
Fully Homomorphic Encryption for RAMs

Ariel Hamlin∗ Justin Holmgren† Mor Weiss‡ Daniel Wichs§

June 17, 2019

Abstract

We initiate the study of fully homomorphic encryption for RAMs (RAM-FHE). This is a
public-key encryption scheme where, given an encryption of a large database D, anybody can
efficiently compute an encryption of P (D) for an arbitrary RAM program P . The running time
over the encrypted data should be as close as possible to the worst case running time of P , which
may be sub-linear in the data size.

A central difficulty in constructing a RAM-FHE scheme is hiding the sequence of memory
addresses accessed by P . This is particularly problematic because an adversary may homomor-
phically evaluate many programs over the same ciphertext, therefore effectively “rewinding” any
mechanism for making memory accesses oblivious.

We identify a necessary prerequisite towards constructing RAM-FHE that we call rewind-
able oblivious RAM (rewindable ORAM), which provides security even in this strong adversarial
setting. We show how to construct rewindable ORAM using symmetric-key doubly efficient PIR
(SK-DEPIR) (Canetti-Holmgren-Richelson, Boyle-Ishai-Pass-Wootters: TCC ’17). We then show
how to use rewindable ORAM, along with virtual black-box (VBB) obfuscation for specific cir-
cuits, to construct RAM-FHE. The latter primitive can be heuristically instantiated using existing
indistinguishability obfuscation candidates. Overall, we obtain a RAM-FHE scheme where the
multiplicative overhead in running time is polylogarithmic in the database size N . Our basic
scheme is single-hop, but we also extend it to obtain multi-hop RAM-FHE with overhead N ε for
arbitrarily small ε > 0.

We view our work as the first evidence that RAM-FHE is likely to exist.

∗Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA.
ahamlin@ccs.neu.edu
†Department of Computer Science, Princeton University, Princeton, New Jersey, USA.

justin.holmgren@princeton.edu
‡Department of Computer Science, IDC Herzliya, Herzliya, Israel. mor.weiss01@post.idc.ac.il
§Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA. wichs@ccs.neu.edu

Justin Holmgren is supported in part by the Simons Collaboration on Algorithms and Geometry and by NSF grant
CCF-1714779. This research was done in part while affiliated with MIT, supported in part by the NSF MACS project
CNS-1413920. Mor Weiss is supported in part by ISF grants 1861/16 and 1399/17, and AFOSR Award FA9550-17-
1-0069. Daniel Wichs and Ariel Hamlin are supported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and
the Alfred P. Sloan Research Fellowship.

1

Contents

1 Introduction 3
1.1 Our Results . 3
1.2 Our Techniques . 4
1.3 Related Work . 8

2 Preliminaries 9
2.1 Doubly-Efficient Private Information Retreival (DEPIR) 9
2.2 Virtual Black-Box (VBB) obfuscation . 10
2.3 Oblivious RAM . 11

3 Rewindable Oblivious RAM 12
3.1 Rewindable ORAM Security . 12
3.2 Rewindable ORAM Constructions . 14

3.2.1 ISR-ORAM from ORAM and SK-DEPIR . 14
3.2.2 ASR-ORAM from SK-DEPIR and OWFs . 17

4 Definition of RAM-FHE 24
4.1 Definition of RAM machines . 25

4.1.1 Execution Semantics . 25
4.2 Single-Hop RAM FHE . 26
4.3 Multi-Hop RAM FHE . 27

5 Road Map Towards Constructing RAM-FHE 27
5.1 Database-Dependent RAM-VBB Obfuscation . 28
5.2 Database-Dependent RAM-VBB Obfuscation: Constructions 29

5.2.1 Transcript-Simulatable Database-Dependent RAM-VBB 30
5.2.2 Address-Simulatable Database-Dependent RAM-VBB 33

6 A RAM-FHE Scheme 35
6.1 Single-Hop RAM-FHE . 35
6.2 Upgrading to a Multi-Hop Scheme . 38

6.2.1 Multi-Hop Transcript-Simulatable RAM-VBB obfuscation 39
6.2.2 Multi-Hop RAM FHE . 42

7 Extensions 45
7.1 Supporting Variable-Length Scratch Tapes . 45
7.2 Supporting Variable-Length Databases . 46
7.3 Supporting Variable-Length and Long Inputs and RAM Machine Descriptions 46

7.3.1 The Multi-Hop Setting. 47
7.3.2 The Single-Hop Setting. 47

7.4 Supporting Long Outputs . 48

A Oblivious RAM for Initially-Empty Databases 52

B Rewindable ORAM with a Deterministic Client 55

2

1 Introduction

Fully Homomorphic Encryption. Fully Homomorphic Encryption (FHE), proposed by Rivest,
Adleman, and Dertouzos [RAD78], is an extension of standard semantically secure encryption that
supports computations “underneath” encryption. That is, given an encryption of some data D, any-
body can compute an encryption of P (D) for arbitrary programs P , while D remains computationally
hidden. We currently have constructions of FHE schemes based on the Learning With Errors (LWE)
assumption (either satisfying a relaxation called “leveled” FHE, or additionally requiring a circular
security assumption) [Gen09, BV11].

FHE has proven to be an indispensable tool in the foundational study of cryptography, with wide-
ranging applications including functional encryption [GKP+13b], program obfuscation [GGH+13],
verifiable computation [GGP10, KRR14], cryptographic hash functions [CCH+19], and more.

The most immediate use-case of FHE is privately outsourcing computation. A client Alice stores
her sensitive database D on an untrusted server, and the server non-interactively executes compu-
tations on Alice’s behalf (by computing encryptions of P (D) for arbitrary programs P), but learns
nothing about D. In known FHE schemes, Alice’s work is asymptotically optimal: encrypting her
database takes |D| ·poly(λ) work, and decrypting the server’s ciphertexts takes |P (D)| ·poly(λ) work.
The server’s work is also optimal, but with a major caveat: the program P must be represented as a
circuit C, and the server’s work is then |C| · poly(λ).

There has been much work towards making FHE more practical by minimizing the poly(λ) factors
[BGH13, GHS12, BGV12, GSW13, GHPS13], but the necessity of representing P as a circuit can
lead to a much larger asymptotic loss in efficiency. Indeed, we typically think of programs and
their efficiency in the Random-Access Memory (RAM) model of computation. Although any RAM
program can be converted into a circuit, this may result in a large efficiency loss: in general, a RAM
program that runs in time T over a database of size N can be converted into a circuit of size Õ(N +
T 2) [CR72, PF79]. As a result, for RAM computations running in time T � N (e.g., binary search,
whose RAM running time is O(logN)), the circuit conversion can incur an exponential efficiency
loss. Even for RAM computations with longer running times T > N , circuit conversion incurs a
quadratic overhead, which asymptotically will be more significant than any poly(λ) multiplicative
factor. Therefore, it is crucial to ask the question:

Can an FHE scheme “natively” support RAM computations?

1.1 Our Results

RAM-FHE. We define and construct two notions of RAM-FHE, which we now informally describe.
In both notions, given an encryption D̂ of an N -bit database D, a RAM program P , and a bound T
on the running time of P , anyone can obtain an encryption ŷ of P (D) in time roughly T . We note
that the bound T on evaluation runtime is necessary for semantic security: if homomorphic evaluation
preserved the input-specific running time of P , then one could completely learn D by measuring the
time to homomorphically evaluate several carefully chosen programs.

Our basic notion is single-hop, meaning that the output ciphertext ŷ, as well as any changes made
to D by P , cannot be meaningfully used by future homomorphic computations. We also consider a
multi-hop variant, in which one can homomorphically evaluate a sequence of RAM programs, each
of which may read and write to D, with the changes made by each program execution visible to the
next.

We give the first evidence that these notions are possible by constructing (single- and multi-hop)
RAM-FHE schemes using extremely strong but plausible assumptions. Specifically, we rely on a re-
cent primitive called Secret Key Doubly-Efficient Private Information Retrieval (SK-DEPIR), as well

3

as Virtual Black-Box (VBB) obfuscation for specific circuits. We have candidate SK-DEPIR construc-
tions based on non-standard assumptions related to permuted and noisy Reed-Muller codes [BIPW17,
CHR17]. While VBB obfuscation for general circuits is impossible [BGI+01], it appears reasonable to
assume that it can be done for most specific circuits and, indeed, any of the candidate constructions of
indistinguishability obfuscation (iO) [GMM+16, BMSZ16, MZ18, CVW18, BGMZ18, Agr18, LM18,
AJS18] can be used to heuristically instantiate it. We view such use of VBB obfuscation as analogous
to the random-oracle heuristic: although it is known to be unsound in general, all examples where it
fails tend to be contrived, and natural uses of it appear to be sound.1

Our constructions have the following efficiency guarantees:

• In the single-hop setting, encryptions of an N -bit database have size poly(λ,N), and the cost
of homomorphically evaluating a program P with description size |P | and run-time T is (T +
|P |) · poly(λ, logN).

• In the multi-hop setting, for any constant ε > 0, ciphertext sizes are N1+ε · poly(λ) and homo-
morphic evaluation takes time (T + |P |) ·N ε · poly(λ).

Rewindable Oblivious RAM. As explained in Section 1.2 below, the main difficulty in con-
structing RAM-FHE is hiding the memory access pattern when the evaluator repeatedly runs differ-
ent programs on the same initial ciphertext. We abstract this as a strengthening of Oblivious RAM
(ORAM) [Gol87, Ost90, GO96] that we call rewindable ORAM, which we believe may be of interest
beyond its applications to RAM-FHE. Recall that a standard ORAM scheme allows a client with
a small local state k to privately access his own database whose encoding D̃ is stored on a remote
untrusted server. Informally, rewindable ORAM extends this notion to guarantee privacy even when
the server can reset the client’s state to a previous value.

We construct rewindable ORAM schemes based on any SK-DEPIR scheme. In particular, we do
not assume the existence of any type of obfuscator. We obtain different tradeoffs between efficiency
and the permissibles type of rewinding attacks, specifically:

• If the server is only allowed to rewind the client to his initial state, then following a poly (λ,N)-
time setup, accessing the database costs poly (λ, logN).

• If the server is allowed to rewind the client to any previous state, then following anN1+ε·poly (λ)-
time setup, accessing the database costs N ε · poly (λ), for any ε > 0.

1.2 Our Techniques

As alluded to above, the main difficulty in constructing RAM-FHE arises from the fact that the
memory access pattern induced by evaluating P on D may be highly dependent on the database
D, whereas the access pattern of the homomorphic evaluation of P must hide everything about D.
One natural approach towards hiding the access pattern is to force the evaluator to emulate P via
an ORAM. However, the RAM-FHE evaluator should be able to evaluate arbitrarily many different
programs on the same ciphertex D̂, and is not required to update his state between executions.
This raises the concern that (even a semi-honest) evaluator evaluating two different programs P1, P2

on D̂ may potentially deduce non-trivial information about the database D from the correlations
between the two memory access patterns during these evaluations. This strategy corresponds to a
“rewinding” attack on the underlying ORAM, and is not just a theoretical concern - all known ORAM

1Furthermore, it is possible to replace VBB obfuscation by a small stateless hardware token, resulting in a RAM-
FHE scheme where ciphertexts contain such tokens, which appears to still be non-trivial. We note that VBB was
similarly used to construct a public-key DEPIR scheme [BIPW17].

4

constructions are indeed insecure in this case. (For example, if an ORAM client accesses an address
a0, fails to update his state, and then accesses a1, the server’s view will reveal whether or not a0 = a1.)

Main Component: Rewindable ORAM. We consider (Section 3.1) two flavors of rewindable
ORAM, which provide security against this type of attack. The weaker flavor, called Initial-State
Rewindable ORAM (ISR-ORAM) allows the adversary to observe the ORAM access patterns of
various programs P1, P2, . . . executed on D, where between executions the client/server states are
reset to their initial values k, D̃. The adversary should learn nothing about the underlying access
patterns of the programs.

We also define a stronger flavor called Any-State Rewindable ORAM (ASR-ORAM) where the
adversary can rewind the client/server states to any point in time.2 The ORAM access patterns that
the adversary observes throughout this process should reveal nothing about the underlying access
patterns of the programs.

Rewindable ORAM Constructions. Constructing rewindable (even ISR-) ORAM appears to
be difficult, and none of the standard ORAM constructions suffice. Indeed, all standard ORAM
constructions follow the “balls and bins” model in which each data block is represented as a “ball” and
stored on the server in some “bin”. Such structures cannot guarantee even ISR-ORAM security since,
as noted above, if the client state is reset between accesses then the server can distinguish whether
the client is accessing the same data block or not (when accessing the same block, the client will
access the same “ball” on the server). Thus, we need fundamentally different techniques than prior
ORAM constructions.

Our new approach to rewindable ORAM leverages a powerful recent tool called SK-DEPIR [BIPW17,
CHR17], which can be viewed as a stateless read-only ORAM. Informally, following a setup phase
in which the client receives a secret key k and the server receives an encoding D̃ of the database
D, the client can privately read arbitrary locations i of D by reading a few positions in D̃, without
having to update the client/server state during the process. The server should learn nothing about
the underlying locations i being read. In particular, we can think of SK-DEPIR as a very restricted
form of ISR-ORAM for the class of RAM program Pi(D) that read and output the i’th location of
D.

The works of [BIPW17, CHR17] constructed SK-DEPIR schemes under non-standard assumptions
relating to permuted and noisy Reed-Muller codes. Note that such SK-DEPIR cannot exist in the
“balls and bins” model, and must encode the data in some complex way that intertwines many data
locations together. Indeed, repeatedly accessing the same data location i in a SK-DEPIR should be
indistinguishable from accessing completely random and unrelated data locations, so there must be
many different, and seemingly unrelated, tuples of locations in D̃ that contain information about data
location i. We use SK-DEPIR to construct both ISR- and ASR-ORAM schemes.

ISR-ORAM from SK-DEPIR and standard ORAM. The ISR-ORAM scheme is conceptually
simple. Recall that SK-DEPIR is read-only, while ISR-ORAM supports arbitrary RAM programs
that can both read and write to the database. In both cases, we can rewind the state to its initial
value after an execution while maintaining privacy of the underlying access pattern. The high-level
idea is to use the SK-DEPIR to support reads, and use a standard ORAM scheme to support writes.

Specifically, the initial states in our ISR-ORAM are the client and server states k, D̃ of the SK-
DEPIR. To execute a RAM program P , the client initializes a fresh copy of a standard, non-rewindable

2For example, the adversary can observe the sequential ORAM execution of programs P1, P2, P3, then rewind the
client/server state to the point immediately after P1’s execution and observe the execution of a different program P ′2,
etc.

5

ORAM O, which is initially empty. (We provide an explicit construction of an ORAM scheme for
initially empty databases in Appendix A.) Writes are executed using the ORAM scheme O. To read
some location i, the client reads i from both the ORAM O and the SK-DEPIR. If location i was found
in O, the client uses that value, otherwise he uses the SK-DEPIR value. Thus, the client always gets
the freshest copy of the value in any location. Note that rewinding the ISR-ORAM client/server to
their initial states erases all information about O (which was initialized only in the first access), so we
do not require rewindable security from O: the next access will instantiate a completely fresh ORAM
scheme O for the execution. The scheme is described in Section 3.2.

ASR-ORAM from SK-DEPIR via a hierarchical structure. The ASR-ORAM construction
is more complex. ASR-ORAM should support repeated sequential execution of different programs,
and remain secure when the adversary can rewind to any intermediate state from which it starts a
new sequence of program executions. Unfortunately, this precludes our previous solution of storing
intermediate values written during the execution in a standard, non-rewindable ORAM: rewinding
to an intermediate point will rewind the ORAM.

We solve this problem by combining SK-DEPIR with techniques from hierarchical ORAM [Ost90,
GO96]. In particular, our ASR-ORAM consists of a hierarchy of SK-DEPIR schemes of exponen-
tially increasing size, where the top-most scheme has size 1 and the bottom-most scheme has size N .
Initially, the data is entirely contained in the bottom-most scheme. To read a location i we try to
read it using the SK-DEPIR schemes at all levels, and use the value found in the top-most scheme
that contains i. To write a location i, we write it to the top level (which requires re-generating its
SK-DEPIR scheme). As in Hierarchical ORAM this requires “reshuffles”: every pre-determined num-
ber of writes, we need to merge sufficiently many of the top levels to ensure that their combined size
is large enough to hold the database. Since levels are implemented using SK-DEPIR, this requires
reading and re-writing the levels in their entirety. However, as levels get larger, they are “reshuffled”
with decreasing frequency so the overall amortized3 complexity is low. Notice that reshuffles reveal
no information, even under arbitrary rewinding, because they occur at pre-determined times (inde-
pendent of the access history), and reads are secure by the security of the (stateless) SK-DEPIR even
under arbitrary rewinding.

We note that the actual construction (Section 3.2) is somewhat more involved. One issue arises
because SK-DEPIR schemes are designed for array structures (i.e., reading a data block requires
knowing its location in D), whereas the hierarchical construction imposes a map structure at each
level because it contains a subset of (not necessarily consecutive) data blocks. To resolve this we
use the standard data-structures trick of pseudorandomly mapping data blocks into buckets, thus
guaranteeing that the block’s location in each level in which it appears is independent of the history
of accesses.

RAM-FHE from Rewindable ORAM. We construct RAM-FHE from rewindable ORAM using
VBB obfuscation. At a high level, to encrypt some database D, we first construct the rewindable
ORAM client/server states k, D̃ for D. We then obfuscate the ORAM client program, with k hard-
wired into it, and output the ciphertext consisting of D̃ and the obfuscated program. The evaluator
can then use the obfuscated ORAM client to execute an arbitrary RAM program over the encrypted
database D̃ and derive an encrypted output. During the execution, the evaluator emulates the ORAM
server using D̃ (performing read/write operations as instructed by the client).

Formalizing the above approach faces several challenges, and requires some adaptations, as we
now describe. The final construction is obtained through the following steps.

3We note that as in [OS97], reshuffles can be “spread-out” over many operations to achieve low worst-case complexity.

6

Step (1): emulating statefulness. We cannot directly use a circuit obfuscator to obfuscate
the rewindable ORAM client, because the client is stateful, and state is needed even for correctness.
Instead, we obfuscate the circuit emulating a single client step in the ORAM scheme. This circuit
takes the client state as input, and returns the updated client state as part of its output. We note
that representing the client as a circuit in this way is fundamentally different (and significantly more
efficient) than representing an entire RAM program as a circuit. Indeed, the circuit performs a single
execution step, and in particular the overhead is independent of the database size or the worst-case
runtime of the program.

For simplicity of the exposition, we assume for now that the program’s description is short (of size
p (λ) for some a-priori fixed polynomial p), and can therefore be given in its entirety to the obfuscated
circuit in the first execution step. We explain below how to remove this restriction.

Step (2): hiding client state. (Standard/rewindable) ORAM security assumes the adversary
does not see the client state, but in our construction the evaluator sees all the internal client states
throughout the execution (since the obfuscated circuit outputs them). To hide the client states, we
have the obfuscated circuit encrypt the state, using a hard-wired (symmetric) encryption key.

Step (3): forcing honest behavior. The rewindable ORAM is secure only as long as the
ORAM client behaves honestly, and the ORAM server behaves semi-honestly. However, RAM-FHE
should guarantee semantic security of the encrypted database against arbitrary (possibly malicious)
evaluators. A malicious evaluator may deviate from a semi-honest emulation of the rewindable ORAM
scheme in two ways.

First, the evaluator may emulate a malicious server whose answers to read requests are incon-
sistent with the database, and who fails to perform requested write operations. Such attacks can
be prevented using the standard approach of maintaining a Merkle Hash Tree (MHT) of the server
state. More specifically, we hard-code the initial MHT root into the obfuscated circuit. Answers to
read requests include also the MHT path proving consistency of the answer (which is verified by the
obfuscated circuit using the MHT root). Answers to write requests outputted by the obfuscated
circuit additionally include an updated MHT path proving that the root was updated correctly.

Second, the evaluator may emulate a malicious client, by providing incorrect/inconsistent client
states to the obfuscated circuit. We prevent such attacks by hard-wiring a Message-Authentication
Code (MAC) key into the obfuscated circuit, and having it verify the input state and MAC the output
state.

Step (4): hiding the output. Recall from Step (2) that the internal ORAM client state is
encrypted using a “temporary” symmetric encryption key that is chosen at encryption time. Con-
sequently, this key cannot be used to encrypt the computation output (which should be encrypted
using a persistent public key that is chosen during key generation). We encrypt the output using a
standard PKE scheme, where the public key is hard-wired into the obfuscated circuit.

Step (5): generating randomness for the execution. Even if the emulated RAM program
is deterministic, the obfuscated circuit described above needs random coins for encryption, and to
emulate the ORAM client. We use a PRF (applied to the MHT root, and the entire execution history)
to derive the needed randomness, where the PRF key is hard-wired into the circuit.

An additional point that needs to be handled is the fact that a RAM program P has a volatile
tape (a “scratch tape”) which is used only during P ’s execution, after which it is erased. We use a
standard ORAM to instantiate the scratch tape at the onset of the execution. Notice that standard
ORAM security suffices here, since each execution instantiates a fresh ORAM for the scratch tape.4

The construction described above gives a single-hop RAM-FHE scheme when the underlying
4We note that if an a-priori bound on the scratch tape size is known during encryption, then in the single-hop

setting the scratch tape can be included as part of the encrypted database, since any updates to the database during
execution are anyway lost when the execution ends.

7

ORAM is an ISR-ORAM (see Section 6). The multi-hop RAM-FHE scheme is obtained by instan-
tiating the ORAM with an ASR-ORAM, with some modifications to allow the evaluator to perform
sequential computations on the database. (For example, this requires MAC-ing the initial state of
the ASR-ORAM client together with the MHT root of the updated database, see Section 6.2.)

Generalizing to programs of any length. The construction described above assumed the
entire program description was given as input to the obfuscated circuit (in particular, this requires an
a-priori fixed bound on the description size). To support longer programs, we first copy the program
description into the scratch tape at the onset of the computation. More specifically, the evaluator
provides a MHT root for the program description as input to the obfuscated circuit, and the circuit
then copies the program bit-by-bit into the scratch-tape, verifying consistency with the MHT root in
each step. See Section 7.3 for details.

On the necessity of rewindable ORAM and DEPIR. As a final note, we informally argue
that rewindable ORAM is inherent to the construction of RAM-FHE, by explaining how to construct
ISR/ASR-ORAM from single-hop/multi-hop RAM-FHE. To initialize the ORAM with a database
D, the client generates a random encryption-decryption key pair, encrypts D using the encryption
key, and stores the ciphertext D̂ on the server. To execute a RAM program P on D, the client
homomorphically evaluates P on D̂ by accessing all relevant bits of D̂ remotely on the server. Finally,
the client decrypts the computation output using the decryption key. These ORAM access patterns
reveal nothing about the database because the RAM-FHE scheme is semantically secure.5 If we use
multi-hop RAM-FHE then we can sequentially execute many programs and rewind to any intermediate
state; semantic security still ensures that the access patterns reveal nothing about the underlying
database, so we obtain ASR-ORAM. If we use a single-hop RAM-FHE, the ORAM only allows for
the execution of a single program before rewinding to the initial state, so we only get ISR-ORAM. As
discussed above, SK-DEPIR can be thought of as a read-only ISR-ORAM, so RAM-FHE also implies
SK-DEPIR.

1.3 Related Work

Supporting RAM computations directly, without first representing the RAM program as a circuit,
has been considered for several cryptographic primitives.

Similar to RAM-FHE, Garbled RAM [LO13, GHL+14] (also known as private RAM delegation)
allows a user to garble a database D, following which an evaluator can run RAM computations on the
garbled D. (There are also works on non-private RAM delegation, e.g., [KP16].) However, in garbled
RAM the evaluator can only compute specific RAM programs P which the garbler generated. Similar
to RAM-FHE, the size of the garbled program, and the garbling and evaluation times, are proportional
to P ’s running time. There has been a large body of works on garbled RAM, improving its efficiency,
underlying assumptions, properties, and applications [GLOS15, CHJV15, CH16, CCHR16, ACC+16,
BCP16, CCC+16, Mia16, GGMP16, HY16, LO17, GOS18]. Succinct garbled RAMs together with
iO for circuits also imply indistinguishability Obfuscation (iO) for RAMs [CHJV15, BCG+18].

Functional Encryption (FE) for RAMs, namely an FE scheme in which the master secret key can be
used to generate function keys for RAM programs, was studied in [AIT16, GHRW14, BCG+18]. These
constructions are not function-private, and [AIT16] additionally do not hide the access pattern of the
RAM program (which, as discussed in Section 1.2, seems to be a central difficulty in constructing
RAM-FHE).

5More formally, there is a discrepancy since the access pattern of homomorphic evaluation, though revealing nothing
about D, may reveal something about P . To prevent this, we can append an encryption secret key sk to the database
D, and execute a program P̃ in which P ’s code is encrypted under sk, where P̃ first decrypts P and then executes it
over D. This way, the access pattern of the FHE evaluation cannot reveal anything about neither P nor D.

8

The notion of FHE for Turing machines was considered in [GKP+13a], who construct FHE schemes
with input-specific running time during evaluation. However, the runtime is still at least linear in
the database size, whereas RAM-FHE evaluation time may be sublinear in the database size (if the
original RAM program runs in sublinear time). Moreover, their model is somewhat restricted in that
the Turing machine and its input are encrypted together (so one cannot execute arbitrary Turing
machines on the input).

2 Preliminaries

Throughout this paper, λ denotes a security parameter. We use poly (λ) and negl (λ) to denote
unspecified functions that are polynomial and negligible in λ, respectively. We use standard crypto-
graphic definitions of one-way functions (OWFs), pseudorandom functions (PRFs), collision-resistant
hash functions (CRHFs), and message authentication codes (MACs) (see, e.g., [Gol01, Gol04]). For a
randomized algorithm A with n inputs, we use A (x1, . . . , xn; r) to denote the output of A on inputs
x1, . . . , xn when it uses randomness r. We use ≈ to denote computational indistinguishability.

We use PPT to refer to probabilistic polynomial-time algorithms, and non-uniform PPT to refer
to (ensembles of) polynomial-sized probabilistic circuits.

2.1 Doubly-Efficient Private Information Retreival (DEPIR)

Definition 2.1 (Secret-Key Doubly-Efficient PIR (SK-DEPIR) [CHR17, BIPW17]). A secret-key
doubly-efficient PIR (SK-DEPIR) scheme consists of procedures (KeyGen,Process,Query,Decode) where
KeyGen,Process,Query are randomized and Decode is deterministic, with the following syntax:

• KeyGen
(
1λ
)
takes as input a security parameter λ, and outputs a client secret-key sk.

• Process (sk,DB) takes as input a client secret-key sk and a database DB ∈ {0, 1}N , and outputs
a processed database D̃B ∈ {0, 1}Ñ .

• Query (sk, addr) takes as input a client secret-key sk and an address addr ∈ [N], and outputs a
set Q ⊆

[
Ñ
]
of queries, and a temporary state st.

• Decode
(

sk, st,
{

D̃Bi : i ∈ Q
})

takes as input a secret key sk, a temporary state st, and a set

of values from the processed database
{

D̃Bi : i ∈ Q
}
, and outputs a value val.

We require that the scheme satisfies the following properties:

• Correctness: for every N ∈ N, every DB ∈ {0, 1}N , and every addr ∈ [N], it holds that:

Pr

Decode
(

sk, st,
{

D̃Bi : i ∈ Q
})

= DBi :

sk← KeyGen
(
1λ
)

D̃B← Process (sk,DB)
(Q, st)← Query (sk, addr)

 = 1

• Security: Any non-uniform PPT adversary A has only negl (λ) advantage in the following
security game with a challenger C:

1. A sends to C a database DB ∈ {0, 1}N .
2. C picks a random bit b← {0, 1}, and runs sk← KeyGen

(
1λ
)
to obtain a client secret-key

sk, and then runs D̃B ← Process (sk,DB) to obtain a processed database D̃B, which it
sends to A.

9

3. A selects two addresses addr0, addr1 ∈ [N], and sends (addr0, addr1) to C.
4. C samples (Q, st)← Query(sk, addrb), and sends Q to A.
5. Steps 3 and 4 are repeated an arbitrary (polynomial) number of times.
6. A outputs a bit b′, and his advantage in the game is defined to be Pr[b = b′]− 1

2 .

• Efficiency. The runtime of KeyGen is poly (λ), the runtime of Process is poly (N,λ), and the
runtime of Query,Decode is o (N) · poly (λ), where N is the database size.

We will need a SK-DEPIR scheme with the additional guarantee that preprocessing is oblivious of
the database contents. We note that both the SK-DEPIR constructions of [CHR17, BIPW17] satisfy
this guarantee.

Definition 2.2 (Security with oblivious preprocessing). We say that a SK-DEPIR scheme is secure
with oblivious preprocessing if the security property of Definition 2.1 holds even when in Step 2
above, the adversary is given the sequence of memory accesses (including which address was accessed,
whether it was read or written, and what value was written) performed during the execution of
Process (sk,DB).

Remark on the existence of SK-DEPIR schemes with specific parameters and oblivious
preprocessing. The works [BIPW17, CHR17] prove that under a new assumption on noisy Reed-
Muller codes, there exist SK-DEPIR schemes with either of the following parameters for databases
of size N and security parameter λ:

• Sublinear SK-DEPIR: For any ε > 0, the running time of Process can be N1+ε · poly(λ), and
the running time of Query and Decode can be N ε · poly(λ).

• Polylog SK-DEPIR: The running time of Process can be poly(λ,N), and the running time
of Query and Decode can be poly(λ, logN).

We note that both of these schemes have oblivious preprocessing. Indeed, in these constructions
Process randomly permutes a (noisy) Reed-Muller encoding of an encryption of the database. The
encoding is data-oblivious since it is applied to ciphertexts, and using oblivious sorting algorithms
the permuting operation can also be done obliviously.

2.2 Virtual Black-Box (VBB) obfuscation

We use the notion of virtual black-box obfuscation with auxiliary input [BGI+01, GK05].

Definition 2.3 (Virtual black-box obfuscation with auxiliary input). Let C = {Cn} be a circuit class,
where circuits in C take inputs in {0, 1}n and have size poly (n). A (non-uniform) Virtual Black-Box
obfuscator (VBB obfuscator) with auxiliary input for C is a PPT algorithm O that takes as input a
security parameter λ, an input size n ∈ N, and a boolean circuit C ∈ Cn, outputs a circuit C̃, and
satisfies the following:

• Functionality: for every n ∈ N, every C ∈ Cn, and every input x ∈ {0, 1}n,

Pr
[
O
(
1λ, 1n, C

)
(x) = C (x)

]
≥ 1− negl (λ)

where the probability is over the coins of O.

• Polynomial Slowdown: there exist a polynomial p such that for every n ∈ N and every
C ∈ Cn,

∣∣O (1λ, 1n, C)∣∣ ≤ p (|C| , n, λ).
10

• Virtual Black-Box: for every PPT adversary A there exists a PPT simulator Sim such that
for every n ∈ N, every C ∈ Cn, and every auxiliary input z ∈ {0, 1}∗ of polynomial length:∣∣Pr [A(O (1λ, 1n, C) , z) = 1

]
− Pr

[
SimC

(
1λ, 1n, 1|C|, z

)
= 1
] ∣∣ ≤ negl (λ)

where the probabilities are over the coins of O,A and Sim.

2.3 Oblivious RAM

In this section we formally describe the standard ORAM notion. Recall that we refer to the database
(i.e., the client’s data) as the “logical memory”, and the server’s state (which the server has RAM access
to) as the “physical memory”. We use the terms “database” and “logical memory” interchangeably to
refer to the client’s data, and “physical memory” and ”server state” to refer to the remote memory
stored on the server. We assume the logical memory consists of bits, and the physical memory consists
of blocks of size polylog (λ). This is without loss of generality up to a multiplicative polylog (λ) increase
in complexity, since we can read/write the blocks one bit at a time.

We use the standard ORAM definition, but elaborate on the structure of the Access protocol.
More specifically, accessing the database in a standard ORAM requires several interaction rounds,
during which the client reads and writes some blocks to the physical memory. (Updating the physical
memory is needed to guarantee obliviousness, even if the database is read-only.)

Definition 2.4 (Oblivious RAM (ORAM) [Gol87, Ost90, GO96]). An Oblivious RAM (ORAM) scheme
consists of procedures (Setup,Access), with the following syntax:

• Setup(1λ,DB) takes as input a security parameter λ and a database DB ∈ {0, 1}N and outputs
initial client and servers states ck, st.

• Access(op, addr, val) is an interactive protocol executed by a client to interact with a server. The
client C has state ck, and his input is an operation op ∈ {read, write}, an address addr ∈ [N],
and a value val (if op = read, then val is ignored). The client ultimately outputs a value val′ (if
op = write, then val′ = ⊥).
Throughout the execution, the server S is used only as remote storage, and does not perform
any computations. That is, in each round of the protocol, the client reads some physical address
p_addri, and performs an update operation which replaces the block at some physical location
p_addr′i with blocki. We use st′ to denote the updated server state at the end of the execution.

We require that the scheme satisfies the following properties:

• Correctness. Consider the following interaction between a stateful client and server. The client
and server initially receive ck and st (respectively), sampled as (ck, st)← Setup(1λ,DB). They
then repeatedly execute the Access protocol, where the client’s input is given by a sequence of
read and write instructions (instr1, . . . , instrq). Then the output of the client is, with probability
1, identical to his output when these instructions are sequentially performed directly on a
database whose initial contents are DB.

• Security. Every PPT adversary A wins the following security game with a challenger C with
probability at most 1/2 + negl (λ):

1. A sends to C a database DB ∈ {0, 1}N .
2. C runs Setup

(
1λ,DB

)
to obtain client and server states ck, st. C sends st to A.

11

3. C picks a random bit b← {0, 1}.
4. Repeat the following poly (λ) times:

(a) A sends to C two instructions:
(
op, addr0, val0

)
, and

(
op, addr1, val1

)
, where op ∈

{read, write}, and addr0, addr1 ∈ [N].
(b) C executes Access

(
op, addrb, valb

)
, and sends to A the access pattern to physical mem-

ory during this execution.

5. A outputs a bit b′, and is said to win the game if b = b′.

Remark on hiding the type of operation. Definition 2.4 does not hide whether the performed
operation is a read or a write, whereas an ORAM scheme is usually defined to hide this information.
However, any such scheme can be generically transformed into one that hides the identity of operations
by always performing both a read and a write. (Specifically, in a write operation, one first performs
a dummy read; in a read operation, one writes back the value that was read.) Revealing the identity
of operations allows for more fine-grained overheads.

Remark on physical memory block contents. We assume that blocks of physical memory are
sufficiently large to store a pair (addr, b), where addr is a logical memory address, and b is a bit. We
will sometimes additionally designate each block as “valid” or not, and include a corresponding tag
valid. This will be useful when instantiating an ORAM with an database of “empty” blocks in the ISR-
ORAM of Construction 1, and the multi-hop RAM-FHE scheme of Construction 7. More specifically,
we define a block as “empty” if it has the tag valid = false, whereas all non-empty blocks will always
have the tag valid = true. A size-N database of empty blocks consists of blocks corresponding to
logical memory addresses 1, . . . , N , with valid = false tag. In an execution of an Access protocol,
blocks with valid = false tag are “ignored” in the sense that they are never returned as output to
the client, and during update operations are treated as dummy blocks (i.e., they could be arbitrarily
overwritten).

3 Rewindable Oblivious RAM

We define two ORAM variants which guarantee security against rewinding attacks. The two notions
differ in the type of attacks they can handle. We first recall the notion of an access pattern, and the
standard ORAM definition [Gol87, Ost90, GO96].

Notation 3.1 (Access pattern). A length-q access pattern Q consists of a list (opl, vall, addrl)1≤l≤q
of instructions, where instruction (opl, vall, addrl) denotes that the client performs operation opl ∈
{read, write} at address addrl with value vall (which, if opl = read, is ⊥).

Informally, an ORAM scheme allows a client to store his database, or “logical memory”, remotely
on a server, or “physical memory”. Following a Setup procedure which generates client and server
states, reads and writes to logical memory are performed through an interactive protocol Access
between the client and server, where in each round the client generates a read request and an update
request for the server. The access pattern to physical memory during the Access protocol completely
hides from the server the database contents and access pattern to logical memory.

3.1 Rewindable ORAM Security

We now describe a game that formalizes the security of our ORAM variants. The adversarial server
in the game chooses a pair of initial databases, and (as in standard ORAM schemes) two sequences

12

of access patterns, with the goal of distinguishing between the executions of these sequences on the
two databases. In addition (and unlike standard ORAM), the adversarial server in our security game
can rewind the execution to a previous state, and continue the execution from that state.

Definition 3.2 (Rewindable ORAM security game). The ORAM security game is run between an
adversary A, and a challenger C.

1. A sends to C two databases DB0,DB1 ∈ {0, 1}N .

2. C picks a random bit b ← {0, 1}, and runs Setup
(
1λ,DBb

)
to obtain client and server states

ck, st. C sends st to A.

3. Let st0 = st and ck0 = ck. Repeat the following poly (λ) times, where in the i’th iteration:

(a) A sends to C an index ji ∈ {0, 1, . . . , i− 1}, as well as two sequences of instructions
Q0
i =

(
opi,l, addr0i,l, val0i,l

)
l∈[qi]

, and Q1
i =

(
opi,l, addr1i,l, val1i,l

)
l∈[qi]

, where qi ≤ poly (λ),

opi,l ∈ {read, write}, addr0i,l, addr1i,l ∈ [N], and val0i,l, val1i,l ∈ {0, 1}.

(b) Starting from server state stji and client state ckji , C executes Access
(
opi,l, addrbi,l, valbi,l

)
for 1 ≤ l ≤ qi. Let cki, sti denote the updated client and server states (respectively) at
the end of this sequence of executions. Let ACCi denote the access pattern to physical
memory during this sequence of Access executions.

(c) C sends ACCi to A.

4. A outputs a bit b′, and his advantage in the game is defined as Pr [b = b′]− 1
2 .

Discussion. The rewindable ORAM security game of Definition 3.2 captures several security vari-
ants, depending on the permissible choice of ji. First, notice that the security game with poly(λ)
iterations in the security game, when the adversary is restricted to choose ji = i−1 in each iteration,
and DB0 = DB1, yields the standard ORAM security definition without rewinds (Definition 2.4).
Second, restricting the adversary to choose ji = {0, i− 1} in every iteration i means the adversary
can only rewind the execution to the initial state, but can adaptively decide to “extend” a previous
execution. Restricting the adversary to choose ji = 0 in every iteration corresponds to an adversary
that can only rewind the execution to the initial state, where any rewind “finalizes” the current branch
of the execution, and the adversary cannot later extend it. In the most general form, when ji can take
any value in {0, 1, . . . , i− 1}, we can assume without loss of generality that the adversary chooses a
length-1 sequence in each iteration of the security game. This corresponds to an adversary that can
rewind the ORAM to any intermediate state. The security game of Definition 3.2 can be used to
capture various other security variants; we choose to focus on the latter two notions. Formally,

Definition 3.3 (Any-State Rewindable ORAM (ASR-ORAM)). We say that an ORAM scheme
is Any-State Rewindable (ASR) if any PPT adversary A has a negl(λ) advantage in the rewindable
ORAM security game of Definition 3.2.

Definition 3.4 (Initial-State Rewindable ORAM (ISR-ORAM)). We say that an adversary A is
initial-state restricted if in every iteration i of the rewindable ORAM security game of Definition 3.2,
it chooses ji = 0. We say that an ORAM scheme is Initial-State Rewindable (ISR) if any initial-state
restricted PPT adversary A has a negl(λ) advantage in the rewindable ORAM security game of
Definition 3.2.

13

3.2 Rewindable ORAM Constructions

In this section we construct ISR- and ASR-ORAM schemes from SK-DEPIR and standard ORAM
schemes. We first construct (Section 3.2.1) an ISR-ORAM scheme with polylogarithmic overhead.
We then describe (Section 3.2.2) an ASR-ORAM scheme with sublinear overhead. Our ISR-ORAM
scheme, despite having a weaker security guarantee than ASR-ORAM, has the advantage of being
simpler and more efficient.

3.2.1 ISR-ORAM from ORAM and SK-DEPIR

In this section, we construct an ISR-ORAM scheme from a SK-DEPIR scheme along with an ORAM
scheme for initially-empty databases (Definition A.1), proving the following:

Theorem 3.5 (ISR-ORAM). Assume there exist OWFs and SK-DEPIR. Then there exists an ISR-
ORAM scheme.

Moreover, if the Query and Decode algorithms of the SK-DEPIR scheme have poly(λ) complexity
for databases of size N and security parameter λ, and the client (resp., server) state has size poly (λ)
(resp., poly (λ,N)), then the Access complexity of the ISR-ORAM is poly(λ), and the client (resp.,
server) state has size poly(λ) (poly(λ,N)).

The construction. The high-level idea of the construction is to initialize a SK-DEPIR scheme
with the database, and initialize the ORAM (in the first operation) with size bound N . Then, write
operations write to the ORAM, and read operations read from both the SK-DEPIR and the ORAM,
taking the copy from the ORAM if it exists. Intuitively, the scheme is secure against initial-state
rewinding because a SK-DEPIR scheme is secure against arbitrary rewinding attacks (since the SK-
DEPIR server is stateless, and the SK-DEPIR client maintains only a long-term key between accesses),
and the initial server state in effect contains only the processed database of the SK-DEPIR (since the
ORAM is initialized only in the first operation).

Construction 1 (ISR-ORAM from SK-DEPIR and ORAM for initially-empty databases). The
scheme uses the following building blocks:

• An ORAM scheme for initially-empty databases (ORAM.Setup,ORAM.Access) with a determin-
istic client during ORAM.Access.

• A SK-DEPIR scheme (DEPIR.KeyGen,DEPIR.Process,DEPIR.Query,DEPIR.Decode).

The scheme consists of the following procedures:
Setup(1λ,DB): Recall that λ denotes a security parameter, and DB ∈ {0, 1}N .

• Initializing the SK-DEPIR component: run DEPIR.KeyGen
(
1λ
)
to obtain a SK-DEPIR secret-

key sk. Run DEPIR.Process (sk,DB) to obtain the processed SK-DEPIR database D̃B.

• Initializing the ORAM component: initialize a boolean variable Initialized to false, and the client
and server states ckO, stO to ⊥ (i.e., empty states).

• Output: the server state st =
(

D̃B, stO, Initialized
)
contains the processed database D̃B of the

SK-DEPIR scheme, the (empty) ORAM server state stO, and a boolean variable Initialized
indicating whether the ORAM has already been initialized. The client state ck =

(
sk, ckO, 1λ

)
consists of the secret key sk of the SK-DEPIR, an (empty) client state ckO for the ORAM, and
the security parameter.

14

The Access protocol. To perform the operation op at location addr ∈ [N] of the database with
value val, the client C with state ck =

(
sk, ckO, 1λ

)
, and the server with state st =

(
D̃B, stO, Initialized

)
operate as follows.

• Read Initialized from the server. If Initialized = false then run ORAM.Setup between the client
and server, where the client has

(
1λ, N

)
as input. Let ckO′ be the updated client state, and stO′

be the updated server state at the end of the execution. The client and server locally replace
ckO, stO with ckO′, stO′ (respectively).

• Set Initialized = true.

• If op = read:

– Reading from the ORAM: the client and server run ORAM.Access, where the client emu-
lates the ORAM-client with key ckO and input (read, addr, val), and the server emulates
the ORAM-server with state stO. Let valO be the output to the client, and ckO′, stO′ denote
the updated client and server states (respectively).

– Reading from the SK-DEPIR:

∗ C runs Q ← DEPIR.Query (sk, addr) to obtain the queries Q to the server, and a
short-term client state stC , and sends Q to S.

∗ Given the answers
{

D̃Bi : i ∈ Q
}

from S, C computes valP =

DEPIR.Decode
(

sk, stC ,
{

D̃Bi : i ∈ Q
})

.

– Output. If valO 6=⊥ then val′ = valO. (valO 6=⊥ if block addr was found in the ORAM.)
Otherwise, set val′ = valP . Output val′ to the client, together with the updated client state(
sk, ckO′, 1λ

)
. The updated server state is

(
stO′, D̃B, initialize

)
.

• If op = write:

– Writing to the ORAM: the client and server run ORAM.Access, where the client emulates
the ORAM-client with key ckO and input (write, addr, val), and the server emulates the
ORAM-server with state stO. Let val′ be the output to the client, and ckO′, stO′ denote
the updated client and server states (respectively).

– Output. Output val′ to the client, together with the updated client state
(
sk, ckO′, 1λ

)
.

The updated server state is
(

stO′, D̃B, initialize
)
.

We prove the following claims about Construction 1.

Claim 3.6 (ISR-ORAM security). Assuming the security of all of the building blocks, Construction 1
is a secure ISR-ORAM scheme.

Claim 3.7 (ISR-ORAM complexity). Assume that:

• For size-N databases and security parameter λ, DEPIR.Query,DEPIR.Decode performs tQ (N,λ)
and tD (N,λ) operations (respectively), and the client and server states have size nC (N,λ),
nS (N,λ), respectively.

• When initialized with size parameter t and security parameter λ, ORAM.Setup performs tS (t)
operations, ORAM.Access performs tO (t) operations, and the client and server states have size
n′C (t, λ), n′S (t, λ), respectively.

15

Then the execution of the Access protocol of Construction 1 performs tO (N)+ tQ (N)+ tD (N)+2
operations if op = read, and tO (N) + 2 if op = write. The first execution of the Access protocol
of Construction 1 performs tS (N) additional operations. Moreover, the client and server states have
size nC (N,λ) + n′C (N,λ), nS (N,λ) + n′S (N,λ), respectively.

Claims imply Theorem. We now use the claims to prove Theorem 3.5.

Proof of Theorem 3.5. We prove that Construction 1 has the required properties. The existence of
OWFs implies the existence of a secure ORAM scheme for initially-empty databases by Claim A.2 so
security of Construction 1 follows from Claim 3.6. Moreover, by Claim A.2 when the ORAM scheme
is instantiated with size bound N then Setup and Access have complexity poly (λ), and the client and
server state have size poly (λ), poly (λ,N), respectively. The stated complexity now follows from the
complexity of the ORAM scheme, the complexity of the SK-DEPIR scheme (as stated in the theorem
statement), and Claim 3.7.

To get a deterministic client, we apply the transformation of Appendix B, and use ClaimsB.3
and B.1.

Proofs of Claims. We now prove Claims 3.6 and 3.7.

Proof of Claim 3.6. The correctness of the scheme follows directly from the correctness of the under-
ling building blocks. Indeed, ORAM correctness is preserved when it is initialized with OblSetup; and
when a block appears in both the ORAM and the SK-DEPIR components, then the freshest copy
is in the ORAM, which is what the ISR-ORAM outputs to the client. We now argue security, via a
sequence of hybrids.

Hb
0 : Hybrid Hb0 is the view (st0, (ACCi)i) of the adversary A in the ORAM security game when the

challenger chooses bit b.

Hb
1 : In Hb1, we replace DBb with the all-0 database, and replace every execution of Query with a

dummy execution that runs Query on index 1. The accesses to the ORAM component remain
unchanged (and are, in both hybrids, according to the b’th access pattern). Hybrids Hb0 and Hb1
are computationally indistinguishable by the security of the SK-DEPIR scheme.

Hb
2 : In hybrid Hb2, we replace every execution of ORAM.Access of the underlying ORAM with a

dummy operation that reads or writes to the first database location, according to the operation
performed in Hb1. (That is, a read in Hb1 is replaced with a read of location 1, a write in Hb1 is
replaced with a write of an arbitrary value to location 1.)

Hybrids Hb1 and Hb2 are computationally indistinguishable by the security of the under-
lying ORAM scheme for initially-empty databases, as we now show. We use the observa-
tion that any secure ORAM scheme for initially-empty databases is secure under the follow-
ing notion of sequential composition. For any q = poly (λ), any n1, . . . , nq < 2λ, any
q1, . . . , qq = poly (λ), and any two lists Q0 =

{
Q0
j

}
j∈[q]

,Q1 =
{
Q1
j

}
j∈[q]

of sequences Q0
j =(

opj,l, val0j,l, addr0j,l
)
1≤l≤qj

, Q1
j =

(
opj,l, val1j,l, addr1j,l

)
1≤l≤qj

of access patterns,
(
ACC∅

(
nj , Q

0
j

))
j∈[q]

≈(
ACC∅

(
nj , Q

1
))
j∈[q] (ACC∅ (n,Q) was defined in Definition A.1), where ≈ denotes computational in-

distinguishability. This follows from the security property of ORAM schemes for initially-empty
databases, using a standard hybrid argument.

Indistinguishability of Hb1 and Hb2 follows directly from the security of the underlying ORAM
scheme for initially-empty databases under sequential composition, because any rewind to the initial

16

state resets Initialized to false, and so the next access to the database initializes the underlying ORAM
by running Setup with fresh randomness.

We conclude the proof by noting that H0
2 ≡ H1

2 since neither depend on DB0,DB1 or the access
patterns.

Proof of Claim 3.7. Any execution of Access performs two operations to read and update Initialized
on the server, and tO (N) operations to access the underlying ORAM. read operations additionally
perform tQ (N) operations to run DEPIR.Query, and tD (N) operations to run DEPIR.Decode. The
first execution of Access additionally performs tS (N) operations to initialize the underlying ORAM
with an empty database. The client and server storage are simply the combination of the storage
required by the underlying ORAM and SK-DEPIR.

3.2.2 ASR-ORAM from SK-DEPIR and OWFs

We now construct an ASR-ORAM scheme from SK-DEPIR and PRFs, proving the following.

Theorem 3.8 (ASR-ORAM). Assume the existence of OWFs and SK-DEPIR, then there exists an
ASR-ORAM scheme. Moreover, if for ε > 0 the Query and Decode algorithms of the SK-DEPIR
scheme have N ε · poly(λ) complexity, and Process has N1+ε · poly (λ) complexity for databases of size
N and security parameter λ, then:

• The complexity of Access is N ε · poly (λ).

• The client state has size poly (λ), and the server state has size N1+ε · poly (λ).

The construction. Recall from Section 1.2 that we use a hierarchical structure whose levels contain
SK-DEPIR schemes. Since a SK-DEPIR scheme is designed for array structures, we use PRFs to map
the data blocks of the level into buckets, thus guaranteeing that a block’s location in each level (if it
appears in the level) is independent of the access history. To allow for more efficient reshuffles, each
level i also contains the (encrypted, unprocessed) database stored in the SK-DEPIR of the level. We
note that whenever a level is initialized as part of a reshuffle, we pick new PRF and SK-DEPIR keys
for the level. This guarantees security even under rewinds. Indeed, though a SK-DEPIR is rewind-
secure, by rewinding the ORAM the adversary may rewind a reshuffle. However, this will result in a
completely fresh SK-DEPIR scheme, and therefore doesn’t violate security. In the following, we use
B = λ to denote the bucket size.

Construction 2 (ASR-ORAM from SK-DEPIR and PRFs). The scheme uses the following building
blocks:

• A PRF F .

• A SK-DEPIR scheme (DEPIR.KeyGen,Process,Query,Decode) with oblivious preprocessing (Def-
inition 2.2).

• A CPA-secure symmetric encryption scheme (SE.KeyGen,Encrypt,Decrypt).

The scheme consists of the following procedures.
Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈ {0, 1}N . Let DB′ be the

database obtained from DB by concatenating the address to each bit, i.e., entries of DB′ have the
form (addr,DBaddr). (This will be needed when blocks are mapped to buckets.) Let ` = logN , and
proceed as follows.

17

• Counter initialization: initialize a counter countW to 0. (countW counts the total number of
writes performed so far.)

• Encryption initialization: run sk ← SE.KeyGen
(
1λ
)
to generate a secret-key sk for the encryp-

tion scheme.

• PRF and SK-DEPIR key initialization for all levels: for every level 1 ≤ i ≤ `, set K̃i = s̃k
i
=⊥.

(Later, K̃i, s̃k
i
will contain encryptions of level-specific PRF and SK-DEPIR keys, respectively.)

• Initializing level `: encrypt the database by running DB′′ ← Encrypt
(
sk,DB′

)
. Run(

DB′′, D̃B, K̃`′, s̃k
`′)
← InitLevel

(
`,DB′′

)
(Figure 1 on page 20) to obtain the processed SK-

DEPIR database D̃B, and the PRF and SK-DEPIR keys for level `. Initialize level ` to be
L` =

(
DB′′, D̃B

)
, and all other levels Li to be empty. Replace K̃`, s̃k

`
with K̃`′, s̃k

`′
, respec-

tively.

• Output: the client state ck = sk consists of the encryption key. The server state st =(
countW ,

(
Li, K̃i, s̃k

i
)
i∈[`]

)
consist of the counter, the contents of all levels, and the (encrypted)

PRF and SK-DEPIR keys for all levels (which are currently empty, except for the keys of level
`).

The Access protocol. To perform the operation op on location addr ∈ [N] in the database with

value val, the client C with state ck = sk, and the server with state st =

(
countW ,

(
Li, K̃i, s̃k

i
)
i∈[`]

)
operate as follows.

• If op = read:

– Initialize an output value val′ to ⊥.
– For every non-empty level i from 1 to `, do:

∗ Computing bucket index: read K̃i, s̃k
i

from the server, and decrypt Ki =

Decrypt
(

sk, K̃i
)
, ski = Decrypt

(
sk, s̃k

i
)
. Compute l = F

(
Ki, addr

)
. (If addr ap-

pears in level i, it will be in the l’th bucket.)
∗ Looking for data block addr in level i: look for block addr in the l’th bucket by running

the procedure ReadBucket
(
l, i, ski, addr

)
of Figure 2 to obtain a value vali. If val′ 6=⊥

then set val′ := vali.
– Output: output val′ to the client.

If op = write:

• Encrypt the data block as c← Encrypt (sk, (addr, val)), and generate a “dummy” level 0 database
which contains a single (encrypted) data block c.

• Update the server state as follows:

– countW := countW + 1.
– For i = 0, 1, . . . , ` such that 2i divides countW , reshuffle level i into level i + 1 using the

ReShuffle procedure of Figure 3, namely executes ReShuffle
(
i, Li, Li+1

)
.6

6Using a technique of Ostrovsky and Shoup [OS97], these operations can be be spread-out over multiple write
operations. We analyze the scheme below assuming the reshuffle operations are indeed spread-out across all write
operations.

18

We prove Theorem 3.8. We first prove the following claims about Construction 2.

Claim 3.9 (ASR-ORAM security). Assuming the security of all of the building blocks, Construction 2
is a secure ASR-ORAM scheme.

Claim 3.10 (ASR-ORAM complexity). Assume that on size-N databases, DEPIR.Process, DEPIR.Query
and DEPIR.Decode perform tS (N) , tQ (N) and tD (N) operations (respectively). Then each execution
of the Access protocol of Construction 2 with op = read performs

B (tQ(N) + tD(N) + poly (λ)) · logN

operations, and the execution of Access with op = write performs

poly (λ) · B · logN +

logN∑
i=1

(
poly (λ) · i+

tS
(
B · 2i+1

)
2i

)

operations, where B denotes the bucket size.

Claims imply Theorem. We now use the claims to prove Theorem 3.8.

Proof of Theorem 3.8. The existence of OWFs implies the existence of PRFs and encryption schemes
as used in Construction 2, so security follows from Claim 3.9 (when B = λ). As for the complexity
of the scheme, by the theorem assumptions (on the existence of a SK-DEPIR scheme with tQ (N) =
tD (N) = N ε · poly (λ), and tS = N1+ε · poly (λ)), and Claim 3.10, we get the following. Each read
operation performs N ε · logN · poly (λ) = N ε · poly (λ) operations (here, we also use the fact that
B = λ and N ≤ 2λ). Moreover, each write operation performs

poly (λ) · logN +

logN∑
i=1

(
poly (λ) · i+

(
λ · 2i+1

)1+ε · poly (λ)

2i

)

= poly (λ) · log2N + poly (λ) ·
logN∑
i=1

(
2i
)ε

≤ N ε · logN · poly (λ) = N ε · poly (λ)

The server state consists of logN levels, where level i contains a SK-DEPIR of size
(
λ · 2i

)1+ε ·
poly (λ) (and additionally O (1) ciphertexts of size poly (λ)), so the server state has size N ε · logN ·
poly (λ) = N ε · poly (λ). The client only stores the SK-DEPIR secret key, of size poly (λ).

To get a deterministic client, we apply the transformation of Appendix B, and use Claims B.2
and B.3.

Analysis of Bucket Overflows. The analysis of Construction 2 will rely on the following lemma
which states that with overwhelming probability no bucket overflows.

Lemma 3.11 (Probability of bucket overflows). Assuming the pseudorandomness of F , with over-
whelming probability no bucket overflows during the execution of the ASR-ORAM of Construction 2.

19

The InitLevel procedure
Constant: the encryption key sk, and the security parameter λ.
Inputs:

i: the index of the level to initialize.

DBi: a size-2i database DBi encrypted using Encrypt (sk, ·).

Operation:

1. Pick a (fresh) random PRF key Ki′ for level i, generate a (fresh) SK-DEPIR key ski′ ←
DEPIR.KeyGen

(
1λ
)
for level i, and encrypt the keys by running K̃i′ ← Encrypt

(
sk,Ki′) , s̃k

i′
←

Encrypt
(
sk, ski′

)
.

2. Generate 2i buckets, each with B “empty” blocks,a and encrypt the bucket contents using Encrypt.

3. Randomly and obliviously permute DBi using the Fisher-Yates shuffle, to obtain a permuted
database D̂B

i
. In each step of the shuffle, the blocks touched during that step are re-encrypted.

(That is, if a step of the shuffle touches blocks i, j then these blocks are downloaded from the server,
decrypted, encrypted with fresh randomness, and then uploaded to the server again, in the correct
order as determined by the shuffle.)

4. Insert D̂B
i
into the buckets as follows. For every 1 ≤ j ≤ 2i, compute the index l of the bucket into

which block j is mapped, as follows:

• If block j is “empty”, then pick l at random from 2i.

• Otherwise, let addr be the logical address of block j (recall that each block contains its logical
address). Set l = F

(
Ki′, addr

)
.

Insert block j into bucket l by downloading the entire bucket l from the server, decrypting all blocks
in the bucket, replacing the first “empty” block with block j, encrypting each block in the bucket,
and reloading the bucket to the server.b

5. Run Process
(
ski′, L

)
to obtain a processed database D̃B

i
, and output

(
DBi, D̃B

i
, K̃i′, s̃k

i′)
.

aSee remark on physical memory block contents in Section 2.3 for a discussion of empty blocks.
bTo obtain perfect correctness, if a bucket overflows then the contents of the level are stored “in the clear” (i.e.,

the block encryptions are stored in an array). As we show in Lemma 3.11 below, this happens with negligible
probability.

Figure 1: The InitLevel procedure used in Construction 2

20

The ReadBucket procedure
Input:

l: the index of the bucket to read.

i: the index of the level in which the bucket resides.

ski: the secret key of the SK-DEPIR of level i.

addr: the address of the block to read.

Operation: recall that B denotes the bucket size.

• Initialize an output value val to ⊥.

• For every (l − 1) · B + 1 ≤ m ≤ l · B:

– Run Query
(
ski,m

)
to obtain queries Q and a short-term client state stC , send Q to S, and

obtains answers {aj}j∈Q.

– Run Decode
(

ski, stC , {aj}j∈Q
)
to obtain value (addrm, valm).

– If addrm = addr then set val := valm.

• Output val.

Figure 2: The ReadBucket procedure used in Construction 2

Proof. For simplicity of the analysis, we model the PRF as a random function. In particular, this
means there is no difference between the mapping to buckets of real and “empty” blocks in Step 4 of
the InitLevel procedure of Figure 1. Indeed, if InitLevel is called with a database DB with k real blocks,
then exactly 2i − k blocks are “empty”. In particular, there is a way to assigning addresses in

[
2i
]

to each of the empty blocks, such that each (real or empty) block has a unique address. For unique
addresses (i.e., inputs to F), choosing a random output is identical to applying a random function.
Therefore, in the following we assume DB contains exactly 2i real blocks.

Whenever InitLevel is called for some level i ∈ [`], the corresponding database contains 2i data
blocks, which are then allocated to the 2i size-B buckets of the level. Therefore, in expectation every
specific bucket B will contain a single data block, and so by Chernoff’s bound the probability that
bucket B of size-λ overflows is at most

eλ−1

λλ
≤ 2−λ

where the inequality holds for a large enough λ ≥ 2e. Since the total number of buckets in all levels
is at most N · logN = poly (λ), and each bucket is initialized at most poly (λ) times, the probability
that any bucket overflows is negligible.

Proofs of Claims. We now prove Claims 3.9 and 3.10.

Proof of Claim 3.9. We show that the correctness of the scheme follows from the correctness of the
SK-DEPIR, and the pseudorandomness of F . First, the pseudorandomness of F guarantees that
with overwhelming probability no bucket overflows (see Lemma 3.11). Conditioned on this event,
the construction preserves the invariant that each level contains at most a single copy of each block,
and fresher copies appear in levels with smaller indices. This is guaranteed because the ReShuffle
procedure removes duplicate block copies, keeping the copy from the level with smaller index (which
contains the fresher copy). Finally, since read operations return the copy from the smallest level

21

The ReShuffle procedure
Constant: the encryption key sk.
Inputs:

i: the index of a level to reshuffle.(
DBj , D̃B

j)
, j ∈ {i, i+ 1}: the databases DBj (encrypted with Encrypt (sk, ·)), and the processed

databases D̃B
j
, of levels i, i+ 1.

Operation:

1. For j ∈ {i, i + 1}, if DBj is empty (because it was not initialized yet, or following a previous
reshuffle), instantiate DBj with 2j “empty” blocks, encrypted with Encrypt (sk, ·). (See remark on
physical memory block contents in Section 2.3 for a discussion of empty blocks.)

2. For j ∈ {i, i + 1}, perform a linear scan of DBj , concatenating encryptions of the label “j − i” to
all blocks. (That is, level-i blocks are given label 0, and blocks from level i+ 1 are given label 1.)

3. Let A be the array of size
(
2i + 2i+1

)
obtained by concatenating DBi,DBi+1.

4. Obliviously sort A according to block addresses, breaking ties using the labels created in Step 2.
Each touched block is re-encrypted before being uploaded to the server. (After this step, duplicate
block copies appear consecutively, and the copy from level i appears first.)

5. Perform a linear scan over A, replacing all duplicate blocks with “empty” blocks, and updating the
labels (created in Step 2) of all non-duplicate blocks to 0. This is done as follows: the client locally
stores the address of the previous block in A (initialized to 0). When traversing the current block,
if its address is the same as the previous block, then replace the block with an “empty” block with
label 1, otherwise update the block label to 0. Each block is re-encrypted before being uploaded to
the server.

6. Obliviously sort A according to the labels, breaking ties according to block addresses. Each touched
block is re-encrypted before being uploaded to the server. (After this step, real blocks appear before
“empty” blocks.)

7. Perform a linear scan over A, removing the labels. Truncate A to size 2i+1. (Notice that the
truncated A still contains the freshest version of all blocks from DBi,DBi+1.)

8. Run the procedure
(

DBi+1′, D̃B
i+1′

, K̃i+1′s̃k
i+1′)

← InitLevel (i+ 1, A) of Figure 1 to obtain

the processed database D̃B
i+1′

of level i + 1, and fresh (encrypted) PRF and SK-DEPIR keys
K̃i+1′, s̃k

i+1′
(respectively). Replace K̃i+1, s̃k

i+1
with K̃i+1′, s̃k

i+1′
(respectively). Update level i

to be empty Li =⊥, and level i+ 1 to Li+1 =
(

DBi+1′, D̃B
i+1′)

.

Figure 3: The ReShuffle protocol used in Construction 2

22

that contains the block (namely, the freshest copy of the block), then correctness follows from the
correctness of the underlying SK-DEPIR scheme.

We now argue security, via a sequence of hybrids. We condition all hybrids on the event that no
bucket overflows. This is without loss of generality since (by Lemma 3.11) this event happens with
overwhelming probability.

Hb′′
0 : Hybrid Hb′′0 is the view (st0, (ACCi)i) of the adversary A in the ORAM security game when

the challenger chooses bit b.

Hb′
0 : In Hb′0 , we replace DBb with the all-0 database. Additionally, we replace the encryptions K̃i, s̃k

i

of the PRF and SK-DEPIR keys of all levels, throughout the execution of the scheme, with
encryptions of the all-zero string. Moreover, we replace the ciphertexts c generated during
write operations with encryptions of zeros. All accesses into the database are still performed
correctly, by using the actual database contents and keys. (For example, in Step 4 of the
InitLevel procedure, the bucket index is computed based on the actual block address and actual
PRF key, even though in the encrypted database this value was replaced by 0.) Hybrids Hb′′0
and Hb′0 are computationally indistinguishable by the CPA-security of the encryption scheme.

Hb
0 : In Hb0, we replace the PRF with a truly random function (using a different random function

for every key Ki). Hybrids Hb′0 and Hb0 are computationally indistinguishable by the pseudoran-
domness of F (using a standard hybrid argument over the different initializations of PRF keys
in InitLevel).

Hb
j ,1 ≤ j ≤ ` : In Hbj , we replace all calls to Query (in the execution of the ReadBucket procedure)

in levels 1, . . . , j with reads of address 1 (i.e., the first block in the bucket list L that was used
to generate the SK-DEPIR for the level) from the SK-DEPIR of the level.

We now show that the for every 0 ≤ j < `, hybrids Hbj and Hbj+1 are computationally indistin-
guishable, by the security of the SK-DEPIR scheme. The only difference between Hbj ,Hbj+1 is in the
accesses to the SK-DEPIR scheme of level j. However, the hybrids differ from the distributions in
the SK-DEPIR security proof in two points: (1) they also include the access pattern to the physical
memory during the execution of Process; and (2) they consist of a sequential composition of several
independent instantiations of the SK-DEPIR (the instantiations are independent because a fresh SK-
DEPIR key is chosen for the level whenever it is instantiated in InitLevel). Notice that in every single
SK-DEPIR instance, (1) together with the access pattern during Query is exactly the adversary’s
view in the security with oblivious preprocessing security game. Therefore, Hbj ≈ Hbj+1 by a standard
hybrid argument over independent instantiations of the SK-DEPIR.

We now define a final hybrid Hb`+1 as follows. In Hb`+1, we modify InitLevel such that on input i,
in Step 4 it picks randomly with repetition a list of 2i buckets, downloads each of them (in order),
re-encrypts all the blocks in the bucket, and uploads the bucket back to the server. Then hybrids
Hb` and Hb`+1 are identically distributed. Indeed, in Hb` the random function is only used in InitLevel
(since ReadBucket calls do not use the random function any more), so the only difference between the
hybrids is that in Hb` repeated copies of a real block would always be mapped to the same bucket,
whereas in Hb`+1 the choice of buckets is completely random. However, Construction 2 preserves the
invariant that the real blocks in every level are distinct. Since the random function is only applied to
real blocks, it is never called twice with the same input. This holds also under rewinds, because each
call to InitLevel is executed with a fresh random function (since each execution uses a fresh PRF key,
and each such instantiation of the PRF was replaced in Hb0 by an independent random function).

Notice that in Hb`+1, the access pattern to the physical memory is completely independent of
the read or write operations performed throughout the execution. Indeed, this holds for read

23

operations because the accesses there are induced by running B executions of Query
(
ski, 1

)
on each

level i, regardless of the read location. For write operations, all steps performed during reshuffle
are oblivious of the database contents (either linear scans or oblivious sorting), and the execution of
InitLevel is also oblivious of database contents (because we have replaced the mapping into buckets
with a random list of buckets, and because the SK-DEPIR preprocessing is performed on ciphertexts).

We conclude the proof by noting that H0
`+1 ≡ H1

`+1 since neither depend on DB0,DB1 or the
access patterns.

Proof of Claim 3.10. We first analyze the complexity of Access where op = read. During a read, the
client does the following for every non-empty level (there are at most log n such levels). First, he reads
the level-specific PRF and SK-DEPIR keys from the server, decrypts them, and computes the bucket
index, which requires poly (λ) operations. Then, for each of the B blocks in the bucket, the client
performs tQ and tD operations to run DEPIR.Query and DEPIR.Decode (respectively). Therefore,
Access performs B (tQ(N) + tD(N) + poly (λ)) · logN operations.

When op = write, each operation encrypts a single block (poly (λ) operations)„ updates the
counter (poly (λ) operations) and performs its “share” of the ReShuffle procedure for each level (i.e.,
a 2−i-fraction of the operations of the reshuffle of level i, for every i = 1, . . . , logN). Each execution
of the ReShuffle procedure of level i performs the following number of operation:

• 2i · poly (λ) operations to initialize DBi,DBi+1 (if needed), and for a constant number of linear
scans of DBi,DBi+1, and A.

• i · 2i · poly (λ) operations for a constant number of oblivious sorts of A (using an oblivious sort
network that has size N logN for inputs of size N).

• Initializing level i+ 1, which performs:

– poly (λ) operations to choose the PRF and SK-DEPIR keys and encrypt them.

– B · 2i · poly (λ) operations to initialize the buckets and insert A into them.

– i · 2i · poly (λ) operations to obliviously sort A before inserting it into the buckets.

– tS
(
B · 2i

)
operations to run DEPIR.Process on the database obtained from the concatena-

tion of all buckets.

Therefore, reshuffling level i requires performing B · 2i · poly (λ) + i · 2i · poly (λ) + tS
(
B · 2i+1

)
operations. Therefore, each write operation performs the following number of operations:

poly (λ) +
1

2i
·
logN∑
i=1

(
B · 2i · poly (λ) + i · 2i · poly (λ) + tS

(
B · 2i+1

))

= poly (λ) · B · logN +

logN∑
i=1

(
poly (λ) · i+

tS
(
B · 2i+1

)
2i

)

4 Definition of RAM-FHE

We first formally define the RAM model we work with in Section 4.1, which is a simple model of
RAM computation that captures their essential efficiency advantage over Turing machines. We then
define single-hop RAM-FHE in Section 4.2 and multi-hop RAM-FHE in Section 6.2.

24

4.1 Definition of RAM machines

We define a simple model of RAM computation that captures their essential efficiency advantage over
Turing machines. We emphasize that we will not describe the main algorithms (e.g, encryption, de-
cryption, and evaluation) of our schemes in this formalism, and will instead describe these algorithms
in the usual informal style. We will use the term algorithm when we do not intend to be precise about
the exact model of computation.

We reserve the more formal term RAM machine to describe the object that the FHE evaluation
algorithm takes as input.

We define RAM machines via a transition circuit δ, with the following functionality. The circuit
δ is designed to be evaluated repeatedly in a prescribed way, such that the main output of the ith

evaluation is a an operation on one of the RAM machine’s tapes. In addition to the usual input,
output, and work tapes, the RAM machine also has a special “persistent” tape. The main input to δ
is the result of the previously output operation. Additionally, the circuit δ simulates statefulness by
taking as input and producing as output an internal state.

Definition 4.1. A RAM machine with input space X and output space Y is a tuple M = (Q, q0, C),
where:

• Q is a finite set, called the state space of M ,

• q0 is an element of Q, called the initial state of M ,

• C is a circuit that computes a function δ, called the transition function of M , that maps7

δ : X ×Q× {0, 1, ε} → (Q× Ops) t Y,

where Ops is tuples of the form (tape, instr, addr, val), where tape ∈ {persistent, volatile},
instr ∈ {read, write}, addr ∈ Z+, and val ∈ {0, 1}.8 We refer to the persistent tape as the
database, and to the volatile tape as the scratch tape.

4.1.1 Execution Semantics

Definition 4.2. For D,V ∈ {0, 1}∗, and op = (tape, instr, addr, val), we denote by op(D,V) the tuple
(b,D′, V ′), where |D′| = |D|, |V ′| = |V |, and

b =


Daddr if instr = read, tape = persistent, and 1 ≤ addr ≤ |D|
Vaddr if instr = read, tape = volatile, and 1 ≤ addr ≤ |V |
0 otherwise

D′i =

{
val if instr = write, tape = persistent, and addr = i

Di otherwise

V ′i =

{
val if instr = write, tape = volatile, and addr = i

Vi otherwise

Definition 4.3. We say that M = (Q, q0, C) terminates on input x and database D with output y if
there exist sequences q1, . . . , qT ∈ Q, op1, . . . , opT ∈ Ops, b1, . . . , bT ∈ {0, 1}, D1, . . . , DT ∈ {0, 1}|D|,
and V0, . . . , VT ∈ {0, 1}∗ such that:

7Notice that in particular, the description of M specifies the input and output domains.
8Assuming read, write operations are on bits is without loss of generality, since they can be used to emulate

operations on larger blocks.

25

• V0 = 0S for some S ∈ Z+, and b0 = 0,

• For i ∈ [T], it holds that (qi, opi) = C(x, qi−1, bi−1) and (bi, Di, Vi) = opi(Di−1, Vi−1).

• It holds that y = C(x, qT , bT).

In this case, the execution trace ofM on x with databaseD is the sequence (q0, op0), . . . , (qT , opT), y.
We write Time(M,x,D) to denote T , and refer to it as the running time of M on input x and database
D. We refer to DT as the resultant database after executing M on input x and database D, and write
(y,DT) =MD(x).

4.2 Single-Hop RAM FHE

Definition 4.4 (Single-hop RAM FHE). A public-key (single-hop) RAM FHE scheme is a tuple of
PPT9 algorithms (KeyGen, Enc, Dec, Eval) such that:

• Syntax.

– KeyGen
(
1λ
)
takes as input a security parameter λ, and outputs public and secret keys

pk, sk.
– Enc

(
pk, D, 1B

)
takes as input a pubic key pk, a database D, and a bound B on the

description size of RAM machines. It outputs a database-ciphertext D̂. For improved
efficiency, it may also take as input a bound s (in unary) on the space usage of the RAM
machines for which homomorphic evaluation will be supported.

– Eval
(
M,x, 1T

)
takes as input a description M of a RAM machine, an input x, and a

running time bound T , and is given read/write random-access to a database-ciphertext D̂.
Eval outputs an output-ciphertext ŷ, and may also change the contents of D̂ to some new
value D̂′. We write (ŷ, D̂′) = EvalD̂(M,x, 1T).

– Dec (sk, ŷ) takes as input a secret key sk and an output-ciphertext ŷ, and outputs a plaintext
message y.

• Correctness. For any security parameter λ, any size bound B, any RAM machineM satisfying
|M | ≤ B, any database D ∈ {0, 1}∗, any input x, and any T ∈ Z+ with Time(M,x,D) ≤ T , in
the probability space defined by sampling

(pk, sk)← KeyGen(1λ)

D̂ ← Enc(pk, D, 1B)(
ŷ, D̂′

)
:= EvalD̂(M,x, 1T)

(y,D′) :=MD(x)
y′ := Dec(sk, ŷ),

(1)

it holds that y = y′ except with negl (λ) probability.

• IND-CPA Security. For all non-uniform PPT A0 and A1, there is a negligible function negl
such that for every security parameter λ,

Pr

b′ = b :

(pk, sk)← KeyGen(1λ)
(st, D0, D1, 1

B) := A0(pk)
b← {0, 1}

D̂ ← Enc(pk, Db, B)

b′ := A1(st, D̂)

 ≤ 1

2
+ negl(λ).

9In fact, in our construction Eval and Dec are deterministic.

26

• η (|D|)-Efficiency. With probability 1, the running time of Eval in the experiment described
in Eq. (1) is at most T · η (|D|) · poly (B, λ).

• Compactness. In the experiment described in Eq. (1), |ŷ| ≤ poly(log |Y|, λ).

Remark 4.5. We note that when Enc is executed with the additional space-bound parameter s, then
correctness holds for every RAM machine M whose volatile tape throughout the execution has size
at most s, and the adversary in the security game is also allowed to choose s.

4.3 Multi-Hop RAM FHE

Definition 4.6 (Multi-hop RAM-FHE). A public-key multi-hop RAM FHE scheme is a tuple of PPT
algorithms (KeyGen, Enc, Dec) along with a RAM machine Eval such that

• Correctness. For any security parameter λ ∈ Z+, any database D0, any bound B ∈ Z+, any
sequence of RAM machines M1, . . . , Mt with input space X and output space Y, any inputs
x1, . . . , xt ∈ X , and any time bounds T1, . . . , Tt: For each i ∈ [t], define yi and Di by computing
(yi, Di) := M

Di−1

i (xi). If for each i ∈ [t], |Mi| ≤ B and Time(Mi, xi, Di−1) ≤ Ti, then in the
probability space defined by sampling

(pk, sk)← KeyGen(1λ)

D̂0 ← Enc(pk, D0, B)
For i ∈ [t]:

(ŷi, D̂i) := EvalD̂i−1(Mi, xi, Ti)
y′i := Dec(sk, ŷi)

(2)

it holds with probability 1 for each i ∈ [t] that y′i = yi.

• IND-CPA Security. Same as for single-hop.

• η (·)-Efficiency. In the experiment described in (5), it holds with probability 1 for each i ∈ [t]
that the running time of Eval is at most Time(Mi, xi, Di−1) · η (|Di−1|) poly(B, λ).

• Compactness. In the experiment described in (5), it holds for each i ∈ [t] that |ŷi| ≤
poly(log |Y|, λ).

Remark 4.7. We note that in Definition 6.4, we distinguish between the output yi of a RAM
machine, and the updated database Di that it produces by overwriting Di−1. In particular, we
cannot homomorphically evaluate programs that make random-access reads to y(1), . . . , y(i−1).

5 Road Map Towards Constructing RAM-FHE

As described in Section 1.2, the encryption of a database D consists of the server state in a rewindable
ORAM for D, together with a VBB obfuscation of the circuit that emulates a single execution step
of the rewindable ORAM client. Formalizing this intuitive idea requires two conceptual steps. First,
we need to emulate a consistent client state throughout the execution (because the ORAM client
is stateful, while the obfuscated circuit is not), as well as guarantee semi-honest emulation of the
ORAM server. This covers steps (1) and (3) from Section 1.2. Second, we need to hide the ORAM
client state from the evaluator, using pseudorandom bits for encryption, which was described as steps
(2) and (5) in Section 1.2. We obtain both of these using a new abstraction which we call a database-
dependent RAM-VBB obfuscator (Section 5.1) in which, informally, the obfuscator takes as input not

27

only a database D, but also a specific RAM machine M , and the evaluator can run M on different
inputs x with RAM access to (the mutable) D. We provide two constructions (Section 5.2) to handle
each of the issues described above. We obtain the RAM-FHE by applying the RAM-VBB obfuscator
to the universal RAM machine (which takes as input a description M of a RAM machine, and an
input x for it, and outputs MD (x), where D is the database), that additionally encrypts its output
using a PKE scheme (step (4) in Section 1.2).

5.1 Database-Dependent RAM-VBB Obfuscation

We define two notions of RAM-VBB obfuscation, in which the RAM machine is obfuscated with
relation to a specific database. These notions, which we call database-dependent RAM-VBB, provide
weaker security than RAM-FHE, and incomparable correctness. We note that though such obfus-
cation is unlikely to exist in general, similar to circuit-VBB obfuscation it might exist for restricted
ensembles of RAM machines, and in particular might exist for the specific ensemble we consider in
this work.

Informally, the obfuscator O is parameterized by an ensemble M = {MN}N of classes of RAM
programs. It takes as input not only a database D0 ∈ {0, 1}N , but also a RAM machine M ∈ MN .
The evaluator is able to compute MD(x) for any input x and any database D that is either D0 or
was obtained by a previous execution of M . Formally,

Definition 5.1 (Database-dependent RAM-VBB obfuscator). Let n ∈ N be an input length, N ≤ 2λ

be a database size, and M = {MN}N be an ensemble of classes of RAM programs. A database-
dependent RAM-VBB obfuscator forM is an algorithm O that takes as input a security parameter 1λ,
a database D0 ∈ {0, 1}N , and a RAM machineM ∈MN . It outputs a database D̃0, a RAM machine
M̃ , and some auxiliary input I0 for M̃ . We require that O satisfies the following requirements:

• Correctness. For every n, k,N ∈ N, every M ∈ MN , every database D0 ∈ {0, 1}N , and
every inputs x1, . . . , xm ∈ {0, 1}n, the following two experiments yield the same values of
(y1, . . . , ym) ∈

(
{0, 1}k

)m except with negl (λ) probability.

(D̃0, M̃ , I0)← O(1λ, D0,M)

(y1, D̃1, I1)← M̃ D̃0(x1, I0)
. . .

(ym, D̃m, Im)← M̃ D̃m−1(xm, Im−1)

and
(y1, D1)←MD0(x1)
. . .
(ym, Dm)←MDm−1(xm)

(3)

• Efficiency. In the above experiments, it holds that

Time(M̃, (xi, Ii−1) , D̃i−1) ≤ Time(M,xi, Di−1) · poly(|M | , λ)

where |M | denotes the combined length of the internal state and the description of M .

We define two security notions for database-dependent RAM-VBB obfuscation. The first, which
we call transcript-simulable, is roughly that any adversary (with single-bit output) given an obfuscation
of (D0,M) is simulatable given only the execution trace (Definition 4.3), namely given oracle access
to the function that takes a sequence of inputs x1, . . . , xd, and returns the operations performed by
M when sequentially executed (i.e., with a mutable database D that is initially D0 but persists across

28

executions) on the inputs x1, . . . , xd. The second security property, which we call address simulatable,
is stronger since it gives the simulator less information. Specifically, the simulator no longer sees the
entire computation transcripts but instead sees only the addresses of the physical memory which are
operated on, the type (read or write) of memory operation, and the outcome of the computation. The
simulator does not see the values read from / written to memory, or the contents D0 of the initial
database, but instead sees only its size |D0|.

To formalize this notion, we first define the notion of address pattern.

Definition 5.2 (Address pattern). For a RAM machine M with input x and RAM access to a
database D, the address pattern of MD on x consists of the list of physical memory accesses which
M performed, and for every access, whether it was a read or a write. It also contains the output
MD (x).

Definition 5.3 (Transcript/address-simulatable). We say that a database-dependent RAM-VBB O
for M = {MN}N is transcript-simulable if for every PPT A (producing a single output bit), there
is a PPT Sim and negligible function α such that for all λ,N, n, k ∈ N, all databases D0 ∈ {0, 1}N ,
all m = poly (λ), all RAM machines M ∈ MN with input length n and output length k, and all
“auxiliary input” z ∈ {0, 1}∗, it holds that∣∣∣Pr [A(1λ,O(1λ, D0,M), z

)
= 1
]
− Pr[SimB(1λ, z′, 1|M |, 1n, 1k, z) = 1]

∣∣∣ ≤ α(λ) (4)

where z′ = D0, and B is an oracle that on input (x1, . . . , xm) runs the experiment described in Eq. (3)
and outputs, for each i ∈ [m], the execution trace of MDi−1 on xi.

We say that a database-dependent RAM-VBB obfuscator O is address-simulatable if Eq. (4) holds
for z′ = 1|D0|, and the oracle B that on input (x1, . . . , xm) runs the experiment described in Eq. (3)
and outputs, for each i ∈ [m], the address pattern of MDi−1 on xi.

We abbreviate transcript/address-simulatable database-dependent RAM-VBB as transcript/address-
simulatable RAM-VBB.

Definition 5.4. A transcript/address-simulable single-hop database-dependent RAM-VBB obfuscator
forM is an obfuscator which satisfies Definitions 5.1 and 5.3, but with m = 1 in both the correctness
and the security requirement.

Discussion We note that it is possible to build a single-hop database-dependent RAM-VBB obfus-
cator from a multi-hop database-dependent RAM-VBB obfuscator by augmenting the RAM machine
M to only allow a single sequential execution.

5.2 Database-Dependent RAM-VBB Obfuscation: Constructions

In this section we construct (single-hop) transcript-simulatable and address-simulatable RAM-VBB
obfuscators. These will be used in Section 6 to construct a RAM-FHE scheme.

We note that in the single hop setting, we can assume without loss of generality that the database
is read-only, since database updates can be emulated in the scratch tape, causing a multiplicative
factor-2 increase in the scratch tape size, and the number of read accesses. Therefore, we can (by
performing dummy accesses if needed) assume without loss of generality that every execution step
performs a single read from the database and scratch tape, and a single write to the scratch tape.

29

5.2.1 Transcript-Simulatable Database-Dependent RAM-VBB

We now construct a single-hop transcript-simulatable RAM-VBB obfuscator (see Section 6.2.1 for
a multi-hop variant). The high level idea is to use MACs and Merkle hash trees to enforce consis-
tent execution, and to obfuscate the transition circuit (computing the transition function δ of the
RAM machine) which has the MAC key hard-wired into it. This intuition is formalized in the next
construction.

Construction 3 (Transcript-simulatable RAM-VBB obfuscation). The transcript-simulatable RAM-
VBB obfuscator Otrans uses the following building blocks:

• A family H of hash functions.

• A MAC scheme (KeyGen,Tag,Verify), in which Tag,Verify are deterministic (this assumption is
without loss of generality).

• A circuit obfuscator O.

Given a security parameter λ, a database D0, and a RAM machine M , Otrans operates as follows:

• Generates a random MAC key KMAC ← KeyGen
(
1λ
)
, and picks a description of a hash function

h← H.

• Generate a MHT MT for D0, and let Rt denote its root.

• Let stM denote the initial state of the RAM machineM , set st = (true, stM ,Rt), and pad st with
zeros to have the same size as st in Figure 4. (The boolean value true in st indicates that the
execution hasn’t started yet.) Otrans generates a tag σ = Tag (KMAC, (false, st)). (The signature
is on the state st, as well as a boolean variable bfin indicating whether the execution has already
terminated.)

• Runs the obfuscator C̃ ← O
(
1λ, CExec

)
to obfuscate the circuit CExec described in Figure 5,

with the constants described in Figure 4 hard-wired into it.

• Outputs
(

MT,Mwrap, I =
(

st, σ, C̃
))

, where Mwrap is the RAM machine described in Figure 6.

We now prove that Construction 3 is a single-hop transcript-simulatable RAM-VBB obfuscator.

Claim 5.5. Construction 3 is a single-hop transcript-simulatable RAM-VBB obfuscator forM, when
instantiated with:

• a secure MAC scheme,

• a family of CRHFs, and

• a VBB circuit obfuscator forMwrap, whereMwrap is the ensemble of classes of RAM machines
obtained by instantiating the RAM machine from Figure 6 with M ∈M.

Proof. Single-hop correctness follows from the correctness of the MAC and the VBB obfuscator.
As for efficiency, Mwrap simply executes C̃, and reads O (1) paths in MT, so its running time is∣∣∣C̃∣∣∣ + poly (logN,λ) =

∣∣∣C̃∣∣∣ + poly (λ) (because N ≤ 2λ). C̃ performs a single transition step of M ,
reads a constant number of paths from MT, generates and verifies a constant number of MACs on
input whose size is |stM | + poly (|M | , λ) (here, we use the fact that N ≤ 2λ, and |x| ≤ |M |), where
stM is M ’s internal state. So Time

(
M̃, (x, I) , D

)
≤ Time (M,x,D) · poly (|M | , λ).

30

The constants and inputs used in the circuit CExec of Figure 5
Constants: a description h of a CRHF, and a key KMAC for a MAC scheme.
Inputs:

x ∈ {0, 1}n: an input for the RAM machine M .

bfin: a boolean variable indicating whether the computation has already terminated.

st = (bfirst, stM ,Rt,Rthist,Phist, addrDB, addrstape, addrw, valw, x
′): an internal state st, consisting of: a

boolean variable bfirst indicating whether this is the first operation, the internal state stM of a
RAM machine, the root Rt for a MHT MT for a database, the root Rthist of a MHT MThist of the
history of accesses performed so far, and the path Phist to the right-most (i.e., last) node in MThist,
addresses addrDB, addrstape read from the database and scratch tape (respectively) in the previous
execution step, the value valw written in the last execution step to address addrw of the scratch
tape, and an input x′ for M .

σ: a MAC tag for (bfin, st).

valDB, valstape: the values at locations addrDB, addrstape (respectively) in the database and scratch tape,
respectively.

PDB,Pstape,Pw: the paths of nodes addrDB, addrstape, addrw (respectively) in MT.

Figure 4: Description of the constants and inputs of CExec

We now prove security. Let A be a PPT adversary in Definition 5.3. We define a simulator
Simtrans which uses the simulator Sim for O, whose existence is guaranteed from the VBB-security of
O. More specifically, one can think of A as a PPT adversary against the VBB-security of C̃, where
the rest of A’s input (namely, the processed database D̃0, the RAM machine Mwrap, the initial state
st and the MAC σ on it) is the auxiliary input to the adversary in Definition 2.3, and let Sim be the
simulator for A whose existence is guaranteed by the VBB-security of O.

Simtrans on input
(
D0, 1

m, 1n, 1k, z
)
, where m denotes the description size of a RAM machine and

n, k denote its input and output lengths (respectively), operates as follows:

1. Picks a random CRHF h← H, and generates a random MAC key K ← KeyGen
(
1λ
)
.

2. Generates a MHT MT for D0 with root Rt.

3. Calls its oracle on some arbitrary input x0 to obtain the initial state stM0 of the RAM machine
M , and sets st0 =

(
true, st0M ,Rt

)
. (The oracle replies with the entire transcript of the execution,

but we are only interested in the initial state.)

4. MACs the initial state: σ = Tag
(
K, st0

)
.

5. Initializes a set T to be empty. (T will contain all recorded transcripts.)

6. Runs Sim with auxiliary input
(
MT, st0, σ

)
, answering Sim’s oracle calls to CExec as follows:

(a) Each oracle call contains, as part of the input to CExec, a state st that contains some
internal state stM of M .

(b) Simtrans performs Step 1 of Figure 5 using the input Sim provided to its oracle, and if any
of the checks fail, returns ⊥ as the answer of the oracle.

(c) If stM 6= st0M then st contains some input x. If transx /∈ T then Simtrans returns ⊥ to Sim.

31

(d) If stM = st0M , then the input to the oracle also includes an input x for M . Simtrans calls
its oracle on x, obtains the entire transcript transx of the execution of M on x, and adds
transx to T.

(e) Recover transx = (Lx, yx) from T, where yx is the output of the computation, and Lx =(
addriDB, addristape, addriw, vali, stiM

)
i
consists of the memory accesses andM ’s internal state

at the onset of each execution step. Let i be such that stiM = stM . Sim uses transx to
generate the output out of CExec after the i’th execution step. (Specifically, transx contains
the entire history of the execution, that can be used to compute MHTs with h for the
history and the updated database, which are then MACed with K.) Simaddr gives out to
Sim as the answer of the oracle.

7. When Sim terminates with output b, Simtrans outputs b.

We now prove that Simtrans satisfies the requirements of Definition 5.3, by showing that the
distributions over the output of A and of Simtrans are both computationally close to the following
hybrid distribution H. In H, we replace A with the simulator Sim for O. That is, Sim receives as
auxiliary input all the information available to A in the real execution, except for the obfuscated
circuit C̃. In particular, it obtains the MHT MT for the database, M ’s initial state and a MAC on it,
and a description of Mwrap. Sim also has oracle access to CExec. H is the distribution over the output
of Sim in this experiment. Then H and the distribution over the output of A are computationally
indistinguishable due to the VBB security of O.

It remains to prove that H and the distribution over the output of Simtrans are computationally
indistinguishable. Intuitively, this holds because the oracle queries of Sim that do not output ⊥ are
consistent with honest executions ofM on the initial databaseD0 with some inputs. Indeed, the MAC
guarantees that Sim can only query the oracle with valid states of M (i.e., which he received during
the execution), and the MHT guarantees the database values he provides to the oracle throughout
the execution are consistent with the current database. We proceed to formalize this intuition.

We claim first that except with negligible probability, the following holds for every oracle call of
Sim with state st: either CExec returns ⊥, or st = st0, or Sim obtained st as the output of a previous
oracle call. Indeed, the state given as input to CExec is MACed, and if MAC-verification fails then
CExec returns ⊥. Since verification for a new state passes only if Sim successfully forged a MAC, or
found a collision of h, which happens only with negligible probability, we can condition H and the
simulation on the event that Sim fails to forge or find a collision. Conditioned on this event, oracle
calls to queries with new states (that were not observed before) are identically distributed in H and
the simulation (⊥ is returned in both cases), so we can disregard queries of Sim with new states.

Therefore, we can divide the oracle queries into (non-disjoint) execution chains, where an execu-
tion chain ((st0, D0, x0) , (st1, D1, x1) , . . . , (stl, Dl, xl)) is a maximal sequence of triples of databases,
states, and inputs such that: (1) st0, D0 are the initial execution state and database (D0 is uniquely
determined by st0 which contains the root of a MHT for D0); and (2) for every 1 ≤ i ≤ l, sti is the
output of CExec on input sti−1, xi, and some values valDB, valstape, and Di is the current database. 10

We claim that for every execution chain, and every consecutive triples
(sti, Di, xi) , (sti+1, Di+1, xi+1) in the chain, the following holds: (1) xi = xi+1; (2) the inputs
valDB, valstape provided as part of the input to the oracle call resulting in sti+1, Di+1 are consistent
with Di; and (3) for every i + 1 < l, Di+1 is obtained from Di by performing the write instruction

10For example, consider the following oracle calls of Sim (A → B denotes Sim called the oracle with input state A,
and some additional inputs, and received as output the state B): st0 → st1, st1 → st2, st2 → st3, st1 → st′2 , st2 → st′′3 ,
st′2 → st′3. Then these can be divided into 3 execution chains, containing the following states: (st0, st1, st2, st3),
(st0, st1, st

′
2, st

′
3), (st0, st1, st2, st′′3). Notice that, for example, st0 appears in all chains, even though Sim only queried

the oracle once with state st0.

32

(
addr′w, val′

)
specified in sti+1. To see why (1) holds, recall that sti+1 is obtained from sti using input

xi+1. In Step 1, CExec verifies that xi+1 is consistent with the input reported in sti and stores xi+1

as part of the updated state sti+1, and by induction xi is consistent with the input reported in sti,
so xi = xi+1. For (2), the collision-resistance of h guarantees that if the values valDB, valstape chosen
by the PPT Sim are inconsistent with Di then they will be inconsistent with the MHT of Di except
with negligible probability, and if they are inconsistent with the MHT of Di then CExec outputs ⊥.
The argument for (3) is similar to (2): if Di+1 is not the database obtained from Di by writing
val′ to address addr′w, then Di+1 will be inconsistent with the MHT reported in sti+2, and so CExec

outputs ⊥.
Consequently, the execution chains covering Sim’s queries are consistent with (possibly partial)

executions of M on initial database D0 (with some inputs x1, x2, . . .). In particular, given h and K,
the oracle answers to all queries in the chains can be computed given the transcript of M ’s execution.
Since this is exactly the way in which Simtrans answers Sim’s oracle queries, and h,K in the simulation
are identically distributed to the real world, the output of Simtrans and H are identically distributed,
conditioned on the event that Sim does not forge a MAC or finds a collision in h. Since this event
occurs with overwhelming probability, the distributions are computationally close.

5.2.2 Address-Simulatable Database-Dependent RAM-VBB

In this section, we construct an address-simulatable RAM-VBB obfuscator from a transcript-simulatable
RAM-VBB obfuscator. The high level idea is to apply the transcript-simulatable VBB obfuscator
to a RAM program M that has a hard-wired encryption key, which the transition circuit uses to
encrypt the internal state. One issue that arises is how to generate randomness for encryption, when
M cannot toss coins. This is done by applying a PRF to the current execution state. We also include
a counter in the internal state to guarantee that the states are unique throughout the execution.

Construction 4 (Address-simulatable RAM-VBB obfuscation). The address-simulatable RAM-VBB
obfuscator Oaddr uses the following building blocks:

• A transcript-simulatable RAM-VBB obfuscator Otrans.

• A CPA-secure symmetric encryption scheme (KeyGen,Encrypt,Decrypt).

• An unbounded-input PRF F .

Given a security parameter λ, a database D0, and a RAM machine M , Oaddr operates as follows:

• Generates an encryption key sk← KeyGen
(
1λ
)
, and a random PRF key K ← {0, 1}λ.

• Encrypts cD ← Encrypt (sk, D0).

• Runs the transcript-simulatable RAM-VBB obfuscator
(
D̃, M̃ , I

)
← Otrans

(
1λ, cD,Msk,K

)
,

where Msk,K is the RAM machine described in Figure 7 (hard-wired values are hard-wired into
the transition circuit of the machine).

• Outputs
(
D̃, M̃ , I

)
.

We now prove that Construction 4 is an address-simulator RAM-VBB obfuscator.

Claim 5.6. Construction 4 is a single-hop address-simulatable RAM-VBB obfuscator for M, when
instantiated with:

• a secure unbounded-input PRF,

33

• a perfectly-correct CPA-secure symmetric encryption scheme, and

• a single-hop transcript-simulatable RAM-VBB obfuscator for Msk,K , where Msk,K is the en-
semble of classes of RAM machines obtained by instantiating the RAM machine from Figure 7
with M ∈M.

Moreover, if the underlying transcript-simulator RAM-VBB obfuscator is multi-hop, then Con-
struction 4 is a multi-hop address-simulatable RAM-VBB obfuscator.

Proof. Single-hop correctness follows from the perfect correctness of the encryption scheme, and the
correctness of the transcript-simulatable RAM-VBB obfuscator.

As for efficiency, by the efficiency property of the transcript-simulatable RAM-VBB obfusca-
tor, Time

(
M̃, (x, I) , D̃

)
= Time (Msk,K , x,D) · poly (|Msk,K | , λ) = Time (Msk,K , x,D) · poly (|M | , λ)

(since |Msk,K | = poly (|M | , λ)). Msk,K performs a single step of M , performs a constant num-
ber of encryptions and decryptions on messages/ciphertexts of size poly (|M | , λ) (here, we use the
fact that the output and input length, as well as the size of M ’s internal state, is at most |M |),
and computes a single PRF image on an input of size |stM | + poly (|M | , λ) (where stM is M ’s
internal state) which by the PRF and encryption efficiency take time poly (|M | , λ). Therefore,
Time

(
M̃, (x, I) , D

)
≤ Time (M,x,D) · poly (|M | , λ).

We now prove security. Let A be a PPT adversary in Definition 5.3. We define a simulator Simaddr

which uses the simulator Simtrans for Otrans, whose existence is guaranteed because Otrans is transcript-
simulatable. Simaddr on input

(
1N , 1m, 1n, 1k, z

)
, where N denotes a database size, m denotes the

description size of a RAM machine, and n, k denote input and output lengths (respectively), operates
as follows:

• Generates a random encryption key sk ← KeyGen
(
1λ
)
, and generates an encryption cD ←

Encrypt (sk, D′) of the all-zero database D′ of size N . Let m′ denote the description size of
Msk,K when instantiated with a RAM machine M whose description size is m.

• Initializes a set Q to be empty. (Q will contain the queries which Simtrans made to his oracle,
and the answers.)

• Emulates Simtrans on input
(
cD, 1

m′ , 1n, 1k, z
)
. Whenever Simtrans makes an oracle call with

input x to its oracle, Simaddr:

– If (x, T) ∈ Q (i.e., x was queried before), Simaddr gives T to Simtrans as the oracle query.

– Otherwise, Simaddr calls its own oracle with x, to obtain the list Lx =
(
addriDB, addristape, addriw

)
i∈[t]

of physical addresses accessed by Msk,K (here, t denotes the number of execution steps
Msk,K performs on x), and its output yx.

– For every 1 ≤ i ≤ t, generates an encryption ci ← Encrypt (sk, 0) of zero, and an encryption
c′i ← Encrypt

(
sk,~0

)
of the all-zero string of the same length as Msk,K ’s internal state.

(Here, ci emulates the value Msk,K writes to the physical memory, and c′i emulates its
internal state, in the i’th execution step.)

– Let L′x =
(
addriDB, addristape, addriw, ci, c

′
i

)
i∈[t]. Simaddr gives (L′x, yx) to Simtrans as the oracle

answer to the query x, and adds (x, L′x, yx) to Q.

• When Simtrans terminates with output b, Simaddr outputs b.

34

We now prove that Simaddr satisfies the requirements of Definition 5.3, through a sequence of hybrids.
The proof will use the following observations: (1) if x 6= x′ then the values v used in Step 4 throughout
the execution of Msk,K on x are distinct from the values used in an execution on x′; and (2) for every
input x, the values v used in Step 4 throughout the execution of Msk,K on x are all distinct. Indeed,
(1) holds because the input to M is included in v and so different inputs result in different v values.
(2) holds because v includes the counter count which is updated in every execution step.

H0 : Hybrid H0 is the output of the adversary A in Definition 5.3.

H1 : In H1, we replace A in the real world with the simulator Simtrans. We stress that this is the only
change from H0, in particular Simtrans obtains as input the encrypted database cD, and every
oracle call is answered with the entire transcript of the run of Msk,K . Hybrids H0 and H1 are
computationally indistinguishable because Otrans is transcript-simulatable.

H2 : In H2, we replace F (K, ·) with a random function f . Hybrids H1 and H2 are computationally
indistinguishable by the PRF security of F .

H3 : In H3, we replace all ciphertexts with encryptions of zero. That is, encryptions of database
blocks are replaced with encryptions of zero (both in cD and in the ciphertexts computed in
Step 5 of Msk,K), and encryptions of the internal state in Step 6 of Msk,K are replaced with
encryptions of the all-zero string of the “right” length. Hybrids H2 and H3 are computationally
indistinguishable by the IND-CPA security of the encryption scheme.

Notice that H3 is exactly the distribution over the output of Simaddr (because all v values used
throughout the execution in H3 are unique), which concludes the proof.

Multi-hop correctness and security: if the underlying transcript-simulatable RAM-VBB
obfuscator is multi-hop, then Construction 4 is also multi-hop. Correctness follows directly from the
correctness of Otrans. The multi-hop security proof is identical to the above proof of the single-hop
case, except that Simtrans’s oracle calls contain a sequence of inputs (x1, . . . , xm), and Simaddr either
finds the transcript for this sequence in Q, or calls its own oracle with (x1, . . . , xm).

6 A RAM-FHE Scheme

In this section we describe our single-hop RAM-FHE scheme, which uses an address-simulatable
RAM-VBB as a building box. We assume that (polynomial) a-priori bounds on the input, output,
and description lengths of the RAM machine are known, and discuss extensions to the general setting
(in which no such bounds are a-priori known) in Section 7. We upgrade the scheme to a multi-hop
scheme in Section 6.2.

6.1 Single-Hop RAM-FHE

In this section we construct a single-hop RAM-FHE scheme, proving the following theorem:

Theorem 6.1 (Single-hop RAM-FHE). Assume the existence of OWFs, CRHFs, PKE schemes,
and SK-DEPIR which for size-N databases has poly(λ, logN) Query and Decode complexity, where λ
denotes the security parameter. Then for every d = poly (λ) there exists a poly logN -efficient single-
hop RAM-FHE scheme in the circuit-VBB hybrid model for RAM machines with input length, output
length, description size, and space usage at most d.

35

Remark on the circuit-VBB obfuscator. Though Theorem 6.1 is stated in the circuit-VBB
hybrid model, namely with a general-purpose obfuscator, it suffices to have a circuit-VBB obfuscator
for the circuit CExec of Figure 5, when instantiated with the machine M obtained from instantiating
the RAM machine Msk,K of Figure 7 with the universal machine MU of Figure 8.

The Construction. The high level idea is to combine the address-simulatable RAM-VBB for the
universal RAM machine, with an ISR-ORAM (which is replaced with an ASR-ORAM in the multi-
hop setting). The address-simulatable RAM-VBB guarantees that the RAM machine emulation only
reveals the sequence of physical memory addresses it accesses, which by ISR-ORAM security reveals
no information about the access pattern to logical memory. One technical issue is that the universal
machine should encrypt its output (using a persistent encryption key that is generated during KeyGen,
independent of the database and any RAM machine that will be run on it) which requires generating
randomness. We use a PRF to generate this randomness.

Construction 5 (Single-hop RAM-FHE). The RAM-FHE scheme uses the following building blocks:

• An address-simulatable RAM-VBB obfuscator O.

• An ISR-ORAM scheme (ISR− ORAM.Setup, ISR− ORAM.Access) with a deterministic client
during ISR− ORAM.Access.

• A PKE scheme (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt).

• An unbounded-input PRF F .

It consists of the following algorithms:

• KeyGen
(
1λ
)
generates a public-secret key pair

(
pk′, sk′

)
← PKE.KeyGen

(
1λ
)
, and outputs(

pk =
(
1λ, pk′

)
, sk = sk′

)
.

• Encrypt
(
pk =

(
1λ, pk′

)
,DB, 1d, 1s

)
takes as input a public key pk, a database DB, and bounds

d, s on the description size and space usage of RAM machines (respectively). It operates as
follows:

– Set DB′ to be the database of size |DB| + s obtained by concatenating s empty blocks
to DB.(Intuitively, these blocks are “place holders” for the contents of the scratch tape
of a RAM machine; see remark on physical memory block contents in Section 2.3 for a
discussion of empty blocks.)

– Initialize an ISR-ORAM with DB′, by running ISR− ORAM.Setup
(
1λ,DB′

)
, to obtain a

client state ckISR and a server state stISR.
– Pick a random PRF key K ← {0, 1}λ.

– Run
(

D̃B, M̃U , I
)
← O

(
1λ, stISR,MU

)
, where MU is the RAM machine described in Fig-

ure 8, with hard-wired values |DB| , pk′,K, and internal variable ckISR.

– Output the ciphertext cDB =
(

D̃B, M̃U , I
)
.

• EvalcDB
(
M,x, 1T

)
takes as input a description M of size at most d of a RAM machine, an input

x for M , and a bound T on the runtime of M . It also has RAM access to a database-ciphertext

cDB =
(

D̃B, M̃U , I
)
. It runs M̃U

D̃B (
M, 1T , x, I

)
, and outputs whatever it outputs.

• Decrypt (sk, c) takes as input a secret key sk, and an output-ciphertext c. It outputs PKE.Decrypt (sk, c).

36

Remark on growing Merkel Hash Trees. Our construction (in particular, the circuit CExec of
Figure 5 on page 58) generate and grow MHTs. The hash trees use an underlying hash function
H : {0, 1}2n → {0, 1}n for some n ∈ N. Generating a MHT T for a string s is done in the standard
way by hashing adjacent pairs of nodes repeatedly, and we say that the resultant tree T represents
s. Growing an existing MHT T which represents a string s is done as follows. Assume T has hight
h growing from the leaves to the root, and let v1, . . . , vh be the right-most nodes in each level of T ,
i.e., v1 is a suffix of s, and vh is the root. To generate a MHT representing the string s ◦ s′ for some
s′ ∈ {0, 1}n, concatenate s′ to level 1 of the tree as the new right-most node, and let v′1 := s′. Compute
a new right-most path in the tree by generating, for every 1 < i ≤ h the node v′i = H

(
vi−1, v

′
i−1
)

and concatenating v′i to the right of node vi in level i. Finally, generate a new root at level h + 1
by computing H (vh, v

′
h). (Notice that the resultant tree has hight h+ 1.) To grow T be a string of

length > n, partition the string into length-n substrings, and apply this procedure sequentially on
each of the substrings.

Claim 6.2 (Single-hop RAM-FHE security). Construction 5 satisfies the correctness and security
properties of Definition 4.4, when instantiated with:

• a secure unbounded-input PRF,

• a perfectly-correct IND-CPA secure PKE scheme,

• a secure ISR-ORAM scheme with a deterministic client during ISR− ORAM.Access, and

• a secure single-hop address-simulatable RAM-VBB obfuscator for the RAM machine MU of
Figure 8.

Claim 6.3 (Single-hop RAM-FHE efficiency). Construction 5 satisfies the compactness property of
Definition 4.4. If additionally the underlying ORAM scheme for databases of size N has a client with
internal state of size poly (λ) and the Access protocol takes time poly (λ), then Construction 5 satisfies
the poly logN -efficiency property of Definition 4.4.

Claims imply theorem. We use the claims to prove Theorem 6.1. We now use the claims to prove
Theorem 6.1.

Proof of Theorem 6.1. The assumption that OWFs exist implies the existence of secure MACs, unbounded-
input PRFs, and perfectly-correct IND-CPA secure symmetric encryption schemes. Therefore, to-
gether with the assumption that CRHFs exist, Claims 5.5 and 5.6 guarantee that there exists an
address-simulatable RAM-VBB obfuscator in the circuit-VBB hybrid model. The existence of OWFs
and SK-DEPIR implies additionally the existence of a secure ISR-ORAM scheme with a determinis-
tic client during Access by Theorem 3.5 and Claim B.3. Therefore, security follows from Claim 6.2
and from the assumption that PKE schemes exist. Efficiency follows from Claim 6.3 using also
Theorem 3.5 and Claim B.1.

Proof of claims. We now proceed to prove the claims.

Proof of Claim 6.2. Single-hop correctness follows from the correctness of all underlying primitives,
where the perfect correctness of the PKE scheme guarantees that decryption succeeds even though the
ciphertext was generated with pseudorandom coins. We proceed to prove security. Let A =

(
A0,A1

)
be a PPT adversary in the security property of Definition 4.4, and let DB0,DB1 be the database that
A0 chooses given pk as input. Let B0,B1 denote the distribution over the guess b′ of A1 when b = 0
and b = 1, respectively. We prove that B0 ≈ B1 by a sequence of hybrids, and thus A1 has only
negligible advantage in guessing b.

37

Hb
0 ,b = 0,1 : This is simply Bb.

Hb
1 : In Hb1, we replace A1 with the corresponding simulator Sim for O, whose existence is guaranteed

from address-simulatability, where the oracle B of Sim provides, for every input x, the list of
physical memory accesses accessed by MU on input x, and its output. Hybrids Hb0 and Hb1 are
computationally indistinguishable because O is address-simulatable.

Hb
2 : In Hb2, we replace F (K, ·) with a truly random function f . Hybrids Hb1 and Hb2 are computa-

tionally indistinguishable by the PRF security. (Notice that in Hb1, the simulator has no access
to K, except through the output of MU .)

Hb
3 : In Hb3, we replace c with an encryption of the all-zero string. Hybrids Hb2 and Hb3 are computa-

tionally indistinguishable by the IND-CPA security of the encryption scheme, because encryption
randomness is generated using a truly random function. (Here, we use the fact that encryption
randomness is reused for two outputs y, y′ if and only if they were obtained by applying the same
RAM machine M on the same input x for the same number of transition steps T , in which case
y = y′ since M is deterministic. Therefore, security can indeed be reduced to the IND-CPA
security of the encryption scheme.)

Hb
4 : In Hb4, we replace B with the following oracle: it replaces all the accesses to virtual memory

performed by M with accesses that read address 0 from the database and the scratch tape, and
write 0 to address 0 of the scratch tape. We stress that during the emulation, M is still given
the actual values of the database and scratch tape that it would have read, it is just the reported
memory accesses that are replaced. Notice that by the definition of MU , these virtual memory
accesses result in a sequence of physical memory accesses performed by the ISR-ORAM client.
Notice also that the output of MU reported in B is simply an encryption of the all-zero string,
as in Hb3. Hybrids Hb3 and Hb4 are computationally indistinguishable by the rewindable security
of the ISR-ORAM.

The claim now follows because H0
4 ≡ H1

4 since neither contain any information about DB0,DB1.
(Indeed, the simulator is not given an encryption of the database or the output of the computation,
and the physical memory accesses provided by the oracle are generated for a fixed sequence of logical
memory accesses, independent of the database.)

Proof of Claim 6.3. For compactness, notice that the output of MU is simply an encryption of M ’s
output, so it has size poly (logY, λ).

As for efficiency, by the efficiency of the address-simulatable RAM-VBB obfuscator (Claim 5.6),
Time

(
M̃U , x,D

)
≤ Time (MU , x,D) · poly (|MU | , λ). MU ’s internal state consists of the internal

state of an ORAM client (of size poly (log (N + s) , λ) = poly (λ)), the input and output of M (each
consisting of at most |M | bits), and O (1) additional variables of size O (λ) (notice that storing
the runtime bound T requires log T ≤ λ bits, because T ≤ 2λ), as well as the input x, descrip-
tion M , and runtime T of the RAM machine. Therefore, MU ’s internal state has size at most
poly (|M | , λ). Moreover, MU performs T steps, in each it runs a single step of M (which takes
poly (|M | , λ) time), performs 2 address translations (logN = poly (λ) time) and emulates a con-
stant number of executions of the Access protocol (each taking poly (log (N + s) , λ) = poly (λ) time).
Therefore, Time (MU , x,D) ≤ T · poly (|M | , λ).

6.2 Upgrading to a Multi-Hop Scheme

In this section, we extend Definition 4.4 to the multi-hop setting, and describe a multi-hop RAM-FHE
scheme. We first formally define the notion of multi-hop RAM-FHE.

38

Definition 6.4 (Multi-hop RAM-FHE). A public-key multi-hop RAM FHE scheme is a tuple of PPT
algorithms (KeyGen, Enc, Dec) along with a RAM machine Eval such that

• Correctness. For any security parameter λ ∈ Z+, any database D0, any bound B ∈ Z+, any
sequence of RAM machines M1, . . . , Mt with input space X and output space Y, any inputs
x1, . . . , xt ∈ X , and any time bounds T1, . . . , Tt: For each i ∈ [t], define yi and Di by computing
(yi, Di) := M

Di−1

i (xi). If for each i ∈ [t], |Mi| ≤ B and Time(Mi, xi, Di−1) ≤ Ti, then in the
probability space defined by sampling

(pk, sk)← KeyGen(1λ)

D̂0 ← Enc(pk, D0, B)
For i ∈ [t]:

(ŷi, D̂i) := EvalD̂i−1(Mi, xi, Ti)
y′i := Dec(sk, ŷi)

(5)

it holds with probability 1 for each i ∈ [t] that y′i = yi.

• IND-CPA Security. Same as for single-hop.

• η (·)-Efficiency. In the experiment described in (5), it holds with probability 1 for each i ∈ [t]
that the running time of Eval is at most Time(Mi, xi, Di−1) · η (|Di−1|) poly(B, λ).

• Compactness. In the experiment described in (5), it holds for each i ∈ [t] that |ŷi| ≤
poly(log |Y|, λ).

Remark 6.5. We note that in Definition 6.4, we distinguish between the output yi of a RAM
machine, and the updated database Di that it produces by overwriting Di−1. In particular, we
cannot homomorphically evaluate programs that make random-access reads to y(1), . . . , y(i−1).

We now describe how to upgrade the single-hop scheme of Construction 5 to a multi-hop scheme,
proving the following:

Theorem 6.6 (Multi-hop RAM-FHE). Let ε ∈ (0, 1) be a constant. Assume the existence of OWFs,
CRHFs, PKE schemes, and SK-DEPIR which for size-N databases has N1+ε · poly(λ) Process com-
plexity, and N ε ·poly(λ) Query and Decode complexity, where λ denotes the security parameter. Then
for every d = poly (λ) there exists an N ε-efficient multi-hop RAM-FHE scheme in the circuit-VBB
hybrid model for RAM machines with input length, output length, and description size at most d.

The multi-hop RAM-FHE scheme uses a multi-hop transcript-simulatable RAM-VBB obfuscator,
so we first describe this modified construction.

We note that in the multi-hop case, we can no longer assume the database is read-only. Conse-
quently, in this setting we assume (without loss of generality) that each transition step performs a
single read to the database and scratch tape, and a single write to the database and scratch tape.

6.2.1 Multi-Hop Transcript-Simulatable RAM-VBB obfuscation

At a high level, the only reason Construction 3 is not multi-hop correct is that once one execution
of M is completed, and the database MHT is updated, one cannot run M on the updated database,
because it does not have a signature on the initial state of M together with the updated database
MHT root. Therefore, to allow for multi-hop evaluation, we need to modify CExec of Figure 5 such
that when M terminates, its output includes not only y, but also a signature on M ’s initial state and

39

the current MHT root. Note, however, that the current MHT should not include the current contents
of the scratch tape, so we need to use separate MHTs for the database and scratch tape.

Specifically, the internal state st which CExec takes as input should include (in every call to CExec)
also M ’s initial state. We will additionally need st to include an initial MHT root Rt which is not
updated by CExec. This will be needed in the simulation, to allow Simtrans to associate an oracle
call of the circuit-VBB simulator Sim to CExec with a sequence of executions of M on some inputs
x1, . . . , xm. This is formalized in the next construction:

Construction 6 (Multi-hop transcript-simulatable RAM-VBB obfuscator). The multi-hop
transcript-simulatable RAM-VBB obfuscator Omh

trans is identical to the single-hop transcript-
simulatable RAM-VBB obfuscator of Construction 3, except that it uses the circuit-VBB obfuscator
O to obfuscate the following circuit Cmh

Exec:

• The input st of Cmh
Exec contains also: the initial state st0M of M ; an initial MHT root Rt0; a root

Rtstape of a MHT MTstape for the scratch tape; and a value valDB,w and address addrDB,w such
that valDB,w was written to address addrDB,w of the database in the last transition step.

• Cmh
Exec takes as input also a path PDB,w to the node addrDB,w in MT. The paths Pstape,Pw are

paths in MTstape and not in MT.

• Step 1a of CExec is replaced with the following: PDB,PDB,w (Pstape,Pw) are paths to the nodes
addrDB, addrDB,w (addrstape, addrw) in the MHT whose root is Rt (Rtstape), and the values at
addrDB, addrstape are valDB, valstape.

• The following is added to Step 1 of CExec: if bfirst = true then generate a MHT MTstape for the
(empty) scratch tape stape, and let Rtstape be its root.

• Step 2 of CExec is replaced with the following: if bfirst = false then use PDB,w (Pw) to compute
the root Rt′ (Rt′stape) of the MHT obtained from MT (MTstape) by replacing the value of the
node addrDB,w (addrw) with valDB,w (valw).

• Step 3b of CExec is replaced with the following: IfM terminated in the current step with output
y, then set bfin = true, stout =

(
true, st0M ,Rt′

)
(where Rt′ is the root of the updated MHT

computed in Step 2), σout = Tag (KMAC, stout), and out = (bfin, y, stout, σout), and go to Step 5.

• The execution in Step 3c of CExec results also in a write instruction
(
addr′DB,w, val′DB,w

)
to the

database.

• In Step 4 of CExec, if bfirst = true, then set Rt0 := Rt. (This sets Rt0 to be the root of the MHT
for the database at the onset of M ’s execution, otherwise it is simply copied from the previous
state. Thus, throughout the execution of M , Rt0 is consistent with the database at the onset
of the computation.)

• In Step 4 of CExec, st′ includes Rt0, st0M , Rtstape, addr′DB,w and val′DB,w.

We prove that Construction 6 is a multi-hop transcript-simulatable RAM-VBB obfuscator.

Claim 6.7. Under the assumptions of Claim 5.5, Construction 6 is a multi-hop transcript-simulatable
RAM-VBB obfuscator forM.

Proof sketch. The efficiency analysis is identical to the proof of Claim 5.5. Multi-hop correctness
follows from the correctness of the MAC and the circuit-VBB obfuscator, and from the description

40

of Cmh
Exec that outputs a MAC on the MHT of the updated database and M ’s initial state, which can

be used to initiate a new execution of M on the updated database.
As for security, we use the simulator described in the proof of Claim 5.5, changing only how it

answers Sim’s oracle calls. Specifically, we replace Step 6 with the following:

• Each oracle call contains, as part of the input to Cmh
Exec, a state st that contains some internal

state stM of M , and the root Rt0 of a database MHT.

• Simtrans performs Step 1 of Cmh
Exec using the input Sim provided to its oracle, and if any of the

checks fail, returns ⊥ as the answer of the oracle.

• If stM 6= st0M then st contains some input x. Simtrans checks whether there exist x1, . . . , xm
such that transx1,...,xm,x ∈ T, and additionally that the database at the end of M ’s sequential
execution on x1, . . . , xm is consistent with Rt0. If such a transcript exists, Simtrans sets ~x =
(x1, . . . , xm, x), otherwise he returns ⊥ to Sim.

• If stM = st0M , then the input to the oracle also includes an input x for M . If Rt0 is consistent
with D0 then set ~x = (x). Otherwise, Simtrans checks whether there exist x1, . . . , xm such that
transx1,...,xm ∈ T, and additionally that the database at the end of M ’s sequential execution on
x1, . . . , xm is consistent with Rt0. If such a transcript exists, Simtrans sets ~x = (x1, . . . , xm, x),
otherwise he returns ⊥ to Sim.

• Simtrans calls its oracle on ~x, obtains the entire transcript trans~x of the execution of M on x,
and adds trans~x to T. (We note that trans~x may already be in T, in which case there is no need
to call the oracle, since the execution is deterministic so the transcript generated by the oracle
is guaranteed to be identical to the transcript already in T.)

• Simtrans Recovers trans~x = (L~x, y~x) from T, where y~x is the list of outputs of the computations
on the inputs in ~x, and L~x =

(
addri,jDB, addri,jstape, addri,jDB,w, addri,jw , vali,jDB, vali,j , sti,jM

)
i,j

consists

of the memory accesses andM ’s internal state at the onset of each transition step on each input
xj in ~x. Let i, j be such that sti,jM = stM . Sim uses trans~x to generate the output out of Cmh

Exec

after the i’th transition step on input xj . (Specifically, trans~x contains the entire history of the
execution, that can be used to compute MHTs with h for the history and the updated database
and scratch tape, which are then MACed with K.) Simtrans gives out to Sim as the answer of
the oracle.

The proof now proceeds similarly to the proof of Claim 5.5, and we therefore only describe the
needed modifications. First, in H the simulator Sim is given oracle access to Cmh

Exec, not to CExec. As in
the proof of Claim 5.5, we condition H and the simulation on the event that Sim fails to forge a MAC
or find a collision of h, and can therefore assume all oracle calls Sim makes are with states it observed
before. Therefore, we can divide Sim’s oracle queries into (non-disjoint) generalized execution chains,
where a generalized execution chain is

(
ECx0,Din

0 ,D
out
0
,ECx1,Din

1 ,D
out
1
, . . . ,ECxm,Din

m,D
out
m

)
where Din

0 = D0,
and for every 1 ≤ i ≤ m, ECxi,Din

i ,D
out
i

is an execution chain (as defined in the proof of Claim 5.5)

corresponding to the execution of MDin
i on xi, and resulting in the updated database Dout

i .11

11In the proof of Claim 5.5, an execution chain included a single MHT for both the database and scratch tape, and
the database was read-only. However, this naturally extends to the case where the database and scratch tape have
different MHTs (where both roots are part of the state), and M is allowed to write to the database. As in the proof
of Claim 5.5, an execution chain corresponds to an honest execution of M on x, with valid contents of the database
and scratch tape throughout the execution, and the proof is similar to the proof provided in the single-hop setting, by
replacing D0 with Din

i .

41

We claim that for every generalized execution chain, and every consecutive execution chains
ECxi,Din

i ,D
out
i
,ECxi+1,Din

i+1,D
out
i+1

, it holds that Din
i+1 = Dout

i . Indeed, the first oracle call in the execution
chain ECxi+1,Din

i+1,D
out
i+1

is possible only if Sim can provide a valid MAC on the initial state st0M of M ,
together with the root of a MHT for Din

i+1. Since we have conditioned on the event that Sim doesn’t
forge a MAC or find a collision in h, this is possible only if Sim obtained this MAC as the output
of a previous oracle call. By the definition of Cmh

Exec, it outputs such a MAC only at the end of an
execution of M which results in the updated database Din

i+1.
Consequently, each generalized execution chain covering Sim’s queries is consistent with a se-

quence of executions of M with a mutable database that initially equals D0, on a sequence of inputs
(x1, . . . , xm) (the last execution on xm might be a partial execution). The remainder of the proof
follows identically to the proof of Claim 5.5.

6.2.2 Multi-Hop RAM FHE

We now use ASR-ORAMs and multi-hop address-simulatable RAM-VBB (whose existence follows
from the existence of multi-hop transcript-simulatable RAM-VBB) to construct a multi-hop RAM-
FHE scheme. At a high level, the scheme is similar to the single-hop RAM-FHE construction (Con-
struction 5, but the underlying building blocks are replaced with their multi-hop counterparts (i.e.,
the ASR-ORAM and the multi-hop address-simulatable RAM-VBB). However, two additional mod-
ifications are needed, as we now describe.

First, in the single-hop setting, we could instantiate a single (ISR-)ORAM that contained both
the database and scratch tape. This simplified the construction (since it used a single ORAM), and
was possible because in the single-hop setting, the database and scratch tape are treated in the same
way when an execution of a RAM machineM terminates: they are both restored to their initial state
(the database is restored to its original content, and the scratch tape is erased). However, this is
not the case in the multi-hop setting, where the scratch tape is erased when the execution ends, but
the updated database should be kept (so that it can be used in future executions). Therefore, in the
multi-hop construction the scratch tape and database are implemented using separate ORAMs.

Second, we need to generate randomness to encrypt the computation output, and to generate the
scratch-tape ORAM during evaluation. In the single-hop setting, the randomness was generated by
applying a PRF to (M,x, T) where M is the RAM machine to be evaluated, x is its input, and T are
the number of transitions steps that would be performed. In the single-hop setting, this guaranteed
that randomness is reused only when the entire execution transcript is identical, because it involved
evaluating the (deterministic) RAM machineM on input x for T steps with RAM access to the initial
database. In the multi-hop setting, this is no longer the case, because different executions might use
different databases (that were generated in previous executions). Therefore, if the randomness is
generated using only (M,x, T) then it might be reused in two different executions that evaluate
MD (x) and MD′ (x) for T steps, resulting in two different execution transcripts. Consequently, we
must generate the randomness based also on the database contents. We do this by maintaining a
MHT of the current database, and generate the randomness from (M,x, T,Rt), where Rt is the MHT
root. Since such a MHT is already maintained by the transcript-simulatable RAM-VBB obfuscator
which is used to instantiate the address-simulatable RAM-VBB obfuscator used to obfuscate the
universal RAM machine, we avoid duplication and simply have the obfuscated machine output this
as part of the auxiliary information. This is formalized in the following construction.

Construction 7 (Multi-hop RAM-FHE). The RAM-FHE scheme uses the following building blocks:

• The multi-hop address-simulatable RAM-VBB obfuscator O of Construction 4, which is instan-
tiated with the transcript-simulatable RAM-VBB obfuscator of Construction 6.

42

• An ASR-ORAM scheme (ASR− ORAM.Setup,ASR− ORAM.Access) with a deterministic client
during ASR− ORAM.Access.

• An ORAM scheme for initially-empty databases (Setup,Access) with a deterministic client dur-
ing Access.

• A perfectly-correct PKE scheme (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt).

• An unbounded-input PRF F .

It consists of the following algorithms: KeyGen and Decrypt which are identical to the single-hop
setting (Construction 5), and Encrypt and Eval which are defined as follows.

Encrypt on input a public key pk, a database DB, and bounds n, k, d on the input length, output
length, and description size of RAM machines (respectively), operates as follows:

• Initialize an ASR-ORAM with DB, by running (ckASR, stASR)← ASR− ORAM.Setup
(
1λ,DB

)
,

to obtain a client state ckASR and a server state stASR.

• Pick a random PRF key K ← {0, 1}λ.

• Run
(

D̃B, M̃mh
U , I

)
← O

(
1λ, stISR,M

mh
U , 1|Mmh

U |, 1n, 1k
)
, where Mmh

U is the RAM machine de-
scribed in Figure 11, with hard-wired values pk,K, and internal variable ckASR.

• Output the ciphertext cDB =
(

D̃B, M̃mh
U , I

)
.

Eval takes as input a description M of size at most d of a RAM machine, an input x ∈ {0, 1}n
for M , and a bound T on the runtime of M . It also has RAM access to a database-ciphertext
cDB =

(
D̃B, M̃U , I

)
consisting of an encoding D̃B of a database, an obfuscation M̃U of a universal

RAM machine, and some input information I for M̃U . Moreover, I contains a root Rt of a MHT for
the database encoded in D̃B.12 Eval runs M̃U (M,T, x,Rt, I) with RAM access to D̃B, and outputs
whatever M̃U outputs.

We prove the following claims regarding Construction 7:

Claim 6.8 (Multi-hop RAM-FHE security). Construction 7 satisfies the correctness and security
properties of Definition 4.4, when instantiated with:

• a secure unbounded-input PRF,

• a perfectly-correct IND-CPA secure PKE scheme,

• a secure ORAM scheme for initially-empty databases with a deterministic client during Access,

• a secure ASR-ORAM scheme with a deterministic client during ASR− ORAM.Access, and

• the multi-hop address-simulatable RAM-VBB obfuscator of Construction 4 (using Construc-
tion 6 as the underlying obfuscator) for the RAM machineMmh

U of Figure 11.

Claim 6.9 (Multi-hop RAM-FHE efficiency). Construction 7 satisfies the compactness property of
Definition 4.4. If additionally for size-N databases:

• the client state in the ORAM and ASR-ORAM schemes has size poly (λ, logN),
12This holds because Mmh

U was obfuscated using Construction 4 which in turn uses Construction 6.

43

• ASR− ORAM.Access takes time N ε · logN · poly (λ), and

• Setup,Access take time poly (λ, logN),

then Construction 7 satisfies the N ε-efficiency property of Definition 4.4.

Claims imply theorem. We use the claims to prove Theorem 6.6.

Proof of Theorem 6.6. The existence of OWFs implies the existence of secure unbounded-input PRFs,
MACs and IND-CPA secure symmetric encryption schemes, which together with the existence of
CRHFs implies, by Claim 6.7, that there exists a multi-hop transcript-simulatable RAM-VBB obfus-
cator in the circuit-VBB hybrid model, which by Claim 5.6 implies there exists a multi-hop address-
simulatable RAM-VBB obfuscator in the circuit-VBB hybrid model. The existence of OWFs and
SK-DEPIR implies additionally the existence of a secure ASR-ORAM scheme with a deterministic
client by Theorem 3.8 and Claim B.3, and a secure ORAM for initially-empty databases with a de-
terministic client by Claim A.2, so security follows from Claim 6.8. Efficiency follows from Claim 6.9
using also Theorem 3.8 and Claims A.2 and B.2.

Proof of claims. We now proceed to prove the claims. Since the proofs are similar to the single-hop
case, we only sketch the differences.

Proof sketch for Claim 6.8. Multi-hop correctness follows from the correctness of the underlying prim-
itives (using the perfect correctness of the encryption and ORAM schemes, which guarantees cor-
rectness holds even when using pseudorandom coins for encryption and setup), since the address-
simulatable RAM-VBB obfuscator is multi-hop correct.

As for security, there are two differences from the single-hop case: (1) we now have two different
ORAM schemes; and (2) we now derive the randomness based also on the database. Concretely, we
define Hb0,Hb1,Hb2 as in the proof of Claim 6.2 (but notice that Hb1 uses the multi-hop simulator Sim
for Oaddr), and Hb0 ≈ Hb1 ≈ Hb2 follows identically to the proof of Claim 6.2.

Next, we define Hb3 as in the proof of Claim 6.2, and show that Hb2 ≈ Hb3. Towards that end, we
condition both hybrids on the following event E: for every M,x, T and D0, D1 such that Eval was
executed with input (M,x, T) on both an encryption of D0 and an encryption of D1, the MHT roots
for D0, D1 which were given as input to Mmh

U are different. It suffices to prove indistinguishability
conditioned on E, because E happens except with negligible probability (except if the adversary
was able, through the various executions of Eval, to generate a collision of the CRHF h used in
Construction 6). Conditioned on E, randomness is reused in the hybrids in two different executions
of Eval, if and only if in both MD is evaluated on some input x for T steps, in which case the entire
execution transcript is identical (because M is deterministic). Therefore, Hb2 ≈ Hb3 by the IND-CPA
security of the encryption scheme.

Next, we define the hybrid Hb4 in which we replace the oracle B of Sim with the following oracle
B′: it replaces all the scratch-tape accesses performed by M with accesses that read address 0 from
the scratch tape, and write 0 to address 0 of the scratch tape. (As in the proof of Claim 6.2, during
the emulation M is still given the actual values of the scratch tape that it would have read, and
the scratch tape is updated according to the actual values M writes to it, namely only the reported
memory accesses are replaced.) Then hybrids Hb3 and Hb4 are computationally indistinguishable
conditioned on E, by a standard hybrid argument over the security of the ORAM scheme for initially-
empty databases. Indeed, each evaluation of a RAM machineM initializes a new scratch tape ORAM
scheme using fresh randomness (because we have conditioned on E, namely randomness is reused only
if the entire execution transcript is identical). Therefore, indistinguishability follows from the fact

44

that obliviousness of the ORAM for initially-empty databases is guaranteed even given the access
pattern to physical memory during the setup of this ORAM.

Finally, we define the hybrid Hb5 in which we replace the oracle B′ with the following oracle B′′:
it replaces all the database accesses performed by M with accesses that read address 0 from the
database and writes 0 to address 0 of the database. Then hybrids Hb4 and Hb5 are computationally
indistinguishable by the security of the ASR-ORAM.

Finally, H0
5 ≡ H1

5 since they do not contain any information about DB0,DB1.

Proof sketch for Claim 6.9. There are three difference from the proof of Claim 6.3: (1)Mmh
U ’s internal

state contains also the client state in an ORAM scheme for initially-empty databases; (2) Mmh
U

initializes an ORAM scheme at the beginning of the execution, and emulates the ORAM client (in
addition to the ASR-ORAM client) throughout the execution; and (3) the ASR-ORAM has different
parameters than the ISR-ORAM used in Claim 6.3. (1) doesn’t affect the analysis because the ORAM
client state has size poly (λ, log T) = poly (λ) (because T ≤ 2λ). (2) doesn’t affect the analysis because
Setup and Access take poly (λ, log T) = poly (λ) time by Claim A.2. As for (3), each transition step
of M performs 2 accesses into the ASR-ORAM, which take N ε · logN · poly (λ) = N ε · poly (λ) time
(because N ≤ 2λ). Consequently, Time

(
Mmh
U , x,D

)
= T ·N ε ·poly (|M | , λ) using the same arguments

as in the proof of Claim 6.3.

7 Extensions

In this section we describe several extensions and generalizations of our RAM-FHE schemes. Specif-
ically, we describe how to extend the schemes of Section 6 and Section 6.2 to support homomorphic
evaluation of RAM machines with long inputs, long outputs, and long descriptions. Specifically, we
mean that these quantities are not a priori bounded at encryption time by any polynomial. Moreover,
we describe how our schemes can be modified to support variable-length scratch tapes and persistent
databases.

7.1 Supporting Variable-Length Scratch Tapes

In our single-hop RAM-FHE construction (Construction 5 on page 36), a bound s on the scratch-tape
size is provided at encryption time, and correctness is guaranteed only for RAM machines that do
not use more that s scratch tape space. However, this can easily be generalized to any scratch tape
size, by using separate ISR-ORAMs to access the database and scratch tape. While we could use any
ISR-ORAM, notice that we only need a read-only ISR-ORAM for the database, and an ISR-ORAM
for an initially-empty database for the scratch tape. These are easily instantiated as follows: a SK-
DEPIR scheme is itself a read-only ISR-ORAM scheme, because the server is stateless, and the client
only stores a long-term key (using a short-term state between the Query and Decode procedures). An
ORAM scheme for initially-empty databases (Appendix A) is an ISR-ORAM if the setup is performed
in the first access to the database, since in this case rewinding to the initial state results in an entirely
new instance of the ORAM. When the ORAM for initially-empty databases is initialized with size
bound 2λ,13 we obtain a single-hop RAM-FHE scheme as described in Theorem 6.1, but without the
restriction on the scratch tape size.

We note that our multi-hop RAM-FHE scheme (Construction 7 on page 42) can support a scratch
tape of any size, since its size is bounded at evaluation time by T (the bound on the number of

13We note that Construction 5 cannot support an exponential space bound, because in that case the ISR-ORAM
would be instantiated for exponential-sized databases, so ISR− ORAM.Setup would require exponential time.

45

transition steps performed by the RAM machine), and a RAM machine running for T steps cannot
use more than T scratch tape space.

7.2 Supporting Variable-Length Databases

In our RAM-FHE schemes, the database size was determined at encryption time, and remained fixed
throughout iterative executions of the Eval procedure. Notice that this is only an issue in the multi-
hop setting, since any writes to the database in the single-hop setting can be emulated by writes to
the scratch tape (see related discussion in the second paragraph of Section 5.2).

We now show that Construction 7 can be generalized to support databases whose size is not fixed.
More specifically, the scheme supports RAM machines that grow or shrink the database, but reveal
when the database grows/shrinks. We proceed to explain how this achieved.

In Construction 7, the database is stored in an ASR-ORAM, therefore to support variable-length
databases, it suffices that the underling ASR-ORAM will support this. Our ASR-ORAM (Construc-
tion 2) has a hierarchical structure which is particularly suitable for this. Specifically, new levels in
the hierarchical structure can be added “on the fly” by generating a new SK-DEPIR for the level
(namely, by running the InitLevel procedure of Figure 1 on page 20), and thus the scheme can support
additions to the database.

Additionally, memory blocks can be deleted by adding a new “Delete” procedure that on input a
block B emulates a write operation for B, but when writing B to the top level, adds a “deleted” tag
to it. Reshuffle is also adapted to support deletions by removing deleted blocks (i.e., blocks with a
“deleted” tag). This is done by assigning such blocks the label 1 in Step 2 of the ReShuffle procedure
of Figure 3 (page 22). Moreover, if in Step 7 of the ReShuffle procedure, A has size 2i (i.e., all blocks
at addresses > 2i have label 1) then level i+1 is deleted, and A is used to initialize level i by running
InitLevel (i, A) in Step 8.

We note that adding and deleting levels “on the fly” as described above reveals when an addition or
deletion occurs. However, revealing additions is necessary to support a growing database when there
is no a-priori bound on its size, or to guarantee the ORAM complexity at each operation depends on
the actual database size at that point, even if such a bound is known. Similarly, revealing deletions
is also necessary to avoid larger than needed overheads in accessing the ORAM.

The resultant scheme has the same efficiency guarantee as in Theorem 6.6, but N is now the
maximal (instead of initial) database size during the execution of Eval.

7.3 Supporting Variable-Length and Long Inputs and RAM Machine Descrip-
tions

The RAM-FHE constructions of Section 6 and Section 6.2 assume some a-priori known bound (known
during encryption) on the input length and description size of RAM machines. In particular, the input
and RAM machine description are given as explicit input to the universal RAM machine, and the
complexity of Eval

(
M,x, 1T

)
is T · poly (|M | , λ) (in the single-hop setting) or T · N ε · poly (|M | , λ)

(in the multi-hop setting). (Here, we also use the fact that |x| ≤ |M |.) We now describe how to
generalize our schemes to support variable input length and description size of RAM machines, where
the complexity of Eval

(
M,x, 1T

)
would be (T + |M |) · poly (log |M | , λ) (in the single-hop setting)

or (T + |M |) · (N + |M |)ε · poly (λ) (in the multi-hop setting) for any M,x. We also show a more
involved multi-hop construction with (T ·N ε + |M |) · poly (λ) complexity. (Here, we also use the fact
that |M | ≤ 2λ.) Of course, for long inputs M cannot take x as an explicit input, so we assume M
has RAM access to its input x. It turns out that the multi-hop setting admits a simpler solution, so
we consider the multi- and single-hop settings separately.

46

7.3.1 The Multi-Hop Setting.

The high-level idea of the construction is to first repeatedly run a RAM machine Min that takes
as input a bit-string of some fixed poly (λ) length, and concatenates it to the database (by growing
the database). By repeatedly applying this program to the input x and description M of the RAM
machine, we obtain at the end of the process an encryption of the database, concatenated with the
input and description of the RAM machine. Now, one can run a modified universal RAM machine
Mmh′
U which reads the needed input bits, and the next command to execute, from the encrypted

database. When the execution of the universal RAM machine terminates, we again repeatedly run a
RAM machine Mout that erases a fixed-length string from the database, thus erasing x,M from the
encrypted database. We now elaborate on this construction.

First, since Min grows the database, we use the RAM-FHE scheme that supports variable-length
databases (Section 7.2). Fix some p (λ) = poly (λ), then Min takes as input z ∈ {0, 1}p(λ) and an
address addr ∈

[
2O(λ)

]
, has RAM access to a database DB, and writes z to DB starting in address

addr. Having Min take an address as input allows us to “leave room” for the original database to grow
(such that the resultant evaluation can support variable-length databases). The RAM machine Mout

takes as input a length 1p(λ), and an address addr ∈
[
2O(λ)

]
, and erases p (λ) bits from the database,

starting at address addr. The RAM machine Mmh′
U operates similarly to Mmh

U of Figure 11 (page 63),
except for the following: (1) instead of taking x,M as input, Mmh′

U takes |x| , |M |; (2) to figure out
M ’s next command (in Step 2a in Figure 9 on page 62), Mmh′

U uses the ASR-ORAM to read the
command from the database (M ’s internal state specifies the command number, and the location of
the command can be computed from the database size and input length); (3) if during the emulation
of M ’s transition step (in Step 2a in Figure 9) M reads an input bit, Mmh′

U uses the ASR-ORAM to
read the input bit from the database.

Given this description, Eval operates as follows:

• Divides the input and RAM machine description into “chunks” of size p (λ). (Eval can choose
any polynomial p.)

• Copies the input and RAM machine description into the encrypted database one “chunk” at a
time, by repeatedly running Min, where the first execution is with input addr = N , and in the
following executions addr increases by p (λ) in each execution. Let addrfin denote the address in
the last execution.

• Runs Mmh′
U on the encrypted database obtained through this processes.

• Repeatedly runsMout on the database obtained fromMmh′
U ’s execution, where the first execution

is with input addr = addrfin, and in the following executions addr decreases by p (λ) in each
execution.

• Outputs whatever Mmh′
U outputs (but uses the database obtained in the previous step as the

updated database).

The scheme described above performs O (|M |) operations to copy x,M into the database (each
requires at most (N + |M |)ε · poly (λ) operations, because the database now has size N + O (|M |)),
followed by T steps, each taking (N + |M |)ε · poly (λ) operations. We describe a more efficient
construction in the next section.

7.3.2 The Single-Hop Setting.

In the single-hop setting, it is no longer possible to sequentially run multiple short-input RAM
machines to write a long input (and RAM program) to memory. Instead, we must directly modify

47

our constructions to handle a more general model of RAM computation, in which machines have
RAM access not only to their database and scratch tapes, but also to their input. The main issue in
this setting can be seen already in transcript-simulatable obfuscation: we must prevent a malicious
evaluator from performing “mixed input” attacks. In other words, we must guarantee that the entire
execution is consistent with a fixed value of x,M .14

To explain how this is resolved, recall that our transcript-simulatable obfuscator produces an
obfuscated circuit C that takes as input a signed Merkle commitment to the contents of its tapes.
Recall that Merkle commitments are succinct and locally openable – if one has generated a commitment
rt of an n-bit string x, it is possible to give a succinct proof that certifies an arbitrary bit of x.

To handle long inputs, we simply require that a MAC-tagged commitment to the input tape is also
provided (under some keyKinp). To allow the evaluator to generate, on his own, MACed commitments
for arbitrary inputs, we include in the obfuscation an additional circuit Cinp. This circuit is meant
to be invoked O(n) times in a stateful manner to produce a signed commitment. To facilitate this,
Cinp has an independent MAC key K ′ to sign its own states. In the first invocation, a Merkle root
rt and an input length n is provided (purportedly rt is a commitment to some n-bit string x). Cinp

then maintains (rt, i, n) as its state, where i is initially 0 and increments by one on each “successful”
invocation. In the j’th invocation, the input to Cinp is supposed to be the jth bit of x, as well as a proof
certifying the correctness of the provided bit. Cinp verifies the provided proof, and the invocation is
said to be successful if the verification passes. If the invocation is unsuccessful, then Cinp aborts (i.e.,
outputs ⊥). After the nth execution, it outputs a MAC (under key Kinp) of (rt, n).

Upgrading to address-simulatable obfuscation to support arbitrary length inputs poses no addi-
tional difficulties once we have transcript-simulatable obfuscation.

The final step, constructing RAM FHE, requires the input access pattern to be oblivious. We can
achieve this by applying the address-simulatable obfuscator to a machine that first copies its input to
a scratch tape (instantiated with an oblivious RAM), and then accesses the input only via this copy.

We note that the same construction can also be used in the multi-hop setting to obtain better
efficiency than the generic construction described in the previous section. Specifically, in this case
the runtime of Eval is (T ·N ε + |M |) · poly (λ), where the improved efficiency is because the input is
copied into the scratch-tape ORAM (instead of the database ASR-ORAM) which is implemented by
an ORAM that achieves asymptotically better parameters than ASR-ORAM.

7.4 Supporting Long Outputs

In this section we generalize our RAM-FHE constructions to support evaluation of RAM machines
with long outputs. We assume that the length of the output is known at the time of FHE evaluation
(otherwise the evaluator would be forced to produce a ciphertext as long as the provided runtime
bound).

Machines that produce variable-length output can be modeled in several ways; the simplest way
is to allow transition functions to output a bit and also continue executing (and therefore potentially
output more bits in the future). This model (combined with a sufficiently large scratch space, e.g.,
as in the extension of Section 7.1) is sufficiently powerful to capture any other “reasonable” model.
For example, one might alternatively imagine giving a RAM machine random write access to another
“output tape”, and defining the output to be the contents of this tape at the time that the machine
terminates. The bit-by-bit output model can simulate this model by emulating a k-bit output tape

14Specifically, the transcript-simulatable RAM-VBB obfuscator of Section 6 assumes that the entire input and RAM
machine description are available, and consistent, throughout the execution (since these are provided as input to the
simulator). This issue does not arise in the construction outlined in Section 7.3.1, since Min takes each input/RAM
machine description “chunk” as explicit input.

48

(using a designated region of the scratch tape), and outputting each bit stored therein at the end of
the computation. Thus we will focus on the “bit-by-bit output” model.

Before delving into any details, we first note that it is generically possible to upgrade a RAM-FHE
scheme to support machines with k-bit outputs, incurring a multiplicative factor of k in the runtime
of Eval. Specifically, one can separately homomorphically evaluate k different RAM machines where
the i’th machine outputs the i’th bit of the k-bit output (and discards all other bits).

Non-generically, our construction of transcript-simulatable obfuscation generalizes almost imme-
diately to RAM machines with bit-by-bit output, achieving a runtime of (T + k) · poly (λ) in the
single-hop setting, and (T + k) ·N ε · poly (λ) in the multi-hop setting. Moving to address-simulatable
obfuscation, we must ensure that each output ciphertext uses pseudo-independent randomness. This
is only a matter of providing an additional input to the PRF that generates encryption randomness.
In particular, we will append i to the PRF’s input when encrypting the ith output bit.

References

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin. Dele-
gating RAM computations with adaptive soundness and privacy. In TCC 2016-B, Pro-
ceedings, Part II, pages 3–30, 2016.

[Agr18] Shweta Agrawal. New methods for indistinguishability obfuscation: Bootstrapping and
instantiation. IACR Cryptology ePrint Archive, 2018:633, 2018.

[AIT16] Afonso Arriaga, Vincenzo Iovino, and Qiang Tang. Updatable functional encryption.
IACR Cryptology ePrint Archive, 2016:1179, 2016.

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation
without multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness.
IACR Cryptology ePrint Archive, 2018:615, 2018.

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin,
Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability obfus-
cation for RAM programs and succinct randomized encodings. SIAM J. Comput.,
47(3):1123–1210, 2018.

[BCP16] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and applications.
In TCC 2016-A, Proceedings, Part II, pages 175–204, 2016.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in LWE-based ho-
momorphic encryption. In PKC 2013, Proceedings, pages 1–13, 2013.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO
2001, Proceedings, pages 1–18, 2001.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: provable
security against zeroizing attacks. In TCC 2018, Proceedings, Part II, pages 544–574,
2018.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In ITCS 2012, Proceedings, pages 309–325. ACM,
2012.

49

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In TCC 2017, Proceedings, Part II, pages 662–693, 2017.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In EUROCRYPT
2016, Proceedings, Part II, pages 764–791, 2016.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. ECCC 2011, 18:109, 2011.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin, and
Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability obfuscation.
In ITCS 2016, Proceedings, pages 179–190, 2016.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: From practice to theory. 2019.

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive succinct
garbled RAM or: How to delegate your database. In TCC 2016-B, Proceedings, Part II,
pages 61–90, 2016.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS 2016, Pro-
ceedings, pages 169–178, 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In STOC 2015, Pro-
ceedings, pages 429–437, 2015.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private
information retrieval. In TCC 2017, Proceedings, Part II, pages 694–726, 2017.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In
STOC 1972, Proceedings, pages 73–80, 1972.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation
branching programs: Proofs, attacks, and candidates. In CRYPTO 2018, Proceedings,
Part II, pages 577–607, 2018.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC 2009, Pro-
ceedings, pages 169–178. ACM, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In STOC 2013, Proceedings, pages 40–49, 2013.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty RAM
computation in constant rounds. In TCC 2016-B, Proceedings, Part I, pages 491–520,
2016.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In CRYPTO 2010, Proceedings, pages
465–482. Springer, 2010.

50

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In EUROCRYPT 2014, Proceedings, pages 405–422,
2014.

[GHPS13] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Field switching in BGV-
style homomorphic encryption. Journal of Computer Security, 21(5):663–684, 2013.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In FOCS 2014, Proceedings, pages 404–413, 2014.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In EUROCRYPT 2012, Proceedings, pages 465–482. Springer, 2012.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In FOCS 2005, Proceedings, pages 553–562, 2005.

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run Turing machines on encrypted data. In CRYPTO 2013,
Proceedings, Part II, pages 536–553, 2013.

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC 2013, Proceedings, pages 555–564. ACM, 2013.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM from
one-way functions. In STOC 2015, Proceedings, pages 449–458, 2015.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and
Mark Zhandry. Secure obfuscation in a weak multilinear map model. In TCC 2016-B,
Proceedings, Part II, pages 241–268, 2016.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In STOC 1987, Proceedings, pages 182–194, 1987.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cam-
bridge University Press, 2001.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled RAM
from laconic oblivious transfer. In CRYPTO 2018, Proceedings, Part III, pages 515–544,
2018.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO
2013, Proceedings, Part I, pages 75–92. Springer, 2013.

[HY16] Carmit Hazay and Avishay Yanai. Constant-round maliciously secure two-party compu-
tation in the RAM model. In TCC 2016-B, Proceedings, Part I, pages 521–553, 2016.

51

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In TCC 2016-B,
Proceedings, Part II, pages 91–118, 2016.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In STOC 2014, Proceedings, pages 485–494. ACM,
2014.

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their application
to indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2018:646, 2018.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In EUROCRYPT 2013,
Proceedings, pages 719–734, 2013.

[LO17] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In CRYPTO 2017,
Proceedings, Part II, pages 66–92, 2017.

[Mia16] Peihan Miao. Cut-and-choose for garbled RAM. IACR Cryptology ePrint Archive,
2016:907, 2016.

[MZ18] Fermi Ma and Mark Zhandry. The MMap strikes back: Obfuscation and new multilinear
maps immune to CLT13 zeroizing attacks. In TCC 2018, Proceedings, Part II, pages
513–543, 2018.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In
STOC 1997, Proceedings, pages 294–303, 1997.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In STOC 1990, Proceedings,
pages 514–523, 1990.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, 1979.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy
homomorphisms. Foundations of secure computation, Academia Press, 1978.

A Oblivious RAM for Initially-Empty Databases

In this section, we define the notion of an ORAM for initially-empty databases which, intuitively, is an
ORAM scheme for databases that start out empty, and has the feature that obliviousness holds even
when the adversary sees the access pattern to physical memory during setup. Formally,

Definition A.1 (ORAM for initially-empty databases). We say that a pair (Setup,Access) is an
ORAM scheme for initially-empty databases if it satisfies the following:

• Setup
(
1λ, N

)
is a protocol between the client C and server S. C takes as input a security

parameter λ, and a bound N ≤ 2λ on the database size, and S has no input. The output of
the protocol is a client state ck. The execution also updates the server state, which at the end
of the execution is denoted by st.

• Access has the same syntax as in Definition 2.4, except that the output value val′ might be ⊥
also in read operations, in case addr is an address that has not been previously written to.

52

• Correctness: Setup,Access satisfy the correctness property of Definition 2.4.15

• Security. Every PPT adversary A wins the following security game with a challenger C with
probability at most 1/2 + negl (λ): the game is identical to the security game of Definition 2.4,
except that in Step 1 the adversary sends to C a size bound N ∈ N instead of a database DB;
and in Step 2 C runs Setup

(
1λ, N

)
instead of Setup

(
1λ,DB

)
.

Next, we construct an ORAM scheme for initially-empty databases by a simple adaptation of
the Hierarchical ORAM scheme of [Ost90, GO96]. The hierarchical structure in our construction is
initially empty, and levels are added as needed, up to an a-priori determined bound specified during
setup. We also support reads for blocks that have not been previously accessed. Specifically, we prove
the following:

Claim A.2 (ORAM for initially-empty databases). Assume OWFs exist. Then there exists an ORAM
scheme for initially-empty databases in which Access, Setup have poly(λ) complexity, where λ is the
security parameter, and the client (server) state has size poly(λ) (poly(λ,N), where N is the database
size).

Construction 8 (ORAM for initially-empty databases). The scheme uses the following building
blocks:

• A PRF F .

• An IND-CPA secure symmetric encryption scheme (KeyGen,Encrypt,Decrypt).

The scheme consists of the following procedures.
Setup(1λ, N): Recall that λ denotes a security parameter, andN denotes a bound on the supported

database size. Proceed as follows.

• Initializing client state and counter: generate a random encryption key by computing sk ←
KeyGen

(
1λ
)
, pick a random PRF key K ← {0, 1}λ, and initialize a counter count for the

number of operations performed, to 0.

• Initializing the first level: run the InitLevel procedure of Figure 13 for i = 0 to obtain level 0 L0.

• Output: return the client key ck = (sk,K), and the server state st = (L0, count, N).

The Access protocol. To perform the operation op on location addr ∈ [N] in the database with
value val, the client C with state ck = (sk,K), and the server with state st =

(
{Li}i∈[`] , count, N

)
for some ` ≤ logN , operates as follows:

1. Resizing the ORAM: Retrieve count and N , and increment count := count + 1 on the server; if
count ≤ N and count = 2`, then run the InitLevel procedure of Figure 13 on i = ` + 1, which
updates the server state to include Li.16

2. If op = read run the Access procedure from [GO96] with op = read with the following changes:

(a) Computing bucket index: for each level 0 ≤ i ≤ `, let t = count div 2i. Compute the PRF
key for level i in epoch t as Ki = F (K, (i, t)). Compute li = F (Ki, addr) as the bucket
index for level i.

15We consider the “correct” value returned for addresses that have not been previously written to be ⊥.
16To achieve a bound on the worst case complexity of the scheme, we “spread out” the operations needed to generate

level i across accesses number 2i−1 to 2i.

53

(b) Handling uninitialized blocks: if block addr is not found, set the return value to be “empty”,
i.e., val = ⊥. write the block (addr,⊥, valid = false) to the top-level of the ORAM.

(c) Output: return val to the client.

3. If op = write run the Access procedure from [GO96] with op = write where the mapping
between addresses and level-i buckets is computed as in Step 2a above.17

We prove the following claims regarding Construction 8:

Claim A.3 (ORAM for initially-empty databases security). Assuming the security of all building
blocks, Construction 8 is a secure ORAM scheme for initially-empty databases.

Claim A.4 (ORAM for initially-empty databases complexity). When instantiated with a bound N
on the database size, and security parameter λ, Construction 8 satisfies the following:

• The complexity of Setup and Access is poly(λ).

• The client state has size poly(λ), and the server state has size poly(λ,N).

Claims imply Theorem. We now use the claims to prove Claim A.2.

Proof of Claim A.2. We prove that Construction 8 has the required properties. The existence of
OWFs implies the existence of a secure ORAM for initially-empty databases by Claim A.3, and thus
the security of Construction 8 follows. The stated complexity follows directly from Claim A.4.

Proofs of Claims. We now prove Claims A.3 and A.4.

Proof Sketch of Claim A.3. Perfect correctness follows from the correctness of the [GO96] scheme,
together with the way uninitialized blocks are handled, and because if a bucket overflows then the
level contents are stored “in the clear”.

We now sketch the security proof, which mirrors that of the hierarchal scheme of [GO96] that it is
based on. We note that Construction 8 differs from the hierarchal scheme in two ways: (1) additional
levels are added to the ORAM as it grows; and (2) we support accesses for addresses that do not have
existing blocks within the ORAM.

We first address obliviousness of growing the ORAM on Access executions. InitLevel is called each
time the count of the number of Access operations reaches the size of the current largest level, and
is initialized with “empty” blocks. Therefore, the ORAM growth depends only on the number of
accesses performed so far, and is independent of the operation type (read or write) in each access.
Thus, the adversary’s view in the security game when b = 0, 1 remain indistinguishable even when
we grow the ORAM.

We next address the obliviousness of blocks when they are accessed for the first time. write
operations proceed identically to the scheme of [GO96]. However, read operations diverge from the
hierarchal scheme: while the block is searched for at each level in the assigned bucket, no block
associated with the address will be found, which is the reason we create a new “empty” block with
that address. This prevents a repeated access to the assigned path on subsequent accesses to that
address, and the rest of the analysis is as in [GO96].

We condition our proof on the event that no bucket overflows – this happens with overwhelming
probability as shown by Lemma 3.11.

17To obtain perfect correctness, if a bucket overflows during reshuffle then the contents of the level are stored “in the
clear” (i.e., the block encryptions are stored in an array).

54

Proof of Claim A.4. We first analyze the complexity of Setup. During a Setup execution, the client
performs poly(λ) and O(logN) operations to initialize the secret keys sk,K, and the counter count
(respectively). The client performs, for a bucket size of B, O(B) operations to initialize the first
level of the ORAM. We set bucket size to B = O(λ), resulting in a total number of operations of
poly(λ, logN) = poly(λ) for Setup.

The complexity of Access is that of [GO96], where the j’th access for 2i−1 ≤ j < 2i also performs
its “share” of initializing level-i. The cost of initializing level-i is B · 2i · poly (λ) = 2i · poly (λ). This is
spread-out over 2i−1 operations, resulting in an additional poly (λ) number of operations per access.
The overall execution of Access is therefor poly(λ). Client state is simply that of [GO96], consisting of
encryption and PRF keys (namely, poly(λ)). The server state again is simply that of [GO96] (of size
poly (λ,N)) with an additional counter of size logN , so overall the server state has size poly(λ,N).

We can derandomize Construction 8 using a similar transformation to that of Construction 9,
except that the initial hash h0 is generated in the first access using the access itself, and the bound
on the database size. Using similar argument to the proofs of Claims B.1 and B.3, we can prove the
following.

Claim A.5 (ORAM for initially empty databases with a deterministic client). Let ORAM be a
randomized ORAM for initially-empty databases, and let D− ORAM be the deterministic ORAM for
initially-empty databases obtained by applying Construction 9 to ORAM. Then assuming the security
of all building blocks, D− ORAM is a secure ORAM for initially-empty databases.

B Rewindable ORAM with a Deterministic Client

In this section we describe how to transform an ASR or ISR-ORAM scheme with a PPT client, into
one with a deterministic client. This will be needed when rewindable ORAM is used to construct
RAM-FHE.

Intuitively, the idea is to generate the client randomness using a PRF applied to the entire exe-
cution history. However, since the client cannot store the entire history, we instead use a short hash
of the history, which we incorporate into the client state.

Construction 9 (Rewindable ORAM with deterministic client). The scheme uses the following
building blocks:

• A PRF F .

• A family H of collision-resistant hash functions.

• A ISR/ASR-ORAM scheme (ORAM.Setup,ORAM.Access).

The scheme consists of the following procedures.
Setup(1λ,DB): Recall that λ denotes a security parameter, and DB ∈ {0, 1}N . Proceed as follows.

• Initializing the ORAM: run ORAM.Setup
(
1λ,DB

)
to obtain client and server states ck, st, re-

spectively.

• Initializing the keys: pick a description of a hash function H ← H and generate a random PRF
key K ∈R {0, 1}λ.

• Initializing the hash: Compute a hash h0 = H (DB) of the initial database.

• Output: the server state is st, and the client state is ck′ = (ck, H,K, h0).

55

The Access protocol. To perform the operation op on location addr ∈ [n] in the database with
value val, the client C with state ck = (ck, H,K, h), and the server with state st, operate as follows:

• Updating the hash: C generates an updated hash h′ = H (h, op, addr, val) by hashing his input
together with current hash value.

• Generating client randomness: C sets r = F (K,h′).

• Emulating ORAM access: C and S emulate the Access protocol of the underlying ORAM, where
C emulates the client with input (op, addr, val), state ck, and randomness r, and S emulates the
server with state st.

Claim B.1 (Deterministic-Client ISR-ORAM Complexity). Under the assumptions of Theorem 3.5,
there exists an ISR-ORAM scheme with a deterministic client where for a database of size N and a
security parameter λ, the complexity of ORAM.Access is poly(λ), the client state has size poly(λ), and
the server state has size poly(λ,N).

Proof. We show Construction 9 has the required properties, when instantiated with the ISR-ORAM
scheme of Theorem 3.5. The client state in Construction 9 is larger by a poly (λ) additive factor
compared to the client state in the scheme of Theorem 9 (since it needs to store the description of the
hash function, the PRF key, and the hash). The server state is identical to the underlying ISR-ORAM
scheme. As for the complexity of Access, that is only poly (λ, logN) = poly (λ) larger than that of
the underling ISR-ORAM Access algorithm, since the client needs to compute a hash and a PRF
image.

The proof of the following claim follows identically to the proof of Claim B.1, by instantiating
Construction 9 with the ASR-ORAM scheme of Theorem 3.8.

Claim B.2 (Deterministic-Client ASR-ORAM Complexity). Under the assumptions of Theorem 3.8,
there exists an ASR-ORAM scheme with a deterministic client where for a database of size N and a
security parameter λ:

• The complexity of Access is N ε · poly (λ).

• The client state has size poly (λ), and the server state has size N1+ε · poly (λ).

Claim B.3 (Deterministic-Client ISR/ASR-ORAM Security). Let ORAM be a randomized ISR-
(ASR-)ORAM, and let D− ORAM be the deterministic ISR- (ASR-)ORAM obtained by applying
Construction 9 to ORAM. Then assuming the security of all building blocks, D− ORAM is a secure
ISR- (ASR-)ORAM.

Proof. For correctness, by the pseudorandomness of F an honest execution of D− ORAM (i.e., with
no rewinds) is computationally close to an execution in which F is replaced with a random function.
Conditioned on the event that there are noH-collisions (which by the collision-resistance ofH happens
with overwhelming probability), the execution with a random function is identical to an execution
of ORAM with fresh randomness (since in an honest execution history never repeats), for which
correctness holds by the correctness of ORAM.

We now argue security, via a sequence of hybrids. We condition all hybrids on the event that
throughout the execution there are no collisions of H. (We note that in the rewindable security game,
the history might be repeated due to rewinds, but we do not consider these as collisions of H.) This
holds with overwhelming probability due to the collision-resistance of H, and is therefore without loss
of generality.

56

Hb
0 : Hybrid Hb0 is the view (st0, (ACCi)b) of the adversary A in the rewindable ORAM security game

of Definition 3.2 when the challenger chooses bit b.

Hb
1 : In Hb1, we replace the PRF used to generate the randomness for each ORAM.Access with a truly

random function applied to the entire (unhashed) history. Hybrids Hb0 and Hb1 are computation-
ally indistinguishable by the pseudorandomness of F . This holds because we have conditioned on
the event that no H-collisions occur, so throughout the execution, the random function is called
multiple times on the same input if and only if F is called multiple times on the same input.

To conclude the proof, we claim that H0
1 and H1

1 are computationally indistinguishable by the
security of the underlying ISR/ASR-ORAM scheme. Indeed, the only difference between Hb1 and
the adversary’s view in the corresponding execution in ORAM is that in ORAM multiple executions
with the same history are executed with fresh randomness, whereas in Hb1 these executions use the
same client randomness. However, we can generate Hb1 from the adversary’s view in the rewindable
security game of ORAM as follows: the adversary A′ against D− ORAM emulates the challenger for
the adversary A against ORAM, where in every iteration of Step 3 of the rewindable security game
(Definition 3.2), A′ forwards the query to its own challenger, unless the query is consistent with
the execution history generated in a previous iteration, in which case A′ simply provides the access
pattern during that execution (which A′ had obtained from its own challenger in a previous iteration)
as the challenger’s answer to A.

57

The execution circuit CExec

Constants and inputs: as described in Figure 4.

1. Verify input consistency: verify that Verify (KMAC, (bfin, st) , σ) = 1. If bfirst = false then verify
additionally that:

(a) PDB,Pstape,Pw are paths to the nodes addrDB, addrstape, addrw in the MHT whose root is Rt,
and the values at addrDB, addrstape are valDB, valstape (respectively).

(b) Phist is the path to the right-most node in the MHT whose root is Rthist.

(c) x′ = x. (Verifying the same input is used throughout the execution.)

If any of these checks fail, output abort.

2. Updating database MHT: if bfirst = false, use Pw to compute the root Rt′ of the MHT obtained
from MT by replacing the value of the node addrw with valw.

3. Emulating next transition step:

(a) Execute the next command of M , as described in stM (which indicates which command is
next), by applying the transition function δ using valDB, valstape as the values obtained from
the last command executed. (If bfirst = true then valDB, valstape are not needed and are therefore
ignored.) The execution results in an updated internal state st′M ofM (i.e., the state outputted
by the transition circuit).

(b) If M terminated in the current step with output y, then set bfin = true and out = (bfin, y), and
go to Step 5.

(c) Otherwise, the execution step results in accesses addr′DB, addr′stape,
(
addr′w, val′w

)
reading ad-

dresses addr′DB, addr′stape from the database and scratch tape (respectively), and writing value
val′w to address addr′w in the scratch tape. Set bfin = false.

4. Updating history and state: set leaves =
(
valDB, valstape, addr′DB, addr′stape, addr′w, val′w

)
. If bfirst =

false, use Phist to compute the root Rt′hist of the MHT MT′hist obtained from MThist by adding the
leaves leaves. If bfirst = true, set bfirst = false and generate a (new) MHT MT′hist for leaves (see remark
on page 37). In either case, let P ′hist be the path to the right-most node in MT′hist, and set st′ =(
bfirst, st′M ,Rt′,Rt′hist,P ′hist, addr′DB, addr′stape, addr′w, val′w, x

)
, compute σ′ = Tag (KMAC, (bfin, st′)), and

set out = (bfin, st′, σ′).

5. Output: return out.

Figure 5: Description of the circuit used to emulate a single transition of the RAM machine

58

The wrapper program Mwrap

RAM access to: a MHT MT for a database D (which contains an initial database, concatenated with a
scratch tape).
Inputs:

x ∈ {0, 1}n: an input for a RAM machine M .

st: the internal state used in the execution of CExec.

σ: a MAC tag for st.

C̃: an obfuscation of the circuit CExec of Figure 5.

Operation:

1. Initialization: Set Phist to be empty (this is a “place holder” for the right-most path in a MHT
MThist of the access history so far), and z = (x, false, st, σ), padded with zeros to have the size of
inputs to C̃.

2. Repeat:

• Emulate an execution step: execute (bfin, y) = C̃ (z) to obtain a bit bfin indicating whether
the execution has terminated, and an additional output y.

• Generate output when the execution ends: if bfin = true then output y and halt.

• Emulate database and scratch tape accesses:

– Interpret y as (st′, σ′), where σ′ is a MAC tag for (bfin, st′), and st′ is the current internal
execution state, consists of: a bit b, the current internal state stM of M (as outputted by
the transition circuit), the root Rt of an updated MHT for D, a root Rthist for a MHT
MThist, the path Phist to the right-most node in MThist, addresses addrDB, addrstape to read
from D, a value valw to write to address addrw of D, and an input x′ for M .

– Read the path PDB to the node addrDB in MT, and let valDB be the value of the node.
– Read the path Pstape to the node addrstape in MT, and let valstape be the value of the node.
– Read the path Pw to the node addrw in MT. Replace the value in addrw with valw, and

update its path in MT.

• Compute input for next execution step: Set z =
(x, bfin, st′, σ′, valDB, valstape,PDB,Pstape,Pw).

Figure 6: Description of the wrapper RAM machine

59

The RAM machine Msk,K

Hard-wired values: an encryption key sk, and a PRF key K.
Internal variables: an encryption cst of an internal state st of M (as outputted by the transition circuit),
and a counter count initialized to 0.
RAM access to: a database D (containing an initial database, concatenated with a scratch tape).
Input: input x ∈ {0, 1}n for M , and some additional input I.
Operation: repeat:

1. Decrypt internal state and values read from database and scratch tape: Decrypt st =
Decrypt (sk, cst).

• If count = 0 then set valDB, valstape to be empty. (This is the first operation of Msk,K , no
values were previously read from the database and scratch tape.)

• Otherwise, decrypt valDB = Decrypt (sk, cDB) and valstape = Decrypt (sk, cstape), where cDB, cstape

are the values that were read in Step 3 below.

2. Emulate the next transition step:

(a) Execute the next command of M with internal state st, and using valDB, valstape as the values
read from the database and the scratch tapes, respectively. (M ’s internal state st indicates
which command should be executed.)

(b) If M terminated in the current step with output y, then output y.

(c) Otherwise, the execution step results in an updated internal state st′, and accesses
addrDB, addrstape, (addrw, valw) reading addresses addrDB, addrstape from the database and
scratch tape (respectively), and writing value valw to address addrw in the scratch tape.

3. Read from the database and scratch tape: read addresses addrDB and addrstape from the
database and scratch tape, respectively, and let cDB, cstape denote the read values.

4. Generate encryption randomness: let v = (x, st, count, valDB, valstape). Set r = F (K, (v, 0))
and rw = F (K, (v, 1)).

5. Write to the scratch tape: encrypt cw = Encrypt (sk, valw; rw), and write cw to address addrw
of the database.

6. Update internal state: encrypt c′st = Encrypt (sk, st′; r) and set cst := c′st.

7. count := count + 1.

Figure 7: RAM machine used by the address-simulatable RAM-VBB obfuscator of Construction 4

60

The RAM machine MU with RAM access to D̃B
Hard-wired value: a database size N , a public key pk for a PKE scheme, and a PRF key K.
Internal variables:

ck: a client state in an ISR-ORAM.

y: the output of a RAM machine (initialized to 0).

fin: a boolean variable indicating whether the execution has terminated or not (initialized to false).

count: a counter of the number of operations performed so far (initialized to 0).

Inputs:

M : a description (of length at most d) of a RAM machine.

T : a bound on the runtime of M .

x ∈ {0, 1}∗: the input for the RAM machine M .

Operation:

1. Initialize the run: set valDB, valstape to be empty. (This is the first operation, no values were
previously read from the database and scratch tape.)

2. Execute M for T steps: for i = 1, . . . , T , do:

• Emulate a transition step: execute the procedure from Figure 9 with valDB, valstape as the
values read from the database and the scratch tape, respectively.

• Access DB and scratch tape: if count ≤ T then for j = 1, 2, 3: execute the procedure from
Figure 10.

3. Output: set r = F (K, (M,T, x)), encrypt c = PKE.Encrypt (pk, y; r) and output c.

Figure 8: RAM machine used in Construction 5

61

Emulating a single transition of M in MU
Hard-wired values, internal variables, M : as in Figure 8.

1. If fin = true, perform a dummy step: perform a no-op operation,a and set addrDB = 0,
addrstape = addrw = N , and valw = 0 (these are dummy accesses which read address 0 from
the database and scratch tape, and write 0 to address 0 of the scratch tape).

2. If fin = false, perform the next transition step:

(a) Execute the next command of M using valDB, valstape as the values read from the database
and the scratch tapes, respectively.

(b) If M terminated in the current step with output out, then set y = out and fin = true.

(c) Otherwise, if count < T then this step results in accesses addrDB, addrstape, (addrw, valw)
reading addresses addrDB, addrstape (respectively) from the database and scratch tape, and
writing value valw to address addrw of the scratch tape. Set addrstape := addrstape + N ,
addrw := addrw +N . (This “translates” the addresses in the scratch tape to addresses in D̃B,
since M ’s scratch tape appears in D̃B after the size-N database.)

3. Update the counter: set count = count + 1.
aThis is needed to hide whether a command of M was executed or not, which would reveal information about

the actual runtime of M .

Figure 9: Emulating a single transition of M

Emulating a database or scratch tape access of M in MU
Hard-wired value, internal variables, j: as in Figure 8.
Memory accesses addrDB, addrstape, (addrw, valw): as in Figure 9.

1. Determine ORAM client input: if j = 1 (i.e., read from database) set v = (addrDB,⊥). If
j = 2 (i.e., read from scratch tape) set v = (addrstape,⊥). If j = 3 (i.e., write to scratch tape), set
v = (addrw, valw).

2. Initiate ORAM access: run the ISR-ORAM client from state ck with input v, to obtain a query
q to the physical memory, and an update instruction update to the physical memory. (This results
also in an updated client state which is updated in MU ’s internal state).

3. Emulate ORAM access: until the ORAM client halts, do:

• Read the value val written in block q of D̃B, and perform update on D̃B.

• Run the ORAM client from state ck, given val as the server’s answer to the last query q.
The client outputs either the next query q and an update instruction update to the physical
memory, or an output value valout (in this case, the ORAM client halts; in either case, this
also results in an updated ORAM client state).

4. Output: if j = 1 (i.e., a value was read from the database), set valDB = valout, and if j = 2 (i.e., a
value was read from the scratch tape), set valstape = valout.

Figure 10: Emulating a database or scratch tape access in M

62

The RAM machine Mmh
U with RAM access to D̃B and stape

Hard-wired value: a public key pk for a PKE scheme, and a PRF key K.
Internal variables: ck, y, fin, count: as in MU (Figure 8), and additionally a client state ckstape in a scratch-
tape ORAM (initialized to be empty).
Inputs: M,T, x: as in MU (Figure 8), as well as an auxiliary input z ∈ {0, 1}∗.
Operation:

1. Initialize the run: set valDB, valstape to be empty. (This is the first operation, no values were
previously read from the database and scratch tape.) Let roram = F (K, (M,T, x, z, 0)) and rEncrypt =
F (K, (M,T, x, z, 1)).

2. Initialize scratch-tape ORAM: generate an ORAM scheme for initially-empty databases for an
empty scratch tape by emulating the Setup protocol between the client and server, by running the
ORAM client with randomness roram, writing to stape the values the client writes to the physical
memory on the server. Let ckstape denote the client state at the end of the run, and stape denote
the server state.

3. Execute M for T steps: for i = 1, . . . , T , do:

• Emulate a transition step: execute the procedure from Figure 9 (with valDB, valstape as the
values read from the database and the scratch tape, respectively), except for the following
changes:

– In Step 1, set addrDB = addrstape = addrDB,w = addrw = 0 and valDB,w = 0.
– In Step 2c, do not change the values of addrstape, addrw. Also, the execution step also

outputs a write instruction (addrDB,w, valDB,w) to the database.

• Access DB and scratch tape: if count ≤ T then for j = 1, . . . , 4: execute the procedure
from Figure 12.

4. Output: encrypt c = PKE.Encrypt (pk, y; rEncrypt) and output c.

Figure 11: RAM machine used in Construction 7

63

Emulating a database or scratch tape access in Mmh
U

Hard-wired value, internal variables, j: as in Figure 11.
Memory accesses addrDB, addrstape, (addrw, valw): as in Figure 9, as well as a write instruction
(addrDB,w, valDB,w) to the database.

1. Determine ORAM client input and server state: if j = 1 (i.e., read from database) set v =

(addrDB,⊥), tape = D̃B, and ck′ = ck. If j = 2 (i.e., read from scratch tape) set v = (addrstape,⊥),
tape = stape and ck′ = ckstape. If j = 3 (i.e., write to database), set v = (addrDB,w, valDB,w),
tape = D̃B and ck′ = ck. If j = 4 (i.e., write to scratch tape), set v = (addrw, valw), tape = stape
and ck′ = ckstape.

2. In the following, if j = 1 or j = 4 then use the ASR-ORAM client, otherwise use the ORAM client.

3. Initiate ORAM access: run the client from state ck′ with input v, to obtain a query q to the
physical memory, and an update instruction update to the physical memory. (This results also in
an updated client state which is updated in Mmh

U ’s internal state).

4. Emulate ORAM access: until the client halts, do:

• Read the value val written in block q of tape, and perform update on tape.

• Run the client from state ck, given val as the server’s answer to the last query q. The client
outputs either the next query q and an update instruction update to the physical memory,
or an output value valout (in this case, the client halts; in either case, this also results in an
updated client state).

5. Output: if j = 1 (i.e., a value was read from the database), set valDB = valout, and if j = 2 (i.e., a
value was read from the scratch tape), set valstape = valout.

Figure 12: Emulating a database or scratch tape access in Mmh
U

The InitLevel procedure
Constants: the encryption key sk, and bucket size B.
Input: the index i of the level to initialized.
Operation:

• For every 0 ≤ j < 2i:

– Generate a bucket Bj of B “empty” blocks (see remark on physical memory block con-
tents in Section 2.3 for a discussion of empty blocks), and encrypt B by computing B̃j ←
Encrypt (sk, Bj).

– Upload B̃j to the server as bucket j in level i.

• Let Li =
(
B̃j

)
j
denote the contents of level i.

Figure 13: The InitLevel procedure used in Construction 8

64

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Doubly-Efficient Private Information Retreival (DEPIR)
	Virtual Black-Box (VBB) obfuscation
	Oblivious RAM

	Rewindable Oblivious RAM
	Rewindable ORAM Security
	Rewindable ORAM Constructions
	ISR-ORAM from ORAM and SK-DEPIR
	ASR-ORAM from SK-DEPIR and OWFs

	Definition of RAM-FHE
	Definition of RAM machines
	Execution Semantics

	Single-Hop RAM FHE
	Multi-Hop RAM FHE

	Road Map Towards Constructing RAM-FHE
	Database-Dependent RAM-VBB Obfuscation
	Database-Dependent RAM-VBB Obfuscation: Constructions
	Transcript-Simulatable Database-Dependent RAM-VBB
	Address-Simulatable Database-Dependent RAM-VBB

	A RAM-FHE Scheme
	Single-Hop RAM-FHE
	Upgrading to a Multi-Hop Scheme
	Multi-Hop Transcript-Simulatable RAM-VBB obfuscation
	Multi-Hop RAM FHE

	Extensions
	Supporting Variable-Length Scratch Tapes
	Supporting Variable-Length Databases
	Supporting Variable-Length and Long Inputs and RAM Machine Descriptions
	The Multi-Hop Setting.
	The Single-Hop Setting.

	Supporting Long Outputs

	Oblivious RAM for Initially-Empty Databases
	Rewindable ORAM with a Deterministic Client

