes to improve the
lower bound nΩp

log n
log log n q, by applying the lifting theorem to a plog n, nq-regular family of access

structures; i.e., one that falls into one of the following four categories:

–
`

Oplog nq, nOp1q
˘

-family,
–

`

Oplog nq, nωp1q
˘

-family,
–

`

ωplog nq, nOp1q
˘

-family, or
–

`

ωplog nq, nωp1q
˘

-family.

Lemma 7.4, stated and proved below, rules out the first three categories; that is, improve-
ments may be possible only by lifting a

`

ωplog nq, nωp1q
˘

-family when restricted to plog n, nq-
regular families. Unfortunately, Csirmaz negative result shows that the currently known tech-
niques fail to find such a family. More precisely, he has shown that, by merely using the Shannon
information inequalities [36,15], the best that one can achieve is to construct a

`

bpnq, tpnq
˘

-family
of access structures with tpnq ď n2; see [19, Theorem 3.5]. Beimel and Orlov [8] have shown
that even by incorporating the so-called non-Shannon information inequalities [62] with four
or five variables, unknown at time of publication of [19], the Csirmaz barrier is still valid;
see [47] for a follow-up. We conclude that the best lower bound that can be achieved by lifting
a plog n, nq-regular family of access structures, with proven lower bound using similar methods,
is nΩp

log n
log log n q.

We need the following lemma, which is a generalization of Lemma 3.9, for proving Lemma 7.4.
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Lemma 7.3 Let Γ be a pb, tq-access structure. Then, t ď b2b´1.

Proof. Let I Ď P pΓ q be a subset of size b with total information ratio at least t. To prove the
claim, we show that Γ admits a secret sharing scheme such that the information ratio of every
participant p P I is exactly 2b´1.

In the Sperner system, let Γ “
ř

JĎI

`

ΓJ

ś

pPJ p
˘

, where ΓJ is an access structure on
participant set P 1 “ P zI. More precisely, Γ´

H “ tA Ď P 1 | A P Γ´u and Γ´
J “ tA Ď P 1 |

A R Γ´, A Y J P Γ´u, for every non-empty J Ď I.
Let m ě 2 be an integer. It is well-known that every access structure admits a secret sharing

scheme with secret space Zm [30]. Let ΠJ be such a secret sharing schemes for ΓJ . We construct
a secret sharing scheme for Γ such that the secret is uniform over Zm and every participant p P I
receives a random vector of length 2b´1 over Zm. To share a secret s P Zm, for each non-empty
J Ď I, we choose a uniformly random prJ,pqpPJ P Z|J|

m and give the share rJ,p to p P J . Then,
we share s `

ř

pPJ rJ,p as a secret using the scheme ΠJ . The secret s is also shared using the
scheme ΠH. Clearly, the resulting scheme realizes Γ . Every participant p P I receives an element
of Zm for each subset of I that includes p; there are exactly 2b´1 such subsets. Consequently,
the information ratio of each participant p P I is 2b´1. [\

Lemma 7.4 (Lifting limit) Let b, t : R` Ñ R` be two functions where bpxq ě 2. Let F “

tΓkukPN be a
`

bpnq, tpnq
˘

-family of access structures. Denote A “ t|P pΓkq|ukPN and fpxq “
log pspxqtpxqq

log bpxq
, with spxq “ 1. Then:

I. If bpxq “ Oplog xq, then f |Apxq “ Op
log x

log log x q.
II. If bpxq “ ωplog xq and tpxq “ xOp1q, then f |Apxq “ Op

log x
log log x q.

Proof. By Lemma 7.3, we have tpnq ď bpnq2bpnq´1, for every n P A. Consequently, fpnq “
log pspnqtpnqq

log bpnq
ď

bpnq´1
log bpnq

` 1, for every n P A.
Note that the function x´1

log x is increasing for x ě 2. Therefore, bpxq “ Oplog xq implies that
f |Apxq “ Op

log x
log log x q, proving Part I.

For proving Part II, first note that tpxq “ xOp1q implies log tpxq “ Oplog xq and bpxq “

ωplog xq implies log bpxq “ Ωplog log xq. Consequently, f |Apxq “ Op
log x

log log x q. [\

8 Substitution factor for other measures

Proving/disproving any of the substitution conjecture variants seems very challenging due to
lack of techniques in determining the convec set of access structures. As mentioned earlier, even
the information ratios of several access structures on five participants [31,24] are still unknown.
Therefore, analysis of the substitution factor of access structures remains a challengingly difficult
problem.

One can define the substitution factor of access structures with respect to some restricted
class of secret sharing schemes. This approach is not also currently promising for the same
reason, even for the class of linear schemes.

Another approach which might be more promising for understanding the behavior of the sub-
stitution factor is to work with a lower bound on the Σ-set such as the K-set (see Appendix A).
Refer to the corresponding factor as the polymatroidal substitution factor and denote it by kp¨q

instead of sp¨q. More generally, for any set H which lies between the polymatorids region and
the entropy region, one can define KH-set as a lower bound measure on the Σ-set. Denote the
corresponding substitution factor of a family F of access structures by kHpFq. We wonder if
this parameter behaves well with respect to monotonicity.
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Question 8.1 Is it true that for every H1 Ď H2 and every family F , it holds that kH1pFq “

OpkH2pFqq?

Let F be a pbpnq, tpnqq-family with polymatroidal substitution factor kpnq. As it was men-
tioned earlier, Csirmaz has proved that the total information ratio of any access structure on
n participants is at most n2 by considering only Shannon inequalities. By applying the lifting
lemma to F , we have

n
p1´2ϵq

log
`

kpnϵqtpnϵq
˘

log bpnϵq ď n2 .

By letting

kpnq “
pbpnqqgpnq

tpnq
,

we get gpnq ď 2
1´2ϵ for every 0 ă ϵ ă 1{2. Therefore,

kpnq ď max
`

1,
pbpnqq2

tpnq

˘

.

For Csirmaz family, we have

kpnq ď
plog nq2

n
,

and it remains open if this bound is tight.

Question 8.2 Compute the k-factor for the Csirmaz family. Is it Θp
plognq2

n q? Is there a family
F of access structures with kpFq “ ωp

plognq2

n q?

9 The uniform share distribution conjecture

In this section, we will prove that for every pair Γ1, Γ2 of access structures and every participant
pi of Γ1 it holds that ΣpΓ1q♢piΣpΓ2q Ď ΣpΓ1♢piΓ2q assuming the Uniform Share Distribution
(USD) conjecture holds true. Informally, the USD conjecture states that the share distributions
(and also the secret) are uniform in optimal schemes.

Conjecture 9.1 (Uniform share distribution (USD) conjecture) Let Γ be an access struc-
ture and let x P infP

`

ΣpΓ1q
˘

. Then, there exists a sequence tΠjujPN of secret sharing schemes
such that: 1) each Πj realizes Γ , 2) the sequence tcvpΠjqujPN converges to x, 3) every partic-
ipant’s share, in each Πj, is uniform over its support, and 4) each secret random variable, in
each Πj, is uniform over its support.

Remark 9.2 (USD conjecture and secret distribution) By Lemma 2.2, the USD conjec-
ture is equivalent to a seemingly weaker version that omits the fourth requirement. This fact
justifies our selected running title for the conjecture.

Let us see why we resort to the USD conjecture for proving the inclusion ΣpΓ1q♢piΣpΓ2q Ď

ΣpΓ1♢piΓ2q. Let Π1 “ pSpqpPPYtp0u and Π2 “ pSqqqPQYtq0u be Pareto-optimal secret sharing
schemes for Γ1 and Γ2, respectively. Roughly speaking, we need to argue that there exists a
Pareto-optimal scheme Π for Γ1♢piΓ2 such that the following holds:
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cvpΠq ĺ cvpΠ1q♢picvpΠ2q .

A simple scheme Π for Γ1♢pi
Γ2 can be constructed by first sharing the secret using Π1 and

then sharing the share of pi in Π using Π2. This argument needs to additionally assume that
supppSpiq “ supppSq0q. The convec of the constructed scheme, however, is

cvpΠq “ cvpΠ1q♢pi

´HpSq0q

HpSpiq
cvpΠ2q

¯

,

further requiring to assume that HpSq0q ď HpSpiq. Since Π2 is Pareto-optimal, Sq0 is uniform
and so must be Spi .

Therefore, we have the following proposition. The full proof is given in Appendix B.

Proposition 9.3 (USD conjecture ñ (9.1)) The USD conjecture implies that for every ac-
cess structures Γ1, Γ2 and every pi P P pΓ1q, it holds that

ΣpΓ1q♢piΣpΓ2q Ď ΣpΓ1♢piΓ2q . (9.1)

We close this section by the following remarks, concerning the USD conjecture:

1. USD and relaxed security notions. It remains open, if the USD holds true for total
security or even the weaker notion of statistical security. However, it can be shown to hold
for another relaxation called quasi-total security [33], due to a well-known result by Chan
and Yeung [16] on the equality of the entropy region and the cone of group-characterizable
polymatroids. We refer the reader to Appendix C for details.

2. USD for linear schemes. The inclusion (9.1) does not hold when we restrict to the
class of linear schemes even though the shares and secret are uniform in this case. Here is a
counterexample. Let F ,N ,F ¨N be as in Example 3.18 and let Γ1 “ F ¨p7 and Γ2 “ N . The
access structures Γ1 and Γ2 are both ideally realizable by linear schemes (but with different
field characteristics), respectively on 7 and 6 participants. Nevertheless, Γ1♢p7Γ2 “ F ¨ N
is far from having nearly ideal linear schemes, even though it has nearly ideal nonlinear
schemes. In a follow-up work [32] we have computed the linear convec set of F ¨ N and
shown that it is even non-convex. Nevertheless, the inclusion (9.1) holds when we restrict
to the class of linear schemes on finite fields with a given characteristic.

3. USD and information ratio variants. Two different flavors of information ratio can
be found in the literature [14,11,44]. One is defined based on the ratio between the share
entropy and the secret entropy, also adopted by us in the course of this paper. The other
one is defined as the ratio between the logarithm of the share space size and the logarithm
of the secret space size. Consequently, the information ratio of an access structure Γ can be
defined in two different ways. Denote the latter one by σspΓ q. It is known that σspΓ q ě σpΓ q;
e.g., see [4, Section 5.2]. The USD conjecture implies these two notions are equivalent.

10 On plausibility of the substitution conjecture

One may be concerned about difficulty of proving/disproving the substitution conjecture. Here
are a few remarks.

– Our conjecture has a novel information theoretic description and it is very different from
reformulating the original problem (Beimel’s conjecture).

– The notion of substitution factor gives the substitution conjecture a sort of fuzzy flavor. What
we mean is that the smaller the substitution factor is assumed to be, the more plausible it
is that the substitution conjecture holds true.
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– We agree that there is no evidence for the validity of the substitution conjecture. On the
other hand, there is also no strong argument that why the conjecture might not hold true.

– It is worth noting that we have a conjecture as well as a construction. This is very different
from just having a conjecture that implies the open problem to be resolved. Therefore, it is
a win-win progress as, either we have a construction with a super-linear lower bound, or we
make progress towards understanding the barriers; this is not much different from the rest
of crypto.

One could say that it is not promising to make progress on the substitution conjecture. Here
are some arguments.

– The fact that it might be hopeless to advance towards resolving the substitution conjecture
is not unique to the substitution conjecture. A similar situation holds for the well-known
conjecture by Karchmer, Raz, and Wigderson on the depth complexity of Boolean functions,
for which no substantial progress has been made. We emphasize that we do not claim that the
substitution conjecture is connected to the KRW conjecture, but only on their resemblance.

– Even though proving/refuting the substitution conjecture seems difficult, it is plausible to
advance in other directions. In particular, it is conceivable to be able to find loose lower
bounds on our Fϵ family of access structures by considering only the Shannon type infor-
mation inequalities, which is very well understood. But of course applying it on our family
demands skills and innovation. This demands understanding the behavior of κ-parameter
(K-set) with respect to substitution. Any progress in this plausible direction might lead to
improve Csirmaz sub-linear lower bound into a linear one (see Question 8.2). To make it
more clear, we feel that the Shannon lower bound for our Fϵ family is n1´ϵ, or something
similar. Even though this is worse than that of Csirmaz, if true, it can be amplified to a lin-
ear lower bound in a straightforward way (recall Csirmaz impossibility result). We conclude
that it is quite plausible that the research community progress in some directions such as
above.

One may criticize the substitution conjecture for solely being supported by the limitations
of the known methods to construct secret sharing schemes. Even though true, one can see it
from the positive side. In order to refute the substitution conjecture one needs to develop new
construction techniques tailored for the substituted access structures. If this ever happens, it will
enhance our understating of algebraic behavior of access structures when viewed in the Sperner
form.

11 Conclusion

The crypto community lacks suitable approaches for constructing complex, yet analyzable, ac-
cess structures. The substitution technique, originally introduced by Martin in [44] and further
developed in this paper, might be an initiation in this direction. The introduced notion of convec
set leaves several problems (of information-theoretic nature) unanswered. However, the substitu-
tion conjecture (and substitution factor) might have implications in communication-complexity.
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A Polymatroidal set

In this section, we present a more formal definition of the K-set.

Definition 1 (Polymatroid [22]). Let Q be a finite set. We say that S “ pQ, rq is a polyma-
troid with ground set Q and rank function r : 2Q Ñ R, when:

a) rpHq “ 0,
b) rpXq ď rpY q, for every subsets X Ď Y Ď Q (monotonicity),
c) rpXq ` rpY q ě rpX Y Y q ` rpX X Y q, for every subsets X,Y Ď Q (sub-modularity).

Definition 2 (Γ -polymatroid [42]). Let Γ be an access structure on P and S “ pP Ytp0u, rq

be a polymatroid. We say that S is a Γ -polymatroid if it additionally holds that:

a) rpA Y tp0uq “ rpp0q, for every qualified set A P Γ and,
b) rpA Y tp0uq “ rpp0q ` rpAq, for every forbidden set A P Γ c.

Definition 3 (Convec of a polymatroid). The convec of a polymatroid S “ pP Y tp0u, rq is
defined and denoted by cvpSq “ 1

rpp0q
prppqqpPP .

Definition 4 (K-set). The polymatroidal set, or K-set, of an access structure Γ , denoted by
KpΓ q, is defined as the set of all convecs of all Γ -polymatroids.
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B Proof of Proposition 9.3

We first present two lemmas and then the actual proof.

Lemma B.1 Let X1,X2 and X3 be subsets of Rn,Rm, and Rn`m´1, respectively, and let i P rns.
Suppose that each Xj, j “ 1, 2, 3, has the shifted orthant inclusion property and lies in the positive
orthant (i.e., Xj Ď r0,8q). Then, infPpX1q♢iinfPpX2q Ď X3 implies X1♢iX2 Ď X3.

Proof. This direcly follows form the relation Xj “
Ť

aPinfPpXjqra,8q, j “ 1, 2, 3.

Lemma B.2 Let Γ1 and Γ2 be two access structures on disjoint participant sets. Let pi P P pΓ1q

and define Γ3 “ Γ1♢piΓ2. Let Π1 and Π2 be two secret sharing schemes, each with uniform distri-
bution on the secret and each individual share, respectively realizing Γ1 and Γ2, with cvpΠ1q “ x
and cvpΠ2q “ y. Then, there exists a sequence tΠj

3ujPN of secret sharing schemes such that:

(1) Πj
3 realizes Γ3, for every j P N,

(2) the sequence tcvpΠj
3qujPN converges to x♢piy when j goes to infinity.

Proof. Let us first introduce the notation kˆΠ, where Π is a secret sharing scheme with secret
space S. The secret space of kˆΠ is Sk and to share a secret ps1, . . . , skq using kˆΠ, each si is
shared among participants using an independent instance of Π. Consequently, every participant
receives a share for each si.

Let P pΓ1q “ P and P pΓ2q “ Q. Denote Π1 “ pSpiqpiPPYtp0u and Π2 “ pSqqqPQYtq0u. Let
Spi

“ supppSpi
q and Sq0 “ supppSq0q and, without loss of generality, suppose that |Spi

| ď |Sq0 |.
For every j P N, define αj “ t

j log |Sq0 |

log |Spi
|

u and let αj ˆ Π1 “ pSj
pi

qpiPPYtp0u and j ˆ Π2 “

pSj
qqqPPYtq0u. Note that |supppSj

pi
q| ď |supppSj

q0q|, since |supppSj
pi

q| “ |Spi |
αj , |supppSj

q0q| “

|Sq0 |j and αj ě 1. Therefore, there exists an injection g : supppSj
pi

q Ñ supppSj
q0q.

For each j P N, we construct the secret sharing scheme Πj
3 , satisfying (1) and (2), as follows.

Let P´p “ P ztpiu and P pΓ3q “ T , where T “ P´p Y Q. To generate a sample pstqtPTYtt0u

according to Πj
3 , we first generate a sample pspiqpiPPYtp0u according to αj ˆΠ1. We let st0 “ sp0 ,

that is, the same secret is used. Each participant pi P P´p (as a participant of P pΓ3q) receives
sp as his share, which is trivially distributed according to Sj

pi
. Then, gpspiq is shared using the

scheme j ˆΠ2 to produce the shares psqqqPQ. Each participant q P Q (as a participant of P pΓ3q)
receives sq as his share, which according to Lemma 2.2, is distributed as Sj

q, assuming that
Γ2 does not contain singleton sets; that is, no participant is qualified on its own (it is easy to
remove this assumption and we leave it to the reader). Clearly, the scheme Πj

3 realizes Γ3 and
its convec is:

cvpΠj
3q “ x♢pi

´HpSj
q0q

HpSj
pi

q
y
¯

.

Since HpSj
q0q “ j log |Sq0 | and HpSj

pi
q “ αj log |Spi |, it follows that

HpSj
q0

q

HpSj
pi

q
(“ j log |Sq0 |

αj log |Spi
|
) con-

verges to one. Consequently, cvpΠj
3q converges to x♢piy. [\

Proof (Proof of Proposition 9.3). By Lemma B.1, it is sufficient to prove that

infP
`

ΣpΓ1q
˘

♢pi infP
`

ΣpΓ2q
˘

Ď ΣpΓ1♢piΓ2q .

Equivalently, we prove that for every x P infP
`

ΣpΓ1q
˘

and y P infP
`

ΣpΓ2q
˘

it holds that
x♢piy P ΣpΓ1♢piΓ2q. To prove this, we show that there exists a sequence tΠj,k

3 upj,kqPNˆN of
secret sharing schemes such that:
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(1’) Πj,k
3 realizes Γ3 “ Γ1♢piΓ2, for every j, k P N,

(2’) the sequence tcvpΠj,k
3 qu converges to x♢piy when j, k both go to infinity.

Assuming that the USD conjecture is true, there exists a sequence tΠk
1 ukPN (resp. tΠk

2 ukPN)
of secret sharing schemes, with uniform distributions on secrets and individual shares, realizing
Γ1 (resp. Γ2), such that the sequences txkukPN “ tcvpΠk

1 qukPN (resp. tykukPN “ tcvpΠk
2 qukPN)

converge to x (resp. y).
Consequently, for each k P N, according to Lemma B.2, there exists a sequence tΠj,k

3 ujPN of
secret sharing schemes such that:

(1”) Πj,k
3 realizes Γ3 “ Γ1♢piΓ2, for every j P N,

(2”) the sequence tcvpΠj,k
3 qujPN converges to xk♢piyk when j goes to infinity.

Therefore, (1’) and (2’) also hold, finishing the proof. [\

C USD cojecture for quasi-total security

Even though it remains open if the USD conjecture holds true for the total security or even the
statistical relaxation, in this section we prove that it holds true for another relaxation called
quasi-total security defined by Kaced in [33,34].

We first present two definitions and then define the notion of quasi-total secret sharing and
quasi-total convec set.

Definition C.1 (Convec-converging family of schemes) A sequence F “ tΠkukPN of se-
cret sharing schemes on participants set P is called a convec-converging family of schemes if i)
the entropy of secret does not vanish; i.e., HpSk

0q “ Ωp1q and, ii) the sequence tcvpΠkqukPN is
converging. The convec of the convec-converging family F is defined as

cvpFq “ lim
kÑ8

cvpΠkq .

Definition C.2 (Access function of a secret sharing scheme [23]) The access function of
a secret sharing scheme Π “

`

Si

˘

iPPYtp0u
is a a (monotone) mapping ΦΠ : 2P Ñ r0, 1s defined

as follows:

ΦΠ : A Ñ
IpS0 : SAq

HpS0q
.

Definition C.3 (Quasi-total realization) Let Γ be an access structure on P and F “ tΠkukPN
be a convec-converging family of secret sharing schemes. We say that F is a quasi-total fam-
ily for Γ if limkÑ8 ΦΠk

“ ΦΓ , where ΦΓ : 2P Ñ t0, 1u is a (monotone) mapping defined as
ΦΓ pAq “ 1 ðñ A P Γ .

Definition C.4 (Quasi-total convec sets) The quasi-total convec set of an access structure
Γ , denoted by ΣqtpΓ q, is defined as the set of all convecs of all quasi-total families for Γ . When
we restrict ourselves to the class C of secret sharing schemes, we use the notation ΣC

qt.

Notice that unlike the total security, the quasi-total convec sets are closed. We are interested in
the quasi-total convec set for the restricted class of group-characterizable secret sharing schemes,
denoted by ΣG

qt.

Definition C.5 (Group-characterizable scheme) A secret sharing scheme Π “
`

Sp

˘

pPPYtp0u

is said to be group-characterizable if there exists a finite group G and subgroups Gp’s of G such
that, for every p P P Y tp0u, we have Sp “ XGp where X is a uniform random variable with
support G and XGp is a random variable whose support is the left cosets of Gp.
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For the case of total security, it remains open if the inclusion ΣGpΓ q Ď ΣpΓ q is proper for
some access structure Γ . The following theorem, whose proof follows from a well-known theorem
by Chan and Yeung in [16], asserts that the answer is negative for quasi-total security; that is
group-characterizable schemes are “complete” for this security notion.

Proposition C.6 (ΣG
qt “ Σqt) Group characterizable schemes are complete for quasi-total se-

curity. That is for every access structure Γ , it holds that ΣG
qtpΓ q “ ΣqtpΓ q.

Proof. The Chan-Yeung’s theorem [16, Theorem 4.1] is about random variables and can be
stated for secret sharing schemes as follows: for every scheme Π “ pSiqiPPYtp0u, there exists a
sequence tΠku of group-characterizable schemes, with Πk “ pSk

i qiPPYtp0u, such that for every
A Ď P Y tp0u it holds that limkÑ8

1
kHpSk

Aq “ HpSAq. It then follows that limkÑ8 cvpΠkq “

cvpΠq and limkÑ8 ΦpΠkq “ ΦpΠq.
Now we return to the proof of our theorem. Let Γ be an access structure and σ P ΣqtpΓ q. We

need to show that σ P ΣG
qtpΓ q. Let F “ tΠmumPN be a quasi-total family for Γ with cvpFq “ σ.

Therefore, by Chan-Yeung’s theorem, for each scheme Πm, there exists a a sequence tΠk,mu of
group-characterizable schemes such that limkÑ8 cvpΠk,mq “ cvpΠmq and limkÑ8 ΦpΠk,mq “

ΦpΠmq. It is then easy to see that the family F 1 “ tΠj,ju of group-characterizable schemes
satisfies cvpF 1q “ limjÑ8 cvpΠj,jq “ cvpFq and limkÑ8 ΦΠj,j “ ΦΓ ; that is, σ P ΣG

qtpΓ q. [\

Even though the USD conjecture was left open in the case of total security, the following
is an immediate corollary of Proposition C.6, since the distribution of secret is uniform for
group-characterizable schemes by definition.

Corollary C.7 (USD & quasi-total) The USD conjecture holds for the quasi-total security.

It can be shown that statistical security implies quasi-total security [?]. The total security
also trivially implies the statistical security; i.e., ΣpΓ q Ď ΣspΓ Ď ΣqtpΓ q. It is open if all convec
sets coincide. In particular, it remains open if the USD conjecture holds for total and statistical
security notions.

Question C.8 (USD & total/statistical) Prove or refute if the USD conjecture holds for
the total or statistical security notions.
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