Improved Cryptanalysis of the AJPS Mersenne Based Cryptosystem

Jean-Sébastien Coron and Agnese Gini
University of Luxembourg

June 25, 2021

Abstract

At Crypto 2018, Aggarwal, Joux, Prakash and Santha (AJPS) described a new public-key encryption scheme based on Mersenne numbers. Shortly after the publication of the cryptosystem, Beunardeau et al. described an attack with complexity $\mathcal{O}\left(2^{2 h}\right)$. In this paper, we describe an improved attack with complexity $\mathcal{O}\left(2^{1.75 h}\right)$.

1 Introduction

The AJPS public-key encryption scheme. At Crypto 2018, Aggarwal, Joux, Prakash and Santha (AJPS) described a new public-key encryption scheme based on arithmetic modulo Mersenne numbers [AJPS18]. A Mersenne prime is a prime integer p of the form $p=2^{n}-1$ where n is a prime. The arithmetic modulo p has good properties and one can establish a correspondence between integers modulo p and binary strings of length n, up to $0^{n} \sim 1^{n}$. In particular one can define the Hamming weight of a number as the Hamming weight of the unique binary string associated to it, i.e. the number of 1 s in its binary representation. In the earliest version of their work, the authors presented a public-key encryption scheme (AJPS-1) somewhat similar to the NTRU cryptosystem, but based on a new assumption: the Mersenne Low Hamming Ratio Assumption. Its security relies on the following assumption: given $H=F / G \bmod p$, where the binary representation of F and G modulo p has low Hamming weight, then H looks pseudorandom, namely it is hard to distinguish H from a random integer modulo p.

The Beunardeau et al. attack. Even though the authors claimed that the known lattice attacks against NTRU would not apply, very soon Beunardeau et al. [BCGN17] described a lattice-based attack against the first AJPS proposal. The attack complexity is $\mathcal{O}\left(2^{2 h}\right)$, where h is the Hamming weight of F and G. The attack was further analyzed in [dBDJdW18]; the authors also described a Meet-in-the-Middle attack against AJPS-1 based on locality-sensitive hash functions to obtain collisions; they showed that the lattice attack from [BCGN17] is more efficient.

Since AJPS-1 allows to encrypt only a single bit at a time, it is not very efficient. However in a later version of the article, published at Crypto 2018 [AJPS18], Aggarwal et al. described a variant (AJPS-2) that encrypts many bits at a time, with much larger security parameters to prevent the lattice attack.

Our contribution. In this paper we describe a variant of the Beunardeau et al. attack against AJPS-2, with improved complexity $\mathcal{O}\left(2^{1.75 h}\right)$ instead of $\mathcal{O}\left(2^{2 h}\right)$. Instead of recovering the private-key, our attack only breaks the indistinguishability of ciphertexts.

2 The AJPS Cryptosystems

In this section we recall the two versions of the AJPS cryptosystems; see [AJPS18] for further details.

AJPS-1: bit-by-bit encryption. Let $p=2^{n}-1$ be a Mersenne prime, where n itself is prime. Let h be an integer. Let F and G be two random integers modulo p with Hamming weight h such that $4 h^{2}<n \leq 16 h^{2}$. Then the public-key is $p k=H=F / G \bmod p$ and the private key is $s k=G$. To encrypt, choose two random integers A and B of Hamming weight h. Encrypt the bit b as:

$$
C=(-1)^{b} \cdot(A \cdot H+B)
$$

To decrypt, compute $d=\operatorname{Ham}(C \cdot G)$. Output 0 if $d \leq 2 h^{2}$, otherwise output 1 .
Decryption works because

$$
C \cdot G=(-1)^{b} \cdot(A \cdot H \cdot G+B \cdot G)=(-1)^{b} \cdot(A \cdot F+B \cdot G)
$$

which has Hamming weight at most $2 h^{2}$ if $b=0$, and at least $n-2 h^{2}$ if $b=1$. Namely for any number x of Hamming weight h, the integer $x \cdot 2^{z} \bmod p$ for $z \geq 0$ is a cyclic shift of x, and therefore its Hamming weight remains unchanged. Therefore the Hamming weight of $A \cdot F$ is at most h^{2} and the Hamming weight of $B \cdot G$ is also at most h^{2}; therefore the Hamming weight of $C \cdot G$ is at most $2 h^{2}$ for $b=0$.

AJPS-2: error correcting codes. Let n be a positive integer such that $p=2^{n}-1$ be a Mersenne prime. Let $h \in \mathbb{N}$ be such $10 h^{2}<n \leq 16 h^{2}$. Let F, G be two random integers modulo p with Hamming weight h and R be a random integer modulo p. Set

$$
p k=(R, F \cdot R+G)=(R, T)
$$

and $s k=F$. To encrypt a message $m \in\{0,1\}^{h}$, first generate three random integers A, B_{1}, B_{2} modulo p, with Hamming weight h. Then, using the encoding algorithm $\mathcal{E}:\{0,1\}^{h} \rightarrow\{0,1\}^{n}$ of an error correcting code $(\mathcal{E}, \mathcal{D})$, compute the ciphertext:

$$
\left(C_{1}, C_{2}\right)=\left(A \cdot R+B_{1},\left(A \cdot T+B_{2}\right) \oplus \mathcal{E}(m)\right)
$$

To decrypt, compute $\mathcal{D}\left(\left(F \cdot C_{1}\right) \oplus C_{2}\right)$, where \mathcal{D} is the corresponding decoding algorithm.
Decryption works because

$$
F \cdot C_{1}=A \cdot F \cdot R+F \cdot B_{1}=A \cdot(T-G)+F \cdot B_{1}=\left(A \cdot T+B_{2}\right)-A \cdot G-B_{2}+B_{1} \cdot F
$$

and therefore the Hamming distance between $A \cdot T+B_{2}$ and $F \cdot C_{1}$ is expected to be low, which enables to recover m with good probability.

3 The Beunardeau et al. Attack

Basic attack. Beunardeau et al. described an attack against AJPS-1 in [BCGN17] that recovers the private-key from the public-key. More precisely, they consider the following problem:

Definition 3.1 (Mersenne Low Hamming Ratio Search Problem (MLHSP)). Let $p=$ $2^{n}-1$ be an n-bit Mersenne prime and h an integer. Let F, G be two n-bit random strings with Hamming weight h. Given $H=F / G \bmod p$, recover F and G.

Their basic attack is based on the following observation. With probability $2^{-2 h}$, we have both $F<\sqrt{p}$ and $G<\sqrt{p}$, and therefore, given $H=F / G \bmod p$, one can recover F and G by applying LLL in dimension 2. In the original proposal [AJPS17], it was recommended to take $h=17$ for $\lambda=120$ bits of security. However here we have an attack that recovers the private-key from the public-key with probability 2^{-34}; see also [dBDJdW18] for a detailed analysis.

More precisely, one considers the lattice \mathcal{L} generated by the rows of the matrix:

$$
\left[\begin{array}{cc}
1 & H \\
0 & p
\end{array}\right]
$$

We have that $\operatorname{det} \mathcal{L}=p$; hence by the Gaussian heuristic it contains a vector of norm $\simeq(\operatorname{det} \mathcal{L})^{1 / 2}=$ \sqrt{p}. Moreover (G, F) is a short vector of the lattice. Therefore if both $F<\sqrt{p}$ and $G<\sqrt{p}$ we can recover F and G; since F and G have Hamming weight h, this happens with probability $2^{-2 h}$.

We note that a similar attack can also be applied to the encryption equation:

$$
C=(-1)^{b} \cdot(A \cdot H+B)
$$

Namely if both $A<\sqrt{p}$ and $B<\sqrt{p}$, then we can recover A and B by applying LLL in dimension 3, hence the plaintext bit b. Indeed we have that only one between (H, C) and $(-H, C)$ is an instance of the following problem:

Definition 3.2 (Mersenne Low Hamming Combination Search Problem (MLHCSP)). Let $p=2^{n}-1$ be an n-bit Mersenne prime, h be an integer, R be a uniformly random n-bit string and F, G having Hamming weight h. Given the pair $(R, F \cdot R+G \bmod p)$, find F, G.

Given R and $T=F \cdot R+G \bmod p$, a variant attack recovers F, G with probability $2^{-2 h}$. More precisely, the attack works by considering the lattice \mathcal{L} of row vectors:

$$
\left[\begin{array}{ccc}
2^{\frac{n}{2}} & 0 & T \\
0 & 1 & -R \\
0 & 0 & p
\end{array}\right]
$$

We have that $\left(2^{n / 2}, F, G\right)$ belongs to the lattice \mathcal{L}. Moreover $\operatorname{det} \mathcal{L}=2^{n / 2} p \simeq 2^{3 n / 2}$. Hence by the Gaussian heuristic the lattice \mathcal{L} contains a vector of norm $\simeq 2^{n / 2}$. Therefore if both $F<\sqrt{p}$ and $G<\sqrt{p}$ we can recover F and G by applying LLL to the lattice \mathcal{L}.

Extension with random partitions. The basic attack from [BCGN17] is only a weak-key attack that recovers the private-key from the public-key with probability $2^{-2 h}$ over the set of possible public-keys. Similarly, the above variant attack against the encryption equation can only decrypt a fraction $2^{-2 h}$ of the ciphertexts. Therefore, the authors extended their attack by considering random partitions, with higher dimensional lattices. In that case, the attack can recover the private-key from any public-key, solving MLHSP, with complexity $\mathcal{O}\left(2^{2 h}\right)$. The same partition strategy can be used for the MLHCSP with the same complexity. In our improved attack in the next section, we will also use random partitions.

4 Our new attack

We describe our new attack against AJPS-2. We consider the previous encryption equation:

$$
\left(C_{1}, C_{2}\right)=\left(A \cdot R+B_{1},\left(A \cdot T+B_{2}\right) \oplus \mathcal{E}(m)\right)
$$

Given the public-key (R, T) and a ciphertext $\left(C_{1}, C_{2}\right)$, our attack can distinguish between $m=0$ and $m \neq 0$. Assume that $m=0$ and $\mathcal{E}(m)=0$. In that case, we have:

$$
\begin{aligned}
& C_{1}=A \cdot R+B_{1} \\
& C_{2}=A \cdot T+B_{2}
\end{aligned}
$$

We claim that if A, B_{1} and B_{2} are less than $2^{2 n / 3}$, then we can recover A, B_{1} and B_{2} with LLL. Namely we consider the lattice of row vectors:

$$
\left[\begin{array}{cccc}
2^{\frac{2}{3} n} & 0 & C_{1} & C_{2} \\
0 & 1 & -R & -T \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right]
$$

We have that $\operatorname{det} \mathcal{L}=2^{2 n / 3} p^{2} \simeq 2^{8 n / 3}$. Therefore by the Gaussian heuristic the lattice \mathcal{L} contains vectors of norm $\simeq 2^{2 n / 3}$. Moreover the lattice \mathcal{L} contains the vector $\left(2^{2 n / 3}, A, B_{1}, B_{2}\right)$. Therefore if A, B_{1} and B_{2} are less than $2^{2 n / 3}$, we can recover A, B_{1} and B_{2} by applying LLL to \mathcal{L}.

Since A has Hamming weight h, the probability that $A<2^{2 n / 3}$ is $(2 / 3)^{h}$; the same holds for B_{1} and B_{2}. The success probability of the attack is therefore:

$$
\left(\frac{2}{3}\right)^{3 h} \simeq 2^{-1.75 \cdot h}
$$

which gives a slightly better success probability than the original attack with $2^{-2 h}$. Therefore, using the same partition technique as in [BCGN17], the attack complexity to break the indistinguishability of any ciphertext is $\mathcal{O}\left(2^{1.75 h}\right)$ instead of $\mathcal{O}\left(2^{2 h}\right)$.

4.1 Working with random partitions

We show that using the same random partition technique as in [BCGN17], we can break the indistinguishability property of any ciphertext $\left(C_{1}, C_{2}\right)$, whereas the basic attack above only works when A, B_{1} and B_{2} are less than $2^{2 n / 3}$, which only happens with probability $(2 / 3)^{3 h}$.

We consider the set $[n]=\{0,1, \ldots, n-1\}$. We say that $P=\left\{P_{i}\right\}_{i=1}^{k}$ is an interval-like partition if it is a partition of $[n]$ such that the sets are of the form $P_{i}=\{y \mid c \leq y \leq d\}$ or $P_{i}=$ $\{d, d+1, \ldots, 0, \ldots, c-1, c\}$ for $c \leq d \in[n]$. We define p_{i} as the least element of P_{i}, namely as c if the interval is of the first type and as d if it is of the second type. We can use a partition to represent a number E modulo p by a sequence of smaller integers. More precisely, letting $e_{n-1} \cdots e_{0}$ be the binary representation of e, we can divide it by the partition

$$
e_{p_{1}-1} \cdots e_{p_{k}}\left|e_{p_{k}-1} \cdots e_{p_{k-1}}\right| \ldots \mid e_{p_{2}-1} \cdots e_{p_{1}}
$$

and letting d_{i} the number represented by $e_{p_{i}-1} \cdots e_{p_{i-1}}$ we obtain

$$
E=\sum_{i=1}^{k} d_{i} \cdot 2^{p_{i}}
$$

Consider P, Q, S three interval-like partitions of $[n]$ of cardinality k, ℓ and j, respectively. Let $R, T, C_{1}, C_{2}, A, B_{1}, B_{2}$ be as in AJPS-2. We define a family of embedded lattices parameterized with respect to β, P, Q, S :

$$
\left.\mathcal{L}_{\beta, P, Q, S}=\left\{\begin{aligned}
&(\alpha \beta, \mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{Z} \times \mathbb{Z}^{k} \times \mathbb{Z}^{\ell} \times \mathbb{Z}^{j}: \alpha \cdot C_{1} \equiv R \cdot \sum_{i=1}^{k} x_{i} \cdot 2^{p_{i}}+\sum_{i=1}^{\ell} y_{i} \cdot 2^{q_{i}} \\
& \bmod p \\
& \alpha \cdot C_{2} \equiv T \cdot \sum_{i=1}^{k} x_{i} \cdot 2^{p_{i}}+\sum_{i=1}^{j} z_{i} \cdot 2^{s_{i}}
\end{aligned} \quad \bmod p\right\}\right\}
$$

for some scaling factor $\beta \in \mathbb{Z}$. The dimension of $\mathcal{L}_{\beta, P, Q, S}$ is $d=k+\ell+j+1$ and a basis of this lattice is given by rows of the following matrix

We claim that we can recover A, B_{1}, B_{2} by using a lattice of the family $\left\{\mathcal{L}_{\beta, P, Q, S}\right\}$. We define the secret vector to be

$$
\mathrm{s}:=\left(\beta, a_{1}, \ldots, a_{k}, b_{1}^{(1)}, \ldots, b_{\ell}^{(1)}, b_{1}^{(2)}, \ldots, b_{j}^{(2)}\right) \in \mathcal{L}_{\beta, P, Q, S}
$$

where $0 \leq a_{i}<2^{p_{i}}, 0 \leq b_{i}^{(1)}<2^{q_{i}}$ and $0 \leq b_{i}^{(2)}<2^{s_{i}}$ and

$$
A=\sum_{i=1}^{k} a_{i} \cdot 2^{p_{i}}, \quad B_{1}=\sum_{i=1}^{\ell} b_{i}^{(1)} \cdot 2^{q_{i}}, \quad B_{2}=\sum_{i=1}^{j} b_{i}^{(2)} \cdot 2^{s_{i}}
$$

We will use the following notations $a=\left(a_{1}, \ldots, a_{k}\right), b^{(1)}=\left(b_{1}^{(1)}, \ldots, b_{\ell}^{(1)}\right), b^{(2)}=\left(b_{1}^{(2)}, \ldots, b_{j}^{(2)}\right)$, $\mathbf{e}=\left(a, b^{(1)}, b^{(2)}\right)$ and $\mathbf{s}=(\beta, \mathbf{e})$.

In the following, we determine under which conditions the secret vector \mathbf{s} is the unique shortest vector of the lattice $\mathcal{L}_{\beta, P, Q, S}$. Given A, B_{1}, B_{2}, we say that the triple (P, Q, S) of partitions of $[n]$ is a lucky triple if there exists a scaling factor $\beta \in \mathbb{N}$ such that the secret vector \mathbf{s} is the unique shortest vector of $\mathcal{L}_{\beta, P, Q, S}$. In that case $\mathcal{L}_{\beta, P, Q, S}$ will be said to be a lucky lattice respect to A, B_{1}, B_{2}. In other words, we aim to establish sufficient conditions under which a lattice $\mathcal{L}_{\beta, P, Q, S}$ is lucky given a ciphertext $C=\left(C_{1}, C_{2}\right)$ such that $\mathcal{E}(m)=0$.

The volume of $\mathcal{L}_{\beta, P, Q, S}$ is

$$
\operatorname{vol}\left(\mathcal{L}_{\beta, P, Q, S}\right)=|\operatorname{det}(M)|=p^{2} \cdot \beta
$$

We write $\beta=2^{\text {tn }}$; thus we have $\operatorname{vol}\left(\mathcal{L}_{\beta, P, Q, S}\right) \simeq 2^{(2+t) n}$. By the Gaussian heuristic, we obtain the following estimate of the length of the shortest vector of $\mathcal{L}_{\beta, P, Q, S}$

$$
\begin{equation*}
\sqrt{\frac{d}{2 \pi e}} \cdot \operatorname{vol}\left(\mathcal{L}_{\beta, P, Q, S}\right)^{\frac{1}{d}}=\sqrt{\frac{d}{2 \pi e}} \cdot 2^{\frac{(2+t) n}{d}} \tag{1}
\end{equation*}
$$

Since the Hamming weight of A, B_{1}, B_{2} is the same, we take $k=j=\ell$. We note that the lattice $\mathcal{L}_{\beta, P, Q, S}$ contains intrinsic short vectors $\vec{u}=\left(0, \ldots, 0,2^{g},-1,0, \ldots 0\right)$ whose norm is $\simeq 2^{g}$ when g is of the form $p_{i}-p_{i-1}$ or $q_{i}-q_{i-1}$ or $s_{i}-s_{i-1}$. If we consider partitions with intervals of similar length, we obtain $\|\mathbf{u}\| \approx 2^{n / k}$. Therefore we have to ensure that such vectors are not shorter than our target secret vector.

In low dimensions we can assume that LLL recovers the shortest vector \vec{s} of the lattice. From (1) we must therefore ensure:

$$
\|\vec{s}\| \leq \sqrt{\frac{d}{2 \pi e}} \cdot 2^{\frac{(2+t) n}{d}}
$$

where $d=3 k+1$ is the lattice dimension. We expect the entries of the secret vector to be about of the same size for a lucky triple, hence we take the scaling factor β such that $\beta=2^{t n} \simeq\|\vec{e}\|$. Then we have approximately:

$$
2^{t n+\frac{1}{2}} \leq 2^{\frac{(2+t) n}{3 k+1}}
$$

which gives $t \leq \frac{2}{3 k}-\frac{3 k+1}{6 k n}$. Therefore we have the approximative condition to have a lucky triple (P, Q, S) of partitions:

$$
\begin{equation*}
\|\vec{e}\|<2^{\frac{2 n}{3 k}} \tag{2}
\end{equation*}
$$

It remains to evaluate the probability to find a lucky triple of partitions (P, Q, S). It is actually easier to assume that the partitions (P, Q, S) are fixed, and the ciphertext $C=\left(C_{1}, C_{2}\right)$ is random. In that case, from the bound (2), each of the h bits from the integers A, B_{1} and B_{2} must land in one of the subintervals of length $2 n /(3 k)$ of the k partition intervals. For a single bit, this happens with probability roughly $k \cdot 2 n /(3 k) \cdot 1 / n=2 / 3$. Therefore, as in the basic attack, the success probability is roughly $(2 / 3)^{3 h} \simeq 2^{-1.75 \cdot h}$. Therefore, the number of partitions to try before finding a lucky one is approximately:

$$
\mathcal{O}\left(2^{1.75 h}\right)
$$

instead of $\mathcal{O}\left(2^{2 h}\right)$ in the original attack from [BCGN17].

Security parameter selection. In the latest version of the paper the authors recommended to take for λ bit of security $h=\lambda$, in order to prevent possible improvements of Beunardeau et al. attack. Then our attack does not affect the choice of parameter proposed in [AJPS18].

4.2 Practical experiments

We have performed some practical experiments for various values of bitsize n and Hamming weight h of AJPS-2, in order to compare our new attack with the original Beunardeau et al. attack. For both attacks, since we don't know a priori the optimal size of the partition k to recover the secret, we perform a repeated loop over all possible $1 \leq k \leq h$. We summarize our results in Table 1, showing that our attack indeed requires fewer partitions than the original attack.

h	n	$\log _{2}(\bar{y})$	$\log _{2}(Y)$
3	127	6.5	7.4
6	521	13.0	14.5
7	607	14.6	16.5
9	1279	14.9	16.4

Table 1. Average number \bar{y} of partitions required to recover the secret values A, B_{1}, B_{2}, compared to the average number \bar{Y} required for the original attack. We used 70 samples for $h=3,6,7$, and 9 samples for $h=9$.

Acknowledgements

We thank the reviewers for insightful comments. The two authors were supported by the ERC Advanced Grant no. 787390.

References

[AJPS17] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new public-key cryptosystem via Mersenne numbers. Cryptology ePrint Archive, Report 2017/481, 2017. https: //eprint.iacr.org/2017/481.
[AJPS18] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new public-key cryptosystem via Mersenne numbers. In Advances in Cryptology - CRYPTO 2018, volume 10993 of Lecture Notes in Computer Science, pages 459-482. Springer, 2018.
[BCGN17] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. On the hardness of the Mersenne low Hamming ratio assumption. In Progress in Cryptology - LATINCRYPT 2017, 2017. Available at https://eprint.iacr.org/2017/522.
[dBDJdW18] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks on the AJPS Mersenne-based cryptosystem. In Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, pages 101-120, 2018.

