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Abstract

We construct a delegation scheme for all polynomial time computations. Our scheme is
publicly verifiable and completely non-interactive in the common reference string (CRS) model.

Our scheme is based on an efficiently falsifiable decisional assumption on groups with bilin-
ear maps. Prior to this work, publicly verifiable non-interactive delegation schemes were only
known under knowledge assumptions (or in the Random Oracle model) or under non-standard
assumptions related to obfuscation or multilinear maps.

We obtain our result in two steps. First, we construct a scheme with a long CRS (polynomial
in the running time of the computation) by following the blueprint of Paneth and Rothblum
(TCC 2017). Then we bootstrap this scheme to obtain a short CRS. Our bootstrapping theorem
exploits the fact that our scheme can securely delegate certain non-deterministic computations.
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1 Introduction

The theory of computation has been shaped by the study of proof systems that allow a powerful, yet un-
trusted prover, to convince a weak verifier of the validity of a computational statement. Examples include
NP proofs [Coo71, Kar72], single-prover and multi-prover interactive proofs [GMR88, BGKW88], probabilis-
tically checkable proofs [FGL+91, BFLS91, AS92, ALM+98], and zero-knowledge proofs [GMR88].

In this work we focus on the following setting motivated by the problem of securely outsourcing com-
putation. A verifier wishes to evaluate a program M (represented, for example, as a Turing machine) on
an input x but it is either not capable or not willing to spend the computational resources required to
evaluate M(x). Instead, the verifier delegates this computation to an untrusted prover that provides the
verifier with the output y = M(x) together with a proof Π convincing the verifier that the output is indeed
correct. Importantly, verifying this proof should be much easier than evaluating M(x). Additionally, the
resources required to generate the proof should not be much greater than the resources required to perform
the computation. In the literature, such systems are often referred to as doubly-efficient proofs or proofs for
delegating computation.

Classic results on interactive proofs give rise to interactive proof systems with very efficient verification
[Sha92, DFK+92, GKR08, Kil92]. However, in many settings, it is crucial that proofs are non-interactive
and consist of a single message from the prover to the verifier. It is known that, under standard complexity
theoretic assumptions, non-interactive delegation schemes require both computational assumptions and a
common reference string [Sha92, GH98]. The common reference string (CRS) is generated once and can
subsequently be used to generate and verify proofs. While for every CRS, there exist accepting proofs for
false statements, it should be computationally infeasible to find such proofs for an honestly generated CRS.

Another key property we often require is public verifiability: anyone should be able to verify the proof,
and no secret information, such as a trapdoor on the CRS, is needed for verification. Delegation schemes that
are both non-interactive and publicly verifiable are particularly useful in applications: they let us compute
short certificates of correctness for complex computations that can be easily verified by anyone at anytime.

In the literature, many delegation schemes have been proposed offering different tradeoffs between secu-
rity and functionality. These schemes can be roughly divided into three groups:

Schemes from non-standard assumptions. Extensive work, starting from the seminal work of Micali
[Mic94], and continuing with [Gro10, Lip12, DFH12, GGPR13, BCI+13, BCCT13, BCC+14], con-
structed publicly verifiable non-interactive delegation schemes that can prove even non-deterministic
computations. However, the soundness of these schemes is proven either in the Random Oracle
model [BR93] or based on non-standard hardness assumptions known as “knowledge assumptions”.1

Such assumptions have been criticized for being non-falsifiable (as in [Nao03]) and for yielding non-
explicit security reductions. We mention that some of these works form the basis of several efficient
implementations which are used in practice.

Other schemes (for deterministic computations) are known based on non-standard assumptions related
to obfuscation [CHJV15, KLW15, BGL+15, CH16, ACC+16, CCC+16] or to multilinear maps [PR17].

Designated verifier schemes. A line of works starting from [KRR13, KRR14] and continuing with [KP16,
BHK17, BKK+18] designed delegation schemes based on standard assumptions (such as computational
private-information retrieval). These schemes, however, are not publicly verifiable. The CRS is gen-
erated together with a secret verification key required to verify the proof. Moreover, the CRS is not
reusable: an adversary that is able to learn whether its proofs are accepted or not can eventually break
soundness.

Interactive schemes. In the interactive setting, we can achieve publicly verifiable schemes under standard
assumptions, and even unconditionally. For example, [GKR15] and [RRR16] give interactive delegation
schemes for bounded depth and bounded space computations with unconditional soundness. The work

1For example, the Knowledge-of-Exponent assumption [Dam92] asserts that any efficient adversary that is given
two random generators (g, h) and outputs (gz, hz) must also “know” the exponent z.
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of [Kil92] gives a four message protocol from collision-resistant hashing, and [PRV12] uses attribute-
based encryption to delegate low-depth circuits using two messages in addition to a (hard to compute)
CRS.

We therefore ask:

Do publicly verifiable non-interactive delegation schemes exist under standard assumptions?

1.1 Our Result

We construct a publicly verifiable non-interactive delegation scheme for all polynomial time deterministic
computations. Security is proven under a new decisional assumption on groups with bilinear pairings. This
assumption is efficiently falsifiable and holds in the generic group model. Our assumption is over a group G
of prime order p equipped with a bilinear map:

Assumption 1.1. For every α(κ) = O(log κ), given the following 3-by-α matrix of group elements:

(
gs
jti
)
i∈[0,2]
j∈[0,α]

=

 gs
0

gs
1

. . . gs
α

gs
0t gs

1t . . . gs
αt

gs
0t2 gs

1t2 . . . gs
αt2

 ,

for random g ∈ G and s ∈ Zp, it is computationally hard to distinguish between the case where t = s2α+1

and the case where t is a random independent element in Zp.

Under this assumption we construct a publicly verifiable delegation scheme for all polynomial time
deterministic computations. The soundness of this scheme is adaptive: it holds even when the adversary can
choose the computation as a function of the CRS.

Theorem 1.2 (Informal). For every constant ε > 0 and polynomial T = T (κ) there exists a publicly
verifiable non-interactive delegation scheme with adaptive soundness for any time-T Turing machine under
Assumption 1.1. The CRS and proof are of length T ε, the prover runs in time poly(T, κ), and the verification
run time is n · T ε where n is the input length.

We emphasize that Theorem 1.2 only relies on a polynomial hardness assumption. We note, however,
that in the soundness proof we reduce any attack on the delegation scheme with security parameter κ to an
attack on Assumption 1.1 with a much smaller (but still polynomially related) parameter κδ for a constant
δ that depends only on ε. More generally, we prove the following theorem.

Theorem 1.3 (Informal). For security parameter κ and every function T = T (κ) there exists a publicly
verifiable non-interactive delegation scheme with adaptive soundness for any time-T Turing machine under
the T -hardness of Assumption 1.1 . The CRS and proof are of length L = TO(1/ log2 logκ T ), the prover’s run
time is poly(T, κ), and the verifier’s run time is O(L) + n · poly(κ) where n is the input length.

By T -hardness of Assumption 1.1 we mean that the any adversary running in time TO(1) has distinguish-
ing advantage T−ω(1) and α = O(log T ). We derive Theorem 1.2 from Theorem 1.3 by setting κ = T δ for
a sufficiently small constant δ. By setting κ = polylog(T ) we get a protocol with CRS and proof of length
T 1/ log log T from sub-exponential hardness of Assumption 1.1.

Delegating non-deterministic computations. Beyond deterministic computation, previous work
show how to delegate several sub-classes of NP in the designated-verifier setting under standard assumptions.
The work of [BKK+18] give delegation for non-deterministic bounded-space computations, where the proof
length grows with the space, from sub-exponential private information retrieval (PIR). Priorly, the works of
[BHK17, BK18] give non-adaptive delegation for conjunctions and monotone formulas over NP statements,
where the proof length grows with the length of a single witness, from polynomially secure PIR.

We construct publicly verifiable non-interactive delegation scheme for the same sub-classes under As-
sumption 1.1 instead of PIR. Unlike in our scheme for deterministic computation, here we use a long CRS
(polynomial in the running time of the computation).
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A note on earlier versions. An earlier version of this work [KPY18] constructed a publicly verifiable
non-interactive delegation scheme with a long CRS for bounded depth computations, under a constant-size
search assumption over groups with bilinear maps. The current version strengthens the previous one in two
ways: first we show how to delegate arbitrary deterministic computations (as well as some non-deterministic
ones), and second, our delegation scheme uses a short CRS. We rely on a decisional assumption over groups
with bilinear maps.

Concurrent work. In a recent work, Canetti et al. [CCH+18] show a publicly verifiable non-interactive
delegation scheme for log-space uniform NC computations, based on fully homomorphic encryption with
very strong security, that they call optimal security. In contrast, our scheme supports all polynomial-time
computation and security is based on a polynomial hardness assumption. One advantage of their scheme is
that the CRS is just a random string, while in our scheme the CRS has more structure.

2 Technical Overview

Our delegation construction follows a template known as bootstrapping [Val08, BCCT13]. The idea is to
first construct a delegation scheme where the length of the CRS is polynomial in the running time of the
computation but verification is efficient (requiring only a small part of the CRS). This scheme is then
bootstrapped to obtain a delegation scheme with a short CRS.

The work of [BCCT13] introduced a bootstrapping technique for strong proof systems known as SNARKs.
A SNARK is a publicly verifiable succinct non-interactive argument of knowledge for proving NP statements.
Succinctness means that the proof length and verification time are much smaller than the NP witness.
SNARKs are only known under so-called knowledge assumptions and constructing them under falsifiable
assumptions is subject to black-box impossibility results [GW11]. In contrast, our focus in this work is
on constructing delegation schemes that only argue about computations in P, from falsifiable assumptions.
Therefore, we follow a different route from the one in [BCCT13].

Our construction relies on a relaxation of SNARKs that we call quasi-arguments. Instead of the standard
argument of knowledge requirement, our quasi-arguments only satisfy a weak soundness requirement. Using
this notion, we prove Theorem 1.2 in two steps:

1. We construct a publicly verifiable succinct non-interactive quasi-argument for NP with a long CRS
under Assumption 1.1.

2. We show how to bootstrap any such quasi-argument into a publicly verifiable delegation scheme for
P with full soundness and a short CRS.

We start by describing the notion of quasi-arguments in Section 2.1. In Section 2.2 we give more details on
the bootstrapping step, and in Section 2.3 we overview the quasi-argument construction.

2.1 Quasi-arguments.

Relaxing the notion of arguments of knowledge, in quasi-arguments the standard knowledge extraction
requirement is replaced by a weaker requirement that we call no-signaling extraction. This notion was
implicit in the work of [KRR14] and was formalized by [PR17] under the name local soundness.

The notion of no-signaling extraction is somewhat technical and it is designed to capture the soundness
properties we are able to achieve under falsifiable assumptions. We therefore view this notion, not as a goal,
but as a stepping stone towards full soundness. We start by recalling the motivation behind this relaxation.
For simplicity, we focus first on the non-adaptive setting, and then discuss the adaptive definition.

A proof system for NP is an argument of knowledge if for every computationally bounded (possibly
cheating) prover, there exists a computationally bounded extractor E such that if the prover convinces the
verifier to accept a statement x with noticeable probability, then E extracts a witness w for the validity of x.
In a succinct non-interactive argument, however, extracting a witness is extremely challenging. Intuitively,
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since the prover’s message is much shorter than the witness, we cannot hope to extract a witness from a
single proof. The extractor may try to feed the prover with multiple CRS’s, and reconstruct a witness from
the prover’s responses. However, the prover may compute each proof using a different witness.2 Another
approach is to extract a witness directly from the code of the prover. In all existing solutions, such non-
black-box extraction is enabled by non-falsifiable knowledge assumptions.

In the weaker notion of no-signaling extraction we only require that there exists a local extractor L that,
roughly speaking, extracts small parts of a witness. In more detail, the local extractor L takes as input a
set S ⊆ [|w|] of size at most K, and outputs a partial witness wS : S → {0, 1} mapping every position in S
to a bit. The bound K on the size of S is called the locality parameter and it is typically set to be smaller
than the proof length. We allow L to be probabilistic and produce different partial witnesses in different
executions. Importantly, these partial witnesses need not be consistent with each other. We continue to
describe the properties the extractor L must satisfy.

Local consistency. It is natural to require that L(S) always outputs a partial witness wS that is con-
sistent with some global witness. That is, there exists a valid witness w such that wS = w|S . However,
this turns out to be a very strong requirement that we will not be able to satisfy. Instead we require that,
intuitively, the partial witness wS satisfies all the local constraints defined by the statement x. To make this
concrete we first need to fix a particular NP-complete language. We use the language defined by a 3CNF
formula ϕ (or rather an ensemble of formulas, one for each input length) such that an instance x is in the
language if and only if the formula ϕx = ϕ(x, ·) is satisfiable. Note that in a succinct quasi-argument for ϕ,
the verification time is proportional to |x| but much smaller than |ϕ|.

Given a subset S of the variables of ϕx, the local extractor L(S) outputs a partial witness wS for x which
is a partial assignment to the variables in S. We require that a partial assignment wS sampled by L(S)
locally satisfies ϕx with all but negligible probability. That is, for every clause in ϕx, if S contains all three
variables of the clause, then the assignment to these variables satisfies the clause.

No-signaling. A partial witness wS may locally satisfy ϕx but still be inconsistent with any full witness.
In fact, if the locality parameter K is significantly smaller than |ϕ|, it may be easy to locally satisfy any subset
of at most K variables, even when the formula ϕx is unsatisfiable. As a remedy, we put an additional no-
signaling requirement on the local extractor.3 Let U and V be disjoint sets of variables such that S = U ∪V
is of size at most K and let wS be a partial witness sampled from L(S). The values wS assigns to variables
in U may depend on the entire input set S (including on the variables in V ) as well as on L’s random coins.
However, no-signaling requires that the values wS assigns to the variables of U give almost no information
about the input set V . That is, the partial assignment wS restricted to variables in U is computationally
indistinguishable from a partial assignment wU sampled from L(U).

Adaptive no-signaling extraction. We also consider the adaptive setting where the prover can
choose the instance x adaptively based on the CRS. In this setting we let the no-signaling extractor L
output, in addition to a local witness, the instance x. We require that if the prover convinces the verifier to
accept with non-negligible probability, then, for any set S, the statement sampled by L(S) is computationally
indistinguishable from the statement sampled by the prover, conditioned on it producing an accepting proof.

The no-signaling condition must also be modified accordingly: for every disjoint sets U, V such that
S = U ∪ V is of size at most K, and for an instance x and a partial assignment wS sampled from L(S),
we require that the instance x and the values wS assigned to the variables of U together give almost no
information about the set V .

2In the adaptive setting, the prover may even choose a different statement for each CRS.
3No-signaling strategies were first studied in physics in the context of Bell inequalities by Khalfin and Tsirelson

[KT85] and Rastall [Ras85]. More recently, they were extensively studied in the context of multi-prover interactive
proofs (see [KRR14] and references therein). Similarly to the work of [BHK17] the no-signaling notion used in this
work is a computational one.
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From no-signaling extraction to soundness. It is easy to see that any argument of knowledge
is also a quasi-argument. In the converse direction, however, a no-signaling extractor with locality K <<
|ϕ| is unlikely to imply the standard notion of extraction or even soundness for a general formula ϕ (see
discussion in [KRR14]). Still, it turns out that for some formulas such an implication does hold. For
example, [KRR14, PR17, BHK17] show that for every deterministic time-T Turing machineM, there exists
a formula ϕ of size poly(T ) such that M accepts x if and only if ϕx is satisfiable, and moreover, ϕx is
satisfiable if and only if there exists a no-signaling extractor L for ϕx with locality K = polylog(T ). The
work of [KRR14, BHK17] used this fact to turn a succinct non-interactive quasi-argument for NP into a
designated-verifier delegation for P with adaptive soundness. Beyond deterministic computations, quasi-
arguments were used to construct designated-verifier delegation schemes for interesting sub-classes of NP
[KP15, BHK17, BKK+18, BK18]. Following the same blueprint, the work of [PR17] constructs a publicly
verifiable quasi-argument for NP from multilinear maps and turns it into a publicly verifiable delegation
scheme.

Outline. We prove our main result given by Theorem 1.2 in two steps. First we construct publicly
verifiable succinct non-interactive adaptive quasi-argument for NP with a long CRS.

Theorem 2.1 (Informal). For security parameter κ, 3CNF formula ϕ of polynomial size T = T (κ) and
locality parameter K = K(κ) ≤ T (κ) there exists a publicly verifiable succinct non-interactive quasi-argument
for ϕ with adaptive no-signaling extraction under Assumption 1.1. The CRS is of length poly(κ,K, T ) and
the proof is of length L = poly(κ,K). The verification time is O(L) +n ·poly(κ) where n is the input length.

In combination with previous work [KP15, BHK17, BKK+18, BK18], Theorem 2.1 (or, in some case, a
sub-exponential version of it) already gives delegation for deterministic Turing machines, RAM machines and
several sub-classes of NP computations. This is done by replacing the designated-verifier quasi-argument
used in these previous work with our publicly verifiable one.

Going beyond a long CRS, our second step shows how to bootstrap any such quasi-argument to a publicly
verifiable non-interactive delegation scheme for P with a short CRS.

Theorem 2.2 (Informal). Assuming a collision-resistant hash family and a quasi-argument for NP with a
long CRS as in Theorem 2.1, there exists a delegation scheme for P with a short CRS as in Theorem 1.2.

Since Assumption 1.1 already implies collision-resistant hashing, Theorem 1.2 follows from these two
theorems. We elaborate on the proofs of Theorems 2.1 and 2.2 in Sections 2.3 and 2.2 respectively.

2.2 The Bootstrapping Theorem.

To explain our bootstrapping technique, in this section we focus on a simplified version of Theorem 2.2 that
only gives delegation for low-space computations. We say that a Turing machine is low-space if the size
of its input n, and the size of its work tapes are bounded by poly(κ) where κ is the security parameter of
the delegation scheme. In particular, in such a delegation scheme, the verification time exceeds the space.
In Section 2.2.3 we explain how to extend this construction to support arbitrary computations based on
techniques for delegating RAM computations [KP16, BHK17].

In what follows, we give an overview of the proof of Theorem 2.2 for polynomial-time low-space compu-
tations. The proof is by induction. In the base of the induction we construct a delegation scheme with a
long CRS. In the inductive step we turn a delegation scheme into a new delegation scheme with a shorter
CRS. Both steps rely on the quasi-argument for NP given in Theorem 2.1.

Theorem 2.3 (Base case, informal). Assuming a quasi-argument for NP with a long CRS as in Theorem 2.1,
there exists a publicly verifiable non-interactive delegation scheme for time-T low-space Turing machines with
adaptive soundness, CRS of length poly(κ, T ), and verification time poly(κ).

We give an overview of the proof of Theorem 2.3 in Section 2.2.1. In the inductive step, roughly speaking,
we can shrink the CRS by a factor B of our choice, collecting only an additive poly(B) term. Each step also
increases the size of the proof polynomially.
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Theorem 2.4 (Inductive step, informal). Assume there exists a quasi-argument for NP with a long CRS
as in Theorem 2.1, and a publicly verifiable non-interactive delegation scheme for time-T low-space Turing
machines with adaptive soundness, CRS of length L1(κ, T ), and verification time L2(κ). Then for every
polynomial B = B(κ) there exists a publicly verifiable non-interactive delegation scheme for time-T low-
space Turing machines with adaptive soundness, CRS of length L′1(κ, T ), and verification time L′2(κ) for:

L′1(κ, T ) = L1(κ, T/B) + poly(B,L2(κ)) , L′2(κ) = poly(L2(κ)) .

For any d, starting with the base delegation scheme in Theorem 2.3, after d applications of Theorem 2.4
with B = T 1/d we get a publicly verifiable non-interactive delegation scheme for time-T Turing machine with

adaptive soundness, CRS of length TO(1/d) · κ2O(d)

, and verification time κ2O(d)

. Setting d that balances the
CRS and proof lengths we get a delegation scheme with parameters as in the statement of Theorem 1.3 (for a
polynomial-time low-space computations). We give an overview of the proof of Theorem 2.4 in Section 2.2.1.

2.2.1 The base case.

We start with the base of the induction given in Theorem 2.3. This step follows techniques introduced in
previous works [KRR14, PR17, BHK17]. We describe these techniques in detail since we use them also in
the inductive step.

We construct a publicly verifiable non-interactive delegation scheme for a time-T low-space Turing ma-
chineM with adaptive soundness, CRS of length poly(κ, T ), and verification time poly(κ). The construction
relies on a quasi-argument for NP with a long CRS as in Theorem 2.1. The first step is to translateM into
a 3CNF formula ϕ of size poly(T ) such that:

1. IfM accepts an input x ∈ {0, 1}n then ϕx = ϕ(x, ·) has a satisfying assignment that can be computed
from x in time poly(T ).

2. For any computationally bounded adaptive no-signaling extractor L for ϕ with locality parameter
K = O(κ) and any set S of at most K variables, the probability that L(S) samples a rejecting input x
is negligible.

We defer the description of the formula ϕ with the above two required properties to later, and first show
how such ϕ is used to construct a delegation scheme for M.

The delegation scheme. Our delegation scheme for M simply invokes the quasi-argument for ϕ. In
more detail, we generate a CRS for the quasi-argument of length poly(κ,K, |ϕ|) = poly(κ, T ). The prover,
given an input x of length poly(κ), computes a satisfying assignment for ϕx, follows the strategy of the quasi-
argument’s prover and outputs a proof of length poly(κ,K) = poly(κ). The verifier follows the strategy of
the quasi-argument’s verifier running in time poly(κ).

For soundness, consider a computationally bounded adaptive prover for the delegation scheme that
convinces the verifier to accept with non-negligible probability. The quasi-argument guarantees a computa-
tionally bounded adaptive no-signaling extractor L such that for every set S of at most K variables, L(S)
samples an input x that is computationally indistinguishable from the prover’s input, conditioned on the
prover producing an accepting proof. By Property 2 of ϕ, the probability L(S) samples a rejecting input x
is negligible. Since we can decide if x is accepting or rejecting efficiently (in time poly(T )), it follows that
the prover can only produce an accepting proof for a rejecting x with negligible probability.

The formula ϕ. The construction of ϕ follows the standard Cook-Levin reduction. For every i ∈ [T ], ϕ
contains a set Si of variables that encode the state ofM and all its tapes after exactly i steps. The formula
ϕ is satisfied if and only if:

1. The initial state and tapes encoded by S1 are consistent with the input x.

2. The state and tapes encoded by Si are consistent with these encoded by Si+1.
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3. The final state encoded by ST is accepting.

It is easy to verify that ϕ is of size poly(T ) and if M accepts x we can compute from x in time poly(T )
a satisfying assignment wx for ϕx. We refer to wx as the correct assignment. Note that even for rejecting
inputs we can naturally define the correct assignment wx that satisfies all the clauses of ϕx except for the
clauses checking that the final state encoded by ST is accepting.

It remains to show that ϕ satisfies Property 2: for any adaptive no-signaling extractor L for ϕ with a
sufficiently large locality parameter K = poly(κ) and any set S, the probability that L(S) samples a rejecting
input is negligible. Very roughly, the high-level proof strategy is as follows. For every i, use L to sample an
input x and a partial assignment wi to the variables in Si ∪ Si+1. Then argue that for each i, the partial
assignment wi must be consistent with the correct assignment wx (with all but negligible probability). This
is proved by induction on i. For i = 1 this follows directly from the local consistency property of L. For
i > 1, local consistency implies that if the partial assignment wi is correct on Si then it must also be correct
on Si+1. Then, using the no-signaling property of L, one can argue that the partial assignment wi+1 must
also be correct on Si+1. Finally, if the last partial assignment to the last set ST is correct then the input
x must be accepting. Throughout this argument, when invoking no-signaling, we crucially rely on the fact
that given x and a partial assignment wS , one can efficiently decide if wS is correct. This holds because ϕ
encodes a deterministic computation and, therefore, the correct assignment wx is efficiently computable.

Arguing Property 2 in detail. For the sake of completeness, we give a detailed overview of the proof
that ϕ satisfies Property 2 sketched above. To skip these details the reader can move directly to Section 2.2.2.

Fix an adaptive no-signaling extractor L for ϕ with locality parameter K = poly(κ) such that K ≥
|Si ∪ Si+1| for all i. For every set S of at most K variables we need to show that L(S) samples a rejecting
input x with negligible probability. First, we observe that by no-signaling, for any two sets S and S′ the
inputs sampled by L(S) and by L(S′) are computationally indistinguishable (they are both indistinguishable
from the input sampled by L(∅)). Therefore, since we can efficiently decide if an input x is accepting or
rejecting, it is sufficient to show that for some set S, L(S) samples a rejecting input only with negligible
probability.

For every i ∈ [T ] consider an input xi and a partial assignment wi : Si → {0, 1} sampled by L(Si). We
say that the partial assignment wi is correct if it encodes the same state and tapes as the correct assignment
wxi on Si. We will argue that for every i ∈ [T ], wi is correct with all but negligible probability. Before
proving this fact we use it to conclude the argument.

By definition, the final state encoded by the correct assignment wxT on ST is accepting if and only if xT
is accepting. Additionally, if the partial assignment wT locally satisfies ϕxT then it must encode an accepting
final state. Therefore, if wT is both correct and locally satisfies ϕxT then xT must be accepting. By the local
consistency of L, wT must locally satisfy ϕxT with all but negligible probability. Therefore, if L(ST ) samples
wT that is correct with all but negligible probability then it can only sample a rejecting xT with negligible
probability.

It remains to show that wi is correct with all but negligible probability. We argue this inductively. For
i = 1, L(S1) outputs a partial assignment w1 that locally satisfies ϕx1 with all but negligible probability.
Since ϕx1 checks consistency of the initial state and x1, it follows that w1 is also correct with the same
probability.4 For i < T , assuming wi is correct with all but negligible probability, we need to show that
the same holds for wi+1. Consider an input x and a partial assignment w : Si ∪ Si+1 → {0, 1} sampled by
L(Si∪Si+1). For j ∈ {i, i+ 1} we say that w is j-correct if the partial assignment w restricted to Sj encodes
the correct state and tapes as the correct assignment wx on Sj . First, we argue that the probability that
w is j-correct and the probability that wj is correct are negligibly close. This follows from the no-signaling
property of L and from the fact that given an input x′ ∈ {x, xj} we can efficiently compute the correct
assignment wx′ and decide if a given partial assignment to Sj encodes the same state and tapes. It remains

4Here we assume that the clauses checking the consistency of the initial state only involve variables in S1. In what
follows we make similar assumptions on ϕ’s structure.
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to argue that if w is i-correct then it is also (i + 1)-correct with all but negligible probability. This holds
since w locally satisfies ϕx with all but negligible probability and since ϕx checks consistency of Si and Si+1.

2.2.2 The inductive step.

We continue to describe the inductive step given in Theorem 2.4. In the inductive step we compose the
quasi-argument for NP with a delegation scheme to get a new delegation scheme with a shorter CRS.

We are given a publicly verifiable non-interactive delegation scheme for any time-T low-space Turing
machine with adaptive soundness, CRS of length L1(κ, T ), and verification time L2(κ). We refer to this
delegation scheme as the original delegation scheme. We transform this original scheme into a new delegation
scheme with CRS of length L′1(κ, T ) and verification time L′2(κ), where:

L′1(κ, T ) = L1(κ, T/B) + poly(B,L2(κ)) , L′2(κ) = poly(L2(κ)) ,

for a parameter B of our choice. This construction again relies on a quasi-argument for NP with a long
CRS as in Theorem 2.1.

The main idea is as follows. Recall that in the base case, we constructed a delegation scheme for a
time-T low-space machineM by applying a quasi-argument to the formula ϕ. The variables of ϕ encode all
the intermediate configurations of M (each configuration contains the machine’s state and tapes) and the
formula checks that every two consecutive configurations are consistent (as well as the validity of the first
and last configurations). The CRS grows with the size of ϕ which is poly(T ). The verification time grows
with the locality parameter K of the quasi-argument. To get soundness we need to set K proportional to
the computation space, and therefore the the verification is poly(κ).

To construct the new delegation scheme with a shorter CRS, we consider a new formula φ. The variables
of φ only encode B of M’s configurations at steps i · T/B for i ∈ [B]. Naively checking the consistency of
two configuration that are T/B steps apart would require time poly(T/B) and result in a formula φ that
is again of size poly(T ). Instead, for each i ∈ [B], φ also contains variables encoding a proof, under the
original delegation scheme, asserting that M indeed transitions between the configurations at steps i · T/B
and (i+ 1) · T/B. The formula simply checks that all the proofs are accepting. To this end, the CRS of the
new scheme includes a CRS of the original scheme for (T/B)-time computations and we hardwire into φ the
part of this CRS required for verification.

Overall, the size of the formula φ is O(B · L2(κ)). Our new CRS contains both the CRS of the quasi-
argument which is of length poly(|φ|) = poly(B · L2(κ)) and the CRS of the original delegation scheme
for (T/B)-time computations which is of length L1(κ, T/B). To get soundness we need to set the locality
parameter K to be O(L2(κ)) so it is higher than the number of variables required to encode two configurations
ofM as well as the original delegation proof that connects them. This results in a proof of length poly(L2(κ)).

Soundness of the new scheme. The soundness proof for the new delegation scheme is very similar to
the proof in the base case. The only modification is in proving that φ satisfies Property 2. Recall that in the
proof of the base case we used the no-signaling extractor L to sample an input x and partial assignment w
to variables describing two consecutive configurations. Since ϕ checks the consistency of the configurations,
it follows that if w locally satisfies ϕx and the value assigned to the first configuration is correct, then the
the value assignment to the next configuration must also be correct.

In the analysis of the new construction we consider a partial assignment w to the variables describing
the two configurations in steps i ·T/B and (i+1) ·T/B as well as the original delegation proof asserting that
M indeed transitions between these two configurations. Since ϕ checks that the proof is accepting, it follows
that if w locally satisfies φ then it must contain an accepting proof. Note that since the original delegation
scheme is only computationally sound, the value assigned to the first configuration may be correct while
the value assignment to the next configuration is incorrect, and yet the proof is accepting. However, if this
happens with non-negligible probability, we can turn the computationally bounded no-signaling extractor L
into a prover breaking the adaptive soundness of the original delegation scheme.
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2.2.3 Beyond low-space computations.

To delegate computations with arbitrary large space we rely on techniques from [KP16, BHK17] introduced
for delegating RAM computations. The basic idea is to emulate a high-space machineM via a RAM machine
R that has a small internal memory, and access to a large but untrusted external memory. To ensure the
integrity of the external memory we use the classic notion of online memory checking based on hash trees
[BEG+94]. Roughly, at every step, the external memory holds a hash tree of M’s tapes, and its internal
memory R savesM’s state (including the positions of its heads) as well as the hash tree root, which is of size
O(κ). When M reads or writes, R accesses the external memory and obtains the values read, the updated
root after writes, and a proof of size poly(κ) authenticating these values against the current root.

Based on this idea, we strengthen Theorem 2.3 and Theorem 2.4 and get delegation for RAM compu-
tations instead of low-space computations. This immediately implies delegation for any large-space Turing
machine as well. In a delegation scheme for RAM computations, the prover can convince the verifier that a
RAM machineR transitions from configuration x (includingR’s state and external memory) to configuration
y in T steps. The verifier only needs to hold a short hash or a digest of each configuration (hx, hy).

It is natural to define adaptive soundness by requiring that a computationally bounded prover given
the CRS cannot produce an accepting proof for a false statement (hx, hy) with non-negligible probability.
However, this notion is meaningless since the digests hx, hy may correspond to exponentially many different
configurations. Instead we require that such a prover cannot produce a configuration x, a digest h, and a
proof such that with non-negligible probability:

• The verifier accepts the proof for the statement (hx, h) where hx is the digest of x.

• However, h is not the digest of the correct configuration y that R reaches from x within T steps.

Next we explain how to modify the proof of Theorem 2.3 (the induction’s base) to get a delegation scheme
for RAM computations with a long CRS. The proof of Theorem 2.4 is modified similarly. We consider a
different formula ϕ whose variables encode the digests of R’s intermediate configurations. Now, ϕ cannot
directly check that two consecutive digests are consistent. Therefore, we add to ϕ variables encoding a
hash-tree based proof authenticating the new digest under the old one. This is similar to the formula φ we
used in the inductive step, except that here we use a hash-tree proof instead of a delegation proof to verify
the consistency between each two consecutive steps.

We also need to augment the soundness proof as follows. Recall that in order to prove that ϕ satisfies
Property 2, we crucially relied on the fact that we can efficiently compute the correct assignment for ϕ given
only the input x. Now, the input consists only of the digests (hx, hy) and cannot be used to compute the
correct assignment. To overcome this, we rely on the fact that in order to break soundness a cheating prover
must produce, in addition to the digests (hx, hy), also the full initial configuration x. To make use of this
fact, we extend our notion of quasi-argument to account for auxiliary input: if the adaptive prover produces
an input (hx, hy) together with some auxiliary input x (in our case the full initial configuration), then the
no-signaling extractor samples both the input and auxiliary input (our quasi-argument satisfies this notion).
In the proof, we can use the auxiliary input x to efficiently compute the correct assignment for ϕ.

On previous notions of RAM delegation. We note that our definition of RAM delegation is
incomparable to that in [KP16, BHK17]. Previous works considered a weaker notion of adaptivity, but
achieved a stronger notion of soundness for malicious digests. In more detail, in previous works, to break
soundness, the cheating prover could produce an arbitrary initial digest h without producing the actual
initial configuration x (a configuration with digest h may not even exist). The cheating prover only needs
to produce accepting proofs for two statement (h, h′) and (h, h′′) where h′ 6= h′′. In contrast, in our notion
of soundness for RAM delegation, the prover must output the initial configuration x. Since we use RAM
delegation to get delegation for high-space computations, the adaptive cheating prover we consider anyways
produces the computations’s input x used as the initial configuration of the RAM computation.

As for adaptivity, in previous works, the initial digest must be fixed independently of the CRS, while we
consider fully adaptive cheating provers. We note that we crucially rely on full adaptivity in the proof of
Theorem 2.4.
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2.3 The Quasi-argument Construction.

In this section we overview the proof of Theorem 2.1 constructing a publicly verifiable succinct non-interactive
quasi-argument for NP with adaptive soundness and a long CRS under Assumption 1.1. Our construction
follows the blueprint introduced in the work of Paneth and Rothblum (PR) [PR17] which gives a publicly
verifiable quasi-argument with a short CRS based on multilinear maps. We show how to instantiate their
blueprint based only on bilinear maps. The rest of this section is organized as follows. In Section 2.3.1 we
describe the high-level idea of replacing multilinear with bilinear maps without going into the details of the
PR quasi-argument. In Section 2.3.2 we describe the PR quasi-argument in detail and in Section 2.3.3 we
provide more details on our quasi-argument from bilinear maps.

2.3.1 Replacing multilinear with bilinear maps.

The quasi-argument of PR is based on multilinear maps. Without going into the details of their construction,
we explain how multilinear maps are used in their construction and give the high level idea of replacing them
with bilinear maps at the price a longer CRS.

Very roughly, a degree-δ multilinear map lets us encode elements from a large field F such that we can
homomorphically evaluate any polynomial of degree at most δ over these encodings, and test if the result
encodes zero or not. However, we assume that evaluating computations of degree higher than δ is hard. We
can think of bilinear maps as multilinear maps with degree 2. In the PR quasi-argument the CRS and the
proof consists of elements encoded via a degree-δ multilinear map for δ > 2. We denote the field elements
encoded in the CRS and in the proof by {αi} and {βj} respectively. The prover homomorphically computes
each βj as a polynomial in the α’s and the verifier evaluates polynomials in the α’s and β’s together. Finally,
the verifier tests if the result encodes zero or not.

Our idea is to replace the multilinear encodings with bilinear encodings. To allow for degree-δ homomor-
phic computations we add to the CRS the bilinear encodings of all possible monomials in the α’s of degree
at most δ. Similarly, we add to the proof the bilinear encoding of all possible monomials in the β’s of degree
at most δ. Now, the prover can evaluate any degree-δ polynomial in the α’s by evaluating a linear function
over the monomials encoded in the CRS. To evaluate a degree-δ polynomial in the α’s and β’s together,
the verifier uses to bilinear map to evaluate a quadratic function over the α-monomials in CRS and the
β-monomials in the proof.

We note that if we were to follow this approach naively, then the CRS and proof length in our quasi-
argument would become super-polynomial. Instead, we carefully analyze the PR quasi-argument and only
add the monomials that the prover and verifier actually use. This leads to a quasi-argument with CRS and
proof length as in Theorem 2.1. In terms of security, we augment the analysis of PR and show how to reduce
the security of our quasi-argument to Assumption 1.1. The analysis of the CRS and proof length of our
quasi-argument, as well as the reduction to Assumption 1.1, are outlined in Section 2.3.3. However, we must
first describe the PR quasi-argument in more detail.

2.3.2 The PR quasi-argument.

In this section we give a detailed overview of the quasi-argument constructed in PR. We start by describing
works in the designated-verifier setting that led up to this quasi-argument.

Designated-verifier quasi-arguments. Implicit in the work of Kalai, Raz and Rothblum [KRR13]
is a construction of a designated-verifier quasi-argument. This construction can be based on any computa-
tional private information retrieval scheme, however, for simplicity, we describe it using fully homomorphic
encryption (FHE).

We start with the following naive attempt: for a 3CNF formula ϕ and locality parameter K, the CRS
contains a random set of K variables of ϕ, where each variable name is encrypted under the FHE using a
different key. Given an input x and a satisfying assignment w to ϕx, the prover homomorphically evaluates
for every encrypted variable, the bit w assigns to it, and sends the encrypted bits to the verifier. Using the
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verifier’s secret state that contains all of the secret keys, it decrypts and obtains a partial assignment to the
K variables encrypted in the CRS. The verifier accepts if this partial assignment locally satisfies ϕx.5

We attempt to demonstrate a no-signaling extractor L for this protocol (for simplicity, we focus on the
non-adaptive setting). Given a set S of at most K variables, L generates a CRS by encrypting the variables
in S, runs the prover with the CRS, obtains an encrypted partial assignment, and outputs the decrypted
assignment. The fact that L satisfies the no-signaling condition follows, almost by definition, from the
semantic security of the FHE. Intuitively, this is because the assignment to a variable encrypted under one
key cannot signal information about the variable encrypted under another key. However, L may not satisfy
local consistency. By definition, any accepted proof decrypts to a partial assignment that locally satisfies ϕx.
However, even if the prover convinces the verifier to accept with high probability for a completely random
CRS, it may not do so for a CRS encrypting a specific set S. For example, if the prover starts from a
satisfying assignment and flips the value of one variable, it will only produce rejecting proofs for CRS’s that
encrypt the flipped variable.

One proposal to fix this naive protocol is based on an idea from [BMW99]. Roughly speaking, the idea
is to encode ϕ with a probabilistically checkable proof (PCP) and encrypt random PCP queries in the CRS.
Given a set S, the extractor L generates a CRS by encrypting random queries from which a local assignment
to S can be locally decoded. The intuition is that, since each query is encrypted under a different key, the
prover must answer each query independently. Then, using the soundness of the PCP, deduce that if the
prover’s answers to random queries are accepting, then L should decode a locally satisfying assignment for
any set S. While this intuition turns out to be misleading [DLN+04], the work of [KRR13] demonstrated a
particular PCP for which the resulting protocol is in fact a quasi-argument.

Publicly verifiable quasi-arguments. The work of PR proposed another approach to constructing
quasi-arguments in the publicly verifiable setting. Consider the naive protocol described above (without the
PCP) and suppose there was a public verification procedure, that decides if to accept the prover’s answer
without using the secret keys. That is, suppose we could efficiently test if the prover’s encrypted partial
assignment locally satisfies ϕx or not. Yet, at the same time, semantic security of the CRS ciphertexts
still holds. PR observe that if such a public verification procedure exists, then we can prove that the naive
protocol is in fact a quasi-argument even without using PCP encoding of ϕ.

The idea is to use the public verification procedure to construct a no-signaling extractor L by modifying
the flawed extractor described above. Given a set S of at most K variables, L samples a CRS by encrypting
the variables in S, runs the prover with the CRS, and obtains an encrypted partial assignment. Now, instead
of decrypting, the extractor uses the public verification procedure to check prover’s answer. If the proof is
rejected, L repeats the above steps with fresh randomness until an accepting proof is found. Only then L
decrypts and outputs the partial assignment.

To show that L is indeed a no-signaling extractor, consider a prover that convinces the verifier to accept
with non-negligible probability for an honestly generated CRS. Since verification is public, it follows from
semantic security that the same holds for a CRS encrypting any set S. Therefore, L outputs a partial
assignment that locally satisfies ϕx in expected polynomial time. Moreover, since the added verification step
does not use the secret keys, the no-signaling property of L follows directly from the semantic security of the
encryption.

To get public verification, PR modify the naive protocol and rely on a stronger notion of zero-testable
homomorphic encryption (ZTHE) which they construct from multilinear maps. In what follows, we describe
their approach.

Towards public verification. - Given a proof that consists of an encrypted partial assignment w, our
goal is to publicly test if w locally satisfies ϕx without the secret keys. The main idea is to rely on the strong
features of the ZTHE, to verify the proof in two steps:

5Here, we assume for simplicity that the verifier holds an implicit representation of ϕ that allows it to efficiently
check if ϕx is locally satisfied. Our full protocol does not rely on this assumption and supports general formulas.
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1. Test if w locally satisfies ϕx homomorphically, under the encryption.

2. Given the encrypted result, recover the result in the clear.

The first task requires a multi-key homomorphic encryption. Recall that every bit of w in the prover’s
answer is encrypted under a different secret key. Therefore, in order to homomorphically test if w locally
satisfies ϕx we must compute on ciphertexts encrypted under different keys. Since ϕ is a 3CNF, it is sufficient
to verify that w restricted to any three of its variables locally satisfies ϕx. Therefore, we only need a multi-key
homomorphic encryption for three keys.

For the second task, we need a procedure that given the encrypted result (but not the secret key) tests if it
encrypts zero or not. Since, in general, such a zero-test would render the encryption completely insecure, we
compromise for a weak zero-test that can only recognize a particular subset of “trivial” ciphertexts encrypting
zero. In more detail, the weak zero-test should satisfy the following completeness and soundness properties.
Soundness says that the test fails on any ciphertext that does not decrypt to zero, even if the ciphertext is
not generated honestly. Completeness says that the test passes on any trivial zero chipertext. A ciphertext
is said to be trivial zero if it is computed from an honestly generated ciphertext c by homomorphically
evaluating a circuit A that computes the all-zero function as an arithmetic circuit over Z . We emphasize
that the test can either pass or fail on ciphertexts that decrypt to zero but are not a trivial zero ciphertext.
Note that such a weak zero test does not contradict semantic security since, intuitively, the test outcome
only depends on the evaluated computation A and not on what is encrypted in c.

We note that in defining trivial zeros, we let A be identically zero over Z and not, for instance, over
the binary field. Otherwise, we could use the ZTHE to efficiently decide satisfiability, as follows: given a
boolean circuit A : {0, 1}n → {0, 1}, generate a ciphertext c encrypting 0n, homomorphically evaluate A on
c and zero-test the result. If A is not satisfiable, that is, if A computes the all zero function over the binary
field, then the zero test is guaranteed to pass. Otherwise, there exists x such that A(x) 6= 0. If c was an
encryption of x, by the soundness property, the zero-test would have failed. Therefore, the test must also
fail when c is encrypting 0n, since otherwise we could have used this test to break semantic security.

Quasi-arguments from ZTHE. Putting the pieces together, we describe the publicly verifiable quasi-
argument of PR based on a 3-key homomorphic encryption scheme with a weak zero test. We start with a
oversimplified version. Given a 3CNF formula ϕ over 2m variables, we index its variables by m-bit strings.
For locality parameter K, the CRS contains K variables z1, . . . , zK ∈ {0, 1}m, each encrypted under the
ZTHE using a different key. Given an input x and an assignment w : {0, 1}m → {0, 1} satisfying ϕx, the
prover homomorphically evaluates the value bi = w(zi) assigned to each zi, under the encryption, and sends
the encrypted bits to the verifier. For every three variables zi, zj , zk, the verifier homomorphically evaluates
the consistency test Vx(zi, zj , zk, bi, bj , bk) that outputs zero if and only if assigning the variables zi, zj , zk
with the values bi, bj , bk locally satisfies ϕx. The verifier obtains the evaluated ciphertext ci,j,k encrypting
the output of Vx and zero-tests it. If the zero test passes for every triplet of CRS variables, then the verifier
accepts.

The fact that every accepted proof encrypts a partial assignment that locally satisfies ϕx follows directly
from the soundness of the zero-test. As explained above, this fact together with the encryption’s semantic
security implies a no-signaling extractor. However, there are still two issues with the proposed construction.
First, is does not satisfy completeness. The issue is that, when interacting with the honest prover, the verifier
obtains ciphertexts ci,j,k that decrypt to zero, but are not trivial zeros and therefore they may not pass the
zero test. The second issue is the efficiency of the verifier. To check the proof, the verifier homomorphically
evaluates the consistency test Vx. For a general formula ϕ this may require time poly(|ϕ|). Next we explain
how to overcome these two issues.

Completeness via sum-check. We first explain why the ciphertext ci,j,k is not a trivial zero. Recall
that when the prover is honest, the ciphertext ci,j,k is obtained from the CRS ciphertexts encrypting zi, zj , zk
by first evaluating the assignment w on each encrypted variable, and then evaluating the consistency test
Vx on the encrypted variables and their assigned values. Let A0 be the circuit that takes as input three
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variables u1, u2, u3 ∈ {0, 1}m and outputs the value Vx(u1, u2, u3, w(u1), w(u2), w(u3)). First, observe that
if the assignment w indeed satisfies ϕx, then A0, as a boolean circuit, indeed computes the all-zero function.
However, as an arithmetic circuit over Z, A0 may not be identically zero and, therefore, the evaluated
ciphertext ci,j,k may not pass the zero test.

To achieve completeness, the idea in PR is to help the verifier check that ci,j,k indeed decrypts to zero by
providing it with a proof of that fact. Very roughly, this proof will alow the verifier to compute a sequence
of ciphertexts and zero-tests them. If ci,j,k decrypts to zero and the proof is computed honestly, all the
ciphertexts will be trivial zeros. However, if ci,j,k does not decrypt to zero, then the ciphertexts computed
from the proof will not all decrypt to zero. PR demonstrate such a proof based on the sum-check component
of the classic PCP of Babai et al. [BFLS91]. We describe the details next.

Let ` = 3m, let z = (u1, u2, u3) ∈ {0, 1}` be a triplet of variables encrypted in the CRS, and let c0 be the
ciphertext obtained from homomorphically evaluating A0 on the encryption of z. Our goal is to convince
the verifier that c0 indeed decrypts to zero. To prove that, we rely on the fact that A0(y) = 0 for every

y ∈ {0, 1}` (however, A0 may not be all-zero over Z) and on the fact that the polynomial computed by A0

(viewed as an arithmetic circuit) is of low individual degree δ (the length of the proof will grow with δ).
Later in this section we show that in fact δ = 2.

The proof that c0 decrypts to zero is computed as follows. For every i ∈ [`] let Ai : Z` → Z be the
polynomial:

Ai(y1, . . . , y`) ≡
∑

v∈{0,1}

ID(yi, v) ·Ai−1(y1, . . . , yi−1, v, yi+1, . . . , y`) , (1)

where ID is the multilinear bivariate polynomial that computes the equality predicate on {0, 1}2. It is easy

to verify that Ai(y) = 0 for every y ∈ {0, 1}`. Since the polynomial A` is multilinear and A`(y) = 0 for every

y ∈ {0, 1}`, A` must be the all-zero polynomial (over Z).
The proof contains the ciphertext ci encrypting Ai(z) for every i ∈ [`]. Now the verifier can zero-test c`

and, since A` ≡ 0, the test passes. Therefore, to convince the verifier that c0 decrypts to zero, it is sufficient
to convince it that for every i < `, ci and ci+1 decrypt to the same value.The high-level idea is to use the
fact that (1) holds over Z. To implement this idea we add more ciphertexts to the proof. In more detail, for
every i ∈ [`] let Azi−1 : Z→ Z be the univariate polynomial:

Azi−1(v) ≡ Ai−1(z1, . . . , zi−1, v, zi+1, . . . , z`) . (2)

Since A0 is of individual degree δ, the degree of Azi−1 is also δ. For every i ∈ [`], the prover homomorphically
evaluates the δ + 1 coefficients of the polynomial Azi−1 and sends them to the verifier (in addition to the
ciphertext c0, . . . , c`). Given these encrypted polynomials, the verifier homomorphically evaluates the value
Azi−1(zi). The verifier then checks that this is indeed the value encrypted in ci−1 by subtracting the two
ciphertexts and zero-testing the result. If ci−1 and Azi−1 are computed honestly then, by (2), the zero-test
is guaranteed to pass. Next the verifier homomorphically evaluates the value

∑
v∈{0,1} ID(zi, v) ·Azi−1(v).

The verifier then checks that this is indeed the value encrypted in ci by subtracting the two ciphertexts and
zero-testing the result. If ci and Azi−1 are computed honestly then, by (1) and (2), the zero-test is again
guaranteed to pass.

For soundness, consider an adversarially chosen ciphertext c̃0 encrypting a value α̃0, and a proof that con-
tains the ciphertexts c̃1, . . . , c̃` encrypting values α̃1, . . . , α̃`, as well as encrypted polynomials Ãz0, . . . , Ã

z
`−1.

We argue that if all of the verifier’s zero-tests pass then α̃0 = 0. First, if c̃` passes then α̃` = 0. Next, for
every i ∈ [`], if the verifier’s zero-tests pass then:

α̃i−1 = Ãzi−1(zi) , α̃i =
∑

v∈{0,1}

ID(zi, v) · Ãzi−1(v) .

Since zi ∈ {0, 1} it follows that α̃i−1 = α̃i. Overall we have that α̃0 = · · · = α̃` = 0.
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The consistency test Vx. We complete the description of the PR quasi-argument by explaining how
the verifier can evaluate the consistency test Vx efficiently. Recall that the test Vx is given the names of
three variable u1, u2, u3 ∈ {0, 1}m of ϕ and three bits b1, b2, b3 ∈ {0, 1} and it outputs zero if and only if the
partial assignment mapping ui to bi locally satisfies ϕx.

Previous works [KRR13, KRR14, PR17], gave quasi-arguments only for log-space uniform formulas ϕ.
For such formulas the test Vx can be implemented by a small circuit of size |x| · poly(m) and, therefore, the
verifier can evaluate Vx on its own. In contrast, in this work we construct quasi-arguments for arbitrary
formulas where Vx may be as large as the formula ϕ itself.

Our main idea is to add to the CRS values that help the verifier evaluate Vx on all the required inputs.
Since the input x in not fixed at the time the CRS is generated, the CRS should help the verifier evaluate
Vx for every possible input x. In more detail, we first show how to write the function Vx as a sum Vx =
V +V1,x1 + · · ·+Vn,xn where, roughly speaking, the function V checks consistency with the formula ϕ6 (but
not with x), and V`,b checks that the assignments to the `-th input bit is b. We then modify the CRS as
follows. For every three variables zi, zj , zk encrypted in the CRS, and for every three bits b1, b2, b3 ∈ {0, 1},
we homomorphically evaluate V (zi, zj , zk, b1, b2, b3) and add the resulting ciphertext to the CRS. The circuits
{V`,b} are simple and the verifier can evaluate them on its own.

On the degree of A0. Next we argue that the circuit A0 is of individual degree δ = 2. Recall that
the quasi-argument proof length grows with δ. Looking ahead, the individual degree of A0 also plays a role
in basing the security of our quasi-argument on bilinear maps satisfying Assumption 1.1. Recall that A0

takes as input three variables u1, u2, u3 ∈ {0, 1}m and outputs the value Vx(u1, u2, u3, w(u1), w(u2), w(u3))
where w is the provers assignment and Vx = V + V1,x1

+ · · ·+ Vn,xn is the consistency test. We observe that
the functions V and {V`,b} can be computed by a multilinear arithmetic circuit. The size of the multilinear
circuit for V may be exponential in the input size, however, since the input size is O(m), the evaluation time
is only poly(|ϕ|). Since V is not evaluated by the verifier (but only during the CRS generation) this does
not compromise efficiency. Similarly, the assignment w : {0, 1}m → {0, 1} evaluated by the prover can be
computed by a multilinear arithmetic circuit. Therefore, A0 is of individual degree 2.

The PR encryption scheme. As described above, PR base their quasi-argument on a 3-key homo-
morphic encryption with a weak zero-test. Next we describe their ZTHE construction from multilinear maps.
Very roughly, we think of degree-δ multilinear maps as letting us encode elements from a large field F, and
allowing us to homomorphically evaluate any polynomial of degree at most δ over these encodings, and test
if the result encodes zero or not. However, we assume that evaluating computations of degree higher than δ
is hard. We can think of bilinear maps as degree 2 multilinear maps.

The PR encryption scheme supports homomorphic computations of bounded degree δ. The secret key
is a random field element s ∈ F. To encrypt a message µ ∈ {0, 1}, sample a random degree-δ polynomial
C : F→ F such that C(s) = µ. Then, encode each of the δ + 1 coefficients of C with a degree-δ multilinear
map. The ciphertext consists of this encoding of C that we denote by [C]. To decrypt, homomorphically
evaluate [C(s)] (this is a linear function since s is in the clear) and test if the result encodes zero or not.7

Given ciphertexts [C1] , [C2] encrypting messages µ1, µ2 respectively, an encryption of µ1 ◦ µ2 (where
◦ is either addition or multiplication over F) is given by the encoded polynomial [C1 ◦ C2]. The encoded
coefficients of C1 ◦ C2 are computed homomorphically from the coefficients of C1 and C2. Therefore, the
encryption supports homomorphic computations of degree at most δ. As for multi-key homomorphism, if
[C1] encrypts µ1 under s1 and [C2] encrypts µ2 under s2, then an encryption of µ1 ◦ µ2 under both s1

and s2 is given by the encoded bivariate polynomial C(x, y) = C1(x) ◦ C2(y). Note that the number of
coefficients in the ciphertext grows exponentially with the number of secret keys. Since we only require
3-key homomorphism this is not an issue.

Given a ciphertext [C], the weak zero-test simply tests that all the encoded coefficients of C are zero. For
soundness, if [C] passes the zero test then C must decrypt to zero. To get soundness for maliciously generated

6We need to make minor changes to the formula ϕ as discussed in Section 5.
7This scheme can encrypt messages in F, however, we only have efficient decryption for messages in {0, 1}.
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ciphertexts PR rely on so-called “clean” multilinear maps. To argue completeness, consider an arithmetic
circuit A : Z` → Z computing the all-zero function over Z. Evaluating A on ciphertexts [C1] , . . . , [C`] results
in the encoded polynomial [A(C1, . . . , C`) ≡ 0] that passes the zero test.

In PR the semantic security of this scheme is shown under an appropriate hardness assumption on the
multilinear map. Note that for security it is crucial that the degree of the ciphertext polynomial C is at
least the degree δ of the multilinear map. Otherwise, given δ encoded polynomials of degree, say, δ − 1
encrypting either 0δ or a random message, we can distinguish the two cases by homomorphically computing
the determinant of the δ-by-δ coefficient matrix, and testing if it is zero.

2.3.3 Quasi-arguments from bilinear maps.

In this section we complete the description of our publicly verifiable succinct non-interactive quasi-argument
for NP with adaptive soundness and a long CRS. As explained in Section 2.3.1, starting from the PR quasi-
argument, our high-level idea is to replace the multilinear encoding of the elements in the CRS and proof
with bilinear encodings of monomials in these elements. In this section, we explain in more detail how we
change the PR protocol. In particular, we analyze the size of our CRS and proof and explain how to base
security on Assumption 1.1.

Since in the PR construction multilinear maps are only used to instantiate the ZTHE, it is natural to try
and construct ZTHE directly from bilinear maps. This would allow us to abstract the use of bilinear maps
and present our protocol in a way that closely follows the PR blueprint. Unfortunately, we do not know
how to use the idea of encoding monomials to construct ZTHE from bilinear maps. The issue is that to
compute homomorphically on multiple ZTHE ciphertexts, we need encoding of monomials that depend on
all the ciphertexts together. However, since each ciphertext is encrypted independently, we cannot provide
such encoded monomials as part of the ciphertext. Nonetheless, we define a limited version of ZTHE that is
sufficient for quasi-argument, and instantiated from bilinear maps.

The main limitation of our encryption scheme is that it only supports arity-one homomorphic operations.
That is, given a ciphertext encrypting a long message, it is possible to compute homomorphically on the
bits of the message, but it is not possible to compute over multiple messages encrypted independently. Very
roughly, the construction is as follows. Recall that in the ZTHE of PR we encrypt a message µ ∈ {0, 1}`
under secret key s by sampling polynomials C1, . . . , C` such that Ci(s) = µi and encoding their coefficients
with a multilinear map. In our scheme, we compute products of the polynomials C1, . . . , Cm and encode
the coefficients of the resulting polynomials with a bilinear map. To prevent the ciphertext from growing
too much, we only compute the products that are used by the quasi-argument. We note that our arity-one
encryption must support multi-key homomorphic operations. To this end, we define multi-key ciphertexts:
a single multi-key ciphertext encrypts multiple messages under multiple secret keys. In the rest of this
overview we assume, for simplicity, that all ciphertext are under a single key.

Next we explain how to use such arity-one homomorphic encryption to get a quasi-argument with the
required efficiency: for security parameter κ, formula ϕ of size T , and locality parameter K, the CRS should
be of length poly(κ,K, T ) and the proof should be of length poly(κ,K). Recall that in the PR quasi-
argument the CRS contains encryptions of K of ϕ’s variables. Each variable is represented by m = O(log T )
bits and the CRS contains ZTHE encryption of each bit. For every three of the K variables in the CRS, the
prover homomorphically evaluates polynomials over the 3m encrypted bits describing these variables. The
proof contains, for every three variables, O(m) ciphertexts, each encrypting O(1) elements. Therefore, in
our protocol, the CRS includes, for every three variables, one ciphertext encrypting 3m bits and the prover
homomorphically computes over one CRS ciphertext at a time. Therefore, it remains to show that each
ciphertext in the CRS is of length poly(κ, T ) and each ciphertext in the proof is of length poly(κ).

Recall that in the PR quasi-argument, for every three variables the CRS contains 3m encrypted bits
and the prover and verifier homomorphically evaluate polynomials of constant individual degree δ over
these bits. Therefore, in our protocol, the CRS ciphertext encrypting these 3m bits consist of the encoded
polynomials C1, . . . , C3m as well as encoding of every product

∏
Cδii where δ1, . . . , δ3m ∈ [0, δ]. As in

the PR encryption, to get semantic security, the polynomials C1, . . . , C3m must be of degree poly(m) (we
elaborate on this next when discussing the security of our encryption). Overall each CRS ciphertext contains
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δ3m · poly(m) = poly(T ) bilinear encodings. Since each ciphertext in the proof encrypts O(1) elements, a
similar argument shows that each proof ciphertext contains poly(m) bilinear encodings.

Semantic security. We prove the semantic security of our arity-one ZTHE under Assumption 1.1. Next,

we provide some intuition for this reduction. Recall that to encrypt a message µ ∈ {0, 1}` under secret key s,
we sample polynomials C1, . . . , C` such that Ci(s) = µi, compute some products of these polynomials, and
encode the coefficients of these products with a bilinear map. Similarly to the scheme of PR, to get semantic
security and support homomorphic evaluation of total degree δ, each polynomial Ci must be of degree at
least δ.

For simplicity, we start by arguing that the δ+1 encoded coefficient of the polynomial Ci alone (without
the rest of the ciphertext) hides the bit µi. We argue this based on the following weak version of Assump-
tion 1.1: given bilinear encodings [s] and [t] it is hard to distinguish between the case where t = sδ and the
case where t ∈ F is a random and independent. First observe that given [s] we can sample an encoding of
a random degree-δ polynomial C such that C(s) = 0 as follows: sample a random polynomial R ∈ F[X]
of degree δ − 1 and homomorphically compute an encoding of the polynomial [C = R ·X − s ·R]. Now, by
subtracting 1 from the coefficient of Xδ and adding t+µi to the free coefficient we get either an encoding of
a polynomial distributed like Ci if t = sδ, or an encoding of a completely random polynomial if t is random.
To prove semantic security we must be able to sample the entire ciphertext and not just [Ci]. We do so in a
similar manner using the additional encodings given in Assumption 1.1.

2.4 Organization.

The rest of the paper is organized as follows. In Section 3 we define delegation schemes for Turing machines
and RAM machines. In Section 4 we formalize our limited notion of ZTHE and construct it from bilinear
maps. In Section 5 we construct a quasi-argument from our ZTHE. Our bootstrapping theorem going from
quasi-arguments to delegation is described in Section 6.

3 Delegation

In this section we define the notion of a publicly verifiable non-interactive delegation scheme for deterministic
Turing machines and RAM machines. We show that delegation for RAM machines implies delegation for
Turing machines (see Theorem 3.7). In the subsequent sections we state our results only for the notion of
RAM delegation.

3.1 Turing Machine Delegation

We define delegation for a Turing machine M. For example, M can be the universal Turing machine. A
publicly verifiable non-interactive delegation scheme for M consists of algorithms (Del.S,Del.P,Del.V) with
the following syntax:

Setup: The randomized setup algorithm Del.S takes as input a security parameter κ ∈ N, a time bound T
and an input length n, and outputs a pair of public keys: a prover key pk and a verifier key vk.

Prover: The deterministic prover algorithm Del.P takes as input a prover key pk and an input x ∈ {0, 1}n.
It outputs a proof Π.

Verifier: The deterministic verifier algorithm Del.V takes as input a verifier key vk, an input x ∈ {0, 1}n
and a proof Π. It outputs a bit indicating if it accepts or rejects.

In the following definition, UM denotes the language such that (x, T ) ∈ UM if and only if M accepts x
within at most T steps.

Definition 3.1. A publicly verifiable non-interactive delegation scheme (Del.S,Del.P,Del.V) for M with
setup time TS = TS(κ, T ) and proof length LΠ = LΠ(κ, T ) satisfies the following requirements.
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Completeness. For every κ, T, n ∈ N such that n ≤ T ≤ 2κ, and x ∈ {0, 1}n such that (x, T ) ∈ UM:

Pr

[
Del.V(vk, x,Π) = 1

∣∣∣∣ (pk, vk)← Del.S(κ, T, n)
Π← Del.P(pk, x)

]
= 1 .

Efficiency. In the completeness experiment above:

• The setup algorithm runs in time TS.

• The prover runs in time poly(κ, T ), and outputs a proof of length LΠ.

• The verifier runs in time O(LΠ) + n · poly(κ).

Soundness. For every PPT adversary Adv and pair of polynomials T = T (κ) and n = n(κ) there exists a
negligible function µ such that for every κ ∈ N:

Pr

[
Del.V(vk, x,Π) = 1
(x, T ) /∈ UM

∣∣∣∣ (pk, vk)← Del.S(κ, T, n)
(x,Π)← Adv(pk, vk)

]
≤ µ(κ) .

Remark 3.2 (Prover specific running time). In the above definition the prover’s running time grows with T
even if the running time of M on x is much lower. We can avoid this overhead by generating several key
pairs for running time 2i for every i ≤ log T and choose which pair to use depending on the running time of
the specific computation.

Remark 3.3 (Linear verification time). The above definition requires that the verifier’s running time is linear
in the input length n and proof length LΠ. While our constructions do achieve such optimal verification
time, we note that any verification time that is less than the running time of M is non-trivial.

3.2 RAM Delegation

A RAM machine R with a word size of ` is modeled as a deterministic machine with random access to
memory of size 2` bits and a local state of size O(`). At every step, the machine reads or writes a single
memory bit and updates its state. We refer to the machine’s memory and state at a given timestep as its
configuration cf. For simplicity, we think of the machine as having no input or output other than its memory
and state. Also, we always use the security parameter κ as the word size.

A publicly verifiable non-interactive delegation scheme for R consists of algorithms
(RDel.S,RDel.D,RDel.P,RDel.V) with the following syntax:

Setup: The randomized setup algorithm RDel.S takes as input a security parameter κ ∈ N, a time bound T
and outputs a triplet of public keys: a prover key pk, a verifier key vk, and a digest key dk.

Digest: The deterministic digest algorithm RDel.D takes as input the digest key dk and a configuration
cf ∈ {0, 1}∗ and outputs a digest h.

Prover: The deterministic prover algorithm RDel.P takes as input a prover key pk, and a pair of source and
destination configurations cf, cf ′. It outputs a proof Π.

Verifier: The deterministic verifier algorithm RDel.V takes as input a verifier key vk, a pair of digests h, h′

and a proof Π. It outputs a bit indicating if it accepts or rejects.

In the following definition, UR denotes the language such that (`, cf, cf ′, T ) ∈ UR if and only if the
machine R with word size ` starting from configuration cf transitions to configuration cf ′ in T steps.

Definition 3.4. A publicly verifiable non-interactive delegation scheme (RDel.S,RDel.D,RDel.P,RDel.V) for
R with setup time TS = TS(κ, T ) and proof length LΠ = LΠ(κ, T ) satisfies the following requirements.
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Completeness. For every κ, T ∈ N such that T ≤ 2κ, and cf, cf ′ ∈ {0, 1}∗ such that (κ, cf, cf ′, T ) ∈ UR:

Pr

RDel.V(vk, h, h′,Π) = 1

∣∣∣∣∣∣∣∣
(pk, vk, dk)← RDel.S(κ, T )
h← RDel.D(dk, cf)
h′ ← RDel.D(dk, cf ′)
Π← RDel.P(pk, cf, cf ′)

 = 1 .

Efficiency. In the completeness experiment above:

• The setup algorithm runs in time TS.

• The digest algorithm on cf runs in time |cf| · poly(κ) and outputs a digest of length κ.

• The prover runs in time poly(κ, T, |cf|) and it outputs a proof of length LΠ.

• The verifier runs in time O(LΠ) + poly(κ).

Collision resistance. For every PPT adversary Adv and polynomial T = T (κ) there exists a negligible
function µ such that for every κ ∈ N:

Pr

[
cf 6= cf ′

RDel.D(dk, cf) = RDel.D(dk, cf ′)

∣∣∣∣ (pk, vk, dk)← RDel.S(κ, T )
(cf, cf ′)← Adv(pk, vk, dk)

]
≤ µ(κ) .

Soundness. For every PPT adversary Adv and polynomial T = T (κ) there exists a negligible function µ
such that for every κ ∈ N:

Pr


RDel.V(vk, h, h′,Π) = 1
(κ, cf, cf ′, T ) ∈ UR
h = RDel.D(dk, cf)
h′ 6= RDel.D(dk, cf ′)

∣∣∣∣∣∣∣∣
(pk, vk, dk)← RDel.S(κ, T )
(cf, cf ′, h, h′,Π)← Adv(pk, vk, dk)

 ≤ µ(κ) .

Remark 3.5 (Collision resistance). We note that the collision resistance of the digest does not follow from
our soundness requirement and, therefore, we explicitly require collision resistance. For example, by using a
constant function as the digest we can trivially satisfy soundness.

Remark 3.6 (RAM delegation in previous work). Our focus in this work is on constructing delegation
for Turing machines. However, as explained in the introduction, we rely on the stronger notion of RAM
delegation to prove our bootstrapping theorem. As a result, our definition of RAM delegation differs from
that in previous work [KP16, BHK17] regarding both prover’s efficiency and soundness.

• Previous work explicitly requires that the running time of the prover (modeled as a RAM machine)
is polynomial T (the running time of R) and does not grow with the configuration size. However, for
simplicity, our definition allows the prover’s running time to grow with the configuration. We note
that our construction satisfies the stronger notion of prover efficiency considered in previous work.

• The soundness definition in previous work only requires that the adversary produces accepting proofs
for two different statements (h, h′) and (h, h′′) with the same initial digest. In our definition, however,
the adversary must explicitly output the full configurations cf, cf ′. We choose this weaker definition
since it allows us to achieve adaptive soundness which is required for our bootstrapping theorem. In
contrast, to achieve the prior definition, previous work restricted the adversary to choose h indepen-
dently of pk. We emphasize that our soundness definition suffices for delegating Turing machines.

Next we argue that RAM delegation implies delegation for Turing machines (Definition 3.1).

Theorem 3.7. Suppose that for any RAM machine there exists a publicly verifiable non-interactive delega-
tion scheme with setup time T ′S and proof length L′Π. Then for any Turing machine there exists a publicly ver-
ifiable non-interactive delegation scheme with setup time TS and proof length LΠ where TS(κ, T ) = T ′S(κ, T ′),
LΠ(κ, T ) = L′Π(κ, T ′) for T ′ = O(T ).
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Proof. Fix any deterministic Turing machineM. Consider the RAM machine R, that given initial memory
that includes the input x, emulates the Turing machine M on input x. If M reaches an accepting state,
R moves to a special accepting configuration cf∗ and remains in it. Therefore, for every T ∈ N there exists
T ′ = O(T ) such that (x, T ) ∈ UM if and only if (κ, cfx, cf

∗, T ′) ∈ UR where cfx is the initial configuration of
R with memory x.

Let (RDel.S,RDel.D,RDel.P,RDel.V) be a publicly verifiable non-interactive delegation scheme forR with
setup time TS and proof length LΠ. We construct a publicly verifiable non-interactive delegation scheme
(Del.S,Del.P,Del.V) for M as follows.

• The setup algorithm Del.S on input (κ, T, n) emulates RDel.S(κ, T ′) and obtains the keys (pk, vk, dk).
It outputs pk′ = pk and vk′ = (vk, dk).

• The prover algorithm Del.P on input (pk, x) emulates RDel.P(pk, cfx, cf
∗), obtains the proof Π and

outputs it.

• The verification algorithm Del.V on input (vk′ = (vk, dk), x,Π) computes the digests hx = RDel.D(dk, cfx)
and h∗ = RDel.D(dk, cf∗), emulates RDel.V(vk, hx, h

∗,Π) and accepts if and only if RDel.D accepts.

The completeness and efficiency guarantees follow directly from those of the RAM delegation scheme.
For soundness, assume there exists a PPT adversary Adv breaking the soundness of the scheme. We construct
a PPT adversary Adv′ breaking the soundness of the RAM delegation scheme. Given keys (pk, vk, dk), Adv′

emulates Adv(pk, (vk, dk)) and obtains an input x and a proof Π. Adv′ computes in time O(T ) the unique
configuration cf ′x such that (κ, cfx, cf

′
x, T

′) ∈ UR. It also computes the digests hx, h
′
x, h
∗ of the configurations

cfx, cf
′
x, cf

∗ respectively. If h′x = h∗, Adv′ output (cf ′x, cf
∗). Otherwise, it output (cfx, cf

′
x, hx, h

∗,Π).
If (x, T ) /∈ UM then (κ, cfx, cf

∗, T ′) /∈ UR and, in particular, cf∗ 6= cf ′x. If Del.V((vk, dk), x,Π) accepts,
then RDel.V(vk, hx, h

∗,Π) accepts. Therefore, Adv′ breaks either the soundness or the collision resistance of
the RAM delegation scheme.

4 Zero-Testable Homomorphic Encryption

Our quasi-argument is based on a limited version of the zero-testable homomorphic encryption defined in
the work of [PR17]. We start by defining our notion of encryption in Section 4.1. In Section 4.2 we construct
such an encryption based on bilinear maps. The analysis is given in Section 4.3. See Section 2.3.3 for an
overview, and Section 2.3.2 for a discussion on the original notion from [PR17].

4.1 Definition

We introduce our limited zero-testable homomorphic encryption in three steps. In Section 4.1.1 we define
a simple somewhat homomorphic encryption. In Section 4.1.2 we introduce the zero-test procedure. In
Section 4.1.3 we add support for multi-key homomorphic operations.

4.1.1 Simple homomorphic encryption.

In this section we define a simple somewhat homomorphic encryption scheme. We first describe the syntax
and then highlight some important differences between this notion and standard formulations in the litera-
ture. Our homomorphic encryption scheme is parameterized by a bound δ̄ ∈ N on the individual degree of
homomorphic computations. The scheme is given by the algorithms (ParamGen,KeyGen,Enc,Eval,Dec,Val)
with the following syntax:

Parameter generation: the probabilistic parameter generation algorithm ParamGen takes as input the
security parameter κ ∈ N and a bound ¯̀∈ N on the length of messages. It outputs public parameters
pp. The public parameters include a description of the field F that defines the plaintext space. The
running time of ParamGen is poly(κ, log ¯̀).
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Key generation: the PPT key generation algorithm KeyGen takes as input the public parameters pp and
outputs a secret key sk.

Encryption: the probabilistic encryption algorithm Enc takes an input a secret key sk, a message m ∈
{0, 1}≤

¯̀
and randomness r ∈ {0, 1}κ (in what follows, it will be convenient to refer to the encryption

randomness as an explicit input). It outputs a ciphertext c. The running time of Enc is poly(κ, δ̄|m|).

Homomorphic evaluation: the deterministic polynomial-time homomorphic evaluation algorithm Eval
takes as input the public parameters pp, a ciphertext c (encrypting a message in F`) and a polynomial
P : Z` → Z of individual degree δ ≤ δ̄ represented by a list of (possibly non-distinct) monomials with
coefficients in {1,−1}. It outputs an evaluated ciphertext e. The length of e is poly(κ) · ` · δ.

Decryption: the deterministic polynomial-time decryption algorithm Dec takes as input a secret key sk
and an evaluated ciphertext e. It either outputs a bit or a special symbol ⊥ if the encrypted value is
not in {0, 1}.

Inefficient value recovery. the deterministic value recovery algorithm Val takes as input a secret key sk
and an evaluated ciphertext e. It either outputs an element in F or a special symbol ⊥ if the ciphertext
is malformed. The value recovery algorithm is computationally unbounded.

We note some important differences between our notion and the standard formulations in the literature:

• We only support “arity-one” homomorphic evaluation. That is, the homomorphic evaluation algorithm
can only operate on a single ciphertext at a time.

• The ciphertext size can grow exponentially with the message length.

• Evaluation is “one-hop”. That is, we cannot continue to compute homomorphically over evaluated
ciphertexts.

• While fresh ciphertexts can encrypt long messages, an evaluated ciphertext only encrypts a single
element.

• The homomorphically evaluated polynomial P is represented by a list of monomials with coefficients
in {1,−1}. This representation is convenient since it is well defined over any field. Note that we can
also represent P , for example, as an arithmetic circuit that might be exponentially shorter than the
list representation. However, the running time of the homomorphic evaluation algorithm we construct
will be polynomial in the list representation size.

• While the homomorphic computations are evaluated over a field F, encryption and decryption only
support binary messages. Ciphertexts encrypting arbitrary values in F can be decrypted inefficiently
via the value recovery algorithm. This algorithm is only used to define the encryption’s correctness
and is not used in constructions or in security reductions.

We proceed to define the correctness and security of the encryption scheme. We separate the correctness
requirement into two properties: one for homomorphic evaluation and one for decryption of evaluated cipher-
texts. In both definitions, we use the inefficient value recovery algorithm Val to recover the value encrypted
by a ciphertext.

Definition 4.1 (Correctness of Evaluation). For every κ, ¯̀∈ N, message m ∈ {0, 1}` such that ` ≤ ¯̀ and
polynomial P : Z` → Z of individual degree at most δ̄:

Pr

v = P (m)

∣∣∣∣∣∣∣∣∣∣∣∣

pp← ParamGen(κ, ¯̀)
sk← KeyGen(pp)
r ← {0, 1}κ
c← Enc(sk,m, r)
e← Eval(pp, c, P )
v ← Val(sk, e)

 = 1 .

In the experiment above, the polynomial P is evaluated over F defined by pp.
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The correctness of the decrypted value holds for arbitrary evaluated ciphertexts.

Definition 4.2 (Correctness of Decryption). For every κ, ¯̀∈ N and evaluated ciphertext e:

Pr

 v′ ∈ {0, 1} ⇒ v = v′

v′ 6∈ {0, 1} ⇒ v = ⊥

∣∣∣∣∣∣∣∣
pp← ParamGen(κ, ¯̀)
sk← KeyGen(pp)
v ← Dec(sk, e)
v′ ← Val(sk, e)

 = 1 .

We also require one-time semantic security. The definition is restricted to the range of parameters
supported by our construction.

Definition 4.3 (Semantic Security). For every function ¯̀(κ) = O(log κ) and PPT adversary Adv, there

exists a negligible function µ such that for every κ ∈ N and messages m0,m1 ∈ {0, 1}` such that ` ≤ ¯̀(κ):

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
pp← ParamGen(κ, ¯̀(κ))
sk← KeyGen(pp)
r ← {0, 1}κ
c0 ← Enc(sk,m0, r)
c1 ← Enc(sk,m1, r)
b′ ← Adv(pp, cb)


≤ 1

2
+ µ(κ) .

4.1.2 Quadratic zero-test.

In addition to the requirements above, our homomorphic encryption must support a zero-test operation. We
start by discussing this notion.

The zero-test takes as input an evaluated ciphertext e and indicates whether or not it decrypts to zero.
We carefully define the zero-test such that it does not contradict semantic security: the test should never
pass if e does not decrypt to zero. However, even if e does decrypt to zero, the test may still fail. The zero
test is only required to pass if there exists an honestly generated ciphertext c encrypting a message in F`
and a polynomial P : Z` → Z such that P ≡ 0 over Z and e is obtained by homomorphically evaluating P
on c.

Two-hop homomorphism. So far, our notion of zero-testable homomorphic encryption only supports
one-hop evaluation. However, to construct our quasi-argument, we require at least two hops of homomorphic
evaluation before using the zero-test (one prover evaluation followed by one verifier evaluation). Using
bilinear maps, we are able to construct a scheme with a limited version of two-hop homomorphism: given
evaluated ciphertexts e1, . . . , en (resulting from applying the homomorphic evaluation algorithm Eval on
fresh ciphertexts) we can further evaluate a polynomial Q : Zn → Z of total degree at most two over
e1, . . . , en. The resulting ciphertext can be decrypted or zero-tested, but we can no longer compute on it
homomorphically. We note that, unlike the first-hop homomorphic evaluation algorithm Eval that supports
degree δ̄ evaluations but can only operate on a single ciphertext, the second-hop evaluation can operate on
multiple ciphertexts but only supports degree two evaluations.

Lohighlthe differences here: we can perform ight oking ahead, in our quasi-argument the proof will
consist of evaluated ciphertexts (resulting from Eval) and the verifier will perform a second-hop evaluation
and zero-test the resulting ciphertext. For simplicity, since the resulting ciphertext is never decrypted,
we combine the second-hop evaluation and the zero-test into a single algorithm. This quadratic zero-test
takes as input a vector of evaluated ciphertexts (e1, . . . , en) and a polynomial Q : Zn → Z of total degree
two. If the quadratic zero-test passes, then each ciphertext must decrypt to a message mi ∈ F such that
Q(m1, . . . ,mn) = 0. In the other direction, the quadratic zero-test is only guaranteed to pass if there exists
an honestly generated ciphertext c encrypting a message in F` and polynomials P1, . . . , Pn : Z` → Z such
that Q(P1, . . . , Pn) ≡ 0 over Z and ei is obtained by homomorphically evaluating Pi on c.

Formally, we add to our encryption scheme an algorithm ZT with the following syntax:
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Quadratic zero-test: the deterministic polynomial-time quadratic zero-test algorithm ZT takes as input
the public parameters pp, a degree-2 polynomial Q : Zn → Z represented by a list of (possibly non-
distinct) monomials with coefficients in {1,−1}, and evaluated ciphertexts e = (e1, . . . , en). It outputs
a bit indicating if the test passes or fails.

The zero test satisfies the following completeness and soundness requirements.

Definition 4.4 (Weak Completeness of Zero-Test). For every κ, ¯̀∈ N, message m ∈ {0, 1}` such that ` ≤ ¯̀,
polynomials P1, . . . , Pn such that Pi : Z` → Z is of individual degree at most δ̄, and degree-2 polynomial
Q : Zn → Z such that Q(P1, . . . , Pn) ≡ 0 over Z:

Pr

b = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← ParamGen(κ, ¯̀)
sk← KeyGen(pp)
r ← {0, 1}κ
c← Enc(sk,m, r)
e = (ei ← Eval(pp, c, Pi) : i ∈ [n])
b← ZT(pp, Q, e)

 = 1 .

Definition 4.5 (Soundness of Zero-Test). For every set of parameters κ, ¯̀ ∈ N, degree-2 polynomial Q :
Zn → Z, and vector of evaluated ciphertexts e = (e1, . . . , en):

Pr

b = 1 ⇒ ∀i ∈ [n] : mi 6= ⊥
Q(m1, . . . ,mn) = 0

∣∣∣∣∣∣∣∣
pp← ParamGen(κ, ¯̀)
sk← KeyGen(pp)
∀i ∈ [n] : mi ← Val(sk, ei)
b← ZT(pp, Q, e)

 = 1 .

In the experiment above, the polynomial Q is evaluated over F defined by pp.

4.1.3 Multi-key ciphertexts.

As our final step, we extend our zero-testable homomorphic encryption to support homomorphic operations
over ciphertexts encrypted under different keys. Since we only support arity-one homomorphic evaluation
(Eval operates on a single ciphertext), we first introduce the notion of a multi-key ciphertext: a single
ciphertext that encrypts multiple messages under multiple secret keys. For simplicity, we only consider
ciphertexts encrypting exactly three equal length messages under three different keys.

We also define algorithms that translate between single-key and multi-key ciphertexts. First we define a
ciphertext extension algorithm that turns a ciphertext c encrypted under a single secret key into a multi-key
ciphertext that contains c as well as two additional messages encrypted under two additional secret keys.
Importantly, to extend c we do not need its secret key, however, we must know the two additional secret
keys.

We also define a ciphertext restriction algorithm that can turn a multi-key ciphertext into a ciphertext
encrypted under a single key. Since, in general, such restriction would contradict semantic security, we only re-
quire the restriction algorithm to operate correctly on certain evaluated ciphertexts. In more detail, consider
the following scenario: starting with a multi-key ciphertext Γ encrypting three messages m1,m2,m3 ∈ {0, 1}`
under three secret keys sk1, sk2, sk3, we homomorphically evaluate a polynomial P : Z3` → Z on Γ to obtain
an evaluated ciphertext e. The value encrypted in e may depend on all three messages. Therefore, by
semantic security, we should not be able to decrypt it without knowing all three secret keys. However, if
the polynomial P depends only on its first ` input variables, then we require that it is possible to decrypt e
given only sk1. That is, if there exists a polynomial P ′ : Z` → Z such that P ′(z1) ≡ P (z1, z2, z3), then we
can restrict e to an evaluated ciphertext e’ that encrypts P ′(m1) under sk1 alone.

Formally, we add to our encryption scheme algorithms (MEnc,Extend,Restrict) with the following syntax:
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Multi-key encryption: the probabilistic multi-key encryption algorithm MEnc takes as input a triplet
(γ1, γ2, γ3). For every i ∈ [3], γi is a tuple (ski,mi, ri) including a secret key ski, a message mi ∈ {0, 1}`
for ` ≤ ¯̀, and randomness ri ∈ {0, 1}κ. It outputs a multi-key ciphertext Γ. The running time of
MEnc is poly(κ, δ̄

¯̀
).

Ciphertext extension: the PPT ciphertext extension algorithm Extend takes as input a triplet (γ1, γ2, γ3).
For every i ∈ [3], γi is either a ciphertext ci or a tuple (ski,mi, ri) including a secret key ski, a message

mi ∈ {0, 1}` for ` ≤ ¯̀, and randomness ri ∈ {0, 1}κ. We require that exactly one γi is a ciphertext
and the other two are tuples. It outputs a multi-key ciphertext Γ.

Ciphertext restriction: the deterministic polynomial-time ciphertext restriction algorithm Restrict takes
as input an evaluated ciphertext e and an index j ∈ [3]. It outputs a restricted ciphertext ej .

Next we define correctness of evaluation and the completeness and soundness of the zero-test for multi-
key ciphertexts (since in our quasi-argument we never decrypt multi-key ciphertexts, we need not define
correctness of decryption). The definitions are analogous to the definitions for single-key ciphertexts (Defi-
nitions 4.1, 4.4, and 4.5). Then we define the correctness of the extension and restriction algorithms.

Definition 4.6 (Correctness of Evaluation for Multi-key Ciphertexts). For every κ, ¯̀ ∈ N, messages

m1,m2,m3 ∈ {0, 1}` such that ` ≤ ¯̀, and polynomial P : Z3` → Z of individual degree at most δ̄:

Pr


v = P (m1,m2,m3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← ParamGen(κ, ¯̀)
∀i ∈ [3] :
ri ← {0, 1}κ
ski ← KeyGen(pp)
γi ← (ski,mi, ri)

Γ← MEnc(γ1, γ2, γ3)
e← Eval(pp,Γ, P )
v ← Val((sk1, sk2, sk3), e)


= 1 .

Definition 4.7 (Weak Completeness of Zero-Test for Multi-key Ciphertexts). For every κ, ¯̀∈ N, messages

m1,m3,m3 ∈ {0, 1}` such that ` ≤ ¯̀, polynomials P1, . . . , Pn such that Pj : Z3` → Z is of individual degree
at most δ̄, and degree-2 polynomial Q : Zn → Z such that Q(P1, . . . , Pn) ≡ 0 over Z:

Pr


b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← ParamGen(κ, ¯̀)
∀i ∈ [3] :
ri ← {0, 1}κ
ski ← KeyGen(pp)
γi ← (ski,mi, ri)

Γ← MEnc(γ1, γ2, γ3)
e = (ej ← Eval(pp,Γ, Pj) : j ∈ [n])
b← ZT(pp, Q, e)


= 1 .

Definition 4.8 (Soundness of Zero-Test for Multi-key Ciphertexts). For every κ, ¯̀∈ N, degree-2 polynomial
Q : Zn → Z, and vector of evaluated ciphertexts e = (e1, . . . , en):

Pr

b = 1 ⇒ ∀j ∈ [n] : mj 6= ⊥
Q(m1, . . . ,mn) = 0

∣∣∣∣∣∣∣∣
pp← ParamGen(κ, ¯̀)
∀i ∈ [3] : ski ← KeyGen(pp)
∀j ∈ [n] : mj ← Val((sk1, sk2, sk3), ej)
b← ZT(pp, Q, e)

 = 1 .

We require that the multi-key ciphertext generated by first encrypting a message using Enc, and then
extending the resulting ciphertext using Extend, is identical to the multi-key ciphertext generated by MEnc.
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Definition 4.9 (Correctness of Extension). For every κ, ¯̀ ∈ N, messages m1,m2,m3 ∈ {0, 1}` such that
` ≤ ¯̀ and index j ∈ [3]:

Pr


Γ = Γ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← ParamGen(κ, ¯̀)
∀i ∈ [3] :
ri ← {0, 1}κ
ski ← KeyGen(pp)
γi ← (ski,mi, ri)

Γ← MEnc(γ1, γ2, γ3)
∀i ∈ [3], i 6= j :
γ′i ← γi

γ′j ← Enc(skj ,mj , rj)
Γ′ ← Extend(γ′1, γ

′
2, γ
′
3)


= 1 .

We require that Restrict satisfies the following correctness property.

Definition 4.10 (Correctness of Restriction). For every κ, ¯̀ ∈ N, ` ≤ ¯̀, and index j ∈ [3], messages

m1,m2,m3 ∈ {0, 1}`, and polynomials P : Z3` → Z and P ′ : Z` → Z of individual degree at most δ̄ such that
∀z1, z2, z3 ∈ Z` : P (z1, z2, z3) = P ′(zj):

Pr


ej = e′j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← ParamGen(κ, ¯̀)
∀i ∈ [3] :
ri ← {0, 1}κ
ski ← KeyGen(pp)
γi ← (ski,mi, ri)

cj ← Enc(skj ,mj , rj)
ej ← Eval(pp, cj , P

′)
Γ← MEnc(γ1, γ2, γ3)
e← Eval(pp,Γ, P )
e′j ← Restrict(e, j)


= 1 .

Putting together our three steps, we get the following definition.

Definition 4.11 (Limited Zero-testable Homomorphic Encryption). A limited zero-testable homomorphic
encryption scheme (ParamGen,KeyGen,Enc,Eval,Dec,Val,ZT,MEnc,Extend,Restrict) with degree bound δ̄ ∈
N satisfies all the requirements in Definitions 4.1 to 4.10.

4.2 Construction

In this section we construct a limited zero-testable homomorphic encryption from bilinear maps. We begin
with notation.

Notation. For a vector of polynomials C = (C1, . . . , C`) ∈ (F[x])` and a vector δ = (δ1, . . . , δ`) ∈ [0, δ]`,
we denote by Cδ the polynomial

∏
i∈[`] C

δi
i .

For every security parameter κ ∈ N, fix a group G = Gκ of prime order p = p(κ) with a non-degenerate
bilinear map e : G×G→ GT and let F = Zp.

For any t ∈ F and g ∈ G, we refer to the element gt as the encoding of t under g and denote it by 〈t〉g.
For any n-variate polynomial P (x) =

∑
δ∈[0,δ]n αδ ·xδ ∈ F[x] of individual degree δ, the encoding of P under

g consists of the encodings of its coefficients
(
〈αδ〉g

)
δ∈[0,δ]n

and we denote it by 〈P 〉g. Observe that given

the encoding 〈P 〉g and elements t ∈ Fn we can homomorphically evaluate P on t. That is, we can compute
the encoding:

〈P (t)〉g =

〈 ∑
δ∈[0,δ]n

αδ · tδ
〉
g

=
∏

δ∈[0,δ]n

(
〈αδ〉g

)tδ
.
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Similarly, we can compute 〈P (t)〉g given P in the clear and the encodings
(〈

tδ
〉
g

)
δ∈[0,δ]n

.

Next, we describe the algorithms of our encryption scheme with degree bound δ̄.

The parameter generation algorithm ParamGen. Given as input the security parameter κ and
a bound ¯̀ on the message length, the parameter generation algorithm samples a random group generator
g ← G and outputs the public parameters pp = (1κ, ¯̀, g). In what follows, let d = ¯̀· δ̄ and d′ = 2d+ 1.

The key generation algorithm KeyGen. Given as input the public parameters pp, the key generation
algorithm samples a random element s← F and outputs the secret key sk = (pp, s).

The encryption algorithm Enc. Given as input the secret key sk = (pp, s), a messagem = (m1, . . . ,m`)
and randomness r, the encryption algorithm samples a vector of polynomials C = (C1, . . . , C`) such that
Ci ∈ F[x] is a random polynomial of degree d′ satisfying Ci(s) = mi. It outputs the ciphertext:

c =
(〈

Cδ
〉
g

)
δ∈[0,δ̄]`

.

The multi-key encryption algorithm MEnc. Given as input a triplet (γ1, γ2, γ3) where every γi
is a tuple containing a secret key ski = (pp, si), a message mi = (mi,1, . . . ,mi,`) and randomness ri, for
every i ∈ [3], the multi-key encryption algorithm uses the randomness ri to sample a vector of polynomials
Ci = (Ci,1, . . . , Ci,`) such that Ci,j ∈ F[xi] is a random polynomial of degree d′ satisfying Ci,j(si) = mi,j . It
outputs the multi-key ciphertext:

Γ =
(〈

(C1 , C2 , C3)δ ∈ F[x1, x2, x3]
〉
g

)
δ∈[0,δ̄]3`

.

The homomorphic evaluation algorithm Eval. The homomorphic evaluation algorithm operates
either on single-key or on multi-key ciphertexts. Let `′ = ` in the single key case, and `′ = 3` in the multi-key
case. It is given as input:

• The public parameters pp.

• A (single-key or multi-key) ciphertext
(〈

Cδ
〉
g

)
δ∈[0,δ̄]`′

.

• An `′-variate polynomial P of individual degree δ ≤ δ̄ represented by a list of monomials with coeffi-
cients in {1,−1}.

It computes the coefficients αδ ∈ F such that P (x) =
∑

δ∈[0,δ]`′ αδ · xδ. It computes and outputs the
evaluated ciphertext:

e = 〈P (C)〉g =

〈 ∑
δ∈[0,δ]`′

αδ ·Cδ

〉
g

.

The decryption algorithm Dec. Given as input the secret key sk = (pp, s) and an evaluated ciphertext
e = 〈R〉g the decryption algorithm first verifies that e encodes a univariate polynomial R of degree at most
¯̀· δ̄ · d′ and outputs ⊥ otherwise. Next, it computes the encoding 〈R(s)〉g. If 〈R(s)〉g = 〈b〉g for b ∈ {0, 1} it
outputs b. Otherwise, it outputs ⊥.
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The inefficient value recovery algorithm Val. The inefficient value recovery algorithm operates
either on single-key or on multi-key evaluated ciphertexts. In the single-key case it is given as input the
secret key sk = (pp, s) and an evaluated ciphertext e = 〈R〉g. In the multi-key case it is given as input the
secret keys (sk1, sk2, sk3) where ski = (pp, si) and an evaluated ciphertext e = 〈R〉g. Let s = (s) in the single
key case and s = (s1, s2, s3) in the multi-key case. The inefficient value recovery algorithm first verifies that
e encodes a polynomial R of degree at most ¯̀· δ̄ · d′ that is univariate in the single-key case and trivariate in
the multi-key case, and outputs ⊥ otherwise. Next, it computes the encoding 〈R(s)〉g. It inefficiently finds
v ∈ F such that 〈R(s)〉g = 〈v〉g and outputs v.

The quadratic zero-test algorithm ZT. The quadratic zero-test algorithm is given as input:

• The public parameters pp.

• An n-variate degree-2 polynomial Q represented by a list of monomials with coefficients in {1,−1}.

• A vector of evaluated ciphertexts e = (e1, . . . , en) where ei = 〈Ri〉g.

It first verifies that every ei encodes a polynomial Ri of degree at most ¯̀· δ̄ ·d′ that is univariate in the single-
key case and trivariate in the multi-key case, and outputs ⊥ otherwise. Next, it computes the coefficients
αi,j ∈ F such that Q(x1, . . . , xn) =

∑
i,j∈[0,n] αi,j · xixj . Using the bilinear map it computes the encoded

polynomial:

〈Q(R1, . . . , Rn)〉e(g,g) =

〈 ∑
i,j∈[0,n]

αi,j ·RiRj

〉
e(g,g)

,

and outputs 1 if 〈Q(R1, . . . , Rn)〉e(g,g) = 〈0〉e(g,g) (that is, if all the encoded coefficients are zero). Otherwise,
it outputs 0.

The ciphertext extension algorithm Extend. Given as input a triplet (γ1, γ2, γ3), where one γj

is a ciphertext cj =
(〈

Cδ
j

〉
g

)
δ∈[0,δ̄]`

and for i 6= j, γi is a tuple containing a secret key ski = (pp, si), a

message mi = (mi,1, . . . ,mi,`) and randomness ri, for every i 6= j, the ciphertext extension algorithm uses
the randomness ri to sample a vector of polynomials Ci = (Ci,1, . . . , Ci,`) such that Ci,k ∈ F[xi] is a random
polynomial of degree d′ satisfying Ci,k(si) = mi,k. It computes and outputs the multi-key ciphertext:

Γ =
(〈

(C1 , C2 , C3)δ ∈ F[x1, x2, x3]
〉
g

)
δ∈[0,δ̄]3`

.

Note that this encoded polynomial can indeed be computed given cj since Ci for i 6= j are not encoded.

The ciphertext restriction algorithm Restrict. Given as input an evaluated ciphertext
e = 〈R ∈ F[x1, x2, x3]〉g and an index j ∈ [3], the ciphertext restriction algorithm computes and outputs the
restricted ciphertext: ej = 〈Rj〉g where Rj ∈ F[xj ] is the restriction of R to xi = 0 for every i 6= j.

4.3 Analysis

We prove that the construction given in Section 4.2 with degree bound δ̄ is a limited zero-testable homo-
morphic encryption scheme (Definition 4.11) under the following hardness assumption parameterized by δ̄.
For our quasi-argument we set δ̄ = 2.

Assumption 4.12. There exists an ensemble of groups {Gκ} of prime order p = pκ with a non-degenerate
bilinear map such that for every d(κ) = O(log κ) and PPT adversary Adv, there exists a negligible function
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µ such that for every κ ∈ N:

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
g ← G
s← Zp
t0 ← Zp
t1 ← s2d+1

b′ ← Adv

((〈
si · tjb

〉
g

)
i∈[0,d],j∈[0,δ̄]

)


≤ 1

2
+ µ(κ) .

Theorem 4.13. For every δ̄ ∈ N, the scheme (ParamGen,KeyGen,Enc,Eval,Dec,Val,ZT,MEnc,Extend,Restrict)
given in Section 4.2 is a limited zero-testable homomorphic encryption scheme with degree bound δ̄ (Defini-
tion 4.11) under Assumption 4.12 with parameter δ̄.

In the remainder of this section we prove Theorem 4.13. We focus on proving semantic security (Defini-
tion 4.3). The rest of the requirements in Definition 4.11 follow directly from the construction.

Assume towards contradiction that there exists a function ¯̀(κ) = O(log κ) and PPT adversary Adv such

that for infinitely many κ ∈ N, there exists ` ≤ ¯̀(κ) and m0,m1 ∈ {0, 1}` such that:

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
pp← ParamGen(κ, ¯̀(κ))
sk← KeyGen(pp)
r ← {0, 1}κ
c0 ← Enc(sk,m0, r)
c1 ← Enc(sk,m1, r)
b′ ← Adv(pp, cb)


≥ 1

2
+

1

poly(κ)
.

Fix such κ, ` and m0,m1. For i ∈ [0, `], let m̄i ∈ {0, 1}` be the message such that m̄i
j = m1

j for j ≤ i and

m̄i
j = m0

j for j > i. Therefore, there exists i∗ ∈ [`] such that:

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
pp← ParamGen(κ, ¯̀(κ))
sk← KeyGen(pp)
r ← {0, 1}κ

c0 ← Enc(sk, m̄i∗−1, r)

c1 ← Enc(sk, m̄i∗ , r)
b′ ← Adv(pp, cb)


≥ 1

2
+

1

poly(κ)
. (3)

Fix such i∗ ∈ [`]. Next, we construct an adversary breaking Assumption 4.12 with parameter δ̄ and

d = δ̄ · ¯̀. To this end, we first construct an adversary Adv′m for any m ∈ {0, 1}` such that:

Pr

b = 1

∣∣∣∣∣∣∣∣∣∣∣

g ← G
s← F
t← s2d+1

b← Adv′m

((〈
si · tj

〉
g

)
i∈[0,d]
j∈[0,δ̄]

)
 = Pr

b = 1

∣∣∣∣∣∣∣∣∣∣
pp← ParamGen(κ, ¯̀(κ))
sk← KeyGen(pp)
r ← {0, 1}κ
c← Enc(sk,m, r)
b← Adv(pp, c)

 . (4)

Additionally:

Pr
g←G
s,t←F

[
1 = Adv′m̄i∗

((〈
si · tj

〉
g

)
i∈[0,d]
j∈[0,δ̄]

)]
= Pr

g←G
s,t←F

[
1 = Adv′m̄i∗−1

((〈
si · tj

〉
g

)
i∈[0,d]
j∈[0,δ̄]

)]
. (5)
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Then by (3), for some m ∈
{
m̄i∗ , m̄i∗−1

}
, Adv′m breaks Assumption 4.12.

Given as input the encodings
〈
si · tj

〉
g

for every i ∈ [0, d] and j ∈ [0, δ̄], the adversary Adv′m proceeds as

follows:

1. Let pp = (1κ, ¯̀, g) and d′ = 2d+ 1.

2. For every i ∈ [`] sample a random polynomial C ′i ∈ F[x] of degree d′ − 1.

3. For i ∈ [`] \ {i∗} let Ci = x · C ′i − s · C ′i +mi. Observe that Ci is distributed like a random degree-d′

polynomial subject to Ci(s) = mi. Note that the adversary cannot compute the polynomial Ci since
it is not given s in the clear.

4. Let Ci∗ = x · C ′i∗ − s · C ′i∗ + mi∗ + (xd
′ − t). Observe that if t = sd

′
then Ci is distributed like a

random degree-d′ polynomial subject to Ci(s) = mi∗ . If t is random and independent of s then Ci is
distributed like a random degree-d′ polynomial.

5. Use the encodings
〈
si · tj

〉
g

for i ∈ [0, d] and j ∈ [0, δ̄] to compute the ciphertext:

c =
(〈

(C1, . . . , C`)
δ
〉
g

)
δ∈[0,δ̄]`

.

Observe that for every i ∈ [`], every coefficient of Ci depends linearly on s. Moreover, the free
coefficient of Ci∗ depends linearly on t. Therefore, every encoded polynomial in c can indeed be
computed from the input.

6. Output the bit returned by Adv(pp, c).

By construction, if t = sd
′

then the ciphertext c generated by Adv′m is distributed exactly like an encryption
of m, and hence (4) follows. If t is random and independent of s then the output of Adv′m is independent of
mi∗ . Since m̄i∗−1 and m̄i∗ only differ in location i∗, (5) follows.

5 Quasi-argument

This section includes our publicly verifiable non-interactive quasi-argument. We start by defining the notion
of quasi-arguments. In Section 5.1 we construct a quasi-argument from the encryption scheme in Section 4.
The analysis is given in Sections 5.2 and 5.3. See also Section 2.1 for a detailed discussion of the notion, and
Section 2.3 for an the overview of the construction.

Syntactically, quasi-arguments are similar to the standard notion of succinct non-interactive arguments.
In a quasi-argument for a 3CNF formula ϕ, the prover and verifier share an input x. Using a witness w
such that ϕ(x,w) = 1 the prover produces an accepting proof. In contrast to standard arguments, quasi-
arguments only satisfy a relaxed notion of soundness, called no-signaling extraction. Loosely speaking, in
the no-signaling extraction requirement we consider an adaptive adversary acting as the prover that given
honestly generated keys, produces an input x for ϕ as well as some arbitrary auxiliary input y together
with a proof. For a quasi-argument with locality parameter K we require that there exists a no-signaling
extractor E, that takes as input the formula ϕ along with a subset S of ϕ’s variables of size at most K and
samples inputs x, y, together with a partial assignment to the variable in S.

We make the following requirements of the extractor E. First, for every formula ϕ and set S, the
distribution of inputs x, y sampled by E must be indistinguishable from the distribution samples by the
adversary, conditioned on it producing an accepting proof. More formally, we consider an experiment where
the adversary produces inputs x, y together with a proof, and if the proof is rejecting we replace x and y
with ⊥. We require that this is indistinguishable from x, y sampled by E. Second, we require that for every
formula ϕ and set S, whenever E samples x 6= ⊥, the partial assignment sampled by E is consistent with x
and it satisfies all of ϕ’s clauses that are over the variables in S. Finally, the output distribution of E must
satisfy the no-signaling requirement.

Formally, a quasi-argument consists of algorithms (QA.S,QA.P,QA.V) with the following syntax.
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Setup: The randomized setup algorithm QA.S takes as input a security parameter κ, an M -variate 3CNF
formula ϕ, an input length n and a locality parameter K. It outputs a prover key pk and a verifier
key vk.

Prover: The deterministic prover algorithm QA.P takes as input a prover key pk and an assignment σ :
[M ]→ {0, 1}. It outputs a proof Π.

Verifier: The deterministic verifier algorithm QA.V takes as input a verifier key vk, an input x ∈ {0, 1}n
and a proof Π. It outputs a bit indicating if it accepts or rejects.

Remark 5.1 (Formula structure). For technical reasons, we require that every clause of ϕ contains 3 distinct
variables. This is WLOG, as we explain in Section 5.1. In what follows, we always assume that ϕ satisfies
this property even if we do not require so explicitly.

The definition of quasi-arguments relies on the following notion of locally satisfying assignments. In
what follows, we denote the M variables of the formula ϕ by z1, . . . , zM and assume WLOG that for i ∈ [n],
the i-th input variable is zi.

Definition 5.2 (Locally Satisfying Assignment). For an M -variate 3CNF formula φ, and a set S ⊆ [M ]
we say that a partial assignment σ : S → {0, 1} locally satisfies φ if every clause in φ that only contains
variables in S is satisfied by σ. We denote by φ(σ) the bit indicating whether or not σ locally satisfies φ.

Definition 5.3 (Quasi-arguments). A publicly verifiable non-interactive quasi-argument (QA.S,QA.P,QA.V)
satisfies the following requirements.

Completeness. For every κ,K, n,M ∈ N such that K,n ≤ M ≤ 2κ, every M -variate 3CNF formula ϕ,
assignment σ : [M ]→ {0, 1} satisfying ϕ, and for x ∈ {0, 1}n such that ∀i ∈ [n] : σ(i) = xi:

Pr

[
QA.V(vk, x,Π) = 1

∣∣∣∣ (pk, vk)← QA.S(κ, ϕ, n,K)
Π← QA.P(pk, σ)

]
= 1 .

Efficiency. In the completeness experiment above:

• The setup algorithm runs in time poly(κ, |ϕ|) and outputs a verifier key vk of length n·poly(κ,K).

• The prover runs in polynomial time and it outputs a proof Π of length poly(κ,K).

• The verifier runs in time n · poly(κ,K).

No-signaling extraction. For every polynomials M,n,K in the security parameter, there exists a PPT
oracle machine E, called the no-signaling extractor, such that for any M -variate formula ϕ = ϕκ and
poly-size adversary Adv the following requirements are satisfied:

Correct distribution: For every PPT distinguisher D there exists a negligible function µ such that
for every κ ∈ N:∣∣∣∣∣∣∣∣Pr

D(x, y) = 1

∣∣∣∣∣∣∣∣
(pk, vk)← QA.S(κ, ϕ, n,K)
(x, y,Π)← Adv(pk, vk)
if QA.V(vk, x,Π) = 0 :

set x = y = ⊥

− Pr
(x,y,σ)←EAdv(ϕ,∅)

[D(x, y) = 1]

∣∣∣∣∣∣∣∣ ≤ µ(κ) .

Local consistency: There exists a negligible function µ such that for every κ ∈ N and set S ⊆ [M ]
of size at most K:

Pr
(x,y,σ)←EAdv(ϕ,S)

[
x = ⊥ ∨ ∀i ∈ S ∩ [n] : σ(i) = xi

ϕ(σ) = 1

]
≥ 1− µ(κ) .
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No-signaling: For every PPT distinguisher D there exists a negligible function µ such that for every
κ ∈ N and sets S′ ⊆ S ⊆ [M ] of size at most K:∣∣∣∣ Pr

(x,y,σ)←EAdv(ϕ,S)
[D(x, y, σ(S′)) = 1]− Pr

(x,y,σ′)←EAdv(ϕ,S′)
[D(x, y, σ′) = 1]

∣∣∣∣ ≤ µ(κ) .

Remark 5.4 (Universal Extractor). Our definition requires that the no-signaling extractor is universal. That
is, there exists a single no-signaling extractor that works for every ensemble of formulas {ϕκ} and adversary
Adv. We rely on this fact in the proof of our bootstrapping theorem in Section 6.

In the remainder of this section, we prove the following theorem.

Theorem 5.5. Under Assumption 4.12 the construction given in Section 5.1 is a quasi-argument.

5.1 Construction

In this section we construct a quasi-argument based on the encryption scheme in Section 4.

5.1.1 Notation.

We start by introducing notation.

The input formula. Recall that the local-consistency property of the no-signaling extractor E requires
that if E(ϕ,S) samples (x, y, σ), then σ locally satisfies ϕ and assigns to every input variable in S a value
consistent with x. In our construction it will be convenient to express the input constraints on the assignment
σ as additional clauses in ϕ. For example, for every i ∈ [n] we could add the clause (zi = xi) to ϕ. Recall,
however, that we assume every clause in ϕ contains 3 distinct variables (see Remark 5.1). We therefore add
to ϕ clauses that express the input constraints and have the required structure. This is done as follows.

Out of the M variables z1, . . . , zM fix two variables z′, z′′ that are not input variables (we assume WLOG
that M ≥ n+ 2). For every i ∈ [n] and b ∈ {0, 1} let Ii,b(zi, z

′, z′′) be the following formula that is satisfied
if and only if zi = b:

Ii,b(zi, z
′, z′′) =

∧
b′,b′′∈{0,1}

(zi = b ∨ z′ = b′ ∨ z′′ = b′′) .

For x ∈ {0, 1}n we define the input formula Ix =
∧
i∈[n] Ii,xi . We would like to argue that for any local

assignment σ : S → {0, 1}, if Ix(σ) = 1 then every input variable in S is assigned consistently with x.
However, this is only the case when S contains z′, z′′. Therefore, in what follows we assume that S contains
the variables z′, z′′. This is WLOG since we can always:

• Run the setup algorithm QA.S with locality parameter K + 2 instead of K.

• Invoke the no-signaling extractor E on the set S ∪ {z′, z′′} instead of S and ignore the additional
variables in the resulting assignment.

Finally, we assume WLOG that for every x ∈ {0, 1}n, Ix and ϕ have no clauses in common.

Formula arithmetization. We represent 3CNF formulas as multi-linear polynomials. Let φ be an
M -variate 3CNF formula over the variables z1, . . . , zM . We identify the variables’ indices with strings in
{0, 1}m for m = log(M).

Definition 5.6. A multi-linear polynomial φ̃ : Z3m+3 → Z is an arithmetization of the 3CNF formula φ if the
following holds: For every set of indices v1,v2,v3 ∈ {0, 1}m and bits b1, b2, b3 ∈ {0, 1}, φ̃(v1,v2,v3, b1, b2, b3)
outputs a bit b ∈ {0, 1} such that b = 1 if and only if ϕ contains the clause: (zv1

= b1 ∨ zv2
= b2 ∨ zv3

= b3).

For every j ∈ [n] and b ∈ {0, 1}, let Ĩj,b be an arithmetization of the formula Ij,b. Therefore, for any

x ∈ {0, 1}n, the polynomial Ĩx =
∑
j∈[n] Ĩj,xj is an arithmetization of the formula Ix. Since ϕ and Ix do not

have any common clauses, if ϕ̃ is an arithmetization of ϕ, then ϕ̃ + Ĩx is an arithmetization of the formula
ϕ ∧ Ix.
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Polynomials. For a fixed ` ∈ N, let ID denote the multi-linear polynomial extending the boolean equality
function:

ID(z1, . . . , z`, z
′
1, . . . , z

′
`) ≡

∏
i∈[`]

(ziz
′
i + (1− zi)(1− z′i)) .

For i ∈ [`], j ∈ N let Zji : Z` → Z denote the monomial:

Zji (z1, . . . , z`) ≡ zji .

For any polynomial P : Z` → Z of individual degree δ and any i ∈ [`], let P |i,0, . . . , P |i,δ : Z` → Z be
the polynomials such that:

P (z) ≡
∑
j∈[0,δ]

P |i,j(z) · Zji (z) .

Namely, P |i,0, . . . , P |i,δ are defined by interpreting P as a univariate polynomial in zi, and letting P |i,j(z)

be the coefficient of zji . (In particular, each P |i,j(z) ignores the variable zi.)

Triplets. Let 〈K〉3 be the set of all triplets (q1, q2, q3) ∈ [K]3 such that q1, q2, q3 are pairwise distinct.

The encryption scheme. We use the encryption scheme from Section 4 with degree bound δ̄ = 2
given by the algorithms (ParamGen,KeyGen,Enc,Eval,Dec,Val,ZT,MEnc,Extend,Restrict). (The algorithms
Dec,Val and Extend are used only in the analysis.) We use the following shorthand for the algorithms Eval
and ZT:

• We denote by [P (c)]pp the output of Eval(pp, c, P ).

• We denote by [P (e) = P ′(e)]pp the output of ZT(pp, (P − P ′), e).

5.1.2 The algorithms.

Next we describe the quasi-argument’s algorithms (QA.S,QA.P,QA.V).

The setup algorithm QA.S. The setup algorithm is given as input a security parameter κ, an M -
variate 3CNF formula ϕ, an input length n and a locality parameter K.

Let m = log(M) (we assume WLOG that m is an integer). Let ϕ̃ be an arithmetization of the formula
ϕ. The setup algorithm proceeds as follows:

• Sample public parameters pp← ParamGen(κ, ¯̀= m).

• For every q ∈ [K] sample skq ← KeyGen(pp), rq ← {0, 1}κ and set γq = (skq, 0
m, rq).

• For every q ∈ [K] set Aq ← Enc(γq).

• For every q = (q1, q2, q3) ∈ 〈K〉3 set Bq ← MEnc(γq1 , γq2 , γq3).

• For every q ∈ 〈K〉3, i ∈ [3m], and δ ∈ [0, 2], set Cq
i,δ ←

[
Zδi (Bq)

]
pp

.

• For every b ∈ {0, 1}3, q ∈ 〈K〉3 set Db,q ← [ϕ̃(Bq,b)]pp.

• For every b ∈ {0, 1}3, q ∈ 〈K〉3, j ∈ [n], and b ∈ {0, 1}, set Eb,q
j,b ←

[
Ĩj,b(B

q,b)
]
pp

.
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• Output the prover and verifier keys:

pk =

 pp
{Aq : q ∈ [K]}
{Bq : q ∈ 〈K〉3

}


vk =


pp{
Cq
i,δ : q ∈ 〈K〉3, i ∈ [3m], δ ∈ [0, 2]

}{
Db,q : b ∈ {0, 1}3 , q ∈ 〈K〉3

}{
Eb,q
j,b : b ∈ {0, 1}3 , q ∈ 〈K〉3, j ∈ [n], b ∈ {0, 1}

}

 .

The prover algorithm QA.P. The prover is given as input:

• A prover key:

pk =

 pp
{Aq : q ∈ [K]}
{Bq : q ∈ 〈K〉3

}
 .

• An assignment σ : [M ]→ {0, 1} satisfying ϕ.

The prover proceeds as follows:

• Let Σ : Zm → Z be the multi-linear extension of the assignment σ:

Σ(z) ≡
∑

v∈{0,1}m
ID(z,v) · σ(v) .

• For every b = (b1, b2, b3) ∈ {0, 1}3 and subset I ⊆ [3], let Σb
I : Z3m → Z be the polynomial:

Σb
I (z1, z2, z3) ≡

∏
i∈I

(Σ(zi)− bi) .

• Let x ∈ {0, 1}n be the value σ assigns to ϕ’s input variables. Note that σ satisfies ϕ ∧ Ix.

• For every b ∈ {0, 1}3 let Pb
0 : Z3m → Z be the polynomial:

Pb
0 (z) ≡ (ϕ̃+ Ĩx)(z,b) · Σb

[3](z) .

Note that since σ satisfies ϕ ∧ Ix, Pb
0 (z) = 0 for every z ∈ {0, 1}3m.

• For every b ∈ {0, 1}3 and i ∈ [3m], let Pb
i : Z3m → Z be the polynomial:

Pb
i (z1, . . . , z3m) ≡

∑
v1,...,vi∈{0,1}

ID(z1, . . . , zi, v1, . . . , vi) · Pb
0 (v1, . . . , vi, zi+1, . . . , z3m) .

Note that for every i ∈ [3m]:

Pb
i (z1, . . . , z3m) ≡

∑
vi∈{0,1}

ID(zi, vi) · Pb
i−1(z1, . . . , zi−1, vi, zi+1, . . . , z3m) .

Moreover, since Pb
0 (z) = 0 for every z ∈ {0, 1}3m we have that Pb

3m ≡ 0.

• For every q ∈ [K] set F q ← [Σ(Aq)]pp.

• For every b ∈ {0, 1}3, q ∈ 〈K〉3, and non-empty I ⊆ [3], set Gb,q
I ←

[
Σb
I (Bq)

]
pp

.
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• For every b ∈ {0, 1}3, q ∈ 〈K〉3, i ∈ [3m], and δ ∈ [0, 2], set Hb,q
i−1,δ ←

[
Pb
i−1

∣∣
i,δ

(Bq)
]
pp

.

• Output the proof:

Π =


{F q : q ∈ [K]}{
Gb,q
I : b ∈ {0, 1}3 , q ∈ 〈K〉3, I ⊆ [3]

}{
Hb,q
i−1,δ : b ∈ {0, 1}3 , q ∈ 〈K〉3, i ∈ [3m], δ ∈ [0, 2]

}
 .

The verifier algorithm QA.V. The verifier is given as input:

• A verifier key:

vk =


pp{
Cq
i,δ : q ∈ 〈K〉3, i ∈ [3m], δ ∈ [0, 2]

}{
Db,q : b ∈ {0, 1}3 , q ∈ 〈K〉3

}{
Eb,q
j,b : b ∈ {0, 1}3 , q ∈ 〈K〉3, j ∈ [n], b ∈ {0, 1}

}

 .

• An input string x ∈ {0, 1}n.

• A proof:

Π =


{F q : q ∈ [K]}{
Gb,q
I : b ∈ {0, 1}3 , q ∈ 〈K〉3, I ⊆ [3]

}{
Hb,q
i−1,δ : b ∈ {0, 1}3 , q ∈ 〈K〉3, i ∈ [3m], δ ∈ [0, 2]

}
 .

For every b = (b1, b2, b3) ∈ {0, 1}3 and q = (q1, q2, q3) ∈ 〈K〉3, denote:

Cδi = Cq
i,δ, D = Db,q, Ej,b = Eb,q

j,b , GI = Gb,q
I , Hi−1,δ = Hb,q

i−1,δ ,

and perform the following zero-tests.

Validity of G: For every pair of non-empty disjoint subsets I, I ′ ⊆ [3] test that:

[GI ·GI′ = GI∪I′ ]pp .

Consistency of G and F : For every i ∈ [3] test that:[
Restrict(G{i}, i) = F qi − bi

]
pp

.

Consistency of G and H0: Test that: ∑
δ∈[0,2]

H0,δ · Cδ1 =

D +
∑
j∈[n]

Ej,xj

 ·G[3]


pp

.

Consistency of Hi−1 and Hi: For every i ∈ [3m− 1] test that: ∑
v∈{0,1}

ID(C1
i , v) ·

∑
δ∈[0,2]

Hi−1,δ · vδ =
∑
δ∈[0,2]

Hi,δ · Cδi+1


pp

.

Validity of H3m−1: Test that:  ∑
v∈{0,1}

ID(C1
3m, v) ·

∑
δ∈[0,2]

H3m−1,δ · vδ = 0


pp

.
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5.2 Completeness

Fix κ ∈ N, K,n ≤ M ≤ 2κ, an input x ∈ {0, 1}n, an M -variate 3CNF formula ϕ and an assignment
σ : {0, 1}m → {0, 1} satisfying ϕ ∧ Ix. Consider the experiment:

(pk, vk)← QA.S(κ, ϕ, n,K)
Π← QA.P(pk, σ)
QA.V(vk, x,Π)

We need to prove that in this experiment, all of the verifier’s tests pass and it accepts with probability 1.
Fix b = (b1, b2, b3) ∈ {0, 1}3 and q = (q1, q2, q3) ∈ 〈K〉3 and denote:

B = Bq, Cδi = Cq
i,δ, Cδi = Cq

i,δ, D = Db,q, Ej,b = Eb,q
j,b , GI = Gb,q

I , Hi−1,δ = Hb,q
i−1,δ .

By construction, the following ciphertexts are computed by evaluating the following polynomials on the
ciphertext B:

Cδi =
[
Zδi (B)

]
pp

, (6)

D = [ϕ̃(B,b)]pp , (7)

Ej,b =
[
Ĩj,b(B,b)

]
pp

, (8)

GI =
[
Σb
I (B)

]
pp

, (9)

Hi−1,δ =
[
Pb
i−1

∣∣
i,δ

(B)
]
pp

. (10)

We argue that all the verfier’s tests for b and q pass.

Validity of G. For every pair of non-empty disjoint subsets I, I ′ ⊆ [3] the verifier tests that:

[GI ·GI′ = GI∪I′ ]pp .

By the definition of the polynomial Σb
I we have:

Σb
I (z1, z2, z3) · Σb

I′(z1, z2, z3) ≡
∏
i∈I

(Σ(zi)− bi) ·
∏
i∈I′

(Σ(zi)− bi)

≡
∏

i∈I∪I′
(Σ(zi)− bi)

≡ Σb
I∪I′(z1, z2, z3) .

Therefore, by (9) and by the weak completeness of the zero test (Definition 4.4) the test passes.

Consistency of G and F . For every i ∈ [3] the verifier tests that:[
Restrict(G{i}, i) = F qi − bi

]
pp

.

By construction:
Aqi = Enc(γqi) , Bq = MEnc(γq1 , γq2 , γq3) .

By the definition of the polynomial Σb
i , for every z1, z2, z3 ∈ Zm:

Σb
i (z1, z2, z3) = Σ(zi)− bi .

Therefore, by (9) and by the correctness of the restriction operation (Definition 4.10):

Restrict(G{i}, i) = [Σ(Aqi)− bi]pp .

34



We, therefore, need to show that the following test passes:

[Σ(Aqi)− bi = F qi − bi]pp .

By construction F q = [Σ(Aq)]pp. Therefore, by the weak completeness of the zero test (Definition 4.4) the
test passes.

Consistency of G and H0. The verifier tests that: ∑
δ∈[0,2]

H0,δ · Cδ1 =

D +
∑
j∈[n]

Ej,xj

 ·G[3]


pp

.

By the definition of the polynomial Pb
0 we have:∑

δ∈[0,2]

Pb
0

∣∣
1,δ

(z) · Zδi (z) ≡ Pb
0 (z)

≡ (ϕ̃+ Ĩx)(z,b) · Σb
[3](z)

≡ (ϕ̃+
∑
j∈[n]

Ĩj,xj )(z,b) · Σb
[3](z)

Therefore, by (6) through (10) and by the weak completeness of the zero test (Definition 4.4) the test passes.

Consistency of Hi−1 and Hi. For every i ∈ [3m− 1] the verifier tests that: ∑
v∈{0,1}

ID(C1
i , v) ·

∑
δ∈[0,2]

Hi−1,δ · vδ =
∑
δ∈[0,2]

Hi,δ · Cδi+1


pp

.

By the definition of the polynomial Pb
i for z = (z1, . . . , z3m) we have:∑

v∈{0,1}

ID(Z1
i (z), v) ·

∑
δ∈[0,2]

Pb
i−1

∣∣
i,δ

(z) · vδ

≡
∑

v∈{0,1}

ID(zi, v) · Pb
i−1(z1, . . . , zi−1, v, zi+1, . . . , z3m)

≡
∑

v1,...,vi∈{0,1}

ID(z1, . . . , zi, v1, . . . , vi) · Pb
0 (v1, . . . , vi, zi+1, . . . , z3m)

≡ Pb
i (z)

≡
∑
δ∈[0,2]

Pb
i

∣∣
i+1,δ

(z) · Zδi+1(z) .

Therefore, by (6) and (10) and by the weak completeness of the zero test (Definition 4.4) the test passes.

Validity of H3m−1. The verifier tests that: ∑
v∈{0,1}

ID(C1
3m, v) ·

∑
δ∈[0,2]

H3m−1,δ · vδ = 0


pp

.
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By the definition of the polynomial Pb
i for z = (z1, . . . , z3m) we have:∑

v∈{0,1}

ID(Z1
3m(z), v) ·

∑
δ∈[0,2]

Pb
3m−1

∣∣
3m,δ

(z) · vδ

≡
∑

v∈{0,1}

ID(z3m, v) · Pb
3m−1(z1, . . . , z3m−1, v)

≡
∑

v∈{0,1}3m
ID(z,v) · Pb

0 (v) .

By construction, since the assignment σ satisfies the formula ϕ ∧ Ix we have that Pb
0 (v) = 0 for every

v ∈ {0, 1}3m, and therefore: ∑
v∈{0,1}

ID(Z1
3m(z), v) ·

∑
δ∈[0,2]

Pb
3m−1

∣∣
3m,δ

(z) · vδ

≡
∑

v∈{0,1}3m
ID(z,v) · Pb

0 (v) ≡ 0 .

Therefore, by (6) and (10) and by the weak completeness of the zero test (Definition 4.4) the test passes.

5.3 No-signaling Extraction

Let M,n,K be polynomials in the security parameter. We construct a PPT no-signaling extractor E, and
show that it satisfies the requirements in Definition 5.3.

Fix an ensemble of M -variate formulas {ϕκ} and a poly-size adversary Adv acting as a malicious prover
in the quasi-argument. The extractor E is given oracle access to Adv and it is given as input the formula
ϕ = ϕκ and a set S ⊆ {0, 1}m of size at most K. We assume WLOG that S contains the indices of the
variables z′, z′′ used in the input formula (see Section 5.1.1). E proceeds as follows:

• Fix K distinct indexes u1, . . . ,uK ∈ {0, 1}m such that S ⊆ {u1, . . . ,uK}.

• Emulate the algorithm QA.S(κ, ϕ, n,K) with the following modification: instead of setting γq =
(skq, 0

m, rq), set γq = (skq,uq, rq). Obtain the prover and verifier keys pk, vk.

• Query Adv with the keys pk, vk and obtain inputs x, y and a proof Π including the ciphertexts
F 1, . . . , FK .

• If QA.V(vk, x,Π) = 0, then set x = y = ⊥.

• Fix an assignment σ : S → {0, 1} as follows: For every uq ∈ S set b ← Dec(skq, F
q). If b ∈ {0, 1} set

σ(uq) = b. Otherwise, if b = ⊥ set σ(uq) to an arbitrary bit in {0, 1}.

• Output x, y and σ.

Next we argue that E satisfies the requirements in Definition 5.3. To argue that E samples the correct
distribution we need to show that for every PPT distinguisher D and κ ∈ N:∣∣∣∣∣∣∣∣Pr

D(x, y) = 1

∣∣∣∣∣∣∣∣
(pk, vk)← QA.S(κ, ϕ, n,K)
(x, y,Π)← Adv(pk, vk)
if QA.V(vk, x,Π) = 0 :

set x = y = ⊥

− Pr
(x,y,σ)←EAdv(ϕ,∅)

[D(x, y) = 1]

∣∣∣∣∣∣∣∣ ≤ negl(κ) .

This follows from the construction of E and the semantic security of the encryption (Definition 4.3) by a
standard hybrid argument. The proof is omitted. We proceed to show that E satisfies local consistency and
no-signaling.
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5.3.1 Local consistency.

Fix κ ∈ N and a set S ⊆ {0, 1}m of size at most K containing the indices of the variables z′, z′′. We show
that:

Pr
(x,y,σ)←E(ϕ,S)

[
x = ⊥ ∨ ∀i ∈ S ∩ [n] : σ(i) = xi

ϕ(σ) = 1

]
= 1 .

By the construction of the input formula Ix and since S contains the indices of the variables z′, z′′, it is
sufficient to prove:

Pr
(x,y,σ)←E(ϕ,S)

[
x 6= ⊥
(ϕ ∧ Ix)(σ) = 0

]
= 0 .

Since E outputs x = ⊥ whenever QA.V(vk, x,Π) rejects, it is sufficient to show that:

Pr
(x,y,σ)←EAdv(ϕ,S)

 x 6= ⊥
1 = QA.V(vk, x,Π)
(ϕ ∧ Ix)(σ) = 0

 = 0 . (11)

The proof of local consistency proceeds as follows. We first define a computationally unbounded verifier
Ṽ. Loosely speaking, Ṽ emulates the verifier QA.V “in the clear”. That is, Ṽ first uses the inefficient algorithm
Val to decrypt the ciphertexts in the verifier key vk and in the proof Π and then performs the same tests as
QA.V except on the plaintexts instead of the ciphertexts. To prove (11) we argue that with overwhelming
probability:

• Whenever QA.V accepts Ṽ also accepts. This follows from the soundness property of the zero-test
operation (Definition 4.5).

• Whenever Ṽ accepts σ locally satisfies ϕ ∧ Ix.

The computationally unbounded verifier Ṽ is given as input:

• A verifier key:

vk =


pp{
Cq
i,δ : q ∈ 〈K〉3, i ∈ [3m], δ ∈ [0, 2]

}{
Db,q : b ∈ {0, 1}3 , q ∈ 〈K〉3

}{
Eb,q
j,b : b ∈ {0, 1}3 , q ∈ 〈K〉3, j ∈ [n], b ∈ {0, 1}

}

 .

• An input string x ∈ {0, 1}n.

• A proof:

Π =


{F q : q ∈ [K]}{
Gb,q
I : b ∈ {0, 1}3 , q ∈ 〈K〉3, I ⊆ [3]

}{
Hb,q
i−1,δ : b ∈ {0, 1}3 , q ∈ 〈K〉3, i ∈ [3m], δ ∈ [0, 2]

}
 .

• Secret keys sk1, . . . , skK (not given to the real verifier QA.V).

For every q ∈ [K] set F̃ q ← Val(skq, F
q). For every b = (b1, b2, b3) ∈ {0, 1}3 and q = (q1, q2, q3) ∈ 〈K〉3,

let sk = (skq1 , skq2 , skq3), and set:

C̃δi ← Val(sk, Cq
i,δ) ,

D̃ ← Val(sk, Db,q) ,

Ẽj,b ← Val(sk, Eb,q
j,b ) ,

G̃I ← Val(sk, Gb,q
I ) ,

H̃i−1,δ ← Val(sk, Hb,q
i−1,δ) .
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If any of these executions of Val output ⊥, then Ṽ rejects. Otherwise, the values defined above are in
the field F defined by pp and Ṽ performs the following tests on these field elements.

Validity of G̃: For every pair of non-empty disjoint subsets I, I ′ ⊆ [3] test that:

G̃I · G̃I′ = G̃I∪I′ .

Consistency of G̃ and F̃ : For every i ∈ [3] test that:

G̃{i} = F̃ qi − bi .

Consistency of G̃ and H̃0: Test that:

∑
δ∈[0,2]

H̃0,δ · C̃δ1 =

D̃ +
∑
j∈[n]

Ẽj,xj

 · G̃[3] .

Consistency of H̃i−1 and H̃i: For every i ∈ [3m− 1] test that:∑
v∈{0,1}

ID(C̃1
i , v) ·

∑
δ∈[0,2]

H̃i−1,δ · vδ =
∑
δ∈[0,2]

H̃i,δ · C̃δi+1 .

Validity of H̃3m−1: Test that: ∑
v∈{0,1}

ID(C̃1
3m, v) ·

∑
δ∈[0,2]

H̃3m−1,δ · vδ = 0 .

To show that (11) holds it is sufficient to prove the following two claims:

Claim 5.7.

Pr
(x,y,σ)←EAdv(ϕ,S)

[
1 = QA.V(vk, x,Π)

0 = Ṽ(vk, x,Π, (sk1, . . . , skK))

]
= 0 .

Claim 5.8.

Pr
(x,y,σ)←EAdv(ϕ,S)

 x 6= ⊥
1 = Ṽ(vk, x,Π, (sk1, . . . , skK))
(ϕ ∧ Ix)(σ) = 0

 = 0 .

The proof of Claim 5.7 follows directly from the construction of the verifiers QA.V and Ṽ by the soundness
of the zero-test operation (Definition 4.5).

Proof of Claim 5.8. We prove that:

x 6= ⊥ ∧ 1 = Ṽ(vk, x,Π, (sk1, . . . , skK)) ⇒ (ϕ ∧ Ix)(σ) = 1 .

Assuming that x 6= ⊥ and 1 = Ṽ(vk, x,Π, (sk1, . . . , skK)) we need to show that every clause in ϕ ∧ Ix that
only contains variables in S is satisfied by σ. Recall that ϕ̃+ Ĩx is an arithmetization of the formula ϕ∧ Ix.
Let u1, . . . ,uK ∈ {0, 1}m be the distinct indexes fixed by E such that S ⊆ {u1, . . . ,uK}. Since every clause
in ϕ ∧ Ix contain three distinct variables in S it is sufficient to prove that for every q = (q1, q2, q3) ∈ 〈K〉3
and bits b = (b1, b2, b3) ∈ {0, 1}3

(ϕ̃+ Ĩx)(uq1 ,uq2 ,uq3 ,b) = 1 ⇒ (σ(uq1) = b1 ∨ σ(uq2) = b2 ∨ σ(uq3) = b3) .
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Let u = (u1, . . . , u3m) ∈ {0, 1}3m be the vector u = (uq1 ,uq2 ,uq3). By the constructions of E and Ṽ, and by
the correctness of evaluation property (Definition 4.1):

C̃δi = uδi , (12)

D̃ = ϕ̃(u,b) , (13)

Ẽj,b = Ĩj,b(u,b) . (14)

Recall that for x 6= ⊥, Ĩx =
∑
j∈[n] Ĩj,xj . And, therefore, by (13) and (14):

(ϕ̃+ Ĩx)(u,b) = D̃ +
∑
j∈[n]

Ẽj,xj . (15)

Whenever Ṽ accepts, the validity test of G̃ passes and, therefore:

G̃[3] = G̃{1} · G̃{2} · G̃{3} . (16)

Whenever Ṽ accepts, the consistency test of G̃ and F̃ passes and, therefore:

G̃{i} = F̃ qi − bi . (17)

Combining (16) and (17) we have:

G̃[3] =
∏
i∈[3]

(
F̃ qi − bi

)
. (18)

Whenever Ṽ accepts, the consistency test of G̃ and H̃0 passes and, therefore:

∑
δ∈[0,2]

H̃0,δ · C̃δ1 =

D̃ +
∑
j∈[n]

Ẽj,xj

 · G̃[3] .

Combining the above with (12),(15) and (18) gives:∑
δ∈[0,2]

H̃0,δ · uδ1 = (ϕ̃+ Ĩx)(u,b) ·
∏
i∈[3]

(
F̃ qi − bi

)
. (19)

Whenever Ṽ accepts, for every i ∈ [3m− 1] the consistency test of H̃i−1 and H̃i passes and, therefore:∑
v∈{0,1}

ID(C̃1
i , v) ·

∑
δ∈[0,2]

H̃i−1,δ · vδ =
∑
δ∈[0,2]

H̃i,δ · C̃δi+1 .

Combining the above with (12), and by the fact that ui ∈ {0, 1} we have:∑
δ∈[0,2]

H̃i−1,δ · uδi =
∑

v∈{0,1}

ID(ui, v) ·
∑
δ∈[0,2]

H̃i−1,δ · vδ =
∑
δ∈[0,2]

H̃i,δ · uδi+1 .

Since the above holds for every i ∈ [3m− 1] it follows that:∑
δ∈[0,2]

H̃0,δ · uδ1 =
∑
δ∈[0,2]

H̃3m−1,δ · uδ3m . (20)

Whenever Ṽ accepts, the validity test of H̃3m−1 passes and, therefore:∑
v∈{0,1}

ID(C̃1
3m, v) ·

∑
δ∈[0,2]

H̃3m−1,δ · vδ = 0 .
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Combining the above with (12), and by the fact that u3m ∈ {0, 1} we have:∑
δ∈[0,2]

H̃3m−1,δ · uδ3m =
∑

v∈{0,1}

ID(u3m, v) ·
∑
δ∈[0,2]

H̃3m−1,δ · vδ = 0 . (21)

Combining (19), (20) and (21) we have:

(ϕ̃+ Ĩx)(u,b) ·
∏
i∈[3]

(
F̃ qi − bi

)
= 0 .

Therefore, if (ϕ̃ + Ĩx)(u,b) = 1, then there must exist some i ∈ [3] such that F̃ qi = bi ∈ {0, 1}. By the
construction of E and Ṽ and by the correctness of decryption property (Definition 4.2) it follows that:

σ(uqi) = Dec(skqi , F
qi) = Val(skqi , F

qi) = F̃ qi = bi .

Therefore, as required, it holds that:

(σ(uq1) = b1 ∨ σ(uq2) = b2 ∨ σ(uq3) = b3) .

5.3.2 No-signaling.

Fix a PPT distinguisher D. Assume towards contradiction that for infinitely many values of κ ∈ N there
exist sets S0 ⊆ S1 ⊆ {0, 1}m of size at most K such that:∣∣∣∣ Pr

(x,y,σ)←EAdv(ϕ,S1)

[
D(x, y, σ(S0)) = 1

]
− Pr

(x,y,σ)←EAdv(ϕ,S0)
[D(x, y, σ) = 1]

∣∣∣∣ ≥ 1

poly(κ)
.

For every b ∈ {0, 1} let ub1, . . . ,u
b
K ∈ {0, 1}

m
be the distinct indexes fixed by EAdv(ϕ,Sb). Recall that

Sb ⊆
{
ub1, . . . ,u

b
q

}
. We assume that for every q0, q1 ∈ [K]:

u0
q0 = u1

q1 ⇒ q0 = q1 . (22)

This is WLOG since the output distribution of E is invariant with respect to the order of the indexes
ub1, . . . ,u

b
K .

For q ∈ [0,K] let Expq be the experiment where we sample (x, y, σ) by executing EAdv with ϕ and with
fixed u1, . . . ,uK such that uq′ = u0

q′ for all q′ ≤ q and uq′ = u1
q′ for all q′ > q . Note that Exp0 corresponds

to an execution of EAdv(ϕ,S1), and ExpK corresponds to an execution of EAdv(ϕ,S0). Therefore, there exists
q∗ ∈ [K] such that: ∣∣∣∣ Pr

Expq∗−1

[
D(x, y, σ(S0)) = 1

]
− Pr

Expq∗

[
D(x, y, σ(S0)) = 1

]∣∣∣∣ ≥ 1

poly(κ)
. (23)

Claim 5.9. u0
q∗ /∈ S0.

Proof. By (22), u0
q∗ ∈ S0 ⊆ S1 implies u0

q∗ = u1
q∗ . In this case the views of the experiments Expq∗−1 and

Expq∗ are identical.
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We construct an adversary D′ that breaks the semantic security of the encryption (Definition 4.3).
Specifically, we show that:

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
pp← ParamGen(κ,m, 2)
sk← KeyGen(pp)
r ← {0, 1}κ
c0 ← Enc(sk,u0

q∗ , r)
c1 ← Enc(sk,u1

q∗ , r)
b′ ← D′(pp, cb)


≥ 1

2
+

1

poly(κ)
.

The adversary D′ is given pp and a ciphertext c and it proceeds as follows.

• For every q < q∗ sample skq ← KeyGen(pp), rq ← {0, 1}κ and set γq = (skq,u
0
q, rq).

• For every q > q∗ sample skq ← KeyGen(pp), rq ← {0, 1}κ and set γq = (skq,u
1
q, rq).

• Set γq∗ = c.

• For every q ∈ [K] \ {q∗} set Aq ← Enc(γq). Set Aq
∗

= c.

• For every q = (q1, q2, q3) ∈ 〈K〉3 such that q∗ /∈ {q1, q2, q3} set Bq ← MEnc(γq1 , γq2 , γq3).

• For every q = (q1, q2, q3) ∈ 〈K〉3 such that q∗ ∈ {q1, q2, q3} set Bq ← Extend(γq1 , γq2 , γq3).

• Emulate the remainder of the setup algorithm QA.S and obtain the prover and verifier keys pk, vk.

• Query Adv with the keys pk, vk and obtain an input x, auxiliary input y and proof Π which includes
the ciphertexts F 1, . . . , FK .

• If QA.V(vk, x,Π) = 0, then set x = y = ⊥.

• Fix an assignment σ(S0) : S0 → {0, 1} as follows: For every uq ∈ S0 set b← Dec(skq, F
q). Note that

by Claim 5.9, if uq ∈ S0 then q 6= q∗ and therefore skq is indeed defined. If b ∈ {0, 1} set σ(uq) = b.
Otherwise, if b = ⊥ set σ(uq) to be an arbitrary bit in {0, 1}.

• Output D(x, y, σ(S0)).

The following claim together with (23) imply that D′ breaks semantic security.

Claim 5.10.

Pr
Expq∗−1

[
D(x, y, σ(S0)) = 1

]
= Pr

D′(pp, c) = 1

∣∣∣∣∣∣∣∣
pp← ParamGen(κ,m, 2)
sk← KeyGen(pp)
r ← {0, 1}κ
c← Enc(sk,u1

q∗ , r)



Pr
Expq∗

[
D(x, y, σ(S0)) = 1

]
= Pr

D′(pp, c) = 1

∣∣∣∣∣∣∣∣
pp← ParamGen(κ,m, 2)
sk← KeyGen(pp)
r ← {0, 1}κ
c← Enc(sk,u0

q∗ , r)


Proof. By the construction of D′ and by the correctness of extension property (Definition 4.9) we have that
when c is an encryption of u1

q∗ , the distribution of D(x, y, σ(S0)) sampled by D′ is identical to that sampled
in the experiment Expq∗−1. Similarly, when c is an encryption of u0

q∗ , the distribution of D(x, y, σ(S0))
sampled by D′ is identical to that sampled in the experiment Expq∗ .
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6 Bootstrapping Theorem

In this section we prove our bootstrapping theorem. See Section 2.2 for an overview.

Theorem 6.1 (Bootstrapping). If there exists a family of collision-resistant hash functions and a pub-
licly verifiable non-interactive quasi-argument (Definition 5.3), then there exists a publicly verifiable non-
interactive delegation scheme for any RAM machine (Definition 3.4) where the setup time TS and proof
length LΠ are both TO(1/ log2 logκ T ).

The proof of the theorem is by induction. The base case is proven in Section 6.1 and the inductive step
is proven in Section 6.2

6.1 The Base Case

In the base of the induction we construct a RAM delegation scheme with a long setup time.

Theorem 6.2. If there exists a family of collision-resistant hash functions and a publicly verifiable non-
interactive quasi-argument (Definition 5.3), then there exists a publicly verifiable non-interactive delegation
scheme for any RAM machine with setup time TS = poly(T, κ) and proof length LΠ = poly(κ) (Defini-
tion 3.4).

6.1.1 Hash tree.

Before proving Theorem 6.2 we define the notion of hash trees. A hash-tree scheme consists of polynomial
time algorithms:

(HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite) ,

with the following syntax:

• HT.Gen is a randomized algorithm that takes as input the security parameter 1κ and outputs a hash
key dk.

• HT.Hash is a deterministic algorithm that takes as input a key dk and memory string D. It outputs
a hash tree tree and a root rt.

• HT.Read is a deterministic algorithm that takes as input a tree tree and a memory location `. It
outputs a bit b and a proof Π.

• HT.Write is a deterministic algorithm that takes as input a tree tree, a memory location ` and a bit b.
It outputs a new tree tree′, a new root rt′ and a proof Π.

• HT.VerRead is a deterministic algorithm that takes as input a key dk, a root rt, a memory location `,
a bit b and a proof Π. It outputs an acceptance bit.

• HT.VerWrite is a deterministic algorithm that takes as input a key dk, a root rt, a memory location `,
a bit b, a new root rt′ and a proof Π. It outputs an acceptance bit.

Definition 6.3 (Hash-Tree). A hash-tree scheme

(HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite) ,

satisfies the following properties.

Completeness of Read. For every κ ∈ N, D ∈ {0, 1}L such that L ≤ 2κ, and ` ∈ [L]:

Pr

 1 = HT.VerRead(dk, rt, `, b,Π)
D[`] = b

∣∣∣∣∣∣
dk← HT.Gen(1κ)
(tree, rt)← HT.Hash(dk, D)
(b,Π)← HT.Read(tree, `)

 = 1 .
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Completeness of Write. For every κ ∈ N, D ∈ {0, 1}L such that L ≤ 2κ, ` ∈ [L] and b ∈ {0, 1} let D′ be
the string D with its `-th location set to b. We have that:

Pr

 1 = HT.VerWrite(dk, rt, `, b, rt′,Π)
(tree′, rt′) = HT.Hash(dk, D′)

∣∣∣∣∣∣
dk← HT.Gen(1κ)
(tree, rt)← HT.Hash(dk, D)
(tree′, rt′,Π)← HT.Write(tree, `, b)

 = 1 .

Efficiency. In the completness experiments above, the running time of HT.Hash is |D| ·poly(κ). The length
of the root produced by HT.Hash and the length of the proofs produced by HT.Read and HT.Write are
poly(κ).

Soundness of Read. For every polynomial size adversary Adv there exists a negligible function µ such that
for every κ ∈ N:

Pr

 b1 6= b2
1 = HT.VerRead(dk, rt, `, b1,Π1)
1 = HT.VerRead(dk, rt, `, b2,Π2)

∣∣∣∣∣∣ dk← HT.Gen(1κ)
(rt, `, b1,Π1, b2,Π2)← Adv(dk)

 ≤ µ(κ) .

Soundness of Write. For every polynomial size adversary Adv there exists a negligible function µ such
that for every κ ∈ N:

Pr

 rt1 6= rt2
1 = HT.VerWrite(dk, rt, `, b, rt1,Π1)
1 = HT.VerWrite(dk, rt, `, b, rt2,Π2)

∣∣∣∣∣∣ dk← HT.Gen(1κ)
(rt, `, b, rt1,Π1, rt2,Π2)← Adv(dk)

 ≤ µ(κ) .

Theorem 6.4 ([Mer87]). A hash-tree scheme can be constructed from any family of collision-resistant hash
functions.

6.1.2 Construction.

Let (HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite) be a hash-tree scheme (Definition 6.3)
and let (QA.S,QA.P,QA.V) be a publicly verifiable non-interactive quasi-argument (Definition 5.3). We
construct a delegation scheme (RDel.S,RDel.D,RDel.P,RDel.V) for any RAM machine with setup time TS =
poly(T, κ) and proof length LΠ = poly(κ) (Definition 3.4).

The RAM machine. Fix a RAM machine R. We assume for simplicity and WLOG that in every step
R reads from one memory location and then writes to one memory location. Let (StepR,StepW) be the
following deterministic polynomial-time algorithms:

• Given a local state st of R, StepR outputs the memory location ` such that R in state st reads from
location `.

• Given a local state st and a bit b, StepW outputs a bit b′, a memory location `′ and a state st′, such
that R in state st, after reading the bit b, writes the bit b′ to location `′ and transitions to state st′.

The setup algorithm RDel.S. Given as input κ and T , the setup algorithm first samples a hash key
dk← HT.Gen(1κ). Next, it emulates the quasi-argument setup algorithm QA.S(κ, φ, n,K) with the formula
φ, locality parameter K, and input length n, defined below. It obtains the keys (QA.pk,QA.vk) and outputs
the keys (pk = (QA.pk, dk) , vk = QA.vk , dk).
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Let ϕ be a 3CNF formula corresponding to one step of R. That is, for every pair of digests h =
(st, rt), h′ = (st′, rt′), bit b, and proofs Π,Π′ there exists w such that ϕ(h, h′, b,Π,Π′, w) = 1 if and only if:

`← StepR(st)

(b′, `′, st′′)← StepW(st, b)

st′ = st′′

1 = HT.VerRead(dk, rt, `, b,Π)

1 = HT.VerWrite(dk, rt, `′, b′, rt′,Π′)

Moreover, such w can be efficiently computed given (h, h′, b,Π,Π′). By the efficiency of the hash-tree
scheme, there exists such a formula ϕ with K = poly(κ) variables.

Let φ be the following formula over M = O(K · T ) variables:

φ
(
h0, (bi,Πi,Π

′
i, wi, hi)i∈[T ]

)
=
∧
i∈[T ]

ϕ(hi−1, hi, bi,Πi,Π
′
i, wi) .

Let the variables describing h0, hT be the n input variables of φ.

The digest algorithm RDel.D. Given as input dk and a configuration cf that consists of state st and
memory D, the digest algorithm computs the hash tree (tree, rt) = HT.Hash(dk, D). It outputs the pair
(st, rt) as the digest.

The prover algorithm RDel.P. Given as input pk = (QA.pk, dk) and a pair of configurations cf, cf ′

such that (κ, cf, cf ′, T ) ∈ UR the prover emulates R and obtains a satisfying assignment for φ as follows: let
cf = (st0, D0), let (tree0, rt0) = HT.Hash(dk, D0) and let h0 = (st0, rt0). For every i ∈ [T ] let:

`i ← StepR(sti−1) ,

(bi,Πi)← HT.Read(treei−1, `i) ,

(b′i, `
′
i, sti)← StepW(sti−1, bi) ,

(treei, rti,Π
′
i)← HT.Write(treei−1, `

′
i, b
′
i) ,

hi ← (sti, rti) ,

and let wi be such that ϕ(hi−1, hi, bi,Πi,Π
′
i, wi) = 1 (such wi can be efficiently computed).

The prover now holds an accepting assignment σ for φ:

φ(h0, (bi,Πi,Π
′
i, wi, hi)i∈[T ]) =

∧
i∈[T ]

ϕ(hi−1, hi, bi,Πi,Π
′
i, wi) = 1 .

It emulates the quasi-argument prover and outputs the proof Π = QA.P(QA.pk, σ).

The verifier algorithm RDel.V. Given as input vk, a pair of digests h, h′ and a proof Π, the verifier
emulates the quasi-argument verifier QA.V(vk, (h, h′),Π) and accepts if and only if QA.V accepts.

6.1.3 Analysis.

The completeness and efficiency requirements of the construction follow immediately from those of the
quasi-argument and the hash-tree scheme. We focus on proving soundness.

Fix a PPT adversary Adv and a polynomial T = T (κ). Assume towards contradiction that there exists
a polynomial p such that for infinitely many κ ∈ N:

Pr


RDel.V(vk, h, h′,Π) = 1
(κ, cf, cf ′, T ) ∈ UR
h = RDel.D(dk, cf)
h′ 6= RDel.D(dk, cf ′)

∣∣∣∣∣∣∣∣
(pk, vk, dk)← RDel.S(κ, T )
(cf, cf ′, h, h′,Π)← Adv(pk, vk, dk)

 ≥ 1

p(κ)
. (24)
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Fix κ such that (24) holds. We say that a hash key dk is bad if conditioned on RDel.S sampling dk, the
probability in (24) is at least 1/2p(κ). Therefore, a 1/2p(κ) fraction of hash keys are bad. Fix a bad dk
and let φ be the formula defined by dk. By the construction, RDel.V accepts if and only if QA.V accepts.
Therefore:

Pr


QA.V(QA.vk, (h, h′),Π) = 1
(κ, cf, cf ′, T ) ∈ UR
h = RDel.D(dk, cf)
h′ 6= RDel.D(dk, cf ′)

∣∣∣∣∣∣∣∣
(QA.pk,QA.vk)← QA.S(κ, φ, n,K)
(cf, cf ′, h, h′,Π)← Adv(pk, vk, dk)

 ≥ 1

2p(κ)
. (25)

Let QA.Adv be the following adversary for the quasi-argument: given (QA.pk,QA.vk) it uses the hash key
dk and obtains (pk, vk). It emulates Adv and obtains an input x = (h, h′) to φ, an auxiliary input y = (cf, cf ′)
and a proof Π. Let E be the no-signaling extractor of the quasi-argument. By the correct-distribution
property of E for every PPT distinguisher D:∣∣∣∣∣∣∣∣∣∣

Pr

D(x, y) = 1

∣∣∣∣∣∣∣∣
(QA.pk,QA.vk)← QA.S(κ, φ, n,K)
(x, y,Π)← QA.Adv(QA.pk,QA.vk)
if QA.V(QA.vk, x,Π) = 0 :

set x = y = ⊥


−Pr

[
D(x, y) = 1

∣∣ (x, y, σ)← EQA.Adv(φ, ∅)
]

∣∣∣∣∣∣∣∣∣∣
≤ negl(κ) . (26)

In the experiments above, if x, y 6= ⊥, we parse x as (h, h′) and y as (cf, cf ′). Given the configuration
cf, we define for every i ∈ [0, T ] the configuration cfi that follows i steps after cf. That is, cfi is the unique
configuration such that (κ, cf, cfi, i) ∈ UR. We also define the digest hi = RDel.D(dk, cfi). Note that hi can
be efficiently computed given cf.

Let CHEAT be the event that x, y 6= ⊥ and h = h0, but h′ 6= hT . By (25) and (26) we have:

Pr
(x,y,σ)←EQA.Adv(φ,∅)

[CHEAT] ≥ 1

poly(κ)
.

For i ∈ [T ] let Si ⊆ [M ] be the set of φ’s variables describing hi−1, hi, bi,Πi,Π
′
i, wi. Note that |Si| = K.

Let Expi be the experiment where we sample (x, y, σ) from EQA.Adv(φ,Si).
By the no-signaling property of E it follows that:

Pr
Expi

[CHEAT] ≥ 1

poly(κ)
. (27)

Since CHEAT implies x 6= ⊥, by the local-consistency property of E:

Pr
Expi

[
CHEAT⇒ ∀j ∈ Si ∩ [n] : σ(j) = xj

φ(σ) = 1

]
≥ 1− negl(κ) .

Let hi−1, hi, bi,Πi,Π
′
i, wi be the values assigned by σ to the variables in Si. If σ locally satisfies φ, then

we have that ϕ(hi−1, hi, bi,Πi,Π
′
i, wi) = 1. Therefore:

Pr
Expi

[
CHEAT
ϕ(hi−1, hi, bi,Πi,Π

′
i, wi) = 0

]
≤ negl(κ) . (28)

Additionally, in Exp1, if σ is consistent with the input x = (h, h′) then h0 = h. Therefore:

Pr
Exp1

[
CHEAT
h0 6= h0

]
≤ negl(κ) . (29)

Similarly, in ExpT , if σ is consistent with the input x = (h, h′) then hT = h′. Therefore:

Pr
ExpT

[
CHEAT
hT = hT

]
≤ negl(κ) . (30)
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By the no-signaling property of E, for every i ∈ [T − 1]:∣∣∣∣ Pr
Expi

[
CHEAT
hi = hi

]
− Pr

Expi+1

[
CHEAT
hi = hi

]∣∣∣∣ ≤ negl(κ) . (31)

By combining (27) to (31) it follows that there exists i ∈ [T ] such that:

Pr
Expi


CHEAT
hi−1 = hi−1

hi 6= hi
ϕ(hi−1, hi, bi,Πi,Π

′
i, wi) = 1

 ≥ 1

T · poly(κ)
=

1

poly(κ)
. (32)

Fix i ∈ [T ] such that (32) holds. For hi−1 = (sti−1, rti−1) let:

`i ← StepR(sti−1)

(b′i, `
′
i, sti)← StepW(sti−1, bi)

For cfi−1 = (sti−1, Di−1) let:

(treei−1, rti−1)← HT.Hash(dk, Di−1)

`i ← StepR(sti−1) ,

(bi,Πi)← HT.Read(treei−1, `i) ,

(b
′
i, `
′
i, sti)← StepW(sti−1, bi) ,

(treei, rti,Π
′
i)← HT.Write(treei−1, `

′
i, b
′
i) ,

Let CHEAT1 be the event that:

bi 6= bi

1 = HT.VerRead(dk, rti−1, `i, bi,Πi)

1 = HT.VerRead(dk, rti−1, `i, bi,Πi)

Let CHEAT2 be the event that:

rti 6= rti

1 = HT.VerWrite(dk, rti−1, `
′
i, b
′
i, rti,Π

′
i)

1 = HT.VerWrite(dk, rti−1, `
′
i, b
′
i, rti,Π

′
i)

Claim 6.5. 
CHEAT
hi−1 = hi−1

hi 6= hi
ϕ(hi−1, hi, bi,Πi,Π

′
i, wi) = 1

 ⇒ CHEAT1 ∨ CHEAT2 .

Before proving this claim, we use it to conclude the proof. By (32) and Claim 6.5:

Pr
Expi

[
CHEAT1 ∨ CHEAT2

]
≥ 1

poly(κ)
. (33)

Next, we define the adversary HT.Adv against the hash-tree scheme. Given the hash key dk, HT.Adv
emulates the experiment Expi and:

• If CHEAT1 holds, HT.Adv outputs (rti−1, `i, bi,Πi, bi,Πi).
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• If CHEAT2 holds, HT.Adv outputs (rti−1, `
′
i, b
′
i, rti,Π

′
i, rti,Π

′
i).

Since (33) holds for every bad hash key dk and since a 1/2p(κ) fraction of hash keys are bad, it follows that
HT.Adv breaks the hash-tree soundness of either read or write.

Proof of Claim 6.5. Assume that the LHS of the implication holds. Recall that, by construction, hi−1 =
(sti−1, rti−1) and hi = (sti, rti). Therefore, since hi−1 = hi−1, it holds that (sti−1, rti−1) = (sti−1, rti−1) and
`i = `i. Since ϕ(hi−1, hi, bi,Πi,Π

′
i, wi) = 1 we have:

(sti, rti) = hi

1 = HT.VerRead(dk, rti−1, `i, bi,Πi)

1 = HT.VerWrite(dk, rti−1, `
′
i, b
′
i, rti,Π

′
i)

By the completeness of the hash-tree scheme:

1 = HT.VerRead(dk, rti−1, `i, bi,Πi)

1 = HT.VerWrite(dk, rti−1, `
′
i, b
′
i, rt
′
i,Π
′
i)

We consider two cases. If bi 6= bi then CHEAT1 holds. Otherwise, if bi = bi it follows that (`′i, b
′
i, sti) =

(`
′
i, b
′
i, sti). However, since hi 6= hi we have that rti 6= rti so CHEAT2 holds.

6.2 The Inductive Step

In the inductive step we transform any RAM delegation scheme into a scheme with shorter setup time.

Theorem 6.6. If there exists a publicly verifiable non-interactive quasi-argument (Definition 5.3) and a
publicly verifiable non-interactive delegation scheme for a RAM machine R with setup time TS and proof
length LΠ (Definition 3.4), then for every polynomial B = B(κ, T ) there exists a publicly verifiable non-
interactive delegation scheme for R with setup time T ′S and proof length L′Π where:

T ′S(κ, T ′) = TS(κ, T ) + poly(κ,B,LΠ(κ, T )) , L′Π(κ, T ′) = poly(κ, LΠ(κ, T )) , T = T ′/B .

6.2.1 Construction.

Let (QA.S,QA.P,QA.V) be a publicly verifiable non-interactive quasi-argument (Definition 5.3) and let
(RDel.S,RDel.D,RDel.P,RDel.V) be a publicly verifiable non-interactive delegation scheme for R with setup
time TS and proof length LΠ (Definition 3.4). We construct a new publicly verifiable non-interactive delega-
tion scheme (RDel.S′,RDel.D′,RDel.P′,RDel.V′) for R with setup time T ′S and proof length L′Π.

The setup algorithm RDel.S′. Given as input the parameters κ and T ′, the setup algorithm first
emulates the original setup algorithm RDel.S(κ, T ) with T = T ′/B and obtains the keys (pk, vk, dk). Next, it
emulates the quasi-argument setup algorithm QA.S(κ, φ, n,K) with the formula φ defined below and obtains
the keys (QA.pk,QA.vk). It outputs the keys

(
pk′ = (pk,QA.pk, vk) , vk′ = (vk,QA.vk) , dk′ = dk

)
.

Let ϕ be a 3CNF formula corresponding to the verification algorithm RDel.V with the key vk. That
is, for every pair of digests h, h′ and proof Π there exists w such that ϕ(h, h′,Π, w) = 1 if and only if
RDel.V(vk, h, h′,Π) = 1. Moreover, such w can be efficiently computed given (vk, h, h′,Π). Since RDel.V runs
in time O(LΠ(κ, T )) + poly(κ), there exists such a formula ϕ with K = poly(LΠ(κ, T ), κ) variables.

Let φ be the following formula over M = O(K ·B) variables:

φ
(
h0, (Πi, wi, hi)i∈[B]

)
=
∧
i∈[B]

ϕ(hi−1, hi,Πi, wi) .

Let the variables describing h0, hB be the n input variables of φ.
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The digest algorithm RDel.D′. The digest algorithm is identical to the digest algorithm RDel.D.

The prover algorithm RDel.P′. Given the prover key pk′ = (pk,QA.pk) and a pair of source and
destination configurations cf, cf ′ such that (κ, cf, cf ′, T ′) ∈ UR the prover algorithm first emulates R starting
from configuration cf0 = cf and obtains, for every i ∈ [B], the configurations cfi such that (κ, cfi−1, cfi, T ) ∈
UR (note that cfB = cf ′) and a proof Πi = RDel.P(pk, cfi−1, cfi). It also computes hi = RDel.D(dk, cfi) and
wi such that ϕ(hi−1, hi,Πi, wi) = 1. It, therefore, holds an accepting assignment σ for φ:

φ
(
h0, (Πi, wi, hi)i∈[B]

)
=
∧
i∈[B]

ϕ(hi−1, hi,Πi, wi) = 1 .

It emulates the quasi-argument prover and outputs the proof Π = QA.P(QA.pk, σ).

The verifier algorithm RDel.V′. given the verifier key vk′ = (vk,QA.vk), a pair of digests h, h′ and a
proof Π the verifier algorithm emulates the original verifier algorithm QA.V(QA.vk, (h, h′),Π) and accepts if
and only if QA.V accepts.

6.2.2 Analysis.

The completeness and efficiency requirements of the construction follow immediately from those of the quasi-
argument and the original RAM delegation scheme. We focus on proving soundness. Fix a PPT adversary
Adv and a polynomial T ′ = T ′(κ). Assume towards contradiction that there exists a polynomial p such that
for infinitely many κ ∈ N:

Pr


RDel.V′(vk, h, h′,Π) = 1
(κ, cf, cf ′, T ′) ∈ UR
h = RDel.D(dk, cf)
h′ 6= RDel.D(dk, cf ′)

∣∣∣∣∣∣∣∣
(pk′, vk′, dk)← RDel.S′(κ, T ′)
(cf, cf ′, h, h′,Π)← Adv(pk′, vk′, dk)

 ≥ 1

p(κ)
. (34)

Fix κ such that (34) holds. We say that a random tape r for RDel.S is bad if, when fixing r, the probability
in (34) is at least 1/2p(κ). Therefore, a 1/2p(κ) fraction of r’s are bad. Fix a bad r, let (pk, vk, dk) be the
keys defined by r and let φ be the formula defined by vk. By the construction, RDel.V′ accepts if and only
if QA.V accepts. Therefore:

Pr


QA.V(QA.vk, (h, h′),Π) = 1
(κ, cf, cf ′, T ′) ∈ UR
h = RDel.D(dk, cf)
h′ 6= RDel.D(dk, cf ′)

∣∣∣∣∣∣∣∣
(QA.pk,QA.vk)← QA.S(κ, φ, n,K)
(cf, cf ′, h, h′,Π)← Adv(pk′, vk′, dk)

 ≥ 1

2p(κ)
. (35)

Let QA.Adv be the following adversary for the quasi-argument: given (QA.pk,QA.vk) it uses the keys
(pk, vk, dk) defined by r to obtain (pk′, vk′). It emulates Adv and obtains an input x = (h, h′) to φ, an
auxiliary input y = (cf, cf ′) and a proof Π. Let E be the no-signaling extractor of the quasi-argument. By
the correct-distribution property of E for every PPT distinguisher D and κ ∈ N:∣∣∣∣∣∣∣∣∣∣

Pr

D(x, y) = 1

∣∣∣∣∣∣∣∣
(QA.pk,QA.vk)← QA.S(κ, φ, n,K)
(x, y,Π)← QA.Adv(QA.pk,QA.vk)
if QA.V(QA.vk, x,Π) = 0 :

set x = y = ⊥


−Pr

[
D(x, y) = 1

∣∣ (x, y, σ)← EQA.Adv(φ, ∅)
]

∣∣∣∣∣∣∣∣∣∣
≤ negl(κ) . (36)

In the experiments above, if x, y 6= ⊥, we parse x as (h, h′) and y as (cf, cf ′). Given the configuration cf,
we define for every i ∈ [0, B] the configuration cfi that follows T · i steps after cf. That is, cfi is the unique
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configuration such that (κ, cf, cfi, T · i) ∈ UR. We also define the digest hi = RDel.D(dk, cfi). Note that hi
can be efficiently computed given cf.

Let CHEAT be the event that x, y 6= ⊥ and h = h0, but h′ 6= hB . By (35) and (36) we have:

Pr
(x,y,σ)←EQA.Adv(φ,∅)

[CHEAT] ≥ 1

poly(κ)
.

For i ∈ [B] let Si ⊆ [M ] be the set of φ’s variables describing hi−1, hi,Πi, wi. Note that |Si| = K. Let
Expi be the experiment where we sample (x, y, σ) from EQA.Adv(φ,Si).

By the no-signaling property of E it follows that:

Pr
Expi

[CHEAT] ≥ 1

poly(κ)
. (37)

Since CHEAT implies x 6= ⊥, by the local-consistency property of E it follows that:

Pr
Expi

[
CHEAT⇒ ∀j ∈ Si ∩ [n] : σ(j) = xj

φ(σ) = 1

]
≥ 1− negl(κ) .

Let hi−1, hi,Πi, wi be the values assigned by σ to the variables in Si. If σ locally satisfies φ, then we
have that ϕ(hi−1, hi,Πi, wi) = 1 and hence RDel.V(vk, hi−1, hi,Πi) = 1:

Pr
Expi

[
CHEAT
RDel.V(vk, hi−1, hi,Πi) = 0

]
≤ negl(κ) . (38)

Additionally, in Exp1, if σ is consistent with the input x = (h, h′) then h0 = h:

Pr
Exp1

[
CHEAT
h0 6= h0

]
≤ negl(κ) . (39)

Similarly, in ExpB , if σ is consistent with the input x = (h, h′) then hB = h′:

Pr
ExpB

[
CHEAT
hB = hB

]
≤ negl(κ) . (40)

By the no-signaling property of E, for every i ∈ [B − 1]:∣∣∣∣ Pr
Expi

[
CHEAT
hi = hi

]
− Pr

Expi+1

[
CHEAT
hi = hi

]∣∣∣∣ ≤ negl(κ) . (41)

By combining (37) to (41) it follows that there exists i ∈ [B] such that:

Pr
Expi


CHEAT
hi−1 = hi−1

hi 6= hi
RDel.V(vk, hi−1, hi,Πi) = 1

 ≥ 1

B · poly(κ)
=

1

poly(κ)
. (42)

Next, we define the adversary RDel.Adv for the original RAM delegation scheme that given the keys
(pk, vk, dk) emulates the experiment Expi and outputs (cfi−1, cfi, hi−1, hi,Πi). Since (42) holds for every set
of fixed keys sampled by RDel.S with a bad random tape and since a 1/2p(κ) fraction of random tapes are
bad:

Pr


RDel.V(vk, hi−1, hi,Πi) = 1

(κ, cfi−1, cfi, T ) ∈ UR
hi−1 = RDel.D(dk, cfi−1)

hi 6= RDel.D(dk, cfi)

∣∣∣∣∣∣∣∣
(pk, vk, dk)← RDel.S(κ, T )

(cfi−1, cfi, hi−1, hi,Πi)← RDel.Adv(pk, vk, dk)

 ≥ 1

poly(κ)
.

This contradicts the soundness of the original RAM delegation scheme.
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6.3 Proof of Theorem 6.1

In this section we put together the base case (Theorem 6.2) and the inductive step (Theorem 6.6) to prove
our bootstrapping theorem (Theorem 6.1). Assuming a family of collision-resistant hash functions and a
publicly verifiable non-interactive quasi-argument (Definition 5.3), we construct a publicly verifiable non-
interactive delegation scheme RDel′ for any RAM machine R where the setup time TS and proof length LΠ

are both TO(1/ log2 logκ T ).
We start with the delegation scheme RDel0 for R given by Theorem 6.2 (the base case) with setup time

T 0
S = poly(T, κ) and proof length L0

Π = poly(κ). For any d ∈ N let RDeld be the delegation scheme obtained
from RDel0 after d applications of the transformation in Theorem 6.6 (the inductive step) with B = T 1/d.
Then the setup time T dS and proof length LdΠ of RDeld are:

T dS (κ, T ) = d · TO(1/d) · κ2O(d)

, LdΠ(κ, T ) = κ2O(d)

.

Our final scheme RDel′ emulates the scheme RDeld for d = O(log2 logκ T ) where κ, T are the parameters
given to the setup algorithm. Note that since d is not a constant, the fact that RDel′ is a delegation scheme
does not follow directly from Theorems 6.2 and 6.6. Nevertheless, by following the proof of Theorem 6.6 it
is straightforward to verify that RDel′ indeed satisfies the completeness and efficiency requirements. As for
soundness, for every polynomial T = T (κ) the scheme RDel′ is simply emulating RDeld for some constant d
and therefore soundness follows from Theorems 6.2 and 6.6.
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