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Abstract. We construct the first three message statistical zero knowl-
edge arguments for all of NP, matching the known lower bound. We do so
based on keyless multi-collision resistant hash functions and the Learning
with Errors assumption — the same assumptions used to obtain round
optimal computational zero knowledge.
The main component in our construction is a statistically witness indis-
tinguishable argument of knowledge based on a new notion of statistically
hiding commitments with subset opening.

1 Introduction

Since their introduction three decades ago [GMR89], the concept of zero knowl-
edge protocols has played a central role in the development of modern cryptog-
raphy. Different flavors of zero knowledge protocols have been studied according
to the level of soundness and zero knowledge achieved. Either property can be
statistical or computational, meaning that it holds against unbounded or compu-
tationally bounded adversaries, respectively. Protocols that satisfy both prop-
erties statistically, known as statistical zero knowledge proofs, are only possible
for languages in AM ∩ coAM [For89, AH91]; however, once either property is
relaxed to computational, protocols for all of NP can be constructed assuming
one way functions [GMW91, Nao91, BCC88, NOVY98, HNO+09].

In this work, we focus on statistical zero knowledge arguments for NP;
namely, computationally sound protocols where the view of any efficient verifier
can be efficiently simulated up to a negligible statistical difference. Such proto-
cols are especially appealing due to their everlasting zero knowledge guarantee
— even if the verifier stores conversations with the prover and post-processes
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them for as long as it wants, it does not learn anything that cannot be simulated
efficiently.

A foundational question is the round complexity of such protocols. Four
message protocols can be constructed based on collision resistant hash func-
tions [BJY97]. In terms of lower bounds, at least three messages are necessary
even for computational zero knowledge [GO94]. Constructing zero knowledge
arguments with matching round complexity has so far appeared more difficult
in the statistical setting than in the computational one. Computational zero
knowledge in three messages has been long known under unfalsifiable knowledge
assumptions [HT98, BP04, CD09, BCC+14] and recently also under a falsifiable
multi-collision resistance assumption on keyless hash functions [BKP18]. In con-
trast, three message statistical zero knowledge has been out of reach (even under
knowledge assumptions).

The difference between the statistical and computational settings seems to
run somewhat deeper, and manifests itself even in witness indistinguishability, a
relaxation of zero knowledge. While computational witness indistinguishability
has been long known in three [GMW91, FLS99], two [DN07], or even one mes-
sage [BOV07, GOS12], statistical witness indistinguishability in less than four
messages has only been very recently achieved [KKS18]. In fact, witness indis-
tinguishable arguments of knowledge, which are essential in the constructions of
three message computational zero knowledge, are still not known in less than
four messages in the statistical setting.

All and all, we are faced with the question:

What is the round complexity of statistical zero knowledge arguments?

1.1 Results

We construct the first round optimal statistical zero knowledge argument under
the same assumptions on which computational zero knowledge arguments are
currently known.

Theorem 1.1 (Informal). Assuming keyless multi-collision resistant hash
functions and LWE, both quasi-polynomially hard, there exist three message sta-
tistical zero knowledge arguments.3

Keyless multi-collision resistant hash functions, introduced in [BKP18], are func-
tions H : {0, 1}2λ → {0, 1}λ guaranteeing that no efficient adversary with non-
uniform description of polynomial size S can find more than poly(S) elements
that collide under H. Here poly is some fixed polynomial and the adversary’s run-
ning time may be an arbitrarily larger polynomial, or even quasipolynomial (as
required in the above theorem). While at this point non-standard, multi-collision
resistance of keyless hash functions is a falsifiable and relatively simple assump-
tion, which plausibly holds for existing keyless hash functions (see discussion in
[BKP18]).

3Here LWE is used to realize several generic primitives, which we address in the
body.
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Four message protocols from weaker assumptions. When considering
keyed hash functions, multi-collision resistance becomes a standard assump-
tion that relaxes the classical notion of collision resistance. A recent line of
work explores such hash functions demonstrating that their power goes be-
yond one-way functions to achieve some of the applications of collision resis-
tance [BDRV18, BKP18, KNY17, KNY18, BHKY19]. Our second result is along
this vein showing that four message statistical zero knowledge arguments can
be based on (keyed) multi-collision resistance instead of full fledged collision
resistance.

Theorem 1.2 (Informal). Assuming (keyed) multi-collision resistant hash
functions, there exist four message statistical zero knowledge arguments.

A main building block in both of the above results is a new statistically witness
indistinguishable argument of knowledge, which was so far known from collision
resistance in four messages.

Theorem 1.3 (Informal). Assuming multi-collision resistant hash functions,
there exist four message statistically witness indistinguishable arguments of
knowledge. If the hash functions are keyless the arguments have three messages.

Most of the technical effort in this work is devoted toward proving this theorem.

1.2 Technical Overview

We now provide an overview of the main ideas and techniques behind our re-
sults. We start with our construction of statistically witness indistinguishable
arguments of knowledge and then move on to explain how they are used to
construct statistical zero knowledge arguments.

Classical witness indistinguishable protocols from bit commitments.
To understand the challenge, let us recall how classical witness indistinguishable
arguments of knowledge are designed. Such protocols traditionally involve three
basic steps: a prover commitment, a verifier challenge, and a prover decommit-
ment. The prover commitment consists of multiple bit commitments, a subset of
which are opened in the decommitment step according to the challenge given by
the verifier. For instance, in Blum’s Hamiltonocity protocol [Blu86], the prover
commits to the entries of the adjacency matrix of a graph and then, according
to the challenge, either opens a subset of edges corresponding to a Hamiltonian
cycle or the entire graph. This is repeated in parallel to decrease the soundness
error to negligible. (The protocol contains additional details that we omit.)

Indeed, given statistically hiding bit commitments, such protocols can be
shown to be statistically witness indistinguishable. However, focusing on round
complexity, such commitments inherently require at least two messages — if
the commitment was non-interactive, a cheating prover could have equivocal
openings for some commitments non-uniformly hardwired into its code; such
openings always exist due to statistical hiding.
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Weakly binding commitments. While standard binding cannot be achieved
non-interactively for statistically hiding bit commitments, keyless multi-collision
resistant hash functions are known to imply non-interactive statistically hiding
commitments with weak binding [BKP18]. Weak binding says that an attacker
could only ever open a given commitment to values from some polynomial-size
set. Intuitively, this means that even if it has equivocal openings of some com-
mitment hardwired in its code, these cannot be used to sample more openings
(except with negligible probability). Weak binding, however, is only meaningful
in commitments for long strings and is completely meaningless for bit commit-
ments, where the prover can open commitments to both zero and one. Accord-
ingly, it is not clear how to use it in classical witness indistinguishable protocols
that are all based on bit commitments.

An analogous problem is encountered in the work of [BKP18]. They define
commitments for long strings with a subset opening property that enables to
open only a given subset of bits, without having to open the entire string. While
traditionally we require that every individual bit is fixed by the commitment,
they suggest a relaxed definition suited for the setting of weak binding. They
require that for any fixed adversary, a commitment to a long string X ∈ {0, 1}L
fixes a global set of strings X ⊆ {0, 1}L of polynomial size K, so that whenever
the adversary opens some subset of bits I ⊆ [L], they must all be simultaneously
consistent with one string in the set X (except with negligible probability over
the adversary’s coins).

Our first observation is that commitments with subset opening and the above
weak, but global, binding guarantee is sufficient for establishing soundness and
also knowledge extraction in classical protocols. Roughly speaking, this is be-
cause for any prover that convinces the verifier of accepting with noticeable
probability ε, there must be a single string X ∈ X, such that with probability
ε/K, the prover convinces the verifier while answering consistently with X. Since
ε/K is still noticeable, soundness and knowledge extraction essentially reduce to
those of the original protocol in the fully binding setting.

The work of [BKP18] constructs commitments with subset opening that fall
short of achieving statistical hiding (indeed they focus on succinctness rather
than hiding). In their construction, an opening of a given subset also reveals
information regarding unopened bits, thus making them unfit for instantiating
witness indistinguishable protocols. At high level, the reason they do not achieve
statistical hiding is that to enforce consistency, subsets of bits are always opened
in a correlated way and the correlations also pertain to unopened bits (this will
become more clear below when we describe our construction).

Statistically hiding commitments with subset opening. We provide a
construction that also achieves statistical hiding. Specifically, commitments to
any two vectors X,X ′ are statistically indistinguishable, even given an opening
of any subset of entries where X and X ′ agree. Our construction combines ideas
from [BKP18] along with new ideas aimed toward statistical hiding.

The construction is based on statistically hiding weakly binding string com-
mitments (with no subset opening) and Shamir secret sharing [Sha79]. At ab-
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stract level, Shamir secret sharing with parameters (n, d) allows to sample an

encoding b̂ ∈ Σn over some alphabet Σ of a secret bit b ∈ {0, 1}, so that two
properties are guaranteed. First, any two encodings 0̂ and 1̂ of zero and one agree
on at most d entries. Second, any d entries of a random encoding b̂ perfectly hide
the bit b.

The commitment scheme works as follows:

– Commitment: to commit to a string X ∈ {0, 1}L, we sample encodings

X̂i for all bits Xi of X. Then, considering the matrix X̂ =
(
X̂i,j

)
whose

rows are the encodings X̂i, we compute a statistically hiding weakly-binding
commitment to each row and each column of the matrix X̂.

– Opening: opening a subset of entries I ⊆ [L] consists of two messages:
a receiver challenge C, and a corresponding decommitment. The challenge
consists of d random indices C ⊆ [n]. A decommitment involves opening
the commitments to all rows i ∈ I and all columns j ∈ C. The receiver
verifies that the individual decommitments are valid and are consistent (on
the intersection of corresponding rows and columns).

Let us explain at high level how the scheme satisfies statistical hiding and (global)
weak binding. To show that any unopened entry i /∈ I remains statistically
hidden, we rely on the fact that the commitment corresponding to its row X̂i

is statistically hiding and never opened. Since only d column commitments are
opened, only d entries of X̂i are revealed and thus the Shamir hiding property
guarantees that the bit Xi remains statistically hidden.

Proving weak (global) binding is inspired by ideas from [BKP18]. Roughly
speaking, the weak binding of individual row commitments guarantees that for
every row i, the sender can only ever open the corresponding commitment to
encodings X̂i from some fixed set Si of polynomial size K = poly(λ) in the
security parameter λ. We then use the fact that encodings of two distinct bits
are far apart to argue that with overwhelming probability the answers to the
random challenge (columns) uniquely fix all the bits of the string X. We further
show that due to the individual weak binding of column commitments, these
answers come from a polynomial set, and accordingly the string X determined
by these answers must also come from a polynomial-size set X.

In a bit more detail, we choose the parameters (n, d) of Shamir secret sharing
so that the relative agreement of encodings of distinct bits is polynomially small
d/n < λ−Ω(1). Then choosing a large enough constant τ such that

L ·K2 · (d/n)τ � 1

guarantees that for τ random locations T ⊆ [n], for all bits i ∈ [L], any two
encodings in Si that agree on T must encode the same bit.

By the weak binding of column commitments, any opened column j ∈ T is
taken from a fixed set S′j of polynomial size K, which means that all opened
bits must simultaneously be consistent with some X taken from a set XT of
polynomial size Kτ . The actual construction chooses d random challenges C for
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super-logarithmic d, so that with overwhelming probability they include a fixing
set T ⊆ C, and the set X is the union of all corresponding sets XT (the number
of which is at most dτ and thus polynomial).

Statistical zero knowledge. We now explain how the statistical zero knowl-
edge protocols behind Theorems 1.1 and 1.2 is obtained. The four message
protocol from (keyed) multi-collision resistance is obtained in a black-box way
by replacing the statistically witness indistinguishable argument of knowledge
(from collision resistance) in the protocol of [BJY97] with our witness indistin-
guishable argument from multi-collision resistance. We focus on explaining how
three-message statistical zero knowledge is obtained from keyless multi-collision
resistant hashing.

Our starting point is the three-message computational zero knowledge ar-
gument of [BBK+16] and its subsequent extension in [BKP18] based on multi-
collision resistant hash functions. At high level, their protocol follows the recipe
of Barak’s non-black-box simulation technique [Bar01]. To prove an NP state-
ment x ∈ L, the prover sends a shrinking commitment cmt to the code of some
(potentially long) program Π and the verifier responds with a random string r.
Then, the prover gives a succinct witness indistinguishable argument of knowl-
edge proving that either x ∈ L or that the committed program Π(cmt) outputs
r. At high level, by committing to the code of the verifier itself, a non-black-box
simulator is able to produce an accepting transcript without using the witness,
while a cheating prover, who does not know the verifier’s randomness r, can only
commit to such a program with negligible probability.

In [BBK+16, BKP18], the succinct witness indistinguishable argument of
knowledge is constructed from a (non-succinct) witness indistinguishable argu-
ment of knowledge, a secure function evaluation scheme, and a weak memory
delegation scheme, which they construct based on keyless multi-collision resis-
tant hashing. Upgrading the protocol from computational zero knowledge to
statistical zero knowledge requires two main changes. First, the prover com-
mitment cmt is replaced with a statistically hiding commitment that is weakly
binding, which as already observed in [BKP18] is sufficient. Second, the succinct
witness indistinguishable argument of knowledge is replaced with a statistically
witness indistinguishable one.

To obtain the succinct witness indistinguishable argument, we replace the
(computationally) witness indistinguishable argument with our statistically wit-
ness indistinguishable argument. In addition, need the secure function evaluation
scheme to satisfy statistical function hiding, which can be achieved assuming
LWE [OPP14, BD18]. The actual construction requires that the witness indis-
tinguishable argument possesses additional properties, such as adaptive witness
indistinguishability and adaptive argument of knowledge, when the statement
proven is adversarially chosen after the first two messages of the protocol. The
protocol we construct is a slightly tweaked version of the protocol described in
this introduction that satisfies these properties.
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1.3 More Related Work

We next address additional related work in more detail.

More on statistical zero knowledge arguments. From the early construc-
tions of zero knowledge protocols [GMW91, BCC88] it was evident that statis-
tically hiding commitments are sufficient to obtain statistically zero knowledge
arguments in a super logarithmic number of rounds. (See [HNO+09] for a sur-
vey on statistically hiding commitments.) Early constant round constructions
[BCY91] were based on specific number theoretic assumptions. The work of Bel-
lare, Jakobson, and Yung constructed computational zero knowledge arguments
in four messages from one-way functions; however, their construction in fact uses
a four message witness indistinguishable argument of knowledge in a generic
manner. Using two-message statistically hiding commitments [DPP93, HM96],
such arguments can be obtained from collision resistant hashing.

The round complexity of zero knowledge proofs. This paper focuses on the
notion of (statistical zero knowledge) arguments. The round complexity of zero-
knowledge proofs (which are statistically sound) for NP has also been studied
extensively. Four-message proofs are impossible to achieve via black-box simula-
tion, except for languages in NP∩coAM [Kat12]. Four message proofs with non-
black-box simulation are only known assuming multi-collision-resistance keyless
hash functions [BKP18]. Recent evidence [FGJ18] suggests that, differently from
zero-knowledge arguments, zero-knowledge proofs may be impossible to achieve
in three messages (even with non-black-box simulation).

The black box barrier. Goldreich and Krawczyk show that three message com-
putational (let alone, statistical) zero knowledge arguments cannot be achieved
with black box simulation [GK96]. The seminal work of Barak was the first to
show that non-black-box simulation could potentially cross such black box barri-
ers [Bar01]. Works of Bitansky et al. [BCPR14, BBK+16] obtain three message
(computational) zero knowledge arguments in case where either the (adversarial)
verifier or prover have an a-priori bounded description (and arbitrary polyno-
mial running time). Following, the work of [BKP18] obtains such arguments
also against non-uniform verifiers and provers relying on keyless multi-collision
resistance.

A stronger notion of statistical zero knowledge. The literature (e.g.
[HNO+09]) also considers a stronger form of statistical zero knowledge than
the one presented in this introduction where the simulator is not only required
to statistically simulate the view of efficient verifiers, but also of inefficient ones,
given oracle access to the verifier. We note that this notion is outright impossi-
ble in three messages where black box simulation is impossible [GK96]. Our four
message protocol, in fact, does achieve this stronger notion.

2 Preliminaries

We rely on the standard computational concepts and notation:
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– A PPT is a probabilistic polynomial-time algorithm.
– A uniform algorithm is T -time if it runs in time polynomial in T . (T may

be super-polynomial in its input size.)
– We follow the standard habit of modeling any efficient adversary strategy as

a family of polynomial-size circuits. For an adversary A corresponding to a
family of polynomial-size circuits {Aλ}λ∈N, we often omit the subscript λ,
when it is clear from the context.

– We say that a function f : N → R is negligible if for all constants c > 0,
there exists N ∈ N such that for all n > N , f(n) < n−c. We sometimes
denote negligible functions by negl.

– We say that a function f : N → R is noticeable if there exists a constant
c > 0 and N ∈ N such that for all n > N , f(n) ≥ n−c.

– We denote statistical distance by SD.
– For two random variables X,Y and ε ∈ [0, 1], we write X ≈ε Y to denote

the fact that SD(X,Y ) ≤ ε.
– For two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we say that X and Y

are statistically indistinguishable if there exists a negligible µ(·), such that
for all λ, Xλ ≈µ(λ) Yλ. We denote this by X ≈s Y.

– For a string X of length n, and a subset I ⊆ [n], we denote by X|I its
restriction to the entries in I.

2.1 Statistical Zero-Knowledge Arguments

In what follows, we denote by 〈P � V〉 a protocol between two parties P and V.
For input w for P, and common input x, we denote by 〈P(w) � V〉(x) the output
of V in the protocol. For honest verifiers this output will be a single bit indicating
acceptance (or rejection), whereas malicious verifiers output their entire view.
Throughout, we assume that honest parties in all protocols are uniform PPT
algorithms.

Definition 2.1. A protocol 〈P � V〉 for an NP relation R(x,w) is a statistical
zero-knowledge argument if it satisfies:

Completeness: For any λ ∈ N, x ∈ L(R) ∩ {0, 1}λ, w ∈ R(x):

Pr [〈P(w) � V〉(x) = 1] = 1 .

Computational Soundness: For every polynomial-size circuit family of
provers P∗ = {P∗λ}λ, there exists a negligible function µ, such that for any
x ∈ {0, 1}λ \ L(R),

Pr [〈P∗λ � V〉(x) = 1] ≤ µ(λ) .

Statistical Zero-Knowledge: There exists a PPT simulator S such that for
every polynomial-size circuit family V∗ = {V∗λ}λ:

{〈P(w) � V∗λ〉(x)}(x,w)∈R
|x|=λ

≈s {S(x,V∗λ)}(x,w)∈R
|x|=λ

.
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2.2 Weakly Binding Commitments and Multi-Collision Resistant
Hash Functions

We define weakly-binding statistically-hiding commitments [BKP18]. The defi-
nition addresses both the setting of keyed hash functions as well as keyless ones.

Syntax: A commitment scheme is associated with an input length function `(λ)
and polynomial-time algorithms SHC = (SHC.Gen,SHC.Com) with the following
syntax:

– pk← SHC.Gen(1λ) : a probabilistic algorithm that takes the security param-
eter 1λ and outputs a key pk ∈ {0, 1}λ. In the keyless setting, this algorithm
is deterministic and outputs a fixed key pk ≡ 1λ.

– cmt ← SHC.Com(X; pk) : a probabilistic algorithm that takes the key pk
and an input X ∈ {0, 1}`(λ) and outputs a commitment cmt. When we want
to be explicit about the randomness r used by the algorithm, we may write
SHC.Com(X; pk, r).

Definition 2.2 (Weakly-Binding Statistically-Hiding Commitments).
For a polynomial `(·), a weakly-binding statistically-hiding commitment SHC =
(SHC.Gen, SHC.Com), for messages of length `, satisfies:

Statistical Hiding: For any key and any two plaintexts, the corresponding
commitments are statistically close:

{SHC.Com(X; pk)}λ∈N,pk∈{0,1}λ,
X,X′∈{0,1}`(λ)

≈2−λ {SHC.Com(X ′; pk)}λ∈N,pk∈{0,1}λ,
X,X′∈{0,1}`(λ)

.

Weak Binding: For any non-uniform polynomial-size probabilistic A ={
A1
λ,A2

λ

}
λ

there exists a polynomial K(·) and a negligible µ(·), such that for
all λ ∈ N,

Pr
pk←SHC.Gen(1λ)

(cmt,st)←A1
λ(pk)

∃X of size K(λ) :

Pr(X,r)←A2
λ(st)

[
cmt = SHC.Com(X; pk, r)
X /∈ X

]
≤ µ(λ)

 ≥ 1−µ(λ) .

Multi-collision resistance. We also define multi-collision resistant hash func-
tions [BKP18], which are similar to weakly binding commitments, only that the
hiding requirement is replaced with the requirement that they shrink their input
(accordingly, they are also deterministic).

Syntax: A hashing scheme is associated with an input length function `(λ) and
polynomial-time algorithms H = (H.Gen,H.Hash) with the following syntax:

– pk← H.Gen(1λ) : a probabilistic algorithm that takes the security parameter
1λ and outputs a key pk ∈ {0, 1}λ. In the keyless setting, this algorithm is
deterministic and outputs a fixed key pk ≡ 1λ.

– Y ← H.Hash(X; pk) : a deterministic algorithm that takes the key pk and an
input X ∈ {0, 1}`(λ) and outputs a hash value Y .
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Definition 2.3 (Multi-Collision Resistant Hash). For a polynomial `(·),
a multi-collision resistant hash H = (H.Gen,H.Hash), for messages of length `,
satisfies:

Compression: `(λ) > λ and |H.Hash(X)| = λ for all λ ∈ N, key pk ∈ {0, 1}λ,
and X ∈ {0, 1}`(λ). If ` = λ · (1 + Ω(1)) we say that H is linearly compressing
and if ` = λ1+Ω(1) we say that H is polynomially compressing.

Multi-Collision Resistance: For any non-uniform polynomial-size probabilis-
tic A =

{
A1
λ,A2

λ

}
λ

there exists a polynomial K and a negligible µ(·), such that
for all λ ∈ N,

Pr
pk←SHC.Gen(1λ)

(Y,st)←A1
λ(pk)

[
∃X of size K(λ) :
PrX←A2

λ(st)
[Y = H.Hash(X; pk) ∧X /∈ X] ≤ µ(λ)

]
≥ 1− µ(λ) .

We also consider a generalized notion of T -secure multi-collision resistant
hashing that allows addressing attackers that run in super-polynomial time. The
constructions in this paper all rely on the above polynomial notion. Quasipoly-
nomial security is used in [BKP18] to construct weak memory delegation as
defined in Section 2.3. We state the definition here for completeness.

T -Secure Multi-Collision Resistance: For any non-uniform polynomial-size
probabilistic A =

{
A1
λ

}
and any uniform T -time A2 there exists a polynomial

K and a negligible µ(·), such that for all λ ∈ N,

Pr
pk←SHC.Gen(1λ)

(Y,st)←A1
λ(pk)

[
∃X of size K(λ) :
PrX←A2(st) [Y = H.Hash(X; pk) ∧X /∈ X] ≤ µ(λ)

]
≥ 1− µ(λ) .

Remark 2.1. Note that for polynomial T (λ) = poly(λ), T -security coincides with
(plain) security. Indeed, the non-uniformity of A2 can always be pushed to A1

who passes a state to A2.

In [BKP18], it is shown that multi-collision resistant hashing implies weakly
binding string commitments.

Theorem 2.1 ([BKP18]). Assuming a multi-collision-resistant keyless hash
that is either:

– polynomially compressing

– or, linearly compressing and quasipoly(λ)-secure

there exist, for every polynomial L(·), a weakly-binding statistically-hiding com-
mitment and multi-collision-resistant keyless hash, both for messages of length
L.
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2.3 Weak Memory Delegation

The notion of weak memory delegation was defined in [BKP18] as a relaxation
of memory delegation [CKLR11, KP16]. In a two-message memory delegation
scheme, an untrusted server provides the client a short commitment or digest dig
of a large memory D. The client can then delegate any arbitrary deterministic
computation M to be executed over the memory. The server responds with the
computation’s output y, as well as a short proof of correctness that can be verified
by the client in time that is independent of that of the delegated computation
and the size of the memory.

In the definition of memory delegation in [KP16], the soundness requirement
says that having provided the digest dig, a cheating prover should not be able
to prove that a given computation M results in more than a single outcome y.
In weak memory delegation, the prover should not be able to prove consistency
with too many outcomes y.

Syntax: A two-message memory delegation scheme is associated with
polynomial-time algorithms
(MD.Mem,MD.Query,MD.Prove,MD.Ver) with the following syntax:

– dig ← MD.Mem(1λ, D) : a deterministic polynomial-time algorithm that
given the security parameter 1λ and memory D, outputs a digest dig ∈
{0, 1}λ of the memory.

– (q, vst) ← MD.Query(1λ) : a randomized polynomial-time algorithm that
given the security parameter 1λ, outputs a query q and a secret state vst.

– π ← MD.Prove(1λ, D, (M, 1t, y), q) : a deterministic algorithm that takes
the security parameter 1λ, a memory string D, a (deterministic) Turing
machine M , an output string y, and time bound 1t such that |D| ≤ t ≤ 2λ

and M(D) outputs y within t steps. It outputs a proof π.

– b← MD.Ver(1λ, dig, (M, t, y), vst, π) : a deterministic polynomial time oracle
algorithm that takes the security parameter 1λ, a digest dig, a (deterministic)
Turing machine M , a time bound t, an output string y, a secret state vst
and a proof π. It outputs an acceptance bit b.

Definition 2.4 (Entropic Distribution Ensemble). We say that an effi-
ciently samplable distribution ensemble {Yλ}λ∈N is entropic if

H∞(Yλ) := − log max
y∈supp(Yλ)

Pr[Yλ = y] = Ω(λ) .

Definition 2.5 (Weak Memory Delegation). A two-message delegation
scheme
MD = (MD.Mem,MD.Query,MD.Prove,MD.Ver) satisfies:

Efficiency: There exists a polynomial p such that for every λ ∈ N and D such
that |D| ≤ 2λ, MD.Mem(1λ, D) outputs a digest dig of length at most p(λ).
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Correctness: For every security parameter λ ∈ N, every (M, t, y) ∈ {0, 1}λ,
and every D such that M(D) outputs y within t steps, and |D| ≤ t ≤ 2λ:

Pr

MD.Ver(1λ, dig, (M, t, y), vst, π) = 1

∣∣∣∣∣∣
dig← MD.Mem(1λ, D)
(q, vst)← MD.Query(1λ)
π ← MD.Prove(1λ, D, (M, 1t, y), q)

 = 1 .

Weak Soundness for Time-T : For every non-uniform polynomial-size proba-
bilistic (A1,A2), there exists a negligible function µ, such that for every ensemble
of samplable entropic distributions {Yλ}λ∈N, λ ∈ N and t ≤ T (λ):

Pr

MD.Ver(1λ, dig, (M, t, y), vst, π) = 1

∣∣∣∣∣∣∣∣
(dig,M, st)← A1(1λ)
(q, vst)← MD.Query(1λ)
y ← Yλ
π ← A2(q, y; st)

 ≤ µ(λ) .

Theorem 2.2 ([BKP18]). Assuming a linearly compressing quasipoly(λ)-
secure multi-collision-resistant keyless hash and quasipoly(λ)-secure fully-
homomorphic encryption, there exists a two-message memory-delegation scheme
with weak soundness for time-quasipoly(λ).

2.4 Function Hiding Secure Function Evaluation

We define two-message secure function evaluation protocols with statistical func-
tion hiding.

Syntax: Let C = {Cλ}λ be a family of circuits. A two-message secure func-
tion evaluation protocol for C is associated with polynomial-time algorithms
(SFE.Enc, SFE.Eval, SFE.Dec) with the following syntax:

– (sk, ct) ← SFE.Enc(1λ, x) : a probabilistic algorithm that takes a security
parameter 1λ and a string x ∈ {0, 1}∗ and outputs a secret key sk and a
ciphertext ct.

– ĉt ← SFE.Eval(C, ct) : a probabilistic algorithm that takes a circuit C ∈ C
and a ciphertext ct and outputs an evaluated ciphertext ĉt.

– x̂ ← SFE.Dec(ĉt; sk) : a deterministic algorithm that takes a ciphertext ĉt
and the secret key sk and outputs a string x̂.

Definition 2.6. A two-message secure function evaluation protocol (SFE.Enc,
SFE.Eval, SFE.Dec) for a family of circuits C = {Cλ}λ satisfies:

– Perfect Correctness: For any λ ∈ N, x ∈ {0, 1}∗ and circuit C ∈ Cλ

Pr

[
SFE.Dec(ĉt; sk) = C(x)

∣∣∣∣ (sk, ct)← SFE.Enc(x; 1λ)
ĉt← SFE.Eval(C, ct)

]
= 1 .

– Semantic Security: For any polynomial `(λ) and non-uniform polynomial-
size probabilistic A = {Aλ}λ, there exists a negligible function ν such that
every λ ∈ N, and pair of messages x0, x1 ∈ {0, 1}`(λ):

Pr

[
Aλ(ct) = b

∣∣∣∣ b← {0, 1}(sk, ct)← SFE.Enc(xb; 1λ)

]
≤ 1

2
+ µ(λ) .
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– Statistical Circuit Privacy: There exist unbounded algorithms Sim,Ext
such that:

{SFE.Eval(C, ct∗)} λ∈N,C∈Cλ
ct∗∈{0,1}poly(λ)

≈s
{

Sim(C(Ext(ct∗; 1λ)); 1λ)
}

λ∈N,C∈Cλ
ct∗∈{0,1}poly(λ)

.

Such secure function evaluation schemes are known based on LWE [OPP14,
BV11, BD18].

2.5 Shamir Secret Sharing

We define Shamir secret sharing schemes.

Syntax: A Shamir secret sharing scheme is associated with functions δ(λ), n(λ),

a field Fλ and a probabilistic polynomial-time encoding algorithm Ŝ ←
SSS.Enc(S; 1λ) that takes a secret S ∈ F and a parameter 1λ and outputs an

encoding Ŝ ∈ Fn.

Definition 2.7 (Shamir Secret Sharing). For polynomials δ(·), n(·) A
Shamir secret sharing encoding SSS.Enc satisfies:

Perfect Hiding: Any δ coordinates in the encoding are perfectly hiding:{
SSS.Enc(S0; 1λ)|I

}
λ∈N,
S0,S1∈F,
I∈([n]

δ )

≡
{

SSS.Enc(S1; 1λ)|I
}
λ∈N,
S0,S1∈F,
I∈([n]

δ )

,

where
(
[n]
δ

)
denotes the collection of subsets I ⊆ [n] of size δ.

Distance: For any λ ∈ N and distinct secrets S0, S1 ∈ F,

∆(SSS.Enc(S0; 1λ),SSS.Enc(S1; 1λ)) ≥ 1− δ/n ,

where ∆ denotes the relative hamming distance over Fn.

Shamir secret sharing schemes are known to exist unconditionally [Sha79].

3 Weakly-Binding Commitments with Subset Opening

In this section, we define and construct weakly-binding statistically hiding com-
mitments with subset opening.

3.1 Definition

The definition addresses both the setting of keyed hash functions as well as
keyless ones.

Syntax: A commitment with subset opening is associated with a length function
L(λ) and polynomial-time algorithms SHC = (CSO.Gen,CSO.Com, CSO.Chal,
CSO.Open, CSO.Ver) with the following syntax:

13



– pk← CSO.Gen(1λ) : a probabilistic algorithm that takes the security param-
eter 1λ and outputs a key pk ∈ {0, 1}λ. In the keyless setting, this algorithm
is deterministic and outputs a fixed key pk ≡ 1λ.

– (cmt, st) ← CSO.Com(X; pk) : a probabilistic algorithm that takes the key
pk and a string X ∈ {0, 1}L(λ) and outputs a commitment cmt and private
state st.

– C ← CSO.Chal(pk) : a probabilistic algorithm that takes the key pk and
outputs a challenge C.

– d ← CSO.Open(I, C, st) : a deterministic algorithm that takes an index set
I, a challenge C and private state st and outputs a decommitment d.

– b← CSO.Ver(cmt, α, I, C, d) : a deterministic algorithm that takes a commit-
ment cmt, an index set I, an assignment α : I → {0, 1}, and decommitment
d and outputs an acceptance bit b.

Definition 3.1 (Weakly-Binding Statistically-Hiding Commitments
with Subset Opening). For a polynomial L(·), a weakly-binding statistically-
hiding commitment with subset opening CSO = (CSO.Gen,CSO.Com, CSO.Chal,
CSO.Open, CSO.Ver), for strings of length L, satisfies:

Subset Statistical Hiding: There exists a negligible µ(·) such that for all λ ∈
N, no unbounded adversary A wins the following game with probability greater
than 1/2 + µ(λ):

1. A submits to a challenger pk ∈ {0, 1}λ, X0, X1 ∈ {0, 1}L(λ).
2. The challenger samples a random b ← {0, 1} and (cmtb, stb) ←

CSO.Com(Xb; pk), and gives cmtb to A.
3. A submits a commitment challenge C.
4. The challenger computes d = CSO.Open(I, C, st) where I =
{i ∈ [L] : X0[i] = X1[i]} is the set of indices on which the strings X0, X1

agree.
5. A wins if it correctly guesses the bit b.

Weak Binding: For any non-uniform polynomial-size probabilistic A ={
A1
λ,A2

λ

}
λ

there exists a polynomial K(·) and a negligible µ(·), such that for
all λ ∈ N,

Prpk←CSO.Gen(1λ)

(cmt,st)←A1
λ(pk)

∃X of size K(λ) :

PrC←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[
CSO.Ver(cmt, α, I, C, d) = 1
α /∈ XI

]
≤ µ(λ)


≥ 1− µ(λ) ,

where XI denotes the set of assignments X|I : I → {0, 1} to indices in I induced
by every X ∈ X.

Succinct Commitment: |cmt| = λ for any pk ∈ {0, 1}λ and any cmt in the
support of CSO.Com(·; pk).

In the remainder of this section we construct weakly-binding statistically
hiding commitments with subset opening.
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Theorem 3.1. Assuming a polynomially compressing multi-collision-resistant
keyless hash there exists a weakly-binding statistically-hiding commitment with
subset opening for strings of length L for any polynomial L.

3.2 Construction

We provide a construction of weakly-binding statistically-hiding commitments
with subset opening from (plain) weakly-binding statistically-hiding commit-
ments and multi-collision resistant hash functions.

Ingredients:

– SSS.Enc a Shamir secret sharing encoding with parameters δ(λ) =
√
λ,

n(λ) = λ, and field F = {Fλ}λ.
– SHC a weakly binding statistically hiding commitment for strings of length
` = |Fλ| · max(L, n). We denote the size of commitment in this scheme by
t(λ).

– H a multi-collision resistant hash for strings of length `′ = (L+ n) · t.

The scheme CSO:

– CSO.Gen(1λ) : Runs the key generator for the underlying commitment pk1 ←
CSO.Gen(1λ) and hash pk2 ← H.Gen(1λ), and outputs pk = (pk1, pk2).

– CSO.Com(X; pk) :

• For i ∈ [L], compute an encoding X̂i ← SSS.Enc(Xi; 1λ).

• Consider the matrix X̂ =
(
X̂i,j

)
i∈[L],j∈[n]

.

• Compute commitments to the rows rowcmti ←
SHC.Com(X̂i,1, . . . , X̂i,n; pk1).

• Compute commitments to the columns colcmtj ←
SHC.Com(X̂1,j , . . . , X̂L,j ; pk1).

• Compute a hash of all of the above commitments Y ←
H.Hash((rowcmti)i, (colcmtj)j ; pk2) and output cmt = Y as the commit-
ment.

• Output as the state st all the commitments (rowcmti)i, (colcmtj)j , all

the randomness (̂ri)i, (rri)i, (rcj)j used to generate the encodings X̂i and

commitments rowcmti, colcmtj , respectively, and the encoding X̂i them-
selves.

– CSO.Chal(pk1) : sample δ random column indices j1, . . . , jδ ← [n] and output
C = (ji)i∈[δ].

– CSO.Open(I, C, st) : output as the decommitment information d all the com-
mitments (rowcmti)i, (colcmtj)j , the randomness (̂ri, rri)i∈I used to compute
the encodings and commitments corresponding to all rows i ∈ I, the ran-

domness (rcj)j∈C and the columns
(
X̂1,j , . . . , X̂L,j

)
j∈C

themselves, corre-

sponding to all challenge columns j ∈ C.
– CSO.Ver(cmt, α, I, C, d) :
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• Parse d as (rowcmti)i, (colcmtj)j , (rri, r̂i)i∈I , (rcj , X̂1,j , . . . , X̂L,j)j∈C .
• Verify that cmt = H.Hash(((rowcmti)i, (colcmtj)j); pk2).
• For every i ∈ I, compute α̂i := SSS.Enc(α(i); r̂i) and verify that

rowcmti = SHC.Com(α̂i; pk1, rri).

• For every j ∈ C, verify that colcmtj = SHC.Com(X̂1,j , . . . , X̂L,j ; pk1, rcj)

and that for every i ∈ I, αi,j = X̂i,j .

3.3 Analysis

We now analyze the construction. We first prove subset statistical hiding and
then prove weak binding.

Proposition 3.1. The construction is subset statistically hiding.

Proof. We first claim that statistical hiding holds for any fixed challenge set C.

Claim 3.2. Fix any pk and C ∈ [n]δ, and set of indices I ⊆ [n]. There exists a
simulator S such that for any X ∈ {0, 1}L,

cmt, d ≈2−Ω(λ) S(X|I) ,

where (cmt, st)← CSO.Com(X; pk) and d← CSO.Open(I, C, st).

Proof. We describe how the simulator samples the commitments
rowcmti, colcmtj :

– For every i ∈ I, compute an encoding X̂i of Xi, and sample a commitment
rowcmti to this encoding.

– For every i /∈ I, sample a commitment rowcmti to the all-zero string.
Also sample an encoding Ŷi of for an arbitrary bit Y , and store Ŷi.

– For every j ∈ C, sample a commitment colcmtj to the j-th column of the

matrix whose rows are given by the encodings X̂i for i ∈ I and by the
encodings Ŷi for i /∈ I.

– For every j /∈ C sample a commitment colcmtj to the all-zero string.

We now argue that the commitments rowcmti, colcmtj produced above along
with an opening with respect to I, C are 2−Ω(λ)-close to their distribution in a
commitment to X.

Consider a hybrid distribution cmt∗, d∗ where we change the distribution
of commitments to X as follows. For all unopened rows i /∈ I, we change the
commitment rowcmti from a commitment to X̂i to a commitment to an all-zero
string, and for all unopened columns j /∈ C, we change the commitment colcmtj
from a commitment to the j-column of the matrix (X̂i,j)i,j to a commitment to
the all zero string.

Then by the statistical hiding of the underlying commitment SHC,

cmt, d ≈2−λ·(L+n) cmt∗, d∗ ,
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where 2−λ(L+ n) ≤ 2−Ω(λ).
Next, note that the only difference between the hybrid distribution cmt∗, d∗

and the simulated distribution S(X|I) is in the commitments to the columns

j ∈ C. In the first, the plaintexts are the columns of the matrix
(
X̂ij

)
i∈[L],j∈C

,

whereas in the second its the concatenation of
(
X̂ij

)
i∈I,j∈C

and
(
Ŷij

)
i∈[L]\I,j∈C

.

However, since |C| ≤ δ, the perfect hiding of the Shamir secret sharing implies
that these two matrices are identically distributed.

Now fix any key pk and any two X,X ′ ∈ {0, 1}L, and let I ⊆ [L] be the
set of indices on they agree. Then by Claim 3.2, for any fixed challenge C, the
distributions cmt, d and cmt′, d′ corresponding to X and X ′, respectively, are
2−Ω(λ)-close.

To complete the proof, we now show that they remain close also when C is
chosen adaptively.

Claim 3.3. For any (unbounded) adversary A,

cmt, C, d ≈2Ω(λ) cmt′, C ′, d′ ,

where (cmt, st) ← CSO.Com(X; pk), C ← A(cmt) and d ← CSO.Open(I, C, st),
and cmt′, C ′, d′ is sampled similarly with respect to X ′.

Proof.

SD((cmt, C, d),(cmt′, C ′, d′)) =∑
α,β,γ

|Pr [(cmt, C, d) = (α, β, γ)]− Pr [(cmt′, C ′, d′) = (α, β, γ)] | ≤

∑
β∈[n]δ

2−Ω(λ) = λ
√
λ · 2−Ω(λ) ≤ 2−Ω(λ) ,

where the first inequality follows from Claim 3.2.

This completes the proof of Proposition 3.1

Proposition 3.2. The construction is weakly binding.

Proof. Fix a polynomial-size adversary A =
{
A1
λ,A2

λ

}
λ

against the commit-
ment. The proof is divided to two main claims. We first prove a (computa-
tional) claim attesting that with overwhelming probability A’s commitment fixes
a polynomial-size set of strings S, such that any valid opening of the underlying
weakly-binding commitment is to a string from S. This claim relies on the weak
binding of the underlying commitment and the multi-collision resistance of the
hash function. Then we prove an information-theoretic claim that shows that
provided the restriction to the set S there also exists a polynomial-size global
set of strings X, such that any opening of some subset must be consistent with
one of the strings in X.
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The following claim asserts that a commitment from the adversary A, fixes a
polynomial-size set of strings S ⊆ {0, 1}`, such that the adversary can only open
any commitments rowcmti, colcmtj to a string from S.

Claim 3.4. There exist a polynomial K(·) and a negligible function µ(·) such
that for all λ ∈ N, except with probability µ(λ) over pk ← CSO.Gen(1λ) and
(cmt, st)← A1

λ(pk) there exists a set S ⊆ {0, 1}` of size K(λ) such that

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[
CSO.Ver(cmt, α, I, C, d) = 1 ∧ X̂(α, I, d) 6⊆ S

]
≤ µ(λ) ,

where X̂(α, I, d) ⊆ {0, 1}` is the set of rows and columns of the matrix (X̂)ij,
which A opens in its decommitment.

Proof. Assume toward contradiction that for any polynomial K, there exists a
noticeable function ε, such that for infinitely many λ ∈ N, with probability ε(λ)
over pk ← CSO.Gen(1λ) and (cmt, st) ← A1

λ(pk) for any set S ⊆ {0, 1}` of size
K(λ)

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[
CSO.Ver(cmt, α, I, C, d) = 1 ∧ X̂(α, I, d) 6⊆ S

]
≥ ε(λ) .

We consider two complementary cases:

1. For infinitely many λ, except with probability ε/2 over pk, cmt, st there exists
a set S′ ⊆ {0, 1}`′ of size

√
K such that except with probability ε/2, A never

opens the hash value cmt to S = ((rowcmti)i , (colcmtj)j) /∈ S′.

2. For infinitely many λ, with probability at least ε/2 over pk, cmt, st for any
set S′ ⊆ {0, 1}`′ of size

√
K, with probability ε/2, A opens the hash value

cmt to S = ((rowcmti)i , (colcmtj)j) /∈ S′.

First, note that the second case implies that A breaks the multi-collision resis-
tance of the underlying hash H. Thus, we can assume that the first case holds.
It follows that

Claim 3.5. For infinitely many λ, with probability at least ε/2 over pk, cmt, st,
there exists a set S′ ⊆ {0, 1}`′ of size

√
K as required by the first condition, but

for any set S of size K and with probability ε/2 over the decommitment phase

X̂(α, I, d) 6⊆ S whereas the opened S = ((rowcmti)i , (colcmtj)j) ∈ S′.

Proof. This follows directly from our assumption toward contradiction and the
fact that the first case above holds.

From hereon fix pk, cmt, st such that Claim 3.5 holds. We next argue that

Claim 3.6. There exists S′ = ((rowcmti)i , (colcmtj)j) ∈ S′ and cmt′ ∈ S′ such

that for any set X ⊆ {0, 1}` of size
√
K/(L+n), with probability ε/2(L+n)

√
K

over the decommitment phase cmt is opened to S′, but cmt′ is opened to X /∈ X.
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Proof. Otherwise, for each S′ ∈ S′ and cmt′ ∈ S′, we can choose X(S′, cmt′)
such that the above does not hold, and obtain

S =
⋃

S′∈S,cmt′∈S′
X(S′, cmt′)

of size K, which violates Claim 3.5.

We now obtain an adversary B =
{
B1λ,B2λ

}
λ

that breaks the weak bind-

ing of the commitment SHC. B1λ(pk1) first samples pk2 ← H.Gen(1λ), sets
pk = (pk1, pk2), runs A1

λ(pk) and obtains a state st, it then simulates a random
challenge C ← C(1λ) and runs A2

λ(C; st. It then takes the set of commitments
S′ = (rowcmti)i∈L , (colcmtj)j∈[n] and outputs a random commitment cmt′ ∈ S′

along with the state st. B2λ(st) samples a new random challenge C ′ and runs
A2
λ(C ′; st), and outputs whatever opening A2

λ outputs for cmt′, or ⊥ if there is
no such opening.

Claim 3.7. B breaks weak binding.

Proof. By construction and Claims 3.5,3.6, with probability at least ε
2 ·

ε
2(L+n)

√
K

over the commitment phase of B1λ, for any set X ⊆ {0, 1}` of size
√
K/(L+ n),

B2λ opens that commitment to a value X /∈ X with probability at least ε/2(L+

n)
√
K.

This complete the proof of Claim 3.4.

We now proceed to prove the binding property of the scheme. The following
claim asserts that whenever all strings X̂ are consistent with some set S, there
exists a polynomial-size set of strings X ⊆ {0, 1}L such that all openings are
consistent with X, which will conclude the proof.

Claim 3.8. Let K be the polynomial given by Claim 3.4 and let τ be a constant
such that τ > 2 logλ(2K2). Fix λ, pk, cmt, st such that Claim 3.4 holds with
respect to a set S. Then there exists X ⊆ {0, 1}L of size K ′ = (nK)τ such that

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[CSO.Ver(cmt, α, I, C, d) = 1 ∧ α /∈ X|I ] ≤ µ(λ) .

Proof. We first argue that random τ locations fix at most a single encoding in
S.

Claim 3.9. Let T ⊆ [n] be a set of τ indices chosen independently at random,
then

Pr
T

[
∃Ŝ0, Ŝ1 ∈ S such that Ŝ0|T = Ŝ1|T

∣∣∣∣ Ŝb ∈ SSS.Enc(Sb)
S0 6= S1

]
≤ 1/2 .

We call any set T as above fixing.
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Proof. The proof follows directly from the distance of Shamir encodings, the
bound K on the size of S, and the definition of τ . Specifically the above can be
bounded by

|S|2
(
δ

n

)τ
≤ K2

(√
λ

λ

)2 logλ(2K
2)

=
1

2
.

Now, let T be any fixing set and consider any set of τ columns

Q = {(Q1,j , . . . , QL,j) : j ∈ [T ]} .

Then, T,Q fix a unique string X(T,Q) ∈ {0, 1,⊥}L defined as follows:

– If T is not fixing, set X(T,Q) = ⊥. Otherwise, proceed to the following.
– For any i ∈ [L], if for some b ∈ {0, 1}, there exists a Shamir ecnoding

X̂i ∈ SSS.Enc(b; 1λ) such that X̂i ∈ S and X̂i,j = Qi,j for all j ∈ T , set
Xi(T,Q) = b. Otherwise, set Xi(T,Q) = ⊥.
(Since T is fixing, there exists at most a single b ∈ {0, 1} that satisfies the
condition.)

We now define the set X as follows:

X := {X(T,Q) | T ∈ [n]τ , Q ∈ Sτ} .

First, note that X is of size at most (n · |S|)τ = (nK)τ , which is polynomial in
λ. We now argue that

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[CSO.Ver(cmt, α, I, C, d) = 1 ∧ α /∈ X|I ] ≤ µ(λ) .

Recall that C ⊆ [n] consists of λ indices chosen independently at random.
In particular, by Claim 3.9, C contains a fixing set T except with probabil-

ity (1/2)δ/τ = 2−Ω̃(
√
λ). Recall that except with negligible probability all row

and column commitments opened by A are consistent with some string in S.
From hereon we assume that the latter occurs and that C contains a fixing T .

Then when CSO.Ver(cmt, α, I, C, d) = 1, A opens the columns in T to some
Q = (Q1,j , . . . , QL,j)j∈[T ] ∈ Sτ . Also the assignment α : I → {0, 1} is such that

for every i ∈ I, there exists an encoding α̂i ∈ SSS.Enc(αi; 1λ) ∈ S and α̂ is
consistent with Q. By definition, it follows that for every i ∈ I, αi = Xi(T,Q);
namely, α ∈ X|I as required.

This completes the proof of Claim 3.8.

This completes the proof of Proposition 3.2

4 Offline-Online Statistically WI Arguments of
Knowledge

In this section, we define and construct offline-online statistically witness indis-
tinguishable arguments of knowledge.
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4.1 Definition

In offline-online statistically WI arguments of knowledge, the protocol 〈P � V〉
can be divided to:

– an offline protocol 〈OffP � OffV〉(1λ, 1`), where the parties take as common
input the security parameter 1λ and an input size 1` and output each a state
stP, stV.

– an online protocol 〈OnP(stP, w) � OnV(stV)〉(x), where the parties, in addi-
tion to their previous state, take as common input an instance x ∈ L∩{0, 1}`
and the prover obtains also obtain as input a witness w ∈ RL(x).

We now formally define the properties that such systems are required to satisfy.

Definition 4.1 (Offline-Online SWIAOK). 〈P � V〉 is an offline-online
statistically witness indistinguishable argument of knowledge for L if it satisfies:

Completeness: For any `, λ ∈ N, x ∈ L ∩ {0, 1}`, and w ∈ RL(x):

Pr

[
〈OffP � OffV〉(1λ, 1`) = (stP, stV)
〈OnP(stP, w) � OnV(stV)〉(x) = 1

]
= 1 .

Adaptive statistical witness indistinguishability: For any polynomial `(·)
and unbounded verifier V∗, there exists a negligible function µ(·) such that for
all λ ∈ N:

Pr [〈OnP(stP, wb) � OnV∗(stV)〉(x) = b |
〈OffP � OffV∗〉(1λ, 1`(λ)) = (stP, (stV, x, w0, w1))
b← {0, 1}

]
≤ 1

2
+ µ(λ) ,

where x ∈ L ∩ {0, 1}`(λ) and w0, w1 ∈ RL(x).

Adaptive proof of knowledge: there is a uniform PPT extractor E such
that for any polynomial `(·) and any non-uniform polynomial-size prover P∗ =
{P∗λ}λ∈N there is a polynomial K(·) and a negligible µ(·) such that for all λ ∈ N:

if
Pr [〈OnP∗λ(stP) � OnV(stV)〉(x) = 1 |

〈OffP∗ � OffV〉(1λ, 1`(λ)) = ((stP, x), stV)
]

= ε ,

then

Pr

 〈OnP∗λ(stP) � OnV(stV)〉(x) = 1

w ← EP∗λ(x, stP, stV)
w ∈ RL(x)

∣∣∣∣∣∣
〈OffP∗ � OffV〉(1λ, 1`(λ)) = ((stP, x), stV)

]
≥ poly

(
ε

K(λ)

)
− µ(λ) ,

where x ∈ {0, 1}`(λ).
Offline succinctness: All messages sent by OffP in the offline stage are of
length λ (independently of `).
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In the remainder of this section we construct offline-online statistically wit-
ness indistinguishable arguments of knowledge.

Theorem 4.1. Assuming a polynomially-compressing multi-collision-resistant
keyless hash there exists an offline-online statistically witness indistinguishable
argument of knowledge for NP with two messages in the offline part and one
message in the online part.

4.2 A Protocol for Hamiltonicity

We now give an offline-online protocol for the NP complete problem of Hamil-
tonicity. The protocol is essentially the Lapidot-Shamir protocol [LS90a] whereas
instead of using standard (binding) commitments, we rely on the notion of
weakly-binding commitments with subset opening from the previous section.

Ingredients and notation:

– Let n(·) be a polynomial and let (CSO.Gen,CSO.Com,CSO.Chal,CSO.Open)
be a weakly binding statistically hiding commitment with subset opening for
strings of length n2 · λ.

– A graph G with n nodes will be represented by its n× n adjacency matrix.
Sometimes we may think of G as a string in the natural way.

– Let G,H be two graphs on the same set of nodes [n] and let ϕ : [n] → [n]
be a permutation. We write H ⊆ G to denote the fact that H’s set of edges
is contained in G’s set of edges. We write ϕ(G) = H to denote the fact that
Hϕ(i),ϕ(j) = Gi,j for every i, j ∈ [n].

– A Hamiltonian cycle graph H is a graph that consists of a Hamiltonian cycle
(and no additional edges).

4.3 Analysis

The offline succinctness property follows directly from the succinct commitment
property of the underlying commitment with subset opening. We focus on prov-
ing the argument of knowledge and the statistical witness indistinguishability
properties.

Proposition 4.1. Protocol 1 is an adaptive argument of knowledge.

Proof. Fix a non-uniform polynomial-size prover P∗ = {P∗λ}λ∈N such that

Pr
[
〈OnP∗λ(stP) � OnV(stV)〉(x) = 1

∣∣ 〈OffP∗ � OffV〉(1λ, 1`) = ((stP, x), stV)
]

= ε .

We now describe how the witness extractor E(P∗λ, x, stP, stV) operates. E first
emulates the last prover message corresponding to the state of the offline phase
it is given. It obtains (I,H|I,ϕ). E then rewinds the prover P∗λ back to the
offline phase, and sends it a fresh random challenge σ′, C ′. It then obtains in
the online phase corresponding (I′,H′|I′ ,ϕ′). E now looks for an i ∈ [λ] such
that σi = antiedges and σ′i = cycle, and returns the cycle ϕ−1i (H ′i). If any of the
above fail, it aborts.
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Protocol 1
Offline:

Common Input: (1λ, 1n).

1. OffV samples a key pk← CSO.Gen(1λ) for a weakly-binding commitment with
length parameter L = n2 · λ, and sends pk. (In a keyless scheme, pk ≡ 1λ, and
this message is skipped).

2. OffP computes

– λ random Hamiltonian cycle graphs H = (H1, . . . , Hλ) ∈ {0, 1}n
2×λ.

– a commitment with subset opening (cmt, st)← CSO.Com(H; pk).
It sends cmt.

3. OffV computes
– a commitment challenge C ← CSO.Chal(pk),
– λ random challenges σ = (σ1, . . . , σλ)← {cycle, antiedges}λ.

It sends (C,σ).
4. OffP and OffV output stP = (pk,H, st, C,σ) and stV = (pk, cmt, C,σ).

Online:

Common Input: A graph G ∈ {0, 1}n×n.
Prover Input: A Hamiltonian cycle graph H ⊆ G and the state stP.
Verifier Input: state stV.

5. OnP computes
– for every j ∈ [λ],
• If σj = cycle, let Ij = (j − 1)n2 + [n2] be the set of all indices corre-

sponding to Hj .
• If σj = antiedges, sample a random permutation ϕj such that ϕ(H) =
Hj . Let Ij ⊂ (j − 1)n2 + [n2] be the set of indices corresponding to
anti-edges in ϕj(G).

– I =
⋃
j∈[λ] Ij , ϕ = (ϕj)j .

– d← CSO.Open(I, C, st).
and sends (I,H|I,ϕ, d).

6. OnV verifies that:
– CSO.Ver(cmt,H|I, I, C, d) = 1,
– the sets Ij ∈ I are defined consistently with σj and ϕj .
– HIj represents a Hamiltonian cycle graph, if σj = cycle,
– HIj ≡ 0 if σj = antiedges.

Fig. 1: A 3-message SWI argument of knowledge for Hamiltonicity.
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Claim 4.2. There exists a polynomial K(·) and a negligible µ(·) such that

Pr

 〈OnP∗λ(stP) � OnV(stV)〉(x) = 1
w ← E(P∗λ, x, stP, stV)
w ∈ RL(x)

∣∣∣∣∣∣
〈OffP∗ � OffV〉(1λ, 1`(λ)) = ((stP, x), stV)

]
≥ ε3

8K2(λ) − µ(λ) .

Proof. First, by an averaging argument with probability at least ε/2 over the
choice of the first two messages in the protocol, namely the key pk and com-
mitment cmt, it holds that with probability at least ε/2 over the rest of the
protocol the prover convinces the verifier of accepting. In addition, by the weak
binding property of the underlying commitment with subset opening, there ex-
ists a polynomial K, such that except with negligible probability ν(λ) over the
first two messages, there exists a set X of size at most K, consisting of strings
H ∈ {0, 1}n2×λ, such that except with negligible probability ν(λ), any valid
opening of the commitment by the prover is consistent with some H ∈ X.
Also, note that for two random challenges σ,σ′ there exists some i such that
σi = antiedges and σ′i = cycle except with probability (3/4)λ.

It follows that with probability at least ε/2 − ν over the choice of the first
two messages, there exists a single string H∗ ∈ X, such that with probability at
least (ε/2K)2 − (3/4)λ, in both executions performed by E :

1. The prover convinces the verifier.
2. Both openings H|I and H′|I′ obtained by E are consistent with H.
3. For some i, σi = antiedges and σ′i = cycle.

Since the verifier accepts in the second execution, Hi is a Hamiltonian cycle
graph. Since the verifier accepts in the first execution, and Hi is a Hamiltonian
cycle, ϕ−1i (Hi) is a Hamiltonian cycle in G, since all anti-edges in G are mapped
to anti-edges in Hi.

Overall, the extractor succeeds with probability at least ε3/8K2 − λ−ω(1).

Proposition 4.2. Protocol 1 satisfies adaptive statistical witness indistin-
guishability.

The proof of witness indistinguishability is similar to that of the original Lapidot-
Shamir protocol [LS90b]. The main difference is that there it is convenient to
first prove WI for a single instance (with a single challenge σ) and then rely on a
generic hybrid argument, whereas in our protocol the commitment with subset
opening correlates the λ instances. The proof accordingly proceeds via a slightly
less generic hybrid argument. The proof the the proposition can be found in the
full version of this work.

5 A Three Message Statistical Zero Knowledge Argument

In this section, we construct a three message statistical zero knowledge argument.
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Theorem 5.1. Assuming a linearly compressing quasipoly(λ)-secure multi-
collision-resistant keyless hash, a quasipoly(λ)-secure fully-homomorphic en-
cryption, and a two-message secure function evaluation protocol with statistical
function hiding, there exists a statistical zero knowledge argument for NP with
three messages.

Ingredients and notation:

– A two-message weak memory delegation scheme (MD.Mem, MD.Query,
MD.Prove, MD.Ver) with weak soundness for time-T for T = quasipoly(λ),
as in Definition 2.5.

– A two-message secure function evaluation protocol
(SFE.Enc,SFE.Eval,SFE.Dec) with statistical function hiding as in Defini-
tion 2.6.

– An offline-online statistically witness indistinguishable argument of knowl-
edge 〈P � V〉 where the offline part of the protocol 〈OffP � OffV〉 consists
of two messages and the online part of the protocol 〈OnP � OnV〉 consists
of one message. Such a protocol is defined and constructed in Section 4.

– A weakly-binding statistically-hiding keyless commitment SHC.Com as in
Definition 2.2.

– For a string x, denote byMx a Turing machine that given memory D = V∗,
emulates the Turing machine encoded by V∗ on the input x, parses the result
as (u,wi2, q, ĉtτ ), and outputs u.

– Denote by Vparam a circuit that has the string param hardcoded and operates
as follows. Given as input a secret state vst for the delegation scheme:
• parse param = (x, q, u, dig, t, π),
• return 1 (“accept”) if either of the following occurs:
∗ the delegation verifier accepts: MD.Ver(1λ, dig, (Mx, t, u), vst, π) = 1,
∗ the query and secret state are inconsistent: (q, vst) 6∈ MD.Query(1λ).

(We can assume without loss of generality that the state vst contains
the random coins of MD.Query and, therefore, consistency can be
tested efficiently.)

In words, Vparam, given the secret state vst, first verifies the proof π that
“Mx(D) = (u, · · · )” where D is the database corresponding to the digest
dig. In addition, it verifies that q is truly consistent with the coins vst.

– Denote by 1 a circuit of the same size as Vparam that always returns 1.

We describe our three-message zero-knowledge protocol in Figure 2.

Proposition 5.1. Protocol 2 is a statistical zero-knowledge argument.

Proof (Sketch). As explained in the introduction, the protocol is based on the
zero-knowledge protocols in [BBK+16, BKP18]. In particular, Bitansky et al.
[BBK+16] show a three-message computational zero knowledge protocol in the
global hash model, where parties have access to a collision-resistant hash function
sampled during a setup phase. The main differences between our protocol and
theirs is:

25



Protocol 2

Common Input: an instance x ∈ L ∩ {0, 1}λ, for security parameter λ.
P: a witness w ∈ RL(x).

1. P computes
– wi1, the first message of the offline prover OffP(1λ, 1`Ψ (λ)) where `Ψ is the

length of the statement Ψ defined in Step 3 below,
– cmt← SHC.Com(02λ; 1λ), a commitment to the all zero string,

and sends (wi1, cmt).
2. V computes

– stV and wi2, the state and the second message of the offline verifier
OffV(1λ, 1`Ψ (λ)) after receiving the message wi1.

– (q, vst) ← MD.Query(1λ), a query and secret state for the delegation
scheme,

– (ctvst, sk)← SFE.Enc(1λ, vst), an encryption of the secret state,
– u← {0, 1}λ, a uniformly random string,

and sends (u,wi2, q, ctvst).
3. P computes

– ĉt← SFE.Eval(1, ctvst), an evaluation of the constant one function,
– stP, the state of the offline prover OffP(1λ, 1`Ψ (λ)) after receiving the mes-

sage wi2.
– wi3, the message for online prover OnP given the state stP, the statement
Ψ = Ψ1(x) ∨ Ψ2(wi1, cmt, q, u, ctvst, ĉt) of length `Ψ (λ) given by:{
∃w

∣∣∣∣∣ (x,w) ∈ RL

}∨
{
∃dig, π, rcmt, rĉt ∈ {0, 1}poly(λ)
t ≤ T (λ)

∣∣∣∣∣
cmt = Com(dig, t; rcmt)
param = ((wi1, cmt), q, u, dig, t, π)
ĉt = SFE.Eval(Vparam, ctvst, rĉt)

}
,

and the witness w ∈ RL(x) for Ψ1,
and sends (ĉt,wi3).

4. V verifies that SFE.Dec(ĉt; sk) = 1 and that the online verifier OnP with state
stV and the statement Ψ accepts after receiving the message wi3.

Fig. 2: A three-message statistical ZK argument of knowledge for NP.
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– Their two-message memory delegation scheme has full soundness instead of
weak soundness.

– Their secure function evaluation has computational function-hiding instead
of statistical.

– Their offline-online argument of knowledge is computationally witness indis-
tinguishable instead of statistically.

– The non-interactive commitment is perfectly binding and computationally
hiding instead of weakly binding and statistically hiding.

Next we outline the analysis of [BBK+16] and explain how to modify it for
our protocol.

Soundness. Assuming that x /∈ L, in order to pass the witness indistinguishable
argument of knowledge with respect to an evaluated cipher ĉt that decrypts
to 1, the prover must know a proof π ∈ {0, 1}λ and an opening of cmt to a
digest dig ∈ {0, 1}λ and a time bound t ≤ T (λ) such that Vparam(vst) = 1.
This, by definition, means that (dig, π, t) are such that the delegation verifier
MD.Ver is convinced that the digest dig corresponds to a machine V∗ such that
V∗(wi1, cmt) = (u, . . . ).

By the weak binding of cmt, the prover can only open the commitment to
a polynomial number of different digests. Therefore, there must exist one digest
dig for for which the prover can convince delegation verifier MD.Ver with high
probability for an output u with high entropy, contradicting the weak soundness
of the delegation scheme. In order to break the underlying delegation scheme we
also rely on the semantic security of the encryption scheme to hide the secret
verification state vst from the prover.

Statistical zero knowledge. To show statistical zero knowledge , we construct
a non-black-box simulator following the simulator of Barak [Bar01]. At high-
level, the simulator uses the code of the (malicious) verifier V∗ as the memory
for the delegation scheme, and completes the witness indistinguishable argument
of knowledge using a witness for the trapdoor statement Ψ2. The witness consists
of (dig, π, t) where dig is the digest corresponding to V∗, t ≈ |V∗| and π is the
corresponding delegation proof that V∗(wi1, cmt) = (u, . . . ), which is now true
by definition.

By the perfect completeness of the delegation scheme, we know that for
any encrypted secret state vst, given a query q that is consistent with vst, the
delegation verifier MD.Ver will accept the corresponding proof. Thus, the perfect
function hiding of the secure function evaluation (which holds also if the verifier
produces a malformed ciphertext) guarantees that the evaluated ciphertext ĉt
in the simulated proof is statistically close to that computed in the real proof
where the prover actually evaluates the constant 1 circuit.

Relying also on the statistical witness indistinguishability of the argument of
knowledge and the statistical hiding of cmt we deduce that V∗’s view in the real
proof and the simulated view are statistically close.
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