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Abstract

Voting systems are the tool of choice when it comes to settle an agreement of dif-
ferent opinions. We propose a solution for a trustless, censorship-resilient and scalable
electronic voting platform. By leveraging the blockchain together with the functional
encryption paradigm, we fully decentralize the system and reduce the risks that a vot-
ing provider, like a corrupt government, does censor or manipulate the outcome.
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1 Introduction

In many countries, the de-facto mechanism to realize democratic choices are votings. Re-
cently, electronic voting systems gained much attention as they have paved the ground for
reinventing the financing, controlling and management of organizations. Instead of a central
authority, in Decentralized Autonomous Organizations (DAOs) [38, 11], people democrati-
cally determine the next decision taken by the organization [17]. This resembles the key
principle of blockchain technologies, namely to agree on the next state in a decentralized
manner. Considering the enormous market caps, the rapid adaption and the impact a voter
will have within the organization, building upon a secure, trusted and reliable voting plat-
form is pivotal for a prolonged proliferation of DAOs. It is well-known that voting systems
are subjected to attacks which threaten democratic decision-making. Attempts to manipu-
late elections have occurred regularly within the last years [14]. This includes vote-buying,
ballot-stuffing, destruction or invalidation of ballots, mis-recording of votes, aggravating the
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Properties [26] [18] [27] [39] This work
Fairness 7 3 7 3 3

Eligibility 3 3 3 3 3

Privacy 3 3 3 3 3

Individual Verifability 3 3 3 3 3

Universal Verifability 3 3 3 3 3

Trustlessness 7 7 3 7 3

Scalability 7 7 7 7 3

Vote Type any any yes-no any any

Table 1: Comparison of different e-voting protocols in the blockchain

voting access or tampering with the electronic voting machines [28, 13, 4, 15, 10]. The
commonality of all these threats is to affect the outcome of the voting. For important deci-
sions (e.g. presidential or shareholder elections) one tries to reduce the threats by recruiting
trusted helpers and the engagement of neutral observers. These entities are appointed by
a central authority, like the government or a corporate, and are crucial to the election pro-
cess. Centralized trust is fragile. Even if their implementation is cost-efficient, the history
has shown that central authorities can misuse their responsibility and power to influence
the outcome of an election to their favour. Given the scale and frequency at which DAOs
ask for democratic decisions, human aided conduction and auditing of the votings is nearly
impossible.

1.1 Previous Work

Electronic voting systems and their security properties [16, 32, 34, 31] have been actively
studied in the research community, since their introduction in the celebrated work of Chaum
[7, 35, 3, 20]. Due to their byzantine fault-tolerance properties [5] blockchain technologies
turn out to be a promising tool for electronic voting systems [30, 19].

Liu et al. propose a voting protocol within the permissioned and permissionless blockchain
model [26]. Their protocol runs between a voter, central organizer and inspector. A voter
casts a vote by encrypting the vote with the organizer’s public-key before the inspector signs
it. The system thus assumes to trust both parties not to violate ballot and voter privacy. An
implementation based on the blockchain framework Ethereum is given in [2]. With regard
to today’s gas prices and Ethereum’s throughput, the system is unsuitable for frequent or
large-scale elections.

Hardwick et. al propose a voting scheme in the permission-based blockchain model,
satisfying the basic notions fairness, eligibility, privacy and verifiability (see Section 5 for
an explanation) [18]. Their protocol uses the blockchain as a transparent ballot box. The
system relies on a central certificate authority to authenticate voters and give permission
to access the network. Hence, an authority, when byzantine, breaks the link between voter
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identity and casted vote and therefore violates the ballot privacy. Their implementation
within a private Ethereum chain requires a non-negligible amount of gas per vote, which
makes the approach less appealing for frequent votings like in DOAs.

McCoy et al. propose a variant of the Open Vote Network (OVN) in a permissionless
blockchain model [27]. The OVN is a self-tallying protocol avoiding a central counting
authority. A self-tallying protocol converts tallying into an open procedure, that allows any
voter or a third-party observer to perform the tally computation once all ballots are casted.
This removes the role of a tallying authority in an election as anyone can compute the tally
without assistance. Unfortunately, self-tallying protocols have a fairness drawback as the last
voter can compute the tally before anyone else which results in both adaptive and abortive
issues. Moreover, the protocol is limited to boardroom votes, where board members take a
yes-no decision. Their implementation in Ethereum shows suitable gas costs for 40 voters,
but does not scale with larger numbers.

Yu et al. propose a platform-independent approach [39]. To achieve the comprehensive
goal, the authors employ Paillier encryption to enable ballots to be counted without leaking
candidature information in the ballots. To leverage the homomorphic property for summa-
tion of votes, an administrator decrypts the plaintext sum. If byzantine, the administrator
can use the same decryption key to decrypt each encrypted ballot and break the ballot
privacy. A proof-of-knowledge is employed to convince the voting system that the ballot,
casted by a voter, is valid without revealing its content. Linkable ring signatures are used
to ensure that the ballot is from one of the valid voters, while no one can trace the owner of
the ballot. To this end, a voter needs to download the public keys of all other voters, which
entails a space allocation linear in the number of voters. Their reference implementation in
Hyperledger Fabric allows to handle millions of voters, provided that they are grouped in
sufficient batches.

1.2 Our Contribution

We propose a solution for a trustless voting system. By trustless, we mean a system in
which no byzantine party, including the voting organizer, manipulates the outcome of the
election. A bit more precise, malicious organizers are prevented from opening ballots before
the official tallying. We leverage techniques from functional encryption [36, 23] and imple-
ment decentralized off-chain opening oracles. In our system, voters encrypt their votes and
store them in the blockchain. This technique already leads to censorship-resilience of the
casted votes, as the blockchain guarantees the immutability of the storage. Off-chain oracles
like for example time-triggered servers open the encrypted votes by writing their decryption
keys into the blockchain. Only if a sufficient subset of keys, matching a pre-defined quorum
policy, has been stored, the blockchain or any other auditing entity is capable of opening
and publicly tallying the ballots. This way we fully decentralize the opening phase and lift
the byzantine fault-tolerance properties of blockchains to the off-chain perimeter.

In a permission-based blockchain model each voter has a unique identity upon which the
blockchain network verifies the user’s eligibility to access the network. The risk is that byzan-
tine nodes trace the opened ballot back to the identity of the voter, thus breaking the privacy

3



property of the voting system. One might be tempted to leverage anonymous credentials
to prove eligibility in zero-knowledge [6]. While the approach addresses the privacy issue, it
opens a new problem. The anonymity allows voters to run a double-voting attack and inject
arbitrarily-many votes in the election process. To resolve the eligbility-privacy paradox in
the permission-based blockchain model we introduce the notion off-chain anonymizer oracles
alongside present authentication mechanisms. The anonymizer oracles cooperatively unlink
the encrypted vote from the user’s identity and enforce the eligibility to cast a single vote.
To instantiate the oracles, we leverage techniques from threshold blind signatures [22, 8, 25]
where the threshold parameter allows us to scale the byzantine fault-tolerance of the voting
system. Only if the eligible voter receives sufficient signatures from the anonymizer oracles,
she can unblind and reconstruct an anonymous voting credential that is necessary to cast
her encrypted vote.

Because of the additional redundancy of the network, an interesting research question
is to investigate the scalability of the voting system. We implement the voting system
prototypically in the Hyperledger Fabric framework [1] and evaluate the performance with
different network configurations. Our implementation shows that the system is capable
of handling large-scale votings with millions of voters like presidential elections or high-
frequency votings as they appear in DOAs.

2 Preliminaries

2.1 Notations

N is the set of natural numbers. A finite set S of elements from 1 to n ∈ N is denoted as
S := {1, . . . , n}. The output b of an algorithm A with input a is denoted as b ← A(a). A
vector of length n is written as x = {x1, . . . , xn}. Further we denote the dot product of two
vectors x,y as 〈x,y〉.

2.1.1 Authenticated message transmission

An authorized identity IA := {skA, pkA, certA} of a user A is a three tuple consisting of a
secret key skA, a public key pkA and a certificate certA, created by an authority over some

attributes attrA and the public key pkA of A. We write A IA
msg−−−−−−→ B to denote

the protocol, where a message msg signed with skA of the identity IA is transmitted to
B. During the process, B learns certA and the message msg . The protocol is executed
successfully if msg can be verified under the public key of A and certA can be verified under
the public key of the authority.

2.2 Cryptographic Building Blocks

In order to ensure the security of our voting system we rely on two cryptographic primitives
which we want to introduce in this section. These ingredients are functional encryption
schemes and threshold blind signatures.
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2.2.1 Threshold Blind Signature (TBS)

The notion of threshold blind signatures characterizes a combination of favourable properties
of two cryptographic primitives. First blind signatures, which were proposed by Chaum [7]
as a solution for the traceability problem in electronic payment systems. He showed, that the
use of traditional digital signatures in aforementioned systems may break the anonymity of
the payer, as the bank, which is responsible for signing the coins, is able to track the payer’s
purchase behaviour. A connection to the payer can be established, as soon as the bank
receives an authenticated coin back from the merchant. With blind signatures this can be
prevented, as in addition to the unforgeablitiy property of traditional digital signatures, blind
signatures fulfils another blindness property. This ensures that the signer does not learn the
true appearance of the signatures created by him. The second ingredient of threshold blind
signatures are threshold signatures, which were introduced by Desmedt [12]. This primitive
switches from a dedicated signer who creates the signatures, to a distributed signing process
using secret sharing techniques. In order to create a valid signature for a message, t–out–of–n
signers have to contribute partial signatures, which can later be combined. As this method
moves the responsibility of the signing process to multiple independent entities, it comes
useful in systems where reliability is a mandatory requirement.

Definition 1 (Threshold Blind Signature [24]) A t-out-of-n threshold blind signature
scheme TBS = (TBS.ParGen,TBS.KeyGen,TBS.Sign,TBS.Verify) in a Common Reference
String model consists of the following four algorithms:

1. TBS.ParGen(1n): The PPT algorithm takes as input the security parameter 1n and
outputs public parameters I (possibly containing a common reference string crsTBS).

2. TBS.KeyGen(I): On input public parameters I this algorithm outputs a secret share sk i
for each signer Si, i ∈ {1, . . . , n} and a public key pk.

3. TBS.Sign(·): This is a protocol between a user U and the signers Si, i ∈ {1, . . . , n}.
The input of U is pk and a message m. The input of each server Si is the secret share
sk i. The protocol results in a signature σ output by U .

4. TBS.Verify(pk ,m, σ): A deterministic algorithm which on input a public key pk, mes-
sage m, a signature σ outputs 1 if the signature is valid and 0 otherwise.

We require that for every n, every I output by TBS.ParGen(1n), every set of secret keys
sk i and public key pk output by TBS.KeyGen(I), every signature σ output by TBS.Sign(·)
which is joint execution of a user U(pk ,m) with input the public key pk and an arbitrary
message m from the appropriate underlying plaintext space, and a set of valid signers Si(sk i)
with input its secret share sk i, it holds that TBS.Verify(pk ,m, σ) = 1

For our system we require a secure t–out–of–n threshold blind signature scheme, which
satisfies unforgeability and blindness properties. Informally, unforgeability means, that there
exist a negligible success probability of an efficient adversary, which is able to corrupt at most
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t− 1 signers, of generating k+ 1 valid message-signatures pairs with different messages after
at most k completed interactions with the honest set of signers. Further, blindness means
that a malicious signer should not be able to distinguish, which of two messages m0 and
m1 has been signed first, in two executions with an honest user, except with probability
negligibly close to 1

2
. For an extension of the formal security definitions of Schröder et. al

[37] to the threshold case, we refer to [24].

2.2.2 Decentralized Inner-Product Predicate Encryption (DIPPE)

In order to provide ballot privacy and trust within our voting system we rely on decentralized
functional encryption. Functional encryption is a relativity new cryptographic primitive [36]
that unfolds its full potential in applications that require data confidentiality and fine-grained
access control. Unlike classical public-key encryption schemes, the output of the decryption
algorithm of a functional encryption scheme is the result of a function on the input message.
In case of an Inner-Product Predicate Encryption [29], the function is a predicate based on
the inner-product of two vectors, a policy vector and an attribute vector. Within our system
we make use of a decentralized version, as we aim to avoid a trusted “central” master key
generating authority.

Definition 2 (Decentralized Inner-Product Predicate Encryption [29]) A decentral-
ized inner-product predicate encryption scheme is a tuple of probabilistic polynomial-time
algorithms DIPPE = (DIPPE.GlobalSetup,DIPPE.AuthSetup,DIPPE.KeyGen,DIPPE.Encrypt,
DIPPE.Decrypt) such that:

1. pp ← DIPPE.GlobalSetup(1n): The probabilistic global setup algorithm takes as input
the security parameter 1n and outputs the master public parameters pp

2. {sk i, pk i} ← DIPPE.AuthSetup(pp, i): The probabilistic authority setup algorithm takes
as input the public parameters pp and an authority identifier i from the authority
universe. It outputs a pair {sk i, pk i} consisting of the secret key sk i and public key pk i
of authority i.

3. sk i,GID ,v ← DIPPE.KeyGen(pp, i, sk i, {pk j}j 6=i,GID ,v): The probabilistic key genera-
tion algorithm takes as input the master public parameters pp, the authority index i,
the secret key sk i of the authority i, the public keys of all other authorities {pk j}j 6=i, a
global identifier GID and the attribute vector v and outputs a secret sk i,GID ,v.

4. ct ← DIPPE.Encrypt(pp,x,m): The probabilistic encryption algorithm takes as input
the master public parameters pp, the public keys of all authorities {pk i}, the vector x
which represents a policy π and a message m from the message space. The algorithm
outputs a ciphertext ct.

5. m ← DIPPE.Decrypt(ct , {sk i,GID ,v}ni=1): The deterministic decryption algorithm takes
as input the collection of obtained secret keys {sk i,GID ,v}ni=1, and the ciphertext ct and
outputs either the message m or the special symbol ⊥.
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It is required that for every security parameter n, every master public parameter pp, every
ciphertext policy vector x, every attribute vector v, and every secret sk i,GID ,v, it holds that:

DIPPE.Decrypt({sk i,GID ,v}ni=1,DIPPE.Encrypt(pp,x,m)) =

{
m if 〈x,v〉 = 0

⊥ else

For our system we require that the Inner-Product Predicate Encryption scheme is se-
mantically secure, which means informally, that a PPT adversary, who was given access to
a key oracle which allows him to request decryption keys (that must not fulfil π0 or π1), has
only negligible advantage in deciding which of either two messages m0 and m1 was encrypted
by a challenger, that was given policies π0, π1 and a set of corrupted authorities. We refer
to [29] for formal security definitions and examples of how to encode quorum policies as an
inner product.

2.3 Hyperledger Fabric in a Nutshell

In this section we want to give an overview about Hyperledger Fabric1, its components
and how the flow to alter the ledger state looks like. Hyperledger Fabric is a distributed
blockchain framework, which allows the integration of smart contracts, that utilizes Turing-
complete programming languages. It is a permissioned ledger, which means, that there exist
an additional access control layer to concretely define the tasks a specific network user is able
to perform within the network. Hyperledger Fabric encompasses the following structures and
participants:

Organisation: Organisations are superior entities within the context of Hyperleder Fabric.
Every network participant, whether it is a client or a peer, is linked to an organisation
through a digital certificate. A Hyperleder Fabric network, where multiple organisa-
tions work together, is called consortium.

Client: The client represents the end-user of a Hyperledger Fabric network. A client,
equipped with a digital certificate issued by an Organization, is able to read the ledger
or invoke a ledger change by interacting with a peer.

Peer: Within Hyperledger Fabric, there exist a flexible number of peers which act as the
main entrance point for a client to communicate with the network in order to gain
resources or to apply ledger changes. Every peer maintains an instance of the common
ledger and provides a number of smart contracts which defines the way of how the
ledger state can be changed. In order to initialize the collaboration, peers have to join
a common channel. This channel is secure by design.

Ordering Service (Orderer): In Hyperledger Fabric there exist a dedicated ordering ser-
vice which is responsible for the block creation process. While independent of existing

1https://www.hyperledger.org/projects/fabric
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peers and channels, the orderer collects all transactions from clients and sorts them into
blocks, following the first–come–first–serve principle. Provided options to implement
the ordering service includes centralized solutions like Solo, but also decentralized ones
like RAFT [33] or Kafka2. Apache Kafka is a distributed, scalable and crash-fault-
tolerant messaging system, which implements a publish-subscribe pattern to organize
access and processing of data. The setup encompasses data producers which feed their
information into the Kafka cluster, which is a set of multiple nodes (Broker). The data
itself is organized within topics and stored distributed within partitions on physical
independent nodes. Data consumers are then able to subscribe to a topic in order to
receive the data. In order to provide a coordination of the cluster, e.g. common lists of
followers or leadership of specific partitions or topics, Kafka makes use of Zookeeper3,
which is a hierarchical key-value store with focus on high availability. It ensures that
all Kafka nodes have access to the same set configuration data.

Hyperledger Transaction Flow. Now we briefly explain the process of altering the
ledger state. We presume that all the cryptographic material has already been created
and a common channel between attending peers is established. The purpose of channels in
Hyperledger Fabric is to protect the transmitted data against external parties. They ensure
data isolation and confidentiality for peers that work on a shared channel-specific ledger,
since all parties must be properly authenticated to a channel in order to interact with it.
Now, the program logic can be attached by installing and instantiating smart contracts on
all peers within a channel. During the installation process the code is packed, signed and
distributed to the peers. After the installation process, an authorized member (e.g. channel
administrator) has to instantiate the smart contract by providing an endorsement policy.
The policy defines which peers must endorse a request in order to be valid. This means, if
a client wants to alter the ledger, he has to send a transaction proposal to all peers that are
defined within the policy. On the other hand, the peers now simulate the request against the
current ledger state and return a read-write set back to the client. The client then forwards
the collected responses as a transaction message to the ordering service, which task is to order
them chronologically and pack them into blocks. The created block is then broadcasted to
all committing peers in the channel. They check that the endorsement policy is fulfilled and
that there were no changes to the ledger state between the simulation step and this point.
Each transaction within the block is now tagged as either valid or invalid. Finally, the block
is attached to the ledger and each of the valid write sets are committed to the current state
database.

3 System Model

In this section we introduce the system model of our voting application. The model comprises
the entities of Hyperledger Fabric as described in Section 2.3 as well as off-chain entities

2https://kafka.apache.org/
3https://zookeeper.apache.org/
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which offer the additional services required for the decentralization of the voting system.

Registrar: There exists a set of nR registrars R := {R1, . . . , Ri, . . . , RnR
} which are priv-

ileged off-chain entities in the network. Every registrar Ri owns an identity IRi
:=

{skRi
pkRi

, certRi
} which consists of a secret key skRi

, a public key pkRi
and further, a

certificate certRi
issued by an organisation of the network. The certificate contains a

flag which labels Ri as a registrar. The main task of this entity is the registration of
new votings within the system.

Voter: There exists a set of nV off-chain voters V := {V1, . . . , Vi, . . . , VnV
}, who intend to

participate at a given voting. A voter Vi is in possession of two types of identities.
First, an individual voter identity IVi := {skVi , pkVi , certVi} and second, an anonymous
identity Ianon := {skanon , pkanon , certanon} which is shared between all voters. Both
identities contain valid certificates, issued from an organisation of the network, in
combination with a pair of public and secret key. The purpose of the second anonymous
identity is to ensure the privacy of the voter’s ballot. Since we operate in a permissioned
blockchain, every request has to be signed by an authorized member of the network.
However, for our protocol we need the option to submit a ballot without revealing
the real identity of the voter. By using this shared identity, a voter is able to bypass
the membership requirement and to disguise the origin of the request. To participate
at a given voting with id vid , voters have to retrieve all corresponding public keys
{pkKAi ,vid

}i∈x, that are stored within the blockchain and cast an encrypted ballot out
of it. The ballot ballotvid ,Vi from a voter Vi is then submitted to the blockchain. Besides,
voters are also allowed to fetch voting results from the blockchain.

Peer: There exists a set of nP peers P := {P1, . . . , Pi . . . , PnP
}. Every peer Pi with identity

IPi
:= {skPi

, pkPi
, certPi

}. Main task of the peers is to maintain the distributed ledger.
In addition, they provide the communication endpoint for all off-chain entities in the
system. The application functionality is included within their smart contracts and can
be invoked by appropriate entities. They offer interfaces for storing ballots and key
material as well as to start the decryption and tallying processes.

Key Authority (Opening Oracle): There exists a set of nKA off-chain key authorities
KA := {KA1, . . . ,KAi, . . . ,KAnKA

}. Every key authority KAi owns an identity IKAi

:= {skKAi
, pkKAi

, certKAi
}, issued by an organisation of the network. The certificate

certKAi
contains the index i together with a flag that labels the identity as a key

authority. Key authorities fulfil two tasks within the voting system. First, for every
registered voting, where KAi is marked as a responsible key authority, KAi creates
a new key pair (pkKAi,vid

, skKAi,vid) consisting of public and private key. The public
pkKAi,vid

is then published to the blockchain. The second task relates to the opening
process. In order to dissolve a voting, every responsible key authority KAi has to
generate a decryption key skKAi,vid ,v using its secret key skKAi,vid and a policy vector
v, and publishes it to the blockchain.
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Figure 1: Overview of our decentralized voting system. (For presentation purposes the
orderer is not shown)

Signer Authority (Anonymizer Oracle): There exists a set of nSA off-chain signer au-
thorities SA := {SA1, . . . , SAi, . . . , SAnSA

}. Every signer authority SAi with identity
ISAi

:= {skSAi
, pkSAi

, certSAi
}. Like key authorities, a signer authority owns a special

attribute within its certificate certSAi
that labels itself as a signer authority in the

network. The task of the signer authority SAi is to create a signature σvid ,Vi for a
given ballot of voter Vi. The signature enables a voter to place his ballot within the
blockchain. This step is necessary in order to prevent a double voting of the voter by
utilizing his anonymous identity.

Ordering Service (Orderer): There exists a set of nO orderers O = {O1, . . . , OnO
} which

main responsibility is to take part at the consensus and block creation process.

Organisation: There exists a set of nOrg organisations Org = {Org1, . . . ,Org i, . . . ,OrgnOrg
}

with key pairs (pkOrgi
, skOrgi) consisting of one public and one private key. Entities are

able to obtain an organisation membership by requesting a certificate, that is signed
with the secret key of the organisation.

4 Protocol

In this section we explain the structure of our voting system. An overview is depicted in
Fig. 1. Without loss of generality we assume a setting encompassing two organisations,
called OrgA and OrgB . Every organisation contributes with peers, registrars, signer and key
authorities to the network. The voting system consists of four protocols: Setup, Pre-Voting,
Voting and Tallying.
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4.1 Setup

The task of the setup protocol is to initialize a ballot and setup the entities entitled to
participate in the voting. We assume that the blockchain not only serves as a provider
of the voting platform. Its storage capabilities are also used to share publicly available
cryptographic key material and infrastructural information for off-chain entities.

4.1.1 Preparation of the Hyperledger Fabric Network

The first step during the setup phase is the preparation of the Hyperledger Fabric network.
We only give a brief summary here, as this is a standard process and beyond the scope of
this paper. For more details, we refer to the Hyperledger Fabric documentation [21]. First,
each participating organisation has to generate their cryptographic material. This includes
keys for the organisation itself and also for peers, which act on behalf of the organisation.
Now, a member of the consortium uses all public available material to create a common
configuration (genesis block and channel description) which is necessary in order to boot
network components and to establish a secure communication channel. Note, that it is also
possible to add organisations afterwards. The next step is the installation and initialization
of the voting smart contract on all participating peers. This step also includes the definition
of an endorsement policy that defines the conditions under which a change of the ledger state
is enforced.

4.1.2 Preparation of off-chain Entities

All registrars, signer authorities and key authorities now generate a new key pair consisting
of a public and private key. In order to get the authorisation to perform operations within
the network, they have to obtain a certificate, signed with the secret key of an organisation.
Each certificate contains a flag, which defines the entity authorization type. The purpose is
to limit the operation set that the entity is able to perform within the network. To obtain a
digital certificate voters need to prove their physical identity to an organisation. Details of
the issuance policy as well as the decentralized implementation of the certification protocol
(e.g. through an MPC protocol [9]) are out of scope.

4.1.3 Registration of Signer Authorities

As we focus on a complete decentralized voting platform, the signer authorities start by
engaging the common execution of the TBS.KeyGen(ITBS) algorithm using the pre-generated
public parameters ITBS, which relies on some distributed key generation protocol with output
the set of secret shares skTBS,SAi

for each signer authority SAi and public key components
that form the common public key pkTBS. The public key components are published by
sending a signed message to the blockchain, which on the other hand verifies that the signer
authority is indeed authorized to perform this action. In order to prevent double voting, the
blockchain accepts a ballot, only if the ballot contains a signature verifiable under the public
key pkTBS. While a valid signature can only be obtained once per voter Vi and voting id vid ,
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the signer authorities keep track of already issued partial blind signatures within their local
tally sheet. The entire protocol for registering a new set of signer authorities is given in Fig.
2.

SignerAuthorityi(ITBS, ISAi) Peerj(·)

(skTBS,SAi
, pkTBS)← TBS.KeyGen(ITBS)

ISAi

pkTBS−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b := CheckSignerPermission(certSAi)

if b = ok

RegisterDistributedSigner(pkTBS)

Figure 2: The sub-protocol for registering a new set of signer authorities

4.2 Pre-Voting

Within the pre-voting phase, a new voting is created by a registrar and authorized by a set
of responsible key authorities.

4.2.1 Voting Registration

To schedule a new voting within the system (Fig. 3), a registrar Ri sends a signed request
comprising the voting id vid , a name name, a set of eligible voters ev , a set opt of possible
choices and a policy π, which specifies a set of responsible key authorities to the blockchain.
The blockchain on the other hand verifies the authorization of Ri and in case of success
registers the new voting within in the system.

Registrari(IRi) Peerj(·)

IRi

vid ,name, ev ,opt , π
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b := CheckRegistrarPermission(certRi)

if b = ok

RegisterVoting(vid ,opt , π,name, ev)

Figure 3: The sub-protocol for registering a new voting

4.2.2 Voting Authorisation

Before voters can participate in the registered voting, the voting needs to be authorized by all
key authorities included within the policy π (Fig. 4). A key authority KAi therefore fetches
the vid of the registered voting from the blockchain and creates a new functional encryption
key pair {sk vid ,i, pk vid ,KAi

} ← DIPPE.AuthSetup(pp,KAi) using the public parameters pp
and its identifier i from the key authority universe. While the secret key sk vid ,KAi

is stored
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locally, the public key pk vid ,KAi
is published in a signed request to a blockchain peer. If the

blockchain is able to verify that the requester is part of the voting policy, then it accepts
and attaches the public key to the voting object which is stored within the blockchain.

KeyAuthorityi(IKAi , pp) Peerj(·)

IKAi

i
−−−−−−−−−−−−−−−−−−−−−−−→

vid ← GetUnauthorizedVotingForAuthority(i)

vid
←−−−−−−−−−−−−−−−−−−−−−−−

(skvid ,KAi
, pkvid ,KAi

)← DIPPE.AuthSetup(pp, i)

IKAi

pkvid ,KAi−−−−−−−−−−−−−−−−−−−−−−−→

π, · · · ← GetVotingInfo(vid)

if i ∈ π
AuthorizeVoting(pkvid ,KAi

)

Figure 4: The sub-protocol for authorizing a registered voting

4.3 Voting

In the voting phase, a ballot is casted locally by the voter and accredited by a set of signer
authorities, before it is submitted to the blockchain network.

4.3.1 Ballot Casting and Accreditation

In order to cast a new ballot for a voting vid (Fig. 5), the voter first has to retrieve all required
parameters like the collection of available options opt , the policy π and the set of public keys
{pkKAm,vid}m∈π, from the blockchain. Now Vi calls ballotvid ,Vi ← DIPPE.Encrypt(pp,x, optvid ,Vi)
using his choice optvid ,Vi ∈ opt , the associated public keys {pkKAm,vid}m∈π, the policy vector
x derived from the policy π and the scheme’s public parameter pp. In order to prevent dou-
ble voting, the ballot ballotvid ,Vi has to be signed by a set of at least t signing authorities SAj.
Therefore, they check whether the voter Vi is eligible to participate at the voting vid and
if that is the case, then Vi with input his ballot ballotvid ,Vi and the set of signer authorities
engages in the protocol TBS.Sign(·), while in the end Vi obtains a signature σvid ,Vi and all
participating SAj learn nothing about the ballot. Each participating signer authority now
adds the identifier i of the voter to their local tally sheet.

4.3.2 Ballot Submission

Vi now uses his anonymous identity Ianon to place the ballot ballotvid ,Vi together with the
signature σvid ,Vi within the blockchain. Because this is done anonymously, the blockchain
learns nothing about the identity of Vi. The blockchain accepts the vote if TBS.Verify(pkTBS,
ballotvid ,Vi , σvid ,Vi) outputs 1. The protocol for submitting the ballot to the blockchain is
detailed in Fig. 6.
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Voteri(IVi , Ianon , pp) SignerAuthorityj(ISAj ) Peerl(·)

Ianon
vid

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{pkKAm,vid}m∈π,opt, π, . . .

← GetVotingInfo(vid)

opt , π, {pkKAm,vid}m∈π
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

select optvid ,Vifrom opt

x← π

ballotvid ,Vi ← DIPPE.Encrypt(

pp,x, {pkKAm,vid}m∈π, optvid ,Vi)

IVi

vid
−−−−−−−−−−−−−→ ISAj

vid
−−−→

ev , · · · ← GetVotingInfo(vid)

ev
←−−−

if i ∈ ev

ballotvid,Vi

−−−→
σvid,Vi

←−−−
TBS

skTBS,SAj

←−−−
⊥

−−−→
AddToTallySheet(vid , i)

Figure 5: The sub-protocol for casting a new ballot

Voteri(IVi , Ianon , pp) Peerj(·)

Ianon
ballotvid ,Vi , σvid ,Vi−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b := TBS.Verify(pkTBS, ballotvid ,Vi , σvid ,Vi)

if b = ok

SubmitBallot(ballotvid ,Vi)

Figure 6: The sub-protocol for submitting a ballot to the blockchain

4.4 Tallying

In the tallying phase, encrypted ballots are opened with the help of decryption keys provided
by the key authorities.

4.4.1 Unlocking Votes

If there exists a voting vid that is about to expire, all responsible key authorities KAi

request the set of public keys attached to the voting object, together with the policy π
from the blockchain (Fig. 7). With help of these parameters, they generate a decryption
key skKAi,vid ,v ← DIPPE.KeyGen(pp, i, skKAi,vid , {pkKAm,vid}m∈π, vid ,v) using their own se-
cret key sk vid ,KAi

, the public keys {pkKAm,vid}m∈π of all responsible key authorities that are
stored within the blockchain, and an attribute vector v that derives from the policy π. The
decryption key skKAi,vid ,v is then published to the blockchain using a signed request and the
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blockchain on the other hand verifies that the key authority KAi is indeed responsible for
this voting. If that is the case, then the blockchain attaches the decryption key to the voting
object stored within the blockchain.

KeyAuthorityi(IKAi , pp) Peerj(·)

IKAi

i
−−−−−−−−−−−−−−−−→

vid ← GetExpiredVoting(i)

{pkKAm,vid}m∈π, π, . . .

← GetVotingInfo(vid)

vid , {pkKAm,vid}m∈π, π
←−−−−−−−−−−−−−−−−

y ← π

sk i,vid ,v ← DIPPE.Keygen(pp, i, skKAi,vid , {pkKAm,vid}m∈π, vid ,v)

IKAi

skKAi,vid ,v−−−−−−−−−−−−−−−−→

if i ∈ π
UnlockVoting(skKAi,vid ,v)

Figure 7: The sub-protocol for creating a new decryption key

4.4.2 Finalize Voting

The actual decryption process (Fig. 8) is triggered by one of the responsible key author-
ities KAi. The decryption of the stored votes occurs within the smart contract as a fully
transparent process. Therefore, the choice optvid ,Vm of voter Vm is revealed by calculat-
ing optvid ,Vm := DIPPE.Decrypt(ballotvid ,Vm , {skKAi,vid ,v}) and stored within the blockchain.
Voters are now able to request the voting result from the blockchain.

KeyAuthorityi(IKAi , pp) Peerj(·)

IKAi

vid
−−−−−−−−−−−−−−−−−−−−−−−−→

ballot listvid ← GetBallotList(vid)

ballot listvid
←−−−−−−−−−−−−−−−−−−−−−−−−

IKAi

ballot listvid
−−−−−−−−−−−−−−−−−−−−−−−−→

foreach ballotvid ,Vm in ballot listvid

DIPPE.Decrypt(ballotvid ,Vm , {skKAi,vid ,v})

Figure 8: The sub-protocol for opening the encrypted ballots
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5 Security Analysis

In this section, we analyze and informally argue security of our voting system. Therefore, we
assume that the underlying Hyperledger Fabric network is correctly configured, that critical
key material of the individual members is kept private and the communication channels
between the different network members are TLS-secured.

Ballot Privacy: One of the most fundamental security properties of a voting system is
ballot privacy. It literally means that an adversary is not able to reveal the way a
specific voter has voted. Our system ensures ballot privacy due to the fact that voters
submit their ballots using a distinct anonymous identity, which is shared between
all voters and therefore disguises the real user behind it. Even if ballots that are
stored within the blockchain become publicly visible, a connection to a specific voter
can not be established any more. In order to prevent double voting, a ballot has
to be submitted together with a signature over the ballot, created by a set of signer
authorities. The blindness property of the threshold blind signature scheme ensures,
that even a malicious set of signer authorities is not able to learn the structure of the
ballot and as a consequence break the privacy as soon as the ballot is published to the
blockchain.

Fairness: Fairness means that an adversary is not able to obtain intermediate results of
a voting before its expiration date. This property is ensured within our system as
long as no majority of malicious key authorities collude. The reason is that all ballots
which enter the system are encrypted client-side using an IND-CPA secure functional
encryption scheme and in order to open ballots that are stored within the blockchain,
decryption keys from multiple key authorities are required.

Eligibility: The eligibility property limits the voting attendance to voters that are entitled
to it. Each voter within our system possesses a digital identity which they obtain
in exchange to a proof of their real identity. When registering a new voting at the
system, a registrar is able to define the set of voters who are able to participate. The
enforcement of the eligibility property is then performed by the signer authorities.
They check whether the voting description within the blockchain matches against the
certificate of the requesting voter. In case the voter is eligible, they continue and create
a signature, else they decline.

Verifiability: Verifiability means that a voter is able to validate the correctness of the sys-
tem. Therefore, we analyse two different segments of the protocol. Note, that within
the permissioned blockchain setting, the ledger is stored on the peers, and therefore
beyond the direct access of the voters. Our way to counteract this disadvantage is
by using multiple independent organisations which hosts the network peers. We re-
quire that each organisation provides the blockchain data to the public. In case one
organisation publishes false results it will be noticed and cheating organisations can be
expelled.
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Cast-as-intended verifiability: This property makes sure, that a ballot was not
altered during its generation. It holds within our system because the ballot is casted
client-side.

Recorded-as-cast verifiability: A voter is able to verify that his casted ballot was
recorded as intended. This is the case, because the set of encrypted ballots is publicly
accessible within the blockchain. Any voter can verify that his casted ballot is the
same as within the blockchain.

Tallied-as-recorded verifiability: Another important property includes the ability
to verify that the counting process was executed honestly by the voting system. This
is ensured as the voter gains access to the blockchain, which contains all ballots and
post-opening all associated choices in cleartext. Each voter is able to manually recount
the published results.

Double-voting resistance: Double-voting is the threat in 1–person–1–vote systems, that
a voter is able to submit more than just one ballot. In our system, double-voting is
prevented as long as a majority of signer authorities acts honestly. This is the case
because a ballot can only be submitted in combination with a valid signature, issued by
a set of signer authorities. Signer authorities however will only issue signatures once
for every eligible voter. Further we require that the used threshold blind signature
scheme fulfils the unforgeable property, which prevents that valid signatures can be
unwarrantably casted by unauthorized entities.

Censorship resistance: Our voting system is censor resistant as long as there exists at
least one honest organisation (voting provider). This prevents harmful modifications to
the voting program and also the undetected addition of forgeries or the removal of sub-
mitted ballots from the distributed database. This is the case because the blockchain
itself is immutable and changes can be detected by inspecting the blockchain data
structure.

Reliability: The fact that our voting system is build on top of a decentralized blockchain
ensures protection against data loss. A dedicated copy of the database is stored on
each peer and even if there is a malfunction on some of them, the system remains
functional.

A problem we do not analyze further in this work is the potential susceptibility to side
channel attacks. For example, through running a timing attack the adversary may deduce
the temporal relation between the moment a voter requests a signature for the ballot and
the moment a voter submits the signed ballot to the blockchain. Voters may become as
well traceable due to the design of the Internet and the way IP addresses are distributed.
While the first type of timing attacks can be avoided by adding on purpose random delays
between ballot casting and submission, the second type may be resolved by tunnelling the
communication through anonymisation networks like TOR4[7].

4https://www.torproject.org/
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Figure 9: Structure of the smart contract (chain code) within a peer

6 Implementation

In this section we report on the performance evaluation of our reference implementation in
the Hyperledger Fabric framework. We also discuss optimization techniques in the smart
contract to scale the performance.

6.1 Setup

The prototype of the voting system runs within the framework of Hyperledger Fabric version
1.2. Our setup encompasses a Proxmox5 server cluster facilitating the virtualization of each
component of the Hyperledger Fabric network (peers, zookeeper- and kafka-nodes) in a single
virtual machine (VM). Each VM allocates a single core of the host’s Intel Core i7-4790 CPU
@ 3,60 GHz with 512 MB RAM running the small and resource-saving Alpine Linux 3.8
operating system. In addition, the Hyperledger Fabric components run within separated
Docker containers, as recommended for production use. The Docker runs in swarm mode,
which is a network overlay that connects multiple Docker daemons together and enables
cross-communication among containers between different VMs. The overlay sits on top of
the host-specific network and transparently handles the routing of each packet to and from
the Docker daemon host and the destination container. Each peer of the Hyperledger Fabric
network maintains a copy of the ledger stored in a LevelDB6 database. LevelDB is a simple
and fast key-value store. Simple in this context means that solely a single string is written
and read from the key-value store, respectively. This simplicity comes with the lack of a rich
query language like for example SQL.

Our implementation of the voting system’s actual program logic, which exists on the
peers in form of a smart contract, is carried out in Golang. We have chosen Golang because
of its compatibility with the programming language C. The exchange of data between the
Go and C parts of our smart contract is enabled by the pseudo-package “C”. It enables
the shared access on variables and also the call of functions from Go in C and vice versa

5https://www.proxmox.com/
6https://github.com/google/leveldb
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Figure 10: (a) Time comparison of algorithms of the DIPPE scheme. (Other operations add
negligible computational overhead to the voting system and are left out.) The underlying
curve is MNT224 and the DLIN assumption size is 2. (b-c) Performance improvements due
to multi-threading and clustering with a decentralized Kafka orderer with 4 Nodes vs. a Solo
orderer (100 votes, single-authority policy)

(Fig. 9). A pivotal part of the smart contract is devoted to execute the algorithms of
the Decentralized Inner-Product Predicate Encryption scheme. The decryption algorithm
of [29] specifically makes use of a pairing function. We note that the other cryptographic
operations in the implementation of the voting system, e.g. (threshold) signature generation
and verification, are fairly standard and have negligible computational costs in comparison
to the pairing operations of the DIPPE scheme. They are also invoked once per voter and
vote authentication. Hence they are left out from the discussion. We instantiate the DIPPE
with the construction of [29] over MNT224 elliptic curves and the DLIN assumption size 2.
The arithmetic operations are taken from the Pairing-Based Cryptography Library7 (PBC)
which provides the pairing operation and the GNU Multiple Precision Arithmetic Library8

(GMP), which provides the field operations.
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6.2 Performance Evaluation

Unlike other blockchain frameworks, which store the application code as byte code within
the ledger and later execute it within a virtual machine, Hyperledger Fabric chain code must
be installed manually on a peer. This approach results in an executable machine code that
is compiled for this target system, capitalises on further optimisations and reaches nearly
optimal performance.

In order to tally a ballot, it is necessary to decrypt all encrypted votes stored in the
blockchain. If the smart contract naively decrypts the votes one–by–one, the tally time
complexity is linear in the number of ballots. For large quantities, say 107, the time would
amount to approximately 340 hours using a single-threaded peer. We leverage two optimiza-
tion techniques in the smart contract, namely multi-threading and clustering.

Multi-Threading: We make use of multi-threading to reduce the time required for decryp-
tion. We gain the greatest benefit out of this method if the machines running the chain
code support multiple cores.

Peer Clustering: A more flexible method offers clustering. Instead of allowing every peer
to decrypt the whole set of votes within the chain code, we ask distinguished peers
to decrypt only a subset of the encrypted votes. Consider, for example, a consortium
consisting of two organisations each providing two peer nodes. Now instead of asking
for the decryption of the encrypted votes by all peer nodes, divide the number of
decryptions and ask one node from every organization to do the decryption. While the
idea is simple, it approximately halves the decryption time (see Fig. 10c).

A summary of the running time for the critical algorithms of the DIPPE scheme and
the decryption time optimized with multi-threading and sharding is illustrated in Fig. 10a
and 10b-10c, respectively. The performance measurement in Fig. 10a shows that the time
of DIPPE.Encrypt and DIPPE.KeyGen scales with the number of key authorities. This is
uncritical because DIPPE.Encrypt is invoked once for every voter and ballot off-chain. A
similar argument applies for the key authority calling DIPPE.KeyGen. Interestingly, the
number of key authorities has little impact on the time of the DIPPE.Decrypt-algorithm and
thus the size of the decryption policy, making [29] a good choice for decentralizing trust
in opening the votes. Also scaling the trustlessness of the hyperledger blockchain network
from semi-decentralization (Solo ordering service, Fig. 10b) to full decentralization (Kafka
ordering service, Fig. 10c) has marginal effects on the overall performance.

7 Conclusion

In this paper we propose a trustless, censorship-resilient and scaleable electronic voting
system based on Hyperledger Fabric. Our system allows the parameterisation of the number

7https://crypto.stanford.edu/pbc/
8https://gmplib.org/
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of Hyperledger Fabric peers in order to decrease the required tallying time of the ballots.
Thus, when considering large-scale votings like for example the federal election 2017 in
Germany with around 61,69 million eligible voters, our voting system approximately needs
512 single-threaded peers for each organisation in order to perform the whole counting process
in around 8,77 hours, which is within the time frame of traditional, manual tallying processes.
Using multi-threading may enhance the efficiency further more. The same holds for faster
functional encryption schemes, which are subject to on-going research and may be available
in the future.
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