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Abstract. We study the communication complexity of unconditionally
secure MPC with guaranteed output delivery over point-to-point chan-
nels for corruption threshold t < n/3. We ask the question: “is it possible
to construct MPC in this setting s.t. the communication complexity per
multiplication gate is linear in the number of parties?” While a number
of works have focused on reducing the communication complexity in this
setting, the answer to the above question has remained elusive for over
a decade.
We resolve the above question in the affirmative by providing an MPC
with communication complexity O(Cnκ + n3κ) where κ is the size of
an element in the field, C is the size of the (arithmetic) circuit, and, n
is the number of parties. This represents a strict improvement over the
previously best known communication complexity of O(Cnκ+DMn

2κ+
n3κ) where DM is the multiplicative depth of the circuit. To obtain
this result, we introduce a novel technique called 4-consistent tuples of
sharings which we believe to be of independent interest.

1 Introduction

In secure multiparty computation (MPC), a set of n players wish to evaluate
a function f on their private inputs. The function f is publicly known to all
players and is assumed to be an arithmetic circuit C over some finite field. Very
informally, the protocol execution should not leak anything about the individual
inputs beyond what can already be inferred from the function output.

The notion of MPC was introduced in the beautiful work of Yao [Yao82].
Early feasibility results on MPC were obtained by Yao [Yao82] and Goldreich
et al. [GMW87] in the computational setting where the adversary is assumed to
have bounded computational resources. Subsequent works [BOGW88,CCD88]
considered the unconditional (or information-theoretic) setting and showed a
positive result for up to t < n/3 corrupted parties assuming point-to-point com-
munication channels. If one assumes a broadcast channel in addition, it was
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shown in [RBO89,Bea89] how to obtain positive results in the unconditional
setting for up to t < n/2 corrupted parties. MPC plays a central role in cryptog-
raphy, and, by now has been studied in a variety of different interesting settings.
Examples include security against semi-honest adversaries vs malicious adver-
saries, unconditional security vs computational security, and, security with abort
vs guaranteed output delivery.

In this work, we are interested in the communication complexity of uncon-
ditionally secure MPC with guaranteed output delivery. We assume that the
parties are connected using point-to-point channels, the adversary is malicious
(and may deviate from the protocol arbitrarily), and, the corruption threshold
t < n/3 (to avoid the known negative results on Byzantine agreement [LSP82]).
Indeed, the classical BGW protocol already gives a feasibility result in this set-
ting by presenting an unconditional MPC with guaranteed output delivery for
corruption threshold t < n/3. Several subsequent works have focused on improv-
ing the communication complexity of MPC in this setting. Note that the real
world efficiency of MPC in the unconditional setting is typically dominated by
its communication complexity (as opposed to the computational complexity).
This is because the local computations required are typically simple: often just
a series of linear operations. Representing the functionality as an arithmetic cir-
cuit, the addition gates are typically “free” requiring no communication at all.
Hence, the communication complexity of the protocol depends upon the number
of multiplication gates in the circuit.

In this paper, we ask the following natural question:

“Is it possible to construct unconditional MPC with guaranteed output de-
livery for t < n/3 s.t. the communication complexity per multiplication gate is
linear in the number of parties?”

Having linear communication complexity is interesting as it means that the
work done by a single party is independent of the number of parties participating
in the computation, giving a fully scalable protocol. While a number of works
have made significant progress, the answer to this question has remained elusive
so far. Best known communication complexity for malicious adversaries in this
setting comes from the construction in [BTH08]. The construction in [BTH08]
has communication complexity O(Cnκ+DMn

2κ+n3κ) where κ is the size of an
element in the field, C is the circuit size and DM is the multiplicative depth of the
circuit. For circuits which are “narrow and deep” (i.e., the multiplicative depth
DM is not much smaller than the circuit size C), the communication complexity
per multiplication gate can be as high as O(n2) elements. The factor of DMn

2κ
unfortunately appears in several papers studying this setting [DN07,BTH08],
[DIK10,BSFO12]. This led Ben-Sasson, Fehr, and, Ostrovsky to ask the question
whether this factor is inherent [BSFO12].

Building on a variety of previous works, it was shown in [DI06,HN06] that
there exist cryptographic secure MPC protocols with linear communication com-
plexity with guaranteed output delivery. In the unconditional setting, linear
communication complexity protocols are known for passive adversaries [DN07].
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However the question of obtaining an analogous construction against active ad-
versaries has remained open for over a decade.

Our Results. In this work, we resolve the above question in the affirmative by
providing an MPC with guaranteed output delivery, perfect security against a
malicious adversary corrupting up to t < n/3 of the parties, and, using only
point-to-point communication channels. The communication complexity of our
construction is O(Cnκ + n3κ) which is a strict improvement over the previous
best result of [BTH08]. Compared with the work [BTH08], our main contribution
is removing the quadratic term related to the multiplicative depth of the circuit,
while keeping the circuit-independent term as efficient as that in [BTH08]. To
obtain this result, we introduce a novel technique which we call 4-consistent
tuples of sharings. Very informally, this technique allows us to increase the re-
dundancy in an n-out-of-n sharing “on demand” such that if an adversary cheats
and changes its share in the n-out-of-n sharing, it can be detected and either
kicked out or added to a list of disputed parties. A high level overview of the
key technical obstacle encountered by previous works, and, how we overcome it
using 4-consistent tuples of sharings is given in Section 2.

Related Works. The notion of MPC was first introduced in [Yao82,GMW87] in
1980s. Feasibility results for MPC were obtained by [Yao82,GMW87,CDVdG87]
under cryptographic assumptions, and by [BOGW88,CCD88] in the information-
theoretic setting. Subsequently, a large number of works have focused on improv-
ing the efficiency of MPC protocols in various settings.

In this work, we focus on improving the asymptotic communication com-
plexity of MPC for arithmetic circuits over a finite field with output delivery
guarantee and security against an active adversary which may control up to
t < n/3 parties, in the information-theoretical setting. After the pioneering
work of Ben-Or et al. [BOGW88] which shows the feasibility in this setting,
Hirt et al. [HMP00] introduced Party-Elimination Framework which is a gen-
eral technique to efficiently transform a semi-honest protocol into a protocol
providing unconditional security with minimal additional cost. With this tech-
nique, Hirt et al. constructed a MPC protocol with communication complexity
O(Cn3κ+poly(n, κ)) bits, where C is the size of the circuit and κ is the size of an
element in the underlying field. A number of works [HM01,DN07,BTH08] then
continued to improve the communication complexity by using this technique.
The previous best result [BTH08] provided a protocol with perfect security with
asymptotic communication complexity O(Cnκ+DMn

2κ+n3κ) bits, where DM

is the multiplicative depth of the circuit. In a subsequent result [BSFO12] which
focuses on the setting of security against up to t < n/2 corrupted parties as-
suming the existence of a broadcast channel, the authors raised the question
whether the quadratic dependency w.r.t. the multiplicative depth is an inherent
restriction. Our result answers this question by presenting the first construction
which achieves linear communication per multiplication gate.

A number of works also focus on improving the communication efficiency of
MPC with output delivery guarantee in the settings with different threshold on
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the number of corrupted parties. In the setting where t < (1/3 − ε)n, secret
sharing can be used to hide a batch of values, resulting in more efficient proto-
cols. E.g., Damgard et al. [DIK10] introduced a protocol with communication
complexity O(C logC log n ·κ+D2

Mpoly(n, logC)κ) bits. In the setting of honest
majority (i.e., t < 1/2n), Hirt et al. [HN06] presented a protocol with commu-
nication complexity O(Cnκ+ nBC), where BC is the cost for broadcasting a bit
by one party, by using threshold homomorphic encryption [Pai99] and assum-
ing the existence of a broadcast channel. Ben-Sasson et al. [BSFO12] presented
a protocol with communication complexity O(Cnκ + DMn

2κ + n7κ) assuming
the existence of a broadcast channel in the information-theoretical setting. More
recent works in the computational setting have been able to obtain communi-
cation efficient MPC with output delivery guarantee in as low as 3 rounds, e.g.,
[BJMS18].

A rich line of works have focused on the performance of MPC in practice.
Many concretely efficient MPC protocols were presented in [LP12,NNOB12,FLNW17]
[ABF+17,LN17,CGH+18]. All of these works emphasized on the practical run-
ning time and only provided security with abort. Some of them were specially
constructed for two parties [LP12,NNOB12] or three parties [FLNW17,ABF+17].

2 Technical Overview

Our goal is to construct an unconditionally secure MPC protocol with guar-
anteed output delivery against a fully malicious adversary which may corrupt
t < n/3 parties. Our construction is for arithmetic circuits over a finite field, and,
achieves a communication complexity per multiplication gate which is linear in
the number of parties. The previous best result in this setting was obtained over
a decade ago by [BTH08]. In this section, we present an overview of our main
ideas.

How Previous Techniques Work: The communication complexity achieved by
the construction in [BTH08] is O(Cnκ + DMn

2κ + n3κ) where κ is the size
of an element in the field, C is the circuit size and DM is the multiplicative
depth of the circuit. Our goal would be to eliminate the term O(DMn

2κ) which
would allow us to obtain a construction with linear communication complexity
per multiplication gate.

We now take a closer look at the construction in [BTH08]. To improve the
efficiency, several subroutines in [BTH08] handle a batch of O(n) multiplication
gates at one time. The overall cost of each such operation is O(n2) elements.
In this way, the amortized cost per multiplication gate only comes out to O(n)
elements. While this seems to already give us the result we seek, a major limi-
tation of the techniques in [BTH08] (as well as prior works) is that the batches
must solely consist of multiplication gates at the same depth in the circuit. Since
the communication cost for a batch is at least O(n2) field elements (even if
the number of multiplication gates in the batch is significantly lower than n),
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and, the number of batches is at least the multiplicative depth DM , the overall
communication complexity cannot be lower than O(DMn

2κ).
The fundamental reason why we can only handle multiplication gates from a

single layer in any given batch is that the parties need to ensure that the result of
computing a layer is correct before moving on to the next layer. To understand
why this is the case, consider the following explicit attack.

The Key Bottleneck: We briefly describe the protocol for each multiplication
gate in [BTH08]. Let x, y be the inputs of the multiplication gate. We use [x]d
to denote a d-sharing of x. A d-sharing of x is the vector of shares obtained
by applying a (d + 1)-out-of-n secret sharing scheme on x. After a sharing is
distributed, each party holds a single share. Now consider the evaluation of a
multiplication gate. In the beginning, all parties hold shares of input wire values
[x]t, [y]t. In addition, all parties also hold a random (Beaver) tuple of sharings
([a]t, [b]t, [c]t) where c = ab generated in the preparation phase. To compute the
output sharing [xy]t, the parties will go through the following steps:

1. All parties locally compute [x+ a]t := [x]t + [a]t and [y + b]t := [y]t + [b]t.
2. All parties reconstruct [x + a]t, [y + b]t by using a reconstruction protocol

discussed below.
3. On receiving x+ a, y+ b, all parties locally compute [xy]t = (x+ a)(y+ b)−

(x+ a)[b]t − (y + b)[a]t + [c]t.

Our first attempt is to let one party Pking collect all the shares from [x +
a]t, [y+b]t, reconstruct x+a, y+b, and send the results back to all other parties.
In this way, each multiplication gate only costs O(nκ) bits even though we are
evaluating a single multiplication gate. Even if some of the parties are corrupted,
Pking can use error correction to recover the correct values. However, if Pking

itself is corrupted, the honest parties may get incorrect results. In fact, Pking

may even decide to send different values to different honest parties resulting in
honest parties holding inconsistent shares. At this point, if without any further
verification, one more multiplication gate is computed on the resulting output,
we show that Pking can learn the (full) value on an internal wire of the circuit!

In more detail, suppose Pking is corrupted. For a sharing [a]t, we use ai to
denote the i-th share of [a]t. All parties are going to evaluate x · y and then
(xy) · z. We give an attack to allow the adversary to recover the value of y:

1. Pking receives all shares of [x+a]t and [y+b]t from all parties. Pking computes
(x+ a) and (y + b).

2. Pking selects a set of honest parties H′ with size |H′| = n− t− 1.
3. Pking sends (x + a) and (y + b) to parties which are not in H′. For parties
Pj ∈ H′, Pking sends (x+ a+ 1) and (y + b).

4. All parties locally compute [xy]t = (x+a)(y+b)−(x+a)[b]t−(y+b)[a]t+[c]t.
For a party Pj ∈ H′, the share of [xy]t it should hold is (x+ a)(y+ b)− (x+
a)bj−(y+b)aj+cj . However, since Pking sent (x+a+1) instead of (x+a) to Pj ,
the actual share Pj holds is ((x+a)(y+b)−(x+a)bj−(y+b)aj+cj)+(y+b−bj).
This is equal to the correct share of [xy]t plus the value (y+ b− bj). A party
Pk which is not in H′ holds the correct share of [xy]t.
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5. For the next multiplication gate, Pking receives shares of [xy+a′]t and [z+b′]t
from all the parties. For [xy + a′]t, Pking uses the (t+ 1) shares provided by
parties (including those controlled by the adversary) that are not in H′ to
reconstruct (xy + a′). Then Pking computes the correct shares parties in H′
should hold.

6. For each party Pj ∈ H′, Pking computes the difference between the correct
share of Pj and the real share Pj provided, which is (y + b − bj). Note
that Pking learnt y + b while evaluting the previous multiplication gate, and
therefore, Pking learns the value of bj .

7. The adversary uses the shares of [b]t held by corrupted parties and {bj}Pj∈H′ ,
the shares of parties in H′, to reconstruct the value of b. Then it can compute
y from y + b and b. If y was the value on an input wire, the adversary has
learnt an input value. Else it learnt an intermediate wire value in the circuit.

Using n-out-of-n Secret Sharing: The above attack works because of the inher-
ent redundancy in a t-sharing. By only learning a small number of shares, the
adversary can compute the correct values of the remaining shares, obtain the
(incorrect) values for these shares, and finally, learn private information by com-
paring the incorrect values to the correct values. Our natural starting point to fix
this problem would be to use a (n− 1)-sharing (i.e., n-out-of-n sharing). In the
preparation phase, we generate a random tuple of sharings ([a]t,n−1, [b]t,n−1, [c]t)
where [a]t,n−1 denotes a t-sharing, and, an (n− 1)-sharing of the same value a.
The parties locally compute [x+ a]n−1 = [x]t + [a]n−1 (instead of [x+ a]t). Now
it can be shown that each share an honest party sends to Pking is uniformly dis-
tributed, and, the above attack ceases to work. The parties can safely evaluate
multiple layers of multiplication gates without leaking any information to the
adversary.

While this idea fixes the attack we outlined earlier, eliminating the redun-
dancy unfortunately opens the door to a host of other attacks which we discuss
next.

Checking the Reconstructions: An obvious issue with the above approach is now
not only Pking, but any party can cheat by sending a wrong share to Pking. As
before, a corrupted Pking can also send incorrect values and even different values
to different parties. Therefore, we need to run a verification procedure to ensure
every party behaved honestly. However before running a verification, all parties
evaluate exactly O(n) multiplication gates (even though they may not be at the
same layer). The verification is thus done in batches.

First, the parties check whether (for each multiplication gate) they all re-
ceived the same elements from Pking. This verification is done in batches and
is based on techniques from prior works. If this check fails, a pair of disputed
parties is identified and removed, and, all multiplication gates are re-evaluated.
Otherwise, this check guarantees that the sharings of the output of all the mul-
tiplication gates held by honest parties are consistent (though not necessarily
correct).
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Next, the parties check whether the reconstructions of values [x+a]n−1, [y+
b]n−1 are correct. Towards that end, we will use the reconstruction protocol
from [BTH08] to reconstruct [x + a]t := [x]t + [a]t, [y + b]t := [y]t + [b]t, which
guarantees that all honest parties get the correct results. If this second check
passes, then all multiplication gates are correctly evaluated and all parties con-
tinue to evaluate the remaining multiplication gates.

However if the above check fails, we run into an obstacle. In [BTH08], failure
of this check would necessarily imply the dishonesty of Pking (since the messages
sent by other parties to Pking, even if maliciously generated, could be corrected by
relying on the redundancy). Thus, Pking would be kicked out and the whole batch
would be executed again. However in our setting, there are two possibilities: 1)
at least one corrupted parties sent a wrong share to Pking, or, 2) Pking distributed
wrong results. Even if one is given that Pking behaved honestly, it is hard for
anybody (including Pking) to tell which party sent the wrong share. This is
because the shares do not have any redundancy and it is possible to change the
secret without getting detected by just changing a single share.

Without loss of generality, let (xi
?

+ ai
?

) be the first wrong value recon-
structed by Pking (the parties learn i? as part of the above check).

Increasing Redundancy using 4-Consistent Tuples: Observe that if a party sup-
plied an incorrect share of [xi

?

+ai
?

]n−1, then since (xi
?

+ai
?

) was shared using
a (n − 1)-sharing, the only way to detect who is cheating would be to go back
to how these shares were generated, recompute the correct share for each party,
and, see which party supplied an incorrect share. Note that [xi

?

+ ai
?

]n−1 =
[xi

?

]t + [ai
?

]n−1 and [xi
?

]t is a t-sharing. Therefore, we focus on the generation
process of [ai

?

]n−1.
The generation of [ai]n−1 is done in batches as follows [BTH08]. Each party

Pi first randomly generates [si]t,n−1 for a random element si and distributes
the sharings to all other parties (i.e., j-th share to Pj). Then all parties extract
the randomness by using a hyper-invertible matrix M and locally computing
([a1]t,n−1, . . . , [a

n]t,n−1) = M([s1]t,n−1, . . . , [s
n]t,n−1). In particular, [ai

?

]n−1 =
Mi?([s1]n−1, . . . , [s

n]n−1), where Mi? is the i?-th row of M .
Our first attempt to resolve this problem is as follows. The sharing [si]t can

be seen as the “redundant” version of the sharing [si]n−1. Similarly, the matrix
([s1]t, . . . , [s

n]t) can be seen as the redundant version of ([s1]n−1, . . . , [s
n]n−1).

The parties can generate the redundant version of [ai
?

]n−1 as [ai
?

]t = Mi?([s1]t, . . . , [s
n]t).

The parties can now send the shares from [xi
?

+ ai
?

]t to Pking. These shares
cannot be modified by the adversary because of the large redundancy present.
However what if a party cheated while sending shares from [xi

?

+ ai
?

]n−1 but
not while sending shares from [xi

?

+ ai
?

]t? The goal of detecting who cheated
still continues to evade us.

To resolve this problem, we wish to create a redundant version of the matrix
([s1]n−1, . . . , [s

n]n−1) in a way such that from this version, the entire matrix can
be recovered. That is, for each i, we should be able to recover the entire sharing
[si]n−1 as opposed to just the secret si (even if the adversary tampers with the
shares it holds). Towards that end, our idea would be to actually convert this
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given matrix into three separate matrices such that each row of these matrices
is a carefully chosen t-sharing. Even if the adversary tampers with its shares
arbitrarily in each of these 3 matrices and the original matrix, these 3 matrices
can be entirely recovered and then, be used to recover the original matrix. We
now give more details.

All parties first agree on a partition of the set of all parties P = P1

⋃
P2

⋃
P3

such that |P1|, |P2|, |P3| ≤ t + 1. For the first matrix, the columns held by
parties in P1 are the same as the original matrix and the remaining columns are
randomly sampled such that each row of the matrix is a t-sharing. It can always
be achieved since for each row, only up to t+1 values are fixed (i.e., copied from
the original matrix). Similarly, for the second and the third matrices, the columns
held by parties in P2 and P3 are the same as the original matrix respectively.
The remaining columns are randomly sampled such that each row of these two
matrices is a t-sharing. To recover the original matrix from these 3 matrices, we
simply pick the columns held by parties in P1 from the first matrix, the columns
held by parties in P2 from the second matrix and the columns held by parties in
P3 from the third matrix. In case the adversary tampers with up to t columns
of each matrix, all the 3 matrices can be recovered using error correction and
then the original matrix can be recovered.

We now focus on the i-th row of these four matrices (including the original
one). Denote these by ([0s

i]n−1, [1s
i]t, [2s

i]t, [3s
i]t) (recall that each row of each

matrix is a sharing). Together with the t-sharing [0s
i]t := [si]t, we call such 4

sharings ([0s
i]t, [1s

i]t, [2s
i]t, [3s

i]t) a 4-consistent tuple of sharings. More formally,
we say a tuple of sharings ([0s]t, [1s]t, [2s]t, [3s]t) is 4-consistent w.r.t. a partition
of P = P1

⋃
P2

⋃
P3 where |P1|, |P2|, |P3| ≤ t+ 1, if the (n− 1)-sharing [s]n−1,

where the k-th share of [s]n−1 equals the k-th share of [js]t for all j ∈ {1, 2, 3}
and Pk ∈ Pj , satisfies that s = 0s.

We prove that 4-consistency is preserved under linear operations. In more
detail, by applying Mi? to the 3 new matrices, we are able to obtain three t-
sharings [1a

i? ]t, [2a
i? ]t, [3a

i? ]t such that these would entirely allow one to recover
all shares of [ai

?

]n−1 and make sure [ai
?

]n−1 and [ai
?

]t are sharings of the same
value ai

?

. We stress that these 3 sharings not only allow us to recover all shares
of [ai

?

]n−1, but, in fact, also provide sufficient redundancy to make sure that an
adversary controlling up to t parties cannot cause the recovery procedure to fail.

Using 4-Consistent Tuples to Detect the Cheaters: How do the parties generate
these 4 matrices, and, ensure 4-consistency? Each party Pi generates the sharings
[si]t,n−1 and distributes them as before. Pi generates three additional t-sharings
[1s

i]t, [2s
i]t, [3s

i]t such that for j ∈ {1, 2, 3} and Pk ∈ Pj , the k-th share of [js
i]t

equals the k-th share of [si]n−1. Pi then distributes [js
i]t to all parties which

are not in Pj (because parties in Pj have already received their shares when Pi

distributed [si]n−1) for every j ∈ {1, 2, 3}. Let [0s
i]t := [si]t.

Next, all parties must check whether each party Pi distributed a valid 4-
consistent tuple of sharings ([0s

i]t, [1s
i]t, [2s

i]t, [3s
i]t). We develop subroutines

to do it efficiently by checking a batch of them each time. (If the check fails, a
pair of disputed parties is identified and removed.)
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Recall that [ai
?

]n−1 = Mi?([s1]n−1, . . . , [s
n]n−1). To verify whether parties

in Pj provided correct shares when reconstructing xi
?

+ ai
?

, all parties (locally)
compute

[jd
i? ]t := [xi

?

]t + [ja
i? ]t

= [xi
?

]t +Mi?([js
1]t, . . . , [js

n]t)

The computed shares are then sent to Pking. Observe that for Pk ∈ Pj , the
k-th shares of [js

1]t, . . . , [js
n]t are exactly the k-th shares of [s1]n−1, . . . , [s

n]n−1.
On receiving all shares of [jd

i? ]t, Pking is able to recover all shares of [jd
i? ]t even

if several of the received shares are incorrect. This allows Pking to recover correct

shares from [xi
?

]t + [ja
i? ]n−1 for all Pk ∈ Pj . Pking can now check whether a

party in Pj behaved honestly by sending the correct share earlier. Therefore,
in the end, Pking claims that some party Pk is corrupted and all parties treat
(Pking, Pk) as a pair of disputed parties.

On the Proof of Security: We point out that it is non-trivial to prove the security
of our construction. Recall that each party Pi generates a tuple of t-sharings to
encode its randomness when generating [ai

?

] (i.e., to encode [si]n−1). In general,
a t-sharing can only be used to hide one value since the adversary might have
t shares and just need one more to reconstruct all shares and the secret value.
However, we use a t-sharing to encode up to t+1 values, and, the values held by
honest parties should remain unknown to the adversary. Therefore, one must be
careful in using 4-consistent tuples to ensure that the simulator is able to obtain
an identical view. For more details, we refer the readers to Appendix A.

Efficiency: In each batch, O(n) multiplication gates are first evaluated. Then all
parties check whether the results are correct. When a pair of disputed parties
is identified, these two parties are removed and all these O(n) multiplication
gates will be reevaluated. Our protocol costs O(n2κ) bits for the entire batch.
Therefore, on average, each multiplication only costs O(nκ) bits. For each failure,
at least one corrupted party is removed. Thus the number of reevaluations is
bounded by O(n), which means that reevaluations cost at most O(n3κ). Hence,
the communication complexity of the overall protocol is O(Cnκ+ n3κ).

3 Preliminary

3.1 Model

We consider a set of parties P = {P1, P2, ..., Pn} where each party can provide
inputs, receive outputs, and participate in the computation. For every pair of
parties, there exists a secure (private and authentic) synchronous channel so that
they can directly send messages to each other.

We focus on functions which can be represented as arithmetic circuits over a
finite field F (with |F| ≥ 2n) with input, addition, multiplication, random, and
output gates. Let κ = log |F| be the size of an element in F.
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An adversary is able to corrupt at most t < n/3 parties, provide inputs
to corrupted parties, and receive all messages sent to the corrupted parties.
Corrupted parties can deviate from the protocol arbitrarily. We denote the set
of corrupted parties by C.

Each party Pi is assigned with a unique non-zero field element αi ∈ F\{0}
as the identity.

3.2 Byzantine Agreement

Byzantine agreement allows all honest parties to reach a binary consensus. A
protocol for byzantine agreement takes a bit from each party as input, and
all honest parties will reach to a consensus if at most t parties are corrupted.
Furthermore, if all honest parties hold the same bit b in the beginning, then all
honest parties agree on b finally.

In our protocol, we use a byzantine agreement protocol to let all parties
reach a binary consensus and let one party broadcast one bit to all other parties.
Broadcast allows a party (as a sender) to send a bit b to the remaining parties
and all parties eventually receive the same bit b′ where b = b′ when the sender
is honest. An easy way to instantiate broadcast is to let the party send the bit b
to all other parties, and then all parties run a byzantine agreement protocol to
reach a consensus on the bit b′ they received.

With t < n/3, both consensus and broadcast can be achieved by a perfect
byzantine agreement protocol communicating O(n2) bits [BGP92,CW92].

3.3 Party-Elimination Framework

Party-Elimination was first introduced in [HMP00]. It is a general strategy to
achieve perfect security efficiently.

The basic idea is to divide the computations into several segments. For each
segment, all active parties first evaluate this segment and then check the cor-
rectness of the evaluation. It is guaranteed that at least one honest party will
discover that the segment is evaluated incorrectly if any corrupted parties de-
viate from the protocol. After the check is completed, all active parties reach
a consensus on whether this segment is successfully evaluated. In the case of
success, all active parties continue to evaluate the next segment. In the case of
failure, all active parties run another protocol to locate two active parties such
that at least one of them is corrupted. Then these two parties are eliminated
from the set of active parties. The same segment is evaluated again.

Therefore, each failure results in a reduction in the number of corrupted
parties and only a bounded number (O(n)) of failures may happen.

We use Pactive to denote the set of parties which are active currently. Only
parties in Pactive can participate in the remaining computations. We use Cactive ⊂
Pactive for the set of active corrupted parties. Let n′ be the size of Pactive. We
use t′ for the maximum possible number of the corrupted parties in Pactive.

Each time a pair of disputed parties is identified, these two parties are re-
moved from Pactive and hence Cactive. It results in n′ := n′ − 2 and t′ := t′ − 1.
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Initially we have n = n′, t = t′. Let T = n′−2t′. Therefore, T remains unchanged
during the whole protocol.

We directly borrow the instantiation of Party-Elimination Framework used
in [BTH08]. We build a compiler which takes a procedure π as input and outputs
a procedure or a protocol π′ which either outputs the original result of π or
outputs a pair of disputed parties which contains at least one corrupted party.
In the rest of the constructions, each party maintains a happy-bit. Formally,

Procedure 1 Party-Elimination(π)

1: Initialization Phase:
All parties initially set their happy-bits to happy.

2: Computation Phase:
All parties run the procedure π.

3: Fault Detection Phase:

1. Each party sends its happy-bit to all other parties.
2. For each party, if at least one of the happy-bits it receives is unhappy,

sets its happy-bit to be unhappy.
3. All parties run a consensus protocol on their respective happy-bits. If

the result is happy, all parties take the result of π as the output and
halt. Otherwise, run the following steps.

4: Fault Localization Phase:

1. All parties agree on a referee Pr ∈ Pactive. Every other party sends
everything it generated, sent, and received in the Computation Phase
and Fault Detection Phase to Pr.

2. On receiving all information from other parties, Pr simulates the Compu-
tation Phase and Fault Detection Phase. Pr broadcasts either (Pi, corrupt)
(in the case Pi does not follow the procedure) or (`, Pi, Pk, v, v

′,disputed)
where ` is the index of the message where Pi should have sent v to Pk

while Pk claimed to have received v′ 6= v.

(a) If (Pi, corrupt) is broadcast, all parties set E = {Pr, Pi}.
(b) Otherwise, Pi and Pk broadcast whether they agree with Pr. If Pi

disagrees, set E = {Pr, Pi}; if Pk disagrees, set E = {Pr, Pk}; other-
wise, set E = {Pi, Pk}.

3. All parties take E as the output and halt.

We point out that the happy-bits are used in π and therefore, the value of a
happy-bit reflects whether this party is satisfied with the execution of π.

After a procedure π is compiled by Party-Elimination, parties will commu-
nicate with each other in Fault Detection Phase and Fault Localization Phase,
which adds some communication cost to π′. Parties will communicate O(n2)
elements in Fault Detection Phase to distribute happy-bits and reach the con-
sensus. Let m(π) be the total elements communicated in π, the overhead of
the Fault Localization Phase will then be O(m(π) + n2). In total, the overall
communication complexity is O(m(π) + n2) elements or O(m(π)κ+ n2κ) bits.
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3.4 Hyper-Invertible Matrix

We adopt the definition of hyper-invertible matrices from [BTH08].

Definition 1 ([BTH08]). An r-by-c matrix M is hyper-invertible if for any
index sets R ⊆ {1, 2, ..., r} and C ⊆ {1, 2, ..., c} with |R| = |C| > 0, the matrix
MC

R is invertible, where MR denotes the matrix consisting of the rows i ∈ R
of M , MC denotes the matrix consisting of the columns j ∈ C of M , and
MC

R = (MR)C .

We point out a very useful property of hyper-invertible matrices, which is a
more generalized version compared with that shown in [BTH08].

Lemma 1. Let M be a hyper-invertible r-by-c matrix and (y1, ..., yr) = M(x1, ..., xc).
Then for any sets of indices A ⊆ {1, 2, ..., c} and B ⊆ {1, 2, ..., r} such that |A|+
|B| = c, there exists a linear function f : Fc → Fr which takes {xi}i∈A, {yj}j∈B
as inputs and outputs {xi}i 6∈A, {yj}j 6∈B.

3.5 Secret Sharing

In our protocol, we use the standard Shamir secret sharing scheme [Sha79]. We
adopt the notion of d-shared in [BTH08].

Definition 2 ([BTH08]). We say that a value s is (correctly) d-shared (among
the parties in Pactive) if every honest party Pi ∈ Pactive is holding a share si of s,
such that there exists a degree-d polynomial p(·) with p(0) = s and p(αi) = si for
every Pi ∈ Pactive. The vector (s1, s2, ..., sn′) of shares is called a d-sharing of s,
and is denoted by [s]d. A (possibly incomplete) set of shares is called d-consistent
if these shares lie on a degree-d polynomial.

For every function f : Fm → Fm′
, by writing f([x(1)]d, [x

(2)]d, ..., [x
(m)]d), we

mean f is applied on (x
(1)
i , x

(2)
i , ..., x

(m)
i ) for every i ∈ {1, 2, ..., n′}. Especially,

when we say all parties in Pactive locally compute f([x(1)]d, [x
(2)]d, ..., [x

(m)]d),

each party Pi computes f(x
(1)
i , x

(2)
i , ..., x

(m)
i ).

We point out that Shamir secret sharing scheme is linear, i.e., for every two d-
sharing [u]d, [v]d, [c1u+ c2v]d = c1[u]d + c2[v]d. We also heavily use the following
two facts: in the case t′ < (n′ − d)/2, a d-sharing [u]d is correctable with at
most t′ errors, e.g., by Berlekamp-Welch Algorithm; in the case t′ < n′ − d,
a d-sharing [u]d is detectable with at most t′ errors, due to the fact that two
different degree-d polynomials f1(·), f2(·) over F can have at most d points where
two polynomials are equal. Particularly, a t-sharing is always correctable in our
setting since n′ − 2t′ = T = n− 2t > t and therefore t′ < (n′ − t)/2.

We say a t-sharing [v]t is correct (or v is correctly t-shared) if all shares held
by honest parties lie on a degree-t polynomial. As we mentioned above, a correct
t-sharing is always recoverable.

In our protocol, we use [s]d1,d2
to represents two sharings of the same value

s, one is d1-sharing and the other one is d2-sharing. We use [s]d1,d2,d3
to repre-

sent three sharings of the same value s, d1-sharing, d2-sharing and d3-sharing
respectively.
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3.6 Batched Reconstruction

We directly borrow the procedure from [BTH08] to reconstruct a batch of d-
sharings. The procedure Recons takes T d-sharings as input and reconstructs
each sharing to all parties.

Procedure 2 Recons(Pactive, d, [s1]d, [s
2]d, . . . , [s

T ]d) [BTH08]

1: All parties agree on n′ different values β1, β2, . . . , βn′ ∈ F.
2: Expansion:

For every j ∈ {1, 2, . . . , n′}, all parties (locally) expand [s1]d, [s
2]d, . . . , [s

T ]d
into an error correction code [u1]d, [u

2]d, . . . , [u
n′

]d as:

[uj ]d = [s1]d + [s2]dβj + [s3]dβ
2
j + . . .+ [sT ]dβ

T−1
j

3: Collecting shares of [ui]d:
For every party Pi, all other parties send their shares of [ui]d to Pi.

4: Each party Pi tries to reconstruct ui from the shares it received:
Pi checks whether there exists a degree-d polynomial f such that at

least min{d + t′ + 1, n′} of the shares lie on it. If not, Pi sets its happy-bit
to unhappy. Pi sends the value ui = f(0) or ⊥ (in the case that f does not
exist) to other parties.

5: On receiving u1, . . . , un
′
, each party Pi tries to reconstruct and output

s1, . . . , sT :
If there exists a degree-(T − 1) polynomial g such that at least T + t′

values of u1, u2, . . . , un
′

lie on it, Pi computes s1, s2, . . . , sT from any T of
them. Otherwise, Pi sets its happy-bit to unhappy and sets sj =⊥ for all
j ∈ {1, . . . , T}. Pi takes s1, . . . , sT as output.

We point out two facts about the procedure Recons, which are shown
in [BTH08].

1. If d < T = n′ − 2t′ and all d-sharings are correct, then Recons always
successfully reconstructs the sharings to parties in Pactive. As we mentioned
before, a d-sharing is correctable with at most t′ errors when t′ < (n′−d)/2,
which is equivalent to d < n′ − 2t′ = T .

2. If d < n′ − t′ and all d-sharings are correct, then either all sharings are cor-
rectly reconstructed or at least one happy-bit of an honest party is unhappy.

The procedure Recons will reconstruct T = Ω(n) sharings while commu-
nicating O(n2) elements to collect shares of [ui]d in Step 3 and distributed the
reconstructed ui to all parties. Thus, the overall communication complexity is
O(n2κ) bits. Note that for each sharing, the communication complexity to re-
construct it is O(n) elements in average.

3.7 Input Gates

We directly use the result in [BTH08] where they provided a protocol for input
gates with communication complexity O(cInκ+n3κ) bits, where cI is the number
of input gates in the circuit. The formal functionality appears in Finput.
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Functionality 3 Finput(cI)

1: Finput receives inputs, which are denoted by v1, v2, . . . , vcI ∈ F, from all
parties including honest and corrupted parties. Finput initially sets statej =
1 for j ∈ {1, . . . , cI}.

2: From j = 1 to cI , Finput asks S what to do next:
– On receiving (Pi, Pk,disputed) where Cactive

⋂
{Pi, Pk} 6= ∅, Finput sets

Pactive := Pactive\{Pi, Pk} and Cactive := Cactive\{Pi, Pk}.
– On receiving (vj , corrupted) where vj is sent by a corrupted party, Finput

sets statej = 0,Pj = Pactive, Cj = Cactive and then handle j := j + 1.
– On receiving {vjs}Ps∈Cactive , Finput sets Pj = Pactive, Cj = Cactive and

then handle j := j + 1.
3: For each j ∈ {1, . . . , cI}, if statej = 1, Finput computes a random t-sharing

[vj ]t of the input vj received in the first step, such that for all Ps ∈ Cj , the
s-th share of [vj ]t is vjs. If statej = 0, Finput sets [vj ]t = [0]0.

4: For every j ∈ {1, . . . , cI} and Pi ∈ Pj , Finput sends vji to Pi. Finput also
sends Pactive to all parties.

We refer the reader to the appendix of [BTH08] for the construction of a
protocol which instantiates Finput.

4 4-Consistency

In our protocol, we first use random (n′−1)-sharings to help evaluate the circuit.
Indeed, there is no redundancy in a (n′ − 1)-sharing: to reconstruct the value,
all shares from Pactive are needed. However, it makes the sharing vulnerable
and the verification becomes much harder due to the lack of redundancy, e.g.,
every party is able to change the value by changing its own share without being
detected.

Therefore, we need a tool to let each party commit their shares after eval-
uating the circuit to help verifying the honesty. To this end, we introduce the
notion 4-consistency. Recall that t is the maximum number of corrupted parties
an adversary can control and n′ is the number of active parties.

Definition 3. For a partition π of Pactive = P1

⋃
P2

⋃
P3 such that |P1|, |P2|, |P3| ≤

t + 1, a tuple of t-sharings [[r]] = ([0r]t, [1r]t, [2r]t, [3r]t) is a 4-consistent tuple
w.r.t. π if 0r = r and there exists a degree-(n′− 1) polynomial p(·) with p(0) = r
and for all Pi ∈ Pj, p(αi) is the i-th share of the sharing [jr]t.

In fact, the vector (p(α1), p(α2), ..., p(αn′)) is a (n′ − 1)-sharing of r by def-
inition. We denote it as [r]n′−1. In our construction, [r]t,n′−1 is first generated
to do evaluation. Then, in the verification step, [1r]t, [2r]t, [3r]t are generated
to commit the shares of [r]n′−1. This is due to the fact that t-sharings are cor-
rectable (as we explained in Section 3.5). Therefore, each share of [r]n′−1 can be
recovered no matter how corrupted parties change their shares.
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Lemma 2. 4-consistency is preserved under linear combinations

Proof. We show that, for every two 4-consistent tuples [[r]], [[s]] which are w.r.t.
π and constants c1, c2,

[[c1r + c2s]] := c1[[r]] + c2[[s]]

= (c1[0r]t + c2[0s]t, c1[1r]t + c2[1s]t, c1[2r]t + c2[2s]t, c1[3r]t + c2[3s]t)

is still 4-consistent w.r.t. π.
To see this, by the linearity of Shamir secret sharing scheme, each entry of the

resulting tuple is still a t-sharing. Especially, c1[0r]t + c2[1s]t = [c1(0r) + c2(0s)]t
and c1r + c2s = c1(0r) + c2(0s).

Let p(·), q(·) be the polynomials such that p1(0) = r, p2(0) = s and for
every j ∈ {1, 2, 3} and Pi ∈ Pj , p1(αi), p2(αi) are the i-th shares of the sharings
[jr]t, [js]t respectively (as per the definition). Let p3 = c1p1+c1p2. Then p3(0) =
c1p1(0) + c2p2(0) = c1r + c2s. For every Pi ∈ Pj , p3(αi) = c1p1(αi) + c2p2(αi)
which is exactly the i-th share of c1[jr]t + c2[js]t. ut

We say a 4-consistent tuple [[r]] = ([0r]t, [1r]t, [2r]t, [3r]t) is correct if 1) each
of the t-sharings is correct and 2) after correcting possible wrong shares held by
corrupted parties, it is 4-consistent.

5 Building Block

In this section, we introduce several building blocks which will be utilized in the
full protocol.

5.1 Random Triple-Sharings

The following procedure, TripleShareRandom(Pactive, d1, d2, d3), is used to
generate and distribute T random triple-sharings {[ri]d1,d2,d3

}Ti=1 where r1, . . . , rT

are sampled uniformly from F and d1, d2, d3 ≥ t′. It finally outputs either T valid
random triple-sharings or a pair of disputed parties. The ideal functionality is
described in Ftriple.

Functionality 4 Ftriple(d1, d2, d3)

1: On receiving (Pi, Pk,disputed), where Cactive
⋂
{Pi, Pk} 6= ∅, from S, Ftriple

sends (Pi, Pk,disputed) to all parties.
2: On receiving ({r1,d1

s , r1,d2
s , r1,d3

s }Ps∈Cactive , . . . , {rT,d1
s , rT,d2

s , rT,d3
s }Ps∈Cactive) from

S, Ftriple samples r1, r2, . . . , rT uniformly from F. Then Ftriple randomly
generates [r1]d1,d2,d3 , . . . , [r

T ]d1,d2,d3 such that for every j ∈ {1, . . . , T} and
Ps ∈ Cactive, the s-th shares of [rj ]d1,d2,d3

are rj,d1
s , rj,d2

s , rj,d3
s respectively.

For every j ∈ {1, . . . , T} and Pi ∈ Pactive, Ftriple sends the i-th shares of
[rj ]d1,d2,d3

to Pi.
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The basic construction is very similar to the protocol which generates ran-
dom double-sharings in [BTH08]. The only difference is that we generate triple-
sharings instead of double-sharings.

In the beginning of the computation, all parties will agree on a constant
hyper-invertible matrix M of size n′×n′, which will be employed to extract ran-
domness. The first step of the protocol is to let each party Pi distribute a triple-
sharing [si]d1,d2,d3

of a random value si. Then apply the hyper-invertible matrix

M on them, i.e., ([r1]d1,d2,d3
, . . . , [rn

′
]d1,d2,d3

) = M([s1]d1,d2,d3
, . . . , [sn

′
]d1,d2,d3

).
For the last 2t′ triple-sharings, each of them is reconstructed by a different

party. Each party who reconstructs one of the triple-sharings checks whether
they are valid and sets its happy-bit to unhappy if the triple-sharing is invalid.
Finally, all parties take the remaining T = n′ − 2t′ triple-sharings as output.

It guarantees that either the output (i.e., [r1]d1,d2,d3
, . . . , [rT ]d1,d2,d3

) is cor-
rect or at least one happy-bit of an honest party is unhappy.

Formally,

Procedure 5 TripleShareRandom(Pactive, d1, d2, d3)

1: All parties agree on a hyper-invertible matrix M of size n′ × n′.
2: Parties distribute their own randomness:

Each party Pi samples si ∈ F uniformly. Then randomly generate
[si]d1,d2,d3

. For each other party Pj , Pi sends the j-th shares of [si]d1,d2,d3
to

Pj .
3: Extracting randomness from honest parties:

All parties locally compute

([r1]d1,d2,d3
, . . . , [rn

′
]d1,d2,d3

) = M([s1]d1,d2,d3
, . . . , [sn

′
]d1,d2,d3

)

4: Check the correctness:
1. For j ∈ {T + 1, . . . , n′}, all parties send their shares of [rj ]d1,d2,d3

to Pj .
2. Pj checks whether the triple-sharing it received is valid, i.e., all shares

of [rj ]d1 , [r
j ]d2 , [r

j ]d3 lie on degree-d1 ,degree-d2, degree-d3 polynomials
g1, g2, g3 respectively, and g1(0) = g2(0) = g3(0). If not, Pj sets its
happy-bit to unhappy.

5: All parties take the first T triple-sharings [r1]d1,d2,d3
, . . . , [rT ]d1,d2,d3

as out-
put.

In procedure TripleShareRandom, parties communicate O(n2) elements
to distribute randomness in Step 2 and check correctness in Step 4. Thus, the
overall communication complexity is O(n2κ) bits. Note that the communication
complexity for generating each random triple sharing is O(n) elements.

Let TripleShareRandom-PE := Party-Elimination(TripleShareRandom).
Then TripleShareRandom-PE securely computes Ftriple.

Lemma 3 ([BTH08]). The protocol TripleShareRandom-PE computes Ftriple

with perfect security when |Cactive| < |Pactive|/3.

The overall communication complexity of TripleShareRandom-PE isO(n2κ)
bits.
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5.2 Random Multiplication Tuples

The procedure GenerateTuples(Pactive) is used to generate T correctly and
independently random tuples ([a]t,n′−1, [b]t,n′−1, [c]t), which we call multiplica-
tion tuples, where a, b are uniformly random and c = ab. It outputs either T
random multiplication tuples or a pair of disputed parties. The ideal function-
ality is described in Fmulti-tuple.

Functionality 6 Fmulti-tuple(Pactive)
1: On receiving (Pi, Pk,disputed), where Cactive

⋂
{Pi, Pk} 6= ∅, from S, Fmulti-tuple

sends (Pi, Pk,disputed) to all parties.
2: On receiving

({a1,ts , a1,n
′−1

s , b1,ts , b1,n
′−1

s , c1,ts }Ps∈Cactive , . . . , {aT,t
s , aT,n′−1

s , bT,t
s , bT,n′−1

s , cT,t
s }Ps∈Cactive)

from S, Fmulti-tuple samples a1, . . . , aT , b1, . . . , bT uniformly from F and com-
putes c1 = a1b1, . . . , cT = aT bT . Then Fmulti-tuple randomly generates

([a1]t,n′−1, [b
1]t,n′−1, [c

1]t), . . . , ([a
T ]t,n′−1, [b

T ]t,n′−1, [c
T ]t)

such that for every j ∈ {1, . . . , T} and Ps ∈ Cactive, the s-th shares of
([aj ]t,n′−1, [b

j ]t,n′−1, [c
j ]t) are (a1,ts , a1,n

′−1
s , b1,ts , b1,n

′−1
s , c1,ts ) respectively. For

every j ∈ {1, . . . , T} and Pi ∈ Pactive, Fmulti-tuple sends the i-th shares of
([aj ]t,n′−1, [b

j ]t,n′−1, [c
j ]t) to Pi.

The basic construction is very similar to the protocol which generates ran-
dom triples in [BTH08]. The difference is that we generate triple-sharings
[a]t′,t,n′−1, [b]t′,t,n′−1, [r]t,2t′,n′−1 instead of double-sharings [a]t′,t, [b]t′,t, [r]t,2t′ in
the beginning. However [a]n′−1, [b]n′−1 are directly output and [r]n′−1 is dis-
carded.

GenerateTuples(Pactive) first invokes TripleShareRandom to generate
random triple sharings [a1]t′,t,n′−1, . . . , [a

T ]t′,t,n′−1, [b
1]t′,t,n′−1, . . . , [b

T ]t′,t,n′−1
and [r1]t,2t′,n′−1, . . . , [r

T ]t,2t′,n′−1. For every i ∈ {1, . . . , T}, [ai]t′ , [b
i]t′ are used

to compute [ci]2t′ = [ai]t′ [b
i]t′ locally and [ri]t,2t′ is used to generate [ci]t.

Procedure 7 GenerateTuples(Pactive)
1: Generate random triple-sharings:

All parties invoke TripleShareRandom(Pactive, t′, t, n′−1) two times
to generate [a1]t′,t,n′−1, . . . , [a

T ]t′,t,n′−1 and [b1]t′,t,n′−1, . . . , [b
T ]t′,t,n′−1. Then

invoke TripleShareRandom(Pactive, t, 2t′, n′ − 1) to generate
[r1]t,2t′,n′−1, . . . , [r

T ]t,2t′,n′−1.
2: For j ∈ {1, . . . , T}, all parties locally compute [cj ]2t′ = [aj ]t′ [b

j ]t′ where
cj = ajbj . Since each party directly multiplies its shares, the result is a
2t′-sharing.

3: For j ∈ {1, . . . , T}, the parties in Pactive locally compute [dj ]2t′ = [cj ]2t′ −
[rj ]2t′ .
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4: Invoke Recons(Pactive, 2t′, [d1]2t′ , . . . , [d
T ]2t′) to reconstruct d1, . . . , dT .

5: For j ∈ {1, . . . , T}, the parties in Pactive locally compute [cj ]t = dj + [rj ]t.
6: Output the T tuples ([a1]t,n′−1, [b

1]t,n′−1, [c
1]t), . . . , ([a

T ]t,n′−1, [b
T ]t,n′−1, [c

T ]t).

As parties only communicate with each other when invoking TripleShareRandom
and Recons, the communication complexity of GenerateTuples is thusO(n2κ)
bits. Note that the communication cost of each random multiplication tuple is
O(n) elements.

Let GenerateTuples-PE := Party-Elimination(GenerateTuples).
Then GenerateTuples-PE securely computes Fmulti-tuple.

Lemma 4 ([BTH08]). The protocol GenerateTuples-PE computes Fmulti-tuple

with perfect security when |Cactive| < |Pactive|/3.

The overall communication complexity of GenerateTuples-PE is O(n2κ)
bits.

5.3 Generating 4-consistent Tuples

The procedure QuadrupleShareRandom(Pactive,P1,P2,P3) is used to gen-
erate T correct and random 4-consistent tuples [[r]] = ([0r]t, [1r]t, [2r]t, [3r]t).
The procedure takes Pactive, and a partition Pactive = P1

⋃
P2

⋃
P3, where

|P1|, |P2|, |P3| ≤ t+ 1, as input. It outputs either T correct random 4-consistent
tuples or a pair of disputed parties. The ideal functionality is described in
F4-consistency.

Functionality 8 F4-consistency(Pactive,P1,P2,P3)

1: On receiving (Pi, Pk,disputed), where Cactive
⋂
{Pi, Pk} 6= ∅, from S, F4-consistency

sends (Pi, Pk,disputed) to all parties.
2: On receiving ({0r1s, 1r1s, 2r1s, 3r1s}Ps∈Cactive , . . . , {0rTs , 1rTs , 2rTs , 3rTs }Ps∈Cactive) from
S, F4-consistency randomly generates

[[r1]], . . . , [[rT ]]

such that for every j ∈ {1, . . . , T} and Ps ∈ Cactive, the s-th shares of [[rj ]]
are (0r

j
s, 1r

j
s, 2r

j
s, 3r

j
s) respectively. For every j ∈ {1, . . . , T} and Pi ∈ Pactive,

F4-consistency sends the i-th shares of [[rj ]] to Pi.

The construction of QuadrupleShareRandom is similar to TripleShareRandom
by the following means: First, each party deals a random 4-consistent tuple, and
then a hyper-invertible matrix is applied to extract the randomness. For the
last 2t′ out of n′ 4-consistent tuples, they will then be reconstructed to check
whether corrupted parties cheated in the computation. Finally, the remaining
n′ − 2t′ = T 4-consistent tuples will be output.

Procedure 9 QuadrupleShareRandom(Pactive,P1,P2,P3)
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1: All parties agree on a hyper-invertible matrix M .
2: Parties distribute their own randomness:

Each party Pi generates a random 4-consistent tuple
[[si]] = ([0s

i]t, [1s
i]t, [2s

i]t, [3s
i]t). For each other party Pj , Pi sends the j-th

shares of [[si]] to Pj .
3: Extracting randomness from honest parties:

All parties locally compute

([[r1]], . . . , [[rn
′
]]) = M([[s1]], . . . , [[sn

′
]]).

4: Check the correctness:
1. For j ∈ {T + 1, . . . , n′}, all parties send their shares of [[rj ]] to Pj .
2. Pj checks whether the 4-consistent tuple [[rj ]] is valid. If not, Pj sets its

happy-bit to unhappy.
5: All parties take the first T tuples [[r1]], . . . , [[rT ]] as output.

Parties communicateO(n2) elements to deal n′ and reconstruct 2t′ 4-consistent
tuples, so the overall communication complexity is O(n2κ) bits. Note that in av-
erage, the communication cost for each 4-consistent tuple is O(n) elements.

Let QuadrupleShareRandom-PE := Party-Elimination(QuadrupleShareRandom).
Then QuadrupleShareRandom-PE securely computes F4-consistency.

Lemma 5. The protocol QuadrupleShareRandom-PE computes F4-consistency

with perfect security when |Cactive| < |Pactive|/3.

The overall communication complexity of QuadrupleShareRandom-PE
is O(n2κ) bits.

5.4 Random 0-Sharings

The protocol ZeroShareRandom is used to generate T random t-sharings of
0. It outputs either T correct and random t-sharings of 0 or a pair of disputed
parties. The ideal functionality is described in Fzero.

Functionality 10 Fzero(Pactive)
1: On receiving (Pi, Pk,disputed), where Cactive

⋂
{Pi, Pk} 6= ∅, from S, Fzero

sends (Pi, Pk,disputed) to all parties.
2: On receiving ({r1s}Ps∈Cactive , . . . , {rTs }Ps∈Cactive) from S, Fzero randomly gen-

erates [01]t, . . . , [0
T ]t such that for all j ∈ {1, . . . , T} and Ps ∈ Cactive, the

s-th share of [0j ]t is rjs. For all j ∈ {1, . . . , T} and Pi ∈ Pactive, F4-consistency

sends the i-th shares of [01]t, . . . , [0
T ]t to Pi.

ZeroShareRandom first invokes Ftriple(t, t, t) to generate T random triple-
sharings [r]t,t,t. Then computes [0]t by subtracting the first t-sharing of r from
the second t-sharing of r. Formally,

Protocol 11 ZeroShareRandom(Pactive)
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1: Generate random triple-sharings:
All parties invoke Ftriple(t, t, t) to generate [r1]t,t,t, . . . , [r

T ]t,t,t. If Ftriple

outputs (Pi, Pk,disputed), all parties halt. We write each triple-sharings
[rj ]t,t,t as ([aj ]t, [b

j ]t, [c
j ]t) where rj = aj = bj = cj to distinguish these

three t-sharings of the same value rj .
2: For j ∈ {1, . . . , T}, all parties locally compute [0j ]t = [bj ]t− [aj ]t. All parties

take [01]t, . . . , [0
T ]t as output.

As we invoke Ftriple(t, t, t) to generate T random sharings of 0 from T random
triple-sharings, the overall communication complexity is O(n2κ) bits. And in
average, the communication cost for each random t-sharing of 0 is O(n) elements.

5.5 Check Consistency

The procedure CheckConsistency is used to check whether a party Pking sent
T same elements to all other parties. It outputs either ⊥ or a disputed pairs.

We may think Pking distributes T 0-sharings (which are essentially constant
values) to all other parties. Suppose these sharings are [d1]0, . . . , [d

T ]0. In the be-
ginning, all parties agree on a hyper-invertible matrix M of size (T+t′)×T . Then
all parties (locally) compute ([r1]0, . . . , [r

T+t′ ]0) = M([d1]0, . . . , [d
T ]0). Each 0-

sharing is reconstructed by a different party and each party who reconstructs
one of the 0-sharing checks whether it is valid and sets its happy-bit to unhappy

if not. Note that at least T sharings are checked by honest parties. If all hon-
est parties are satisfied with the execution, by the property of hyper-invertible
matrices, all honest parties received the same T elements from Pking.

However, in the fault-location phase, just providing all information in the
computation phase is not enough. To find a pair of disputed parties, Pking should
send these T elements to the referee. Formally,

Procedure 12 CheckConsistency(Pactive, Pking, [d
1]0, . . . , [d

T ]0)

1: Initialization Phase:
All parties initially set their happy-bits to happy.

2: Computation Phase:
1. All parties agree on a hyper-invertible matrix M of size (T + t′)× T .
2. All parties locally compute ([r1]0, . . . , [r

T+t′ ]0) = M([d1]0, . . . , [d
T ]0).

3. For j ∈ {1, . . . , T + t′}, all parties send their shares of [rj ]0 to Pj .
4. Pj checks whether [rj ]0 it receives is valid, i.e., all shares of [rj ]0 are

equal. If not, Pj sets its happy-bit to unhappy.
3: Fault Detection Phase:

1. Each party sends their happy-bit to all other parties.
2. For each party, if at least one of the happy-bits it receives is unhappy,

set its happy-bit to be unhappy.
3. All parties run a consensus protocol on their respective happy-bits. If

the result is happy, all parties halt. Otherwise, run the following steps.
4: Fault Localization Phase:
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1. All parties agree on a referee Pr ∈ Pactive. Every other party sends
everything it generated, sent and received in the Computation Phase
and Fault Detection Phase to Pr. Pking sends d1, . . . , dT to Pr.

2. On receiving all information from other parties, Pr simulates the Compu-
tation Phase and Fault Detection Phase. Pr broadcasts either (Pi, corrupt)
(in the case Pi does not follow the procedure) or (`, Pi, Pk, v, v

′,disputed)
where ` is the index of the message where Pi should have sent v to Pk

while Pk claimed to have received v′ 6= v.
(a) If (Pi, corrupt) is broadcast, all parties set E = {Pr, Pi}.
(b) Otherwise, Pi and Pk broadcast whether they agree with Pr. If Pi

disagrees, set E = {Pr, Pi}; if Pk disagrees, set E = {Pr, Pk}; other-
wise, set E = {Pi, Pk}.

3. All parties take E as output and halt.

In the computation phase of CheckConsistency, all parties send O(n2)
elements. The remaining step is the same as Party-Elimination except that
Pking needs to send additional O(n) elements to Pr in the fault localization phase.
The overall communication complexity is O(n2κ) bits.

5.6 Check 4-Consistency

The procedure Check4Consistency is used to check whether each party dis-
tributed a correct 4-consistent tuple. The privacy is preserved when invoking
this procedure. It outputs either ⊥ or a pair of disputed parties.

In the beginning, all parties agree on a hyper-invertible matrix M of size
(T+t′)×T . Then, all parties invoke F4-consistency several times to generate enough
number of random tuples of 4-consistent sharings. Each random 4-consistent
tuple is associated to one input 4-consistent tuple and it is reconstructed to the
dealer of the input tuple. Instead of checking the original one, we will check the
summation of these two tuples.

Every time, up to T tuples are checked. All parties locally apply M on these
T tuples to get T + t′ tuples. Each tuple is then reconstructed by a different
party. Each party who reconstructs the tuple of sharings checks whether it is 4-
consistent and sets its happy-bit to unhappy if not. Note that at least T tuples are
checked by honest parties. If all honest parties are satisfied with the execution,
by the property of hyper-invertible matrices and the linearity of 4-consistent
sharings, these T tuples are correct and 4-consistent.

However, in the fault-location phase, the dealer cannot provide the original
tuple of sharings to the referee. Instead, the dealer provides the new tuple which
is the summation of the original one and a random one. Note that the original
tuple is generated by the dealer which should be 4-consistent and the random
tuple is 4-consistent guaranteed by F4-consistency.

Procedure 13 Check4Consistency(Pactive,P1,P2,P3, {[[sj ]]}n
′

j=1)
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1: Initialization Phase:
All parties initially set their happy-bits to happy.

2: Pre-Computation Phase:
1. All parties agree on a hyper-invertible matrix M of size (T + t′)× T .
2. From j = 1 to dn′/T e:

All parties call F4-consistency to generate T random tuples of 4-consistent
sharings [[rT (j−1)+1]], . . . , [[rT (j−1)+T ]]. If F4-consistency outputs (Pi, Pk,disputed),
all parties take (Pi, Pk,disputed) as output and halt.

3. For j ∈ {1, . . . , n′}, all parties send their shares of [[rj ]] to Pj .
4. For j ∈ {1, . . . , n′}, all parties compute

[[uj ]] := [[sj ]] + [[rj ]]

3: Computation Phase:
For l > n′, we set [[ul]] := ([0]0, [0]0, [0]0, [0]0). For j ∈ {1, . . . dn′/T e}:

1. All parties locally compute ([[v1]], . . . , [[vT+t′ ]]) = M([[uT (j−1)+1]], . . . , [[uT (j−1)+T ]]).
2. For k ∈ {1, . . . , T + t′}, all parties send their shares of [[vk]] to Pk.
3. Pk checks whether the 4-consistent tuple it received is valid. If not, Pk

sets its happy-bit to unhappy.
4: Fault Detection Phase:

1. Each party sends their happy-bit to all other parties.
2. For each party, if at least one of the happy-bits it receives is unhappy,

set its happy-bit to be unhappy.
3. All parties run a consensus protocol on their respective happy-bits. If

the result is happy, all parties halt. Otherwise, run the following steps.
5: Fault Localization Phase:

1. All parties agree on a referee Pr ∈ Pactive. Every other party sends
everything it generated, sent and received in the Computation Phase
and Fault Detection Phase to Pr. Each party Pi also sends [[ui]] to Pr.

2. On receiving all information from other parties, Pr simulates the Compu-
tation Phase and Fault Detection Phase. Pr broadcasts either (Pi, corrupt)
(in the case Pi does not follow the procedure) or (`, Pi, Pk, v, v

′,disputed)
where ` is the index of the message where Pi should have sent v to Pk

while Pk claimed to have received v′ 6= v.
(a) If (Pi, corrupt) is broadcast, all parties set E = {Pr, Pi}.
(b) Otherwise, Pi and Pk broadcast whether they agree with Pr. If Pi

disagrees, set E = {Pr, Pi}; if Pk disagrees, set E = {Pr, Pk}; other-
wise, set E = {Pi, Pk}.

3. All parties take E as output and halt.

In the pre-computation phase of Check4Consistency, all parties invoke
F4-consistency dn′/T e = O(1) times and send O(n2) elements to reconstruct n′

[[rj ]]-s to different parties. In total, O(n2) elements are sent.
In the computation phase, all parties send O(n2) elements to reconstruct T +

t′ [[vk]]-s to different parties each round and dn′/T e = O(1) rounds are executed.
The remaining step is the same as Party-Elimination except that, in the fault
localization phase, each party Pi should send [[ui]]-s to Pr, which contains O(n2)
elements in total. The overall communication complexity is O(n2κ) bits.

22



6 Protocol

In this section, we formally describe our construction. The main protocol is
divided into several parts. In the first part, all input gates are handled by Finput.
We refer the reader to Section 3.7. The second part generates random shares for
all random gates. In the third part, the circuit is divided into segments where
each segment contains exactly T multiplication gates. Then each segment is
evaluated sequentially. The last part handles the output gates.

6.1 Random Gates

The functionality Frand is used to generate random sharings of uniform elements
in F. We use cR for the number of random gates in the circuit.

Functionality 14 Frand(cR)

1: From j = 1 to cR, Frand asks S what to do next:
– On receiving (Pi, Pk,disputed) where Cactive

⋂
{Pi, Pk} 6= ∅, Frand sets

Pactive := Pactive\{Pi, Pk} and Cactive := Cactive\{Pi, Pk}.
– On receiving {vjs}Ps∈Cactive , Frand sets Pj = Pactive, Cj = Cactive and

continue to handle j := j + 1.
2: For every j ∈ {1, . . . , cR}, Frand generates a random value vj ∈ F and

computes a random t-sharing [vj ]t such that for all Ps ∈ Cj , the s-th share
of [vj ]t is vjs.

3: For every j ∈ {1, . . . , cR} and Pi ∈ Pj , Frand sends vji to Pi. Frand also sends
Pactive to all parties.

The formal instantiation of Frand is described below.

Protocol 15 Rand(Pactive, cR)

1: From j = 1 to dcR/T e, do the follows:
1. All parties in Pactive call Ftriple(n

′ − 1, t, t′).
2. If Ftriple outputs (Pi, Pk,disputed), all parties set Pactive := Pactive\{Pi, Pk}

and Pi, Pk halt. Repeat this step.
3. Otherwise, all (n′ − 1)-sharings and t′-sharings are discarded. Denote

the T t-sharings as [vT (j−1)+1]t, . . . , [v
T (j−1)+T ]t. All parties in Pactive

continue to handle j := j + 1.
2: All parties take [v1]t, . . . , [v

cR ]t as output and the remaining sharings are
discarded.

We now show that Rand securely computes Frand.

Lemma 6. The protocol Rand computes Frand with perfect security when |Cactive| <
|Pactive|/3.

Proof. Let A be the adversary in the real world. We show the existence of S:
From j = 1 to dcR/T e, S does the follows:
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1. S emulates Ftriple(n
′ − 1, t, t′).

2. On receiving (Pi, Pk,disputed), where Cactive
⋂
{Pi, Pk} 6= ∅, from A, S

sets Pactive := Pactive\{Pi, Pk} and Cactive := Cactive\{Pi, Pk}. S sends
(Pi, Pk,disputed) to Frand. Repeat the loop from the beginning.

3. On receiving ({r1,n′−1
s , r1,ts , r1,t

′

s }Ps∈Cactive , {rT,n′−1
s , rT,t

s , rT,t′

s }Ps∈Cactive) from

A, for i = 1, 2, . . . , T , S sets {vT (j−1)+i
s }Ps∈Cactive = {ri,ts }Ps∈Cactive .

4. From i = 1 to T , if T (j − 1) + i ≤ T , S sends {vT (j−1)+i
s }Ps∈Cactive to Frand.

Note that S does not send any message to A. The view of A in either world
is just empty. ut

Note that, each time we repeat Step 1.2, at least one corrupted party is
removed from Pactive. Thus, we will repeat Step 1.2 at most t = O(n) times.
Therefore, Ftriple is invoked at most dcR/T e+O(n) times.

By using TripleShareRandom-PE to instantiate Ftriple in Rand, the over-
all communication complexity is O((dcR/T e+O(n))n2κ) = O(cRnκ+n3κ) bits.

6.2 Addition and Multiplication Gates

The circuit is first divided into several segments such that each segment seg

contains T multiplication gates. All segments are evaluated sequentially. If a
segment is evaluated successfully, then in the end, every output wire of this
segment is a correct t-sharing. Otherwise, a pair of disputed parties is recognized.
We first describe the procedure for evaluating one segment.

Procedure 16 Eval(Pactive, seg)

1: Initialization:
All parties agree on a party Pking and a partition of Pactive = P1

⋃
P2

⋃
P3

such that |P1|, |P2|, |P3| ≤ t+ 1.
2: Generate multiplication tuples:

All parties invoke GenerateTuples-PE(Pactive). If the result is (Pi, Pk,disputed),
all parties take it as output and halt. Otherwise, run the following steps.

3: Evaluate seg:
For every addition gate, all parties apply addition on their own shares.
For every multiplication gate, a multiplication tuple generated in the

first step is associated with it. We use [x]t, [y]t for the input wires and
([a]t,n′−1, [b]t,n′−1, [c]t) for the multiplication tuple.

1. All parties compute [d]n′−1 := [x]t + [a]n′−1 and [e]n′−1 := [y]t + [b]n′−1.
2. All parties send their shares of [d]n′−1 and [e]n′−1 to Pking.
3. Pking reconstructs the d and e. Then send these two elements back to all

other parties.
4. All parties compute [z]t := de− d[b]t − e[a]t + [c]t.

4: Check the consistency of Pking:
Let d1, . . . , dT , e1, . . . , eT be the elements Pking distributed in the last

step. We view that step as Pking distributing [d1]0, . . . , [d
T ]0, [e

1]0, . . . , [e
T ]0.
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1. All parties invoke the procedure CheckConsistency(Pactive, Pking, [d
1]0, . . . , [d

T ]0).
If the result is (Pi, Pk,disputed), all parties take it as output and halt.

2. All parties invoke the procedure CheckConsistency(Pactive, Pking, [e
1]0, . . . , [e

T ]0).
If the result is (Pi, Pk,disputed), all parties take it as output and halt.

5: Recompute all reconstructions:
We use ([x1]t, [y

1]t), . . . , ([x
T ]t, [y

T ]t) for the input wires of the multipli-
cation gates in seg and ([a1]t,n′−1, [b

1]t,n′−1, [c
1]t), . . . , ([a

T ]t,n′−1, [b
T ]t,n′−1, [c

T ]t)
for the multiplication tuples associated with the multiplication gates.
1. For j ∈ {1, . . . , T}, all parties compute [dj ]t = [xj ]t +[aj ]t, [e

j ]t = [yj ]t +
[bj ]t.

2. Invoke Recons(Pactive, t, [d1]t, . . . , [d
T ]t) and Recons(Pactive, t, [e1]t, . . . , [e

T ]t).
3. On receiving d1, . . . , dT , e1, . . . , eT , each party checks that whether they

are correctly reconstructed by Pking in step 4. If they are all correct, take
the shares of each output wires of seg as output and halt. Otherwise,
find the first value which is incorrect. Without loss of generality, suppose
di

?

is the first incorrect value. Then do the following check.
6: Commit randomness used in GenerateTuples-PE:

For Pi ∈ Pactive, let [si]t,n′−1 denote the t-sharing and (n′−1)-sharing of
si that Pi distributed in TripleShareRandom (which is used in GenerateTuples-PE).
1. For party Pi, it randomly generates [1s

i]t, [2s
i]t, [3s

i]t such that for j ∈
{1, 2, 3} and Pk ∈ Pj , the k-th share of [js

i]t (i.e., js
i
k) is the same as

that of [si]n′−1.
2. For j ∈ {1, 2, 3} and Pk ∈ Pactive\Pj , Pi sends the k-th share of [js

i]t to
Pk.

7: Check 4-Consistency:
Let [0s

i]t := [si]t and [[si]] denote the tuple of sharings ([0s
i]t, [1s

i]t, [2s
i]t, [3s

i]t).
1. All parties invoke the procedure

Check4Consistency(Pactive,P1,P2,P3, {[[sj ]]}n
′

j=1)

2. If the result is (Pi, Pk,disputed), all parties take it as output and halt.
Otherwise, run the following steps.

8: Find a disputed pair of parties:
Let M be the invertible matrix used in TripleShareRandom. Let Mi?

be the i?-th row of M . Then [ai
?

]n′−1 = Mi?([s1]n′−1, . . . , [s
n′

]n′−1).
1. For j ∈ {1, 2, 3}, all parties compute

[jd
i? ]t = [xi

?

]t +Mi?([js
1]t, . . . , [js

n′
]t)

2. For j ∈ {1, 2, 3}, all parties send their shares of [jd
i? ]t to Pking.

3. Pking finds j? and k? where the k?-th share of [j?d
i? ]t is not the value

he received from Pk? in Step 3. Pking broadcasts (k?, corrupt).
4. All parties take {Pking, Pk? ,disputed} as output and halt.

Now, we analyze the correctness of Eval. The first two steps are straightfor-
ward. For Step 3, every addition gate can be computed locally by all parties. To
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evaluate a multiplication gate, we use a random multiplication tuple. Instead of
using random t-sharings in [BTH08], we use random (n′ − 1)-sharings (namely
[a]n′−1 and [b]n′−1) to hide the t-sharings (namely [x]t and [y]t). In this way,
the messages that Pking receives from honest parties are uniformly random. It
prevents a malicious Pking to gain addition knowledge from the shares of honest
parties. Indeed, if all parties behave honestly, then all parties will get a random
t-sharing [z]t where z = xy.

However, a corrupted party may send an incorrect share to Pking or a mali-
cious Pking may send incorrect values back to all other parties. To detect such
malicious behaviors, we first check whether Pking sent the same values in Step
4. It is vital since it directly decides whether the shares of [z]t held by honest
parties are consistent or not.

If all parties confirm that Pking sent the same values to all other parties (at
least to all honest parties), the next step is to check whether these reconstructed
values are correct. This time, all parties use [a]t and [b]t instead of [a]n′−1 and
[b]n′−1. Note that for each input wire of multiplication gates, all parties have
already held a correct t-sharings, which is guaranteed by Step 4. Thus, we can
reconstruct all t-sharings [a]t+[x]t and [b]t+[y]t for multiple layers of multiplica-
tion gates, which were evaluated in this segment, in parallel. If all reconstructions
are the same as those in Step 3, then we confirm that this segment is evaluated
successfully.

If all parties find at least one of the reconstructions is incorrect, then there
must be some corrupted party which doesn’t follow the protocol. All parties
focus on the first incorrect one. Without loss of generality, we assume it is di

?

.
The main difficulty is that the redundancy is not enough to identify a pair

of disputed parties. Therefore, in Step 6, all parties commit their randomness
used in generating [ai

?

]t′,t,n′−1, namely [s1]t′,t,n′−1, . . . [s
n′

]t′,t,n′−1. Note that
correct t′-sharings and t-sharings have already had enough redundancy in the
sense that all parties can correct all shares no matter how corrupted parties
change their shares. Therefore, we require that each party Pi commits [si]n′−1
by using several t-sharings [1s

i]t, [2s
i]t, [3s

i]t. Together with [0s
i]t = [si]t, the

tuple of these 4 sharings forms a 4-consistent tuple.
In Step 7, all parties check whether these tuples are 4-consistent.
In the last step, for every j ∈ {1, 2, 3}, all parties compute

[jd
i? ]t = [xi

?

]t +Mi?([js
1]t, . . . , [js

n′
]t)

Note that for Pi ∈ Pj , the i-th share of [jd
i? ]t is exactly the share Pi should

have sent to Pking and this time, Pi cannot change its share without being

caught. Pking collects all shares of [1d
i? ]t, [2d

i? ]t, [3d
i? ]t and is able to broadcast

a corrupted party. All party then view Pking and the party it broadcast as a pair
of disputed parties.

Now we analyze the communication complexity of Eval.
In Step 2, GenerateTuples-PE is invoked one time and the communication

complexity is O(n2κ) bits. In Step 3, for each multiplication gate, Pking receives
from and sends to other parties O(n) elements in total, which costs O(nκ) bits.
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In Step 4, CheckConsistency is invoked two times and the communication
complexity is O(n2κ) bits. In Step 5, Recons is invoked two times and the
communication complexity is O(n2κ) bits. In Step 6, all parties send O(n2)
elements to distribute [1s

i]t, [2s
i]t, [3s

i]t. In Step 7, Check4Consistency is
invoked one time and the communication complexity is O(n2κ) bits. In Step 8,
all parties send O(n) elements to Pking to reconstruct [1d

i? ]t, [2d
i? ]t, [3d

i? ]t to
Pking. Then another O(n2) elements are sent to let Pking broadcast a corrupted
party.

Therefore, the overall complexity is O(n2κ) bits.

6.3 Output Gates

The procedure Output helps reconstruct t-sharings to the parties specified by
the output gates under the guarantee that, for each sharing associated with the
output gates, the shares held by parties in Pactive\Cactive are consistent.

Procedure 17 Output(Pactive)
All output gates are divided into several segments of size T . All segments

are executed sequentially. For each segment:
1: All parties repeat the following steps until success:

1. All parties call Fzero.
2. If Fzero outputs (Pi, Pk,disputed), all parties set Pactive := Pactive\{Pi, Pk}.

Redo the loop.
3. If Fzero outputs T t-sharings of 0, break the loop.

2: Each output gate consumes one [0]t generated in the last step. For each
output gate, [s]t denotes the t-sharing and Pi? ∈ P, the party who receives
s. All parties in Pactive compute [s]t := [s]t + [0]t and send their shares of
[s]t to Pi? .

3: Each receiver Pi? reconstructs s from the shares it receives in the last step.

Let cO be the number of output gates in the circuit. Then all output gates
are divided into dcO/T e segments. Note that each time Fzero outputs a pair of
disputed parties, at least one corrupted party is removed from Pactive. Thus Fzero

will be rerun at most O(n) times. Fzero will be invoked at most O(n) + dcO/T e
times. For each output gate, all parties send O(n) elements to the designated
party to reconstruct the output. Therefore, by using ZeroShareRandom to
instantiate Fzero, the overall communication complexity is O(cOnκ+ n3κ) bits.

6.4 Main Protocol

Now, we are ready to present the main protocol. In the protocol, all parties first
invoke Finput to securely share their inputs. Then Frand is invoked to generate
random sharings for random gates.

Let cM denote the number of multiplication gates. The circuit is divided
into dcM/T e segments such that each segment contains T multiplication gates.
Segments are evaluated sequentially based on their topological order. For each
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segment seg, the procedure Eval is invoked. If the result is a pair of disputed
parties, then these two parties are removed from Pactive and all parties in Pactive
reevaluate seg. Otherwise, the protocol continues to evaluate the next segment.

Finally, Output is invoked to reconstruct the outputs to designated parties.

Protocol 18 Main

1: Input gates:
All parties invoke Finput(cI).

2: Rand gates:
All parties invoke Frand(cR).

3: Evaluation:
1. All parties agree on a partition (seg1, seg2, . . . , segdcM/Te) of the circuit

such that the number of multiplication gates of each segment is T .
2. From j = 1 to dcM/T e:

(a) All parties run the procedure Eval(Pactive, segj).
(b) If the output is (Pi, Pk,disputed), all parties set Pactive := Pactive\{Pi, Pk}

and repeat the loop.
(c) Otherwise, set j := j + 1 and continue to handle the next segment.

4: Output gates:
All parties invoke the procedure Output(Pactive).

Now we analyze the communication complexity of Main.
For Step 3, each time Eval outputs a pair of disputed parties, at least one

corrupted party is removed from Pactive. Thus, Eval will be rerun at most
O(n) times. In total, Eval will be invoked O(n) + dcM/T e times. The overall
communication complexity of this step is O(cMnκ+ n3) bits.

Let C = cI + cR + cM + cO. Then the overall communication complexity of
Main is O(Cnκ+ n3κ) bits.

Theorem 1. Let F be a finite field of size |F| ≥ 2n and C be an arithmetic
circuit over F. Protocol Main evaluates C with perfect security against an active
adversary which corrupts at most t < n/3 parties.

We provide the full proof of Theorem 1 in Appendix B.
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A Construction of the Simulator

In this part, we give a description of the simulator S, which will be used to prove
the security of Main in the next part.

Suppose A is the adversary in the real world. We use cI , cR, cM , cO for the
number of input, random, multiplication and output gates respectively. In the
beginning, we set Pactive to be the set of all parties and Cactive to be the set of
all corrupted parties.

In Step 1, S receives the inputs of all corrupted parties. For each input of
honest parties, S sets it to be 0. Then S faithfully emulates Finput. In this step,
S learns all shares of corrupted parties of all inputs.

In Step 2, S faithfully emulates Frand. In this step, S learns all shares of
corrupted parties of all random elements.

In Step 3.1, S behaves honestly.
In Step 3.2, we describe the behavior of S when executing Eval.

Initialization : S behaves honestly.

Generate multiplication tuples: S invokes the simulator Smulti-tuple of
Fmulti-tuple. S emulates Fmulti-tuple. If S receives (Pi, Pk,disputed), it sets Pactive :=
Pactive\{Pi, Pk}, Cactive := Cactive\{Pi, Pk} and repeats from Step 3.1. Other-
wise, S learns all shares of corrupted parties of all multiplication tuples.
S also gets the transcript of Smulti-tuple during the interaction with A, i.e.,

all messages Smulti-tuple received from and sent to A.

Evaluate seg: We will maintain the invariance that for each t-sharing of
input wires of seg, S learns all shares held by corrupted parties. It holds for the
first seg since every input wire is either from a random gate or an input gate.
Therefore, we only need to guarantee that in the end of a successful evaluation,
S learns all shares held by corrupted parties for each t-sharing of output wires
of seg. In the following steps, S will compute the shares of corrupted parties
accordingly.

For every addition gate, S does nothing. For every multiplication gate, each
time an honest party needs to send its share of [d]n′−1 or [e]n′−1 to Pking, S
sends a random element to Pking.

For the remaining steps, S behaves honestly. If Pking is an honest party, S
behave honestly by reconstructing the (n′ − 1)-sharings and sending back the
results to all other parties.

Check the consistency of Pking: Since d1, . . . , dT , e1, . . . , eT are public and
this step does not involve any private shares, S behaves honestly in this step.

Recompute all reconstructions: S first computes the values d1, . . . , dT , e1, . . . , eT

should be. Recall that, for every j ∈ {1, . . . , T}, S learns the shares of [aj ]n′−1
and [bj ]n′−1 held by corrupted parties. In addition, S also learns the shares of
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[xj ]t and [yj ]t held by corrupted parties. Therefore, S learns all shares of [dj ]n′−1
and [ej ]n′−1 that they ought to be.

For every j ∈ {1, . . . , T}, based on dj , ej and all shares of [dj ]t and [ej ]t held
by corrupted parties, S randomly computes the remaining shares as the shares
of honest parties.

In the remaining steps, S behaves honestly.

Commit randomness used in GenerateTuples-PE: S will use the tran-
script got from Smulti-tuple to generate the messages that honest parties should
send to corrupted parties.

Recall that in TripleShareRandom, all parties in the real world compute

([a1]n′−1, . . . , [a
n′

]n′−1) = M([s1]n′−1, . . . , [s
n′

]n′−1).

where M is the hyper-invertible matrix all parties agree on. And each of the last
2t′ (n′ − 1)-sharings is checked by a different party.

Let Ccheck be the set of corrupted parties which checks a (n′ − 1)-sharing in
TripleShareRandom. Let t1 = |Cactive| and t2 = |Ccheck|. S select n′ − T −
t1 − t2 honest parties (denoted by H′) and for every Pj ∈ H′, set the shares of
[sj ]n′−1 held by honest parties to be uniformly random.

Recall that, for every Pi ∈ Hactive in the real world, it should compute

(a1i , . . . , a
n′

i ) = M(s1i , . . . , s
n′

i ).

Let N be the matrix such that

(sji )Hactive\H′ = N(a1i , . . . , a
T
i , (a

j
i )Ccheck , (s

j
i )j∈Cactive

⋃
H′)

where we use (sji )Hactive\H′ for the vector only containing {sji}Pj∈Hactive\H′ and

(a1i , . . . , a
T
i , (a

j
i )Ccheck , (s

j
i )j∈Cactive

⋃
H′) for the vector only containing {a1i , . . . , aTi },

{aji}Pj∈Ccheck , {s
j
i}Pj∈Cactive

⋃
H′ . The existence of N is guaranteed by the property

of hyper-invertible matrices.
Note that

(sji )Hactive\H′ = N(a1i , . . . , a
T
i , (a

j
i )Ccheck , (s

j
i )j∈Cactive

⋃
H′)

= N(d1i , . . . , d
T
i , (a

j
i )Ccheck , (s

j
i )j∈Cactive

⋃
H′)−N(x1i , . . . , x

T
i , 0, . . . , 0)

Let ([U j ]t)Pj∈Hactive\H′ := N([x1]t, . . . , [x
T ]t, [0]0, . . . , [0]0). ThenN(x1i , . . . , x

T
i , 0, . . . , 0)

is just the vector of the i-th shares of {[U j ]t}Pj∈Hactive\H′ .

LetNj be the row ofN such that sji = Nj(a
1
i , . . . , a

T
i , (a

j
i )Ccheck , (s

j
i )j∈Cactive

⋃
H′).

Let V j
i = N(d1i , . . . , d

T
i , (a

j
i )Ccheck , (s

j
i )j∈Cactive

⋃
H′). Therefore, sji = V j

i − U
j
i .

For shares of [sj ]n′−1 held by corrupted parties, they have been sent to cor-
rupted parties and thus, are fixed. Therefore, {sji}Pi∈Cactive are fixed. Also, for

Pi ∈ Cactive, S knows the value of U j
i (which is just a linear combination of the

i-th shares of [x1]t, . . . , [x
T ]t). Thus, S sets V j

i = sji + U j
i .
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For Pj ∈ H′, S generates [1s
j ]t, [2s

j ]t, [3s
j ]t honestly (since all shares of

[sj ]n′−1 are generated).

For Pj ∈ Hactive\H′, S randomly generates [1V
j ]t, [2V

j ]t, [3V
j ]t such that

for k ∈ {1, 2, 3} and P` ∈ Pk, the `-th share of [kV
j ]t is V j

` . Finally, set [ks
j ]t =

[kV
j ]t−[U j ]t for k ∈ {1, 2, 3}. Note that S learns all shares of [ks

j ]t which should
be held by corrupted parties.

For k ∈ {1, 2, 3} and every Pj ∈ Hactive, S sends the `-th shares of [ks
j ]t to

P` for all P` ∈ Cactive\Pk.

Check 4-Consistency :

In Check4Consistency, S first faithfully emulates F4-consistency to gener-
ate random 4-consistent tuples. If S receives (Pi, Pk,disputed), it sets Pactive :=
Pactive\{Pi, Pk}, Cactive := Cactive\{Pi, Pk} and repeats from Step 3.1. Other-
wise, S receives all shares of corrupted parties of all random 4-consistent tuples.

When all shares of a random 4-consistent tuple are sent to a corrupted party,
S honestly generates this tuple and sends the shares to the corrupted party on
behalf of honest parties.

For each honest party Pj , S generates a random 4-consistent tuple [[uj ]]

such that for every corrupted party P`, (0u
j
` , 1u

j
` , 2u

j
` , 3u

j
`) = (0s

j
` , 1s

j
` , 2s

j
` , 3s

j
`)+

(0r
j
` , 1r

j
` , 2r

j
` , 3r

j
`).

S behaves honestly in the remaining steps of Check4Consistency.

Find a disputed pair of parties:

For j ∈ {1, 2, 3}, S randomly generates [jd
i? ]t such that for Pk ∈ Pj\Cactive,

jd
i?

k is the k-th share of [di
?

]n′−1, which is determined before, and for Pk ∈
Cactive, jd

i?

k = xi
?

k +Mi?(js
1
k, . . . ,j s

n′

k ).Then S behaves honestly in the remaining
steps.

So far, we have shown the behavior of S when executing Eval. S behaves
honestly in the remaining sub-steps of Step 3.2.

In Step 4, S first faithfully emulates Fzero to generate random t-sharings of
0. If the output is (Pi, Pk,disputed), S sets Pactive := Pactive\{Pi, Pk}, Cactive :=
Cactive\{Pi, Pk} and redo the loop. Otherwise, S receives all shares of the random
t-sharings of 0 held by corrupted parties.

S then invokes the trusted party/ideal functionality with the inputs of cor-
rupted parties received in Step 1 and receives the outputs of corrupted parties.

For every output gate to an honest party, S does nothing.

For every output gate to a corrupted party, let {ri}Pi∈Cactive be the elements
A provides for a random t-sharing of 0 associated with this gate. Let v be the
output of this gate S received from the trusted party/ideal functionality. Note
that S learns the shares of [v]t held by corrupted parties. S randomly generates
a new t-sharing of v, namely [v′]t, such that for Pi ∈ Cactive, v′i = vi +ri. S sends
the shares of [v′]t to the designated corrupted party on behalf of honest parties.
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B Proof of the Security

In this part, we prove Theorem 1. Formally,

Theorem 1. Let F be a finite field of size |F| ≥ 2n and C be an arithmetic
circuit over F. Protocol Main evaluates C with perfect security against an active
adversary which corrupts at most t < n/3 parties.

Proof. We only need to show that, the view of A when interacting with the
simulator S we constructed in the last part has the same distribution as that in
the real world. Consider the following hybrids.

Hybrid0: Execution in the real world.
Hybrid1: In this hybrid, S emulate all functionalities in the protocol faith-

fully. Specifically, S emulate Finput in Step 1 with real inputs of honest parties,
Frand in Step 2, F4-consistency in Step 3 and Fzero in Step 4. The distribution is
the same as Hybrid0.

Hybrid2: In this hybrid, S invokes Smulti-tuple and emulates Fmulti-tuple in-
stead of running GenerateTuple-PE in Step 3. The distribution is the same
as Hybrid1.

Hybrid3: In this hybrid, S emulates Fzero and simulates the behaviors of
honest parties in Step 4 by using the strategy of Step 4. Note that S receives
the inputs of corrupted parties when emulating Finput.

The distribution is identical with Hybrid2.
Hybrid4: In this hybrid, S generates [1d

i? ]t, [2d
i? ]t, [3d

i? ]t by using the strat-
egy of finding a disputed pair of parties. We claim that the distribution is iden-
tical with Hybrid3.

To see this, for every j ∈ {1, 2, 3} and Pk ∈ Cactive, the k-th share of [jd
i? ]t

is fixed in either hybrid. And for Pk ∈ Pj\Cactive, the k-th share of [jd
i? ]t is just

the k-th share of [di
?

]n′−1, which is also fixed in either hybrid.
Thus if the size of |Pj

⋃
Cactive| ≥ t + 1, then all shares of [jd

i? ]t are deter-
mined. Otherwise, recall that

[jd
i? ]t = [xi

?

]t +Mi?([js
1]t, . . . , [js

n′
]t)

For each honest party Pk, [js
k]t is a random t-sharing such that for every Pi ∈ Pj ,

js
k
i is the i-th share of [sk]n′−1. For P` ∈ Cactive, js

k
` is fixed since it has been

sent to a corrupted party. Therefore, [js
k]t is a random t-sharing after fixing

the shares held by Pj

⋃
Cactive. Thus, [jd

i? ]t is a random t-sharing after fixing
the shares held by Pj

⋃
Cactive, whose distribution is exactly the same as that

generated by S.
Hybrid5: In this hybrid, S emulates F4-consistency and use the strategy of

checking 4-consistency to generate [[uj ]] for each honest party Pj .
The distribution is the same as Hybrid4.
Hybrid6: In this hybrid, S generates [1s

i]t, [2s
i]t, [3s

i]t for each honest party
Pi by using the strategy of committing randomness used in GenerateTuples-PE.
We claim the distribution remains the same.
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To see this, we first analyze what requirements [s1]n′−1, . . . , [s
n′

]n′−1 should
satisfy. Note that, before this step, they were only used when generating random
triple-sharings.

For every honest party Pj (as a dealer), shares of [sj ]n′−1 held by corrupted
parties are fixed since they have been sent to corrupted parties. Therefore, we
only focus on the shares held by honest parties.

In TripleShareRandom, all parties compute

([a1]n′−1, . . . , [a
n′

]n′−1) = M([s1]n′−1, . . . , [s
n′

]n′−1).

where M is the hyper-invertible matrix all parties agree on.
Therefore, for every honest party Pi (as a receiver), the shares held by Pi

should satisfy
(a1i , . . . , a

n′

i ) = M(s1i , . . . , s
n′

i )

Note that for j ∈ {1, . . . , T}, aji is fixed and aji = dji − x
j
i where dji is the

i-th share of [dj ]n′−1 and xji is the i-th share of [xj ]t. Also for Pj ∈ Cactive,
sji is fixed since it was received from a corrupted party. In addition, for Pj ∈
Ccheck which checks [aj ]n′−1 in TripleShareRandom (i.e., j ≥ T + 1), aji is
fixed since it has been sent to a corrupted party. In total, (T + t1 + t2) (≤ n′)
of a1i , . . . , a

n′

i , s
1
i , . . . , s

n′

i are fixed. The distribution of {sji}Pj∈Hactive
is random

while satisfying the constrain

(a1i , . . . , a
n′

i ) = M(s1i , . . . , s
n′

i )

By the property of hyper invertible matrices, any n′ values of a1i , . . . , a
n′

i , s
1
i , . . . , s

n′

i

can determine the remaining n′ values. Therefore, we can view (n′−T − t1− t2)
elements of {sji}Pj∈H are uniformly random and the remaining are then deter-
mined.

In this hybrid, S chooses a set of (n′ − T − t1 − t2) honest parties (de-
noted by H′) and set sji to be uniformly random for all Pj ∈ H′. That is,
S simulates the parties in H′ honestly by generating all shares of [sj ]n′−1 for
all Pj ∈ H′. (Recall that, for Pj ∈ Hactive\H′, S only generates the shares

of [sj ]n′−1 held by corrupted parties). Now {sji}j∈Hactive\H′ are determined by

{a1i , . . . , aTi }, {a
j
i}Pj∈Ccheck , {s

j
i}Pj∈Cactive

⋃
H′ . And the distribution of {[sj ]n′−1}Pj∈Hactive

is identical with the real one.
S uses {[sj ]n′−1}Pj∈Hactive

it generated (instead of the real one) to generate
{[1sj ]t, [2sj ]t, [3sj ]t} faithfully. Thus the distribution is the same as Hybrid5.

We point out that, in the generating process, S does not directly use the spe-
cific values of {a1i , . . . , aTi }Pi∈Hactive

. Instead, S only uses the values of {d1i , . . . , dTi }Pi∈Hactive

and all shares of [x1]t, . . . , [x
T ]t held by corrupted parties.

Hybrid7: In this hybrid, S computes the shares of [d1]t, . . . , [d
T ]t, [e

1]t, . . . , [e
T ]t

held by honest parties, which are used to recompute all reconstructions in Step
3, instead of using the real one by using the strategy of recomputing all recon-
structions.

Although xj or yj may be shared to a large set of parties (for example, xj is
an input and therefore even parties which are not in Pactive get shares), aj and
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bj are only shared to Pactive. Thus [dj ]t = [xj ]t +[aj ]t and [ej ]t = [yj ]t +[bj ]t are
uniformly distributed such that the shares held by corrupted parties are fixed.

Therefore, the distribution is the same as Hybrid6.
Hybrid8: In this hybrid, S uses the strategy of evaluating seg when evaluat-

ing every multiplication gate and addition gate. Explicitly, each time an honest
party needs to send its share to Pking, S sends a uniform element to Pking instead
of the real share.

Note that the shares of [a]n′−1 held by honest parties are uniformly dis-
tributed. To see this, consider the process that Fmulti-tuple generates a multipli-
cation tuple. On receiving the shares held by corrupted parties, Fmulti-tuple first
sets random elements to the shares of [a]n′−1 held by honest parties. Combining
with the shares provided by Smulti-tuple, a is determined. Then [a]t is generated.
[b]t,n′−1 are generated in a similar way. After that, c = ab is determined and
Fmulti-tuple generates [c]t. Therefore, the shares of [d]n′−1 = [x]t + [a]n′−1 and
[e]n′−1 = [y]t + [b]n′−1 held by honest parties are uniformly distributed. The
distribution is the same as Hybrid7.

Hybrid9: In this hybrid, S emulates Fmulti-tuple by using the strategy of
generating multiplication tuples. Note that, the only difference between this
hybrid and Hybrid8 is that the shares of all multiplication tuples held by honest
parties are not generated. However, in Hybrid8, these shares are not used after
they are generated. Thus, the distribution is the same as Hybrid8.

Hybrid10: In this hybrid, S emulates Frand by using the strategy of Step
2. Note that, the only difference between this hybrid and Hybrid9 is that the
shares of all random t-sharings held by honest parties are not generated. How-
ever, in Hybrid9, these shares are not used after they are generated. Thus, the
distribution is the same as Hybrid9.

Hybrid11: In this hybrid, S emulates Finput by using the strategy of Step
1. The only difference between this hybrid and Hybrid10 is that S provides 0
for each input of honest parties instead of the real one. However, it only changes
the shares held by honest parties since the shares held by corrupted parties are
provided by A. And these shares are not used after they are generated. Thus,
the distribution is the same as Hybrid10.

Note that Hybrid11 is the execution between S and A in the ideal world.
We conclude that the distribution of Hybrid11 is the same as Hybrid0. ut
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